Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles

•We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis of stochastic time-invariant disturbance amplification.•The framework facilitates a disturbance amplification analysis for unknown or nonlin...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part B: methodological Vol. 174; p. 102768
Main Authors Zhou, Yang, Zhong, Xinzhi, Chen, Qian, Ahn, Soyoung, Jiang, Jiwan, Jafarsalehi, Ghazaleh
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis of stochastic time-invariant disturbance amplification.•The framework facilitates a disturbance amplification analysis for unknown or nonlinear car following laws. This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch's method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories.
AbstractList •We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis of stochastic time-invariant disturbance amplification.•The framework facilitates a disturbance amplification analysis for unknown or nonlinear car following laws. This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch's method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories.
ArticleNumber 102768
Author Zhong, Xinzhi
Jiