Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities

In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other variable. Such minimax optimization problems have attracted significant attention lately due to their applications in modern machine learning tasks....

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 87; no. 2-4; pp. 709 - 740
Main Authors Wang, Zhongruo, Balasubramanian, Krishnakumar, Ma, Shiqian, Razaviyayn, Meisam
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other variable. Such minimax optimization problems have attracted significant attention lately due to their applications in modern machine learning tasks. We first consider a deterministic version of the problem. We design and analyze the Zeroth-Order Gradient Descent Ascent (ZO-GDA) algorithm, and provide improved results compared to existing works, in terms of oracle complexity. We also propose the Zeroth-Order Gradient Descent Multi-Step Ascent (ZO-GDMSA) algorithm that significantly improves the oracle complexity of ZO-GDA. We then consider stochastic versions of ZO-GDA and ZO-GDMSA, to handle stochastic nonconvex minimax problems. For this case, we provide oracle complexity results under two assumptions on the stochastic gradient: (i) the uniformly bounded variance assumption, which is common in traditional stochastic optimization, and (ii) the Strong Growth Condition (SGC), which has been known to be satisfied by modern over-parameterized machine learning models. We establish that under the SGC assumption, the complexities of the stochastic algorithms match that of deterministic algorithms. Numerical experiments are presented to support our theoretical results.
AbstractList In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other variable. Such minimax optimization problems have attracted significant attention lately due to their applications in modern machine learning tasks. We first consider a deterministic version of the problem. We design and analyze the Zeroth-Order Gradient Descent Ascent (ZO-GDA) algorithm, and provide improved results compared to existing works, in terms of oracle complexity. We also propose the Zeroth-Order Gradient Descent Multi-Step Ascent (ZO-GDMSA) algorithm that significantly improves the oracle complexity of ZO-GDA. We then consider stochastic versions of ZO-GDA and ZO-GDMSA, to handle stochastic nonconvex minimax problems. For this case, we provide oracle complexity results under two assumptions on the stochastic gradient: (i) the uniformly bounded variance assumption, which is common in traditional stochastic optimization, and (ii) the Strong Growth Condition (SGC), which has been known to be satisfied by modern over-parameterized machine learning models. We establish that under the SGC assumption, the complexities of the stochastic algorithms match that of deterministic algorithms. Numerical experiments are presented to support our theoretical results.
Audience Academic
Author Ma, Shiqian
Balasubramanian, Krishnakumar
Wang, Zhongruo
Razaviyayn, Meisam
Author_xml – sequence: 1
  givenname: Zhongruo
  orcidid: 0000-0001-9049-4291
  surname: Wang
  fullname: Wang, Zhongruo
  organization: Department of Mathematics, University of California
– sequence: 2
  givenname: Krishnakumar
  surname: Balasubramanian
  fullname: Balasubramanian, Krishnakumar
  organization: Department of Statistics, University of California
– sequence: 3
  givenname: Shiqian
  orcidid: 0000-0003-1967-1069
  surname: Ma
  fullname: Ma, Shiqian
  email: sqma@ucdavis.edu
  organization: Department of Mathematics, University of California
– sequence: 4
  givenname: Meisam
  surname: Razaviyayn
  fullname: Razaviyayn, Meisam
  organization: Department of Industrial and Systems Engineering, University of Southern California
BookMark eNp9kM1KAzEQgINUsFVfwNO-QHSS_UuOpfgHBS968RLSzWyN7CYlWWt78x18Q5_E6HryUDIQZphvZvhmZOK8Q0IuGFwygPoqMhBSUOCcAmMVUDgiU1bWOeWSVRMyBclLWgKwEzKL8RUApCj5lJhnDH54oT4YDJnu1j7Y4aWPWetDlpY03m1x9_XxGYfg3brb01Rp9Baz3jrb6122CX7VYSLeE5jZPuVbNFnj-02HOztYjGfkuNVdxPO__5Q83Vw_Lu7o8uH2fjFf0ibPYaCiMJWRJjccoCylwKqQtawFZ6wQLeRFKXUOmqdgq3LFuDBosBKrttUaqiI_JZfj3LXuUFnX-iHoJj2DvU13Y2tTfV7XDGpWcZYAMQJN8DEGbFVjBz1Y7xJoO8VA_ehVo16V9KpfvQoSyv-hm5B8hP1hKB-hmJrdGoN69W_BJSeHqG9XqZIZ
CitedBy_id crossref_primary_10_1137_23M1568168
Cites_doi 10.1137/120880811
10.1145/3278721.3278779
10.1007/978-3-030-60990-0_12
10.1007/s10898-009-9496-x
10.1007/978-94-010-0189-2
10.1109/BigData.2018.8622525
10.1137/1.9781611975031.172
10.1137/1.9780898718768
10.1007/978-3-319-91578-4
10.1145/3128572.3140448
10.1007/978-3-319-68913-5
10.1007/978-1-4419-8853-9
10.1145/3055399.3055403
10.1007/s10208-021-09499-8
10.1109/TSP.2020.2986363
10.1007/s10898-012-9951-y
10.1007/s10208-015-9296-2
10.1007/978-3-030-31978-6_7
10.1007/s10898-018-0688-0
10.1613/jair.613
10.1063/1.5089993
10.1145/1961189.1961199
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10898-022-01160-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 740
ExternalDocumentID A771071621
10_1007_s10898_022_01160_0
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1953210; CCF-2007797
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ID FETCH-LOGICAL-c330t-84d6d9d3d2005598e649797821148f03459a30a20a21b5b128dede68bffaa0643
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Tue Jun 10 21:02:42 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Tue Jul 01 00:53:01 EDT 2025
Fri Feb 21 02:44:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2-4
Keywords Stochastic algorithms
Oracle complexity
Gradient descent ascent
Minimax problem
Zeroth-order algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-84d6d9d3d2005598e649797821148f03459a30a20a21b5b128dede68bffaa0643
ORCID 0000-0001-9049-4291
0000-0003-1967-1069
PageCount 32
ParticipantIDs gale_infotracacademiconefile_A771071621
crossref_citationtrail_10_1007_s10898_022_01160_0
crossref_primary_10_1007_s10898_022_01160_0
springer_journals_10_1007_s10898_022_01160_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2023
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Lin, T., Jin, C., Jordan, M.I.: On gradient descent ascent for nonconvex–concave minimax problems. In: Proceedings of the International Conference on Machine Learning (ICML) (2020)
Daskalakis, C., Panageas, I.: The limit points of (optimistic) gradient descent in min–max optimization. In: Advances in Neural Information Processing Systems, pp. 9236–9246 (2018)
RiosLSahinidisNDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Glob. Optim.201356312471293307015410.1007/s10898-012-9951-y1272.90116
Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-box attacks. In: International Conference on Representation Learning (2017)
Hsieh, Y.-P., Liu, C., Cevher, V.: Finding mixed Nash equilibria of generative adversarial networks. In: International Conference on Machine Learning, pp. 2810–2819. PMLR (2019)
MoriartyDESchultzACGrefenstetteJJEvolutionary algorithms for reinforcement learningJ. Artif. Intell. Res.19991124127610.1613/jair.6130924.68157
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Gidel, G., Berard, H., Vignoud, G., Vincent, P., Lacoste-Julien, S.: A variational inequality perspective on generative adversarial networks. In: International Conference on Learning Representations (2018)
Lu, S., Tsaknakis, I., Hong, M., Chen, Y.: Hybrid block successive approximation for one-sided non-convex min–max problems: algorithms and applications. arXiv preprint arXiv:1902.08294 (2019)
Wang, Z., Jegelka, S.: Max-value entropy search for efficient Bayesian optimization. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3627–3635. JMLR.org (2017)
BalasubramanianKGhadimiSZeroth-order nonconvex stochastic optimization: handling constraints, high-dimensionality, and saddle-pointsFound. Comput. Math.2021223576437658810.1007/s10208-021-09499-81516.90056
Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., Song, L.: SBEED: convergent reinforcement learning with nonlinear function approximation. In: Proceedings of the International Conference on Machine Learning (ICML) (2018)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
NesterovYEIntroductory Lectures on Convex Optimization: A Basic Course. Applied Optimization2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-91086.90045
Huang, F., Gao, S., Pei, J., Huang, H.: Accelerated zeroth-order and first-order momentum methods from mini to minimax optimization. https://arxiv.org/pdf/2008.08170.pdf (2020)
Ma, S., Bassily, R., Belkin, M.: The power of interpolation: understanding the effectiveness of SGD in modern over-parametrized learning. In: International Conference on Machine Learning, pp. 3325–3334 (2018)
Meng, S.Y., Vaswani, S., Laradji, I.H., Schmidt, M., Lacoste-Julien, S.: Fast and furious convergence: stochastic second order methods under interpolation. In: International Conference on Artificial Intelligence and Statistics, pp. 1375–1386 (2020)
Nouiehed, M., Sanjabi, M., Huang, T., Lee, J., Razaviyayn, M.: Solving a class of non-convex min–max games using iterative first order methods. In: Advances in Neural Information Processing Systems, pp. 14905–14916 (2019)
Roy, A., Balasubramanian, K., Ghadimi, S., Mohapatra, P.: Escaping saddle-points faster under interpolation-like conditions. In: Advances in Neural Information Processing Systems (2020)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2017)
AudetCHareWDerivative-Free and Blackbox Optimization2017BerlinSpringer10.1007/978-3-319-68913-51391.90001
Xu, T., Wang, Z., Liang, Y., Vincent Poor, H.: Enhanced first and zeroth order variance reduced algorithms for min–max optimization. arXiv preprint arXiv:2006.09361 (2020)
Jin, C., Netrapalli, P., Jordan, M.: What is local optimality in nonconvex–nonconcave minimax optimization? In International Conference on Machine Learning, pp. 4880–4889. PMLR (2020)
Bassily, R., Belkin, M., Ma, S.: On exponential convergence of SGD in non-convex over-parametrized learning. arXiv preprint arXiv:1811.02564 (2018)
ConnAScheinbergKVicenteLIntroduction to Derivative-Free Optimization2009PhiladelphiaSIAM10.1137/1.97808987187681163.49001
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with optimism. In: International Conference on Learning Representations (ICLR) (2018)
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, vol. 6, pp. 583–603. University of California Press (1972)
Bogunovic, I., Scarlett, J., Jegelka, S., Cevher, V.: Adversarially robust optimization with Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 5760–5770 (2018)
Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.-J.: Zoo: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM (2017)
Xu, T., Zhe Wang, Z., Liang, Y., Poor, H.V.: Gradient free minimax optimization: variance reduction and faster convergence. https://arxiv.org/pdf/2006.09361.pdf (2021)
Namkoong, H., Duchi, J.C.: Stochastic gradient methods for distributionally robust optimization with f-divergences. In: Advances in Neural Information Processing Systems, pp. 2208–2216 (2016)
DuaDGraffCUCI Machine Learning Repository2017IrvineUniversity of California
Mertikopoulos, P., Papadimitriou, C., Piliouras, G.: Cycles in adversarial regularized learning. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2703–2717. SIAM (2018)
Al-Dujaili, A., Srikant, S., Hemberg, E., O’Reilly, U.-M.: On the application of Danskin’s theorem to derivative-free minimax optimization. arXiv preprint arXiv:1805.06322 (2018)
Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach, H.: A reductions approach to fair classification. In: International Conference on Machine Learning, pp. 60–69 (2018)
Roy, A., Chen, Y., Balasubramanian, K., Mohapatra, P.: Online and bandit algorithms for nonstationary stochastic saddle-point optimization. arXiv preprint arXiv:1912.01698 (2019)
Pfau, D., Vinyals, O.: Connecting generative adversarial networks and actor-critic methods. arXiv preprint arXiv:1610.01945 (2016)
Thekumparampil, K., Jain, P., Netrapalli, P., Oh, S.: Efficient algorithms for smooth minimax optimization. In: Advances in Neural Information Processing Systems, pp. 12659–12670 (2019)
Wei, C.-Y., Hong, Y.-T., Lu, C.-J.: Online reinforcement learning in stochastic games. In: Advances in Neural Information Processing Systems, pp. 4987–4997 (2017)
Luo, L., Ye, H., Huang, Z., Zhang, T.: Stochastic recursive gradient descent ascent for stochastic nonconvex–strongly-concave minimax problems. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
FilarJVriezeKCompetitive Markov Decision Processes2012BerlinSpringer0934.91002
Bubeck, S., Lee, Y.T., Eldan, R.: Kernel-based methods for bandit convex optimization. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 72–85. ACM (2017)
Vlatakis-GkaragkounisE-VFlokasLPiliourasGPoincaré recurrence, cycles and spurious equilibria in gradient-descent-ascent for non-convex non-concave zero-sum gamesAdv. Neural Inf. Process. Syst.2019321045010461
Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340. ACM (2018)
Baharlouei, S., Nouiehed, M., Razaviyayn, M.: Rényi fair inference. In: International Conference on Learning Representation (2019)
Ying, Y., Wen, L., Lyu, S.: Stochastic online AUC maximization. In: Advances in Neural Information Processing Systems, pp. 451–459 (2016)
Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: a selective overview of theories and algorithms. In: Handbook of Reinforcement Learning and Control, pp. 321–384 (2021)
BertsimasDNohadaniORobust optimization with simulated annealingJ. Glob. Optim.2010482323334272176910.1007/s10898-009-9496-x1198.90402
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Liu, S., Lu, S., Chen, X., Feng, Y., Xu, K., Al-Dujaili, A., Hong, M., Obelilly, U.-M.: Min–max optimization without gradients: convergence and applications to adversarial ml. In: Proceedings of the 37th International Conference on Machine Learning (ICML) (2020)
Balasubramanian, K., Ghadimi, S.: Zeroth-order (non)-convex stochastic optimization via conditional gradient and gradient updates. In: Advances in Neural Information Processing Systems, pp. 3455–3464 (2018)
Anagnostidis, S., Lucchi, A., Diouane, Y.: Direct-search methods for a class of non-convex min–max games. In: AISTATS (2021)
Oliehoek, F.A., Savani, R., Gallego, J., van der Pol, E., Groß, R.: Beyond local Nash equilibria for adversarial networks. arXiv preprint arXiv:1806.07268 (2018)
NeymanASorinSSorinSStochastic Games and Applications2003BerlinSpringer10.1007/978-94-010-0189-21027.00040
Vaswani, S., Bach, F., Schmidt, M.: Fast and faster convergence of SGD for over-parameterized models and an accelerated perceptron. In: The 22nd International Conference on Artificial Intellig
E-V Vlatakis-Gkaragkounis (1160_CR59) 2019; 32
S Ghadimi (1160_CR20) 2013; 23
L Rios (1160_CR48) 2013; 56
1160_CR50
Y Nesterov (1160_CR39) 2018
1160_CR13
1160_CR57
1160_CR58
1160_CR11
1160_CR55
1160_CR12
1160_CR56
1160_CR53
1160_CR10
1160_CR54
1160_CR51
1160_CR52
1160_CR1
1160_CR17
1160_CR3
1160_CR15
1160_CR2
1160_CR16
D Dua (1160_CR18) 2017
1160_CR60
1160_CR61
1160_CR24
1160_CR25
1160_CR22
1160_CR66
1160_CR23
1160_CR67
1160_CR64
1160_CR21
1160_CR65
K Balasubramanian (1160_CR7) 2021; 22
1160_CR62
1160_CR63
1160_CR28
1160_CR29
1160_CR26
C Audet (1160_CR4) 2017
1160_CR27
DE Moriarty (1160_CR36) 1999; 11
A Conn (1160_CR14) 2009
V Picheny (1160_CR45) 2019; 73
1160_CR35
1160_CR33
1160_CR31
1160_CR32
1160_CR30
J Filar (1160_CR19) 2012
1160_CR37
A Neyman (1160_CR41) 2003
1160_CR5
Y Nesterov (1160_CR40) 2017; 17
1160_CR6
D Bertsimas (1160_CR9) 2010; 48
1160_CR8
YE Nesterov (1160_CR38) 2004
1160_CR46
M Menickelly (1160_CR34) 2018; 179
1160_CR47
1160_CR44
1160_CR42
1160_CR43
1160_CR49
References_xml – reference: Jin, C., Netrapalli, P., Jordan, M.: What is local optimality in nonconvex–nonconcave minimax optimization? In International Conference on Machine Learning, pp. 4880–4889. PMLR (2020)
– reference: Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2017)
– reference: Vlatakis-GkaragkounisE-VFlokasLPiliourasGPoincaré recurrence, cycles and spurious equilibria in gradient-descent-ascent for non-convex non-concave zero-sum gamesAdv. Neural Inf. Process. Syst.2019321045010461
– reference: Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017)
– reference: MenickellyMWildSMDerivative-free robust optimization by outer approximationsMath. Program.201817913740509291435.90096
– reference: Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with optimism. In: International Conference on Learning Representations (ICLR) (2018)
– reference: Meng, S.Y., Vaswani, S., Laradji, I.H., Schmidt, M., Lacoste-Julien, S.: Fast and furious convergence: stochastic second order methods under interpolation. In: International Conference on Artificial Intelligence and Statistics, pp. 1375–1386 (2020)
– reference: Bassily, R., Belkin, M., Ma, S.: On exponential convergence of SGD in non-convex over-parametrized learning. arXiv preprint arXiv:1811.02564 (2018)
– reference: Ma, S., Bassily, R., Belkin, M.: The power of interpolation: understanding the effectiveness of SGD in modern over-parametrized learning. In: International Conference on Machine Learning, pp. 3325–3334 (2018)
– reference: Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: a selective overview of theories and algorithms. In: Handbook of Reinforcement Learning and Control, pp. 321–384 (2021)
– reference: Piliouras, G., Schulman, L.J.: Learning dynamics and the co-evolution of competing sexual species. In: 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
– reference: NeymanASorinSSorinSStochastic Games and Applications2003BerlinSpringer10.1007/978-94-010-0189-21027.00040
– reference: Lu, S., Tsaknakis, I., Hong, M., Chen, Y.: Hybrid block successive approximation for one-sided non-convex min–max problems: algorithms and applications. arXiv preprint arXiv:1902.08294 (2019)
– reference: Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., Song, L.: SBEED: convergent reinforcement learning with nonlinear function approximation. In: Proceedings of the International Conference on Machine Learning (ICML) (2018)
– reference: RiosLSahinidisNDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Glob. Optim.201356312471293307015410.1007/s10898-012-9951-y1272.90116
– reference: GhadimiSLanGStochastic first- and zeroth-order methods for nonconvex stochastic programmingSIAM J. Optim.20132323412368313443910.1137/1208808111295.90026
– reference: Vaswani, S., Bach, F., Schmidt, M.: Fast and faster convergence of SGD for over-parameterized models and an accelerated perceptron. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1195–1204. PMLR (2019)
– reference: Al-Dujaili, A., Srikant, S., Hemberg, E., O’Reilly, U.-M.: On the application of Danskin’s theorem to derivative-free minimax optimization. arXiv preprint arXiv:1805.06322 (2018)
– reference: Namkoong, H., Duchi, J.C.: Stochastic gradient methods for distributionally robust optimization with f-divergences. In: Advances in Neural Information Processing Systems, pp. 2208–2216 (2016)
– reference: Baharlouei, S., Nouiehed, M., Razaviyayn, M.: Rényi fair inference. In: International Conference on Learning Representation (2019)
– reference: PichenyVBinoisMHabbalAA Bayesian optimization approach to find Nash equilibriaJ. Glob. Optim.2019731171192389665410.1007/s10898-018-0688-01410.91030
– reference: Xu, T., Zhe Wang, Z., Liang, Y., Poor, H.V.: Gradient free minimax optimization: variance reduction and faster convergence. https://arxiv.org/pdf/2006.09361.pdf (2021)
– reference: BalasubramanianKGhadimiSZeroth-order nonconvex stochastic optimization: handling constraints, high-dimensionality, and saddle-pointsFound. Comput. Math.2021223576437658810.1007/s10208-021-09499-81516.90056
– reference: Rafique, H., Liu, M., Lin, Q., Yang, T.: Non-convex min–max optimization: provable algorithms and applications in machine learning. arXiv preprint arXiv:1810.02060 (2018)
– reference: DuaDGraffCUCI Machine Learning Repository2017IrvineUniversity of California
– reference: Gidel, G., Berard, H., Vignoud, G., Vincent, P., Lacoste-Julien, S.: A variational inequality perspective on generative adversarial networks. In: International Conference on Learning Representations (2018)
– reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
– reference: Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.-J.: Zoo: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM (2017)
– reference: Huang, F., Gao, S., Pei, J., Huang, H.: Accelerated zeroth-order and first-order momentum methods from mini to minimax optimization. https://arxiv.org/pdf/2008.08170.pdf (2020)
– reference: Sanjabi, M., Ba, J., Razaviyayn, M., Lee, J.D.: On the convergence and robustness of training gans with regularized optimal transport. In: Advances in Neural Information Processing Systems, pp. 7091–7101 (2018)
– reference: FilarJVriezeKCompetitive Markov Decision Processes2012BerlinSpringer0934.91002
– reference: Bubeck, S., Lee, Y.T., Eldan, R.: Kernel-based methods for bandit convex optimization. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 72–85. ACM (2017)
– reference: Wei, C.-Y., Hong, Y.-T., Lu, C.-J.: Online reinforcement learning in stochastic games. In: Advances in Neural Information Processing Systems, pp. 4987–4997 (2017)
– reference: Daskalakis, C., Panageas, I.: The limit points of (optimistic) gradient descent in min–max optimization. In: Advances in Neural Information Processing Systems, pp. 9236–9246 (2018)
– reference: Liu, S., Lu, S., Chen, X., Feng, Y., Xu, K., Al-Dujaili, A., Hong, M., Obelilly, U.-M.: Min–max optimization without gradients: convergence and applications to adversarial ml. In: Proceedings of the 37th International Conference on Machine Learning (ICML) (2020)
– reference: ConnAScheinbergKVicenteLIntroduction to Derivative-Free Optimization2009PhiladelphiaSIAM10.1137/1.97808987187681163.49001
– reference: Xu, T., Wang, Z., Liang, Y., Vincent Poor, H.: Enhanced first and zeroth order variance reduced algorithms for min–max optimization. arXiv preprint arXiv:2006.09361 (2020)
– reference: Xu, D., Yuan, S., Zhang, L., Wu, X.: Fairgan: fairness-aware generative adversarial networks. In: IEEE International Conference on Big Data (Big Data), pp. 570–575. IEEE (2018)
– reference: Thekumparampil, K., Jain, P., Netrapalli, P., Oh, S.: Efficient algorithms for smooth minimax optimization. In: Advances in Neural Information Processing Systems, pp. 12659–12670 (2019)
– reference: Hsieh, Y.-P., Liu, C., Cevher, V.: Finding mixed Nash equilibria of generative adversarial networks. In: International Conference on Machine Learning, pp. 2810–2819. PMLR (2019)
– reference: Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340. ACM (2018)
– reference: Balasubramanian, K., Ghadimi, S.: Zeroth-order (non)-convex stochastic optimization via conditional gradient and gradient updates. In: Advances in Neural Information Processing Systems, pp. 3455–3464 (2018)
– reference: Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach, H.: A reductions approach to fair classification. In: International Conference on Machine Learning, pp. 60–69 (2018)
– reference: Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
– reference: Lin, T., Jin, C., Jordan, M.I.: On gradient descent ascent for nonconvex–concave minimax problems. In: Proceedings of the International Conference on Machine Learning (ICML) (2020)
– reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
– reference: Roy, A., Chen, Y., Balasubramanian, K., Mohapatra, P.: Online and bandit algorithms for nonstationary stochastic saddle-point optimization. arXiv preprint arXiv:1912.01698 (2019)
– reference: BertsimasDNohadaniORobust optimization with simulated annealingJ. Glob. Optim.2010482323334272176910.1007/s10898-009-9496-x1198.90402
– reference: NesterovYLectures on Convex Optimization2018BerlinSpringer1427.90003
– reference: Ying, Y., Wen, L., Lyu, S.: Stochastic online AUC maximization. In: Advances in Neural Information Processing Systems, pp. 451–459 (2016)
– reference: Roy, A., Balasubramanian, K., Ghadimi, S., Mohapatra, P.: Escaping saddle-points faster under interpolation-like conditions. In: Advances in Neural Information Processing Systems (2020)
– reference: Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-box attacks. In: International Conference on Representation Learning (2017)
– reference: Luo, L., Ye, H., Huang, Z., Zhang, T.: Stochastic recursive gradient descent ascent for stochastic nonconvex–strongly-concave minimax problems. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
– reference: Mertikopoulos, P., Papadimitriou, C., Piliouras, G.: Cycles in adversarial regularized learning. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2703–2717. SIAM (2018)
– reference: AudetCHareWDerivative-Free and Blackbox Optimization2017BerlinSpringer10.1007/978-3-319-68913-51391.90001
– reference: Wang, Z., Jegelka, S.: Max-value entropy search for efficient Bayesian optimization. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3627–3635. JMLR.org (2017)
– reference: Nouiehed, M., Sanjabi, M., Huang, T., Lee, J., Razaviyayn, M.: Solving a class of non-convex min–max games using iterative first order methods. In: Advances in Neural Information Processing Systems, pp. 14905–14916 (2019)
– reference: Pfau, D., Vinyals, O.: Connecting generative adversarial networks and actor-critic methods. arXiv preprint arXiv:1610.01945 (2016)
– reference: Bogunovic, I., Scarlett, J., Jegelka, S., Cevher, V.: Adversarially robust optimization with Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 5760–5770 (2018)
– reference: Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., Lacoste-Julien, S.: Painless stochastic gradient: interpolation, line-search, and convergence rates. In: Advances in Neural Information Processing Systems, pp. 3727–3740 (2019)
– reference: Oliehoek, F.A., Savani, R., Gallego, J., van der Pol, E., Groß, R.: Beyond local Nash equilibria for adversarial networks. arXiv preprint arXiv:1806.07268 (2018)
– reference: Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
– reference: NesterovYSpokoinyVRandom gradient-free minimization of convex functionsFound. Comput. Math.2017172527566362745610.1007/s10208-015-9296-21380.90220
– reference: MoriartyDESchultzACGrefenstetteJJEvolutionary algorithms for reinforcement learningJ. Artif. Intell. Res.19991124127610.1613/jair.6130924.68157
– reference: NesterovYEIntroductory Lectures on Convex Optimization: A Basic Course. Applied Optimization2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-91086.90045
– reference: Anagnostidis, S., Lucchi, A., Diouane, Y.: Direct-search methods for a class of non-convex min–max games. In: AISTATS (2021)
– reference: Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, vol. 6, pp. 583–603. University of California Press (1972)
– ident: 1160_CR32
– ident: 1160_CR55
– ident: 1160_CR6
– ident: 1160_CR49
– ident: 1160_CR61
– ident: 1160_CR26
– ident: 1160_CR65
– volume: 23
  start-page: 2341
  year: 2013
  ident: 1160_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/120880811
– ident: 1160_CR66
  doi: 10.1145/3278721.3278779
– ident: 1160_CR42
– ident: 1160_CR67
  doi: 10.1007/978-3-030-60990-0_12
– ident: 1160_CR16
– volume: 48
  start-page: 323
  issue: 2
  year: 2010
  ident: 1160_CR9
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-009-9496-x
– ident: 1160_CR23
– volume: 179
  start-page: 1
  year: 2018
  ident: 1160_CR34
  publication-title: Math. Program.
– ident: 1160_CR52
– ident: 1160_CR58
– ident: 1160_CR31
– ident: 1160_CR56
– ident: 1160_CR10
– volume-title: Stochastic Games and Applications
  year: 2003
  ident: 1160_CR41
  doi: 10.1007/978-94-010-0189-2
– ident: 1160_CR62
  doi: 10.1109/BigData.2018.8622525
– ident: 1160_CR3
– ident: 1160_CR27
– ident: 1160_CR35
  doi: 10.1137/1.9781611975031.172
– volume-title: Introduction to Derivative-Free Optimization
  year: 2009
  ident: 1160_CR14
  doi: 10.1137/1.9780898718768
– ident: 1160_CR17
– volume-title: Lectures on Convex Optimization
  year: 2018
  ident: 1160_CR39
  doi: 10.1007/978-3-319-91578-4
– ident: 1160_CR51
– ident: 1160_CR8
– ident: 1160_CR30
– ident: 1160_CR13
  doi: 10.1145/3128572.3140448
– ident: 1160_CR63
– volume-title: Derivative-Free and Blackbox Optimization
  year: 2017
  ident: 1160_CR4
  doi: 10.1007/978-3-319-68913-5
– ident: 1160_CR24
– ident: 1160_CR28
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization
  year: 2004
  ident: 1160_CR38
  doi: 10.1007/978-1-4419-8853-9
– ident: 1160_CR47
– ident: 1160_CR11
  doi: 10.1145/3055399.3055403
– ident: 1160_CR44
– ident: 1160_CR21
– volume: 22
  start-page: 35
  year: 2021
  ident: 1160_CR7
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-021-09499-8
– volume-title: UCI Machine Learning Repository
  year: 2017
  ident: 1160_CR18
– ident: 1160_CR37
– ident: 1160_CR50
– ident: 1160_CR29
  doi: 10.1109/TSP.2020.2986363
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 1160_CR48
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– ident: 1160_CR33
– volume: 17
  start-page: 527
  issue: 2
  year: 2017
  ident: 1160_CR40
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-015-9296-2
– ident: 1160_CR54
– ident: 1160_CR43
  doi: 10.1007/978-3-030-31978-6_7
– ident: 1160_CR5
– volume-title: Competitive Markov Decision Processes
  year: 2012
  ident: 1160_CR19
– ident: 1160_CR25
– ident: 1160_CR60
– volume: 73
  start-page: 171
  issue: 1
  year: 2019
  ident: 1160_CR45
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0688-0
– ident: 1160_CR46
– ident: 1160_CR64
– volume: 11
  start-page: 241
  year: 1999
  ident: 1160_CR36
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.613
– ident: 1160_CR2
  doi: 10.1063/1.5089993
– ident: 1160_CR22
– ident: 1160_CR15
– ident: 1160_CR1
– ident: 1160_CR53
– ident: 1160_CR57
– ident: 1160_CR12
  doi: 10.1145/1961189.1961199
– volume: 32
  start-page: 10450
  year: 2019
  ident: 1160_CR59
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0009852
Score 2.4071
Snippet In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 709
SubjectTerms Algorithms
Comparative analysis
Computer Science
Machine learning
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Title Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities
URI https://link.springer.com/article/10.1007/s10898-022-01160-0
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS-QwEB9EX-4eTl3vuPU8ycPBKV6gTZs2fVwPV1H06RbUl5ImqS6sq2z3jr03v4Pf0E_iTDb1D4ggFErKNIROk8xM5vcbgB-FyE1cOc0rYTVPq8hxRU2imkusyUVmCZx8fJIdDNLDU3kaQGFNm-3eHkn6lfoZ2E0RHExQKkGcRRwd9SWJvjslcg1E74lqV_k6O1EhJJe4CgeozOt9vNiO2kX55ZGo32n6K_ApmIisN9fpKiy4cQeW2_ILLMzGDnx8xiWIreNHAtamA6tBqmFbgVh6ew3suZugYrin22R6dHE9GU4vrxqGhisbX499Bvrs_vauofj4xeg_xydG_3OMCEiu9IyF8jMNo_AtG_qAhLPM56W7mSdn_QyD_t6f3wc8VFngJkmiKVepzWxhE0vxJVkol6VFjr6lIE-pjpJUFjqJtMArrmSF-5l11mWqqmutyaD5Aos4RPcVmFHWFnUhiTEnRddSW6PRQ1Imskrksu5C3H7s0gQKcqqEMSqfyJNJQSUqqPQKKqMu7Dy-czMn4HhT-ifpsKTZiT0bHUAGOD7iuSp7OVpURJoVd-FXq-YyTNvmjY7X3yf-DT5QXfo5aHEDFqeTv-47Wi_TahOWev3d3RO6758d7W36n_cBcVXpsA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5VcCgcWgggQkvrQ6VSFUu73pf3GFVFaUs4EQlxsby2NyCFgLIpCjf-A_-QX8KM4-UhVUiV9uLVrGXt-DEznu8bgC-lKExcOc0rYTVPq8hxSU2imkusKURuCZw8OMr7w_T3SXYSQGFNm-3eXkn6nfoZ2E0SHExQKkGcRxwd9WU0BiTN5aHoPVHtSl9nJypFxjPchQNU5t99vDiO2k355ZWoP2kO1uBdMBFZb6HTdXjjJh1435ZfYGE1dmD1GZcgtgaPBKxNB9aDVMP2ArH0tw2wp26KiuGebpPp8ehyej47u2gYGq5scjnxGejz-9u7huLjo_ENxzdGXztGBCQXes5C-ZmGUfiWnfuAhLPM56W7uSdn3YThwc_jH30eqixwkyTRjMvU5ra0iaX4UlZKl6dlgb6lIE-pjpI0K3USaYFPXGUVnmfWWZfLqq61JoNmC5ZwiG4bmJHWlnWZEWNOiq6ltkajhyRNZKUosroLcfuzlQkU5FQJY6yeyJNJQQoVpLyCVNSF74_fXC0IOF6V_ko6VLQ6sWejA8gAx0c8V6pXoEVFpFlxF_ZbNauwbJtXOt75P_HP8LZ_PDhUh7-O_nyAFapRvwAwfoSl2fSv20VLZlZ98hP3Afdj6ZM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-KhVIfar0qXu1HHgqtaHA3-5V9PNoeaqv0wQPxJWSTrArnKberXN_6P_Q_7F_SmVxWTyhCYV-yzIawk4-Zyfx-A_ChFIWJK6d5JazmaRU5LqlJVHOJNYXILYGTD4_yvVF6cJKdLKD4fbZ7dyU5xzQQS9Ok3b229e4C8E0SNExQWkGcRxyd9qcpoYFxRo_E4J52V_qaO1EpMp7hjhxgM__u48HR1G3QD69H_akzfAkvgrnIBnP9rsITN-nBSleKgYWV2YPlBV5BbB3ekbE2PVgNUg37FEimt16BPXVTVBL31JtMj8-uphft-WXD0Ihlk6uJz0af_fn1u6FY-dn4J8c3Rt86RmQkl3rGQimahlEol1344ISzzOeou5knal2D0fDr8ec9HioucJMkUctlanNb2sRSrCkrpcvTskA_U5DXVEdJmpU6ibTAJ66yCs8266zLZVXXWpNxsw5LOES3AcxIa8u6zIg9J0U3U1uj0VuSJrJSFFndh7j72coEOnKqijFW90TKpCCFClJeQSrqw_bdN9dzMo5HpT-SDhWtVOzZ6AA4wPER55UaFGhdEYFW3IedTs0qLOHmkY5f_5_4e3j248tQfd8_-rYJz6lc_RzL-AaW2umNe4tGTVu98_P2L1xF7cY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeroth-order+algorithms+for+nonconvex-strongly-concave+minimax+problems+with+improved+complexities&rft.jtitle=Journal+of+global+optimization&rft.au=Wang%2C+Zhongruo&rft.au=Balasubramanian%2C+Krishnakumar&rft.au=Ma%2C+Shiqian&rft.au=Razaviyayn%2C+Meisam&rft.date=2023-11-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=87&rft.issue=2-4&rft.spage=709&rft_id=info:doi/10.1007%2Fs10898-022-01160-0&rft.externalDocID=A771071621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon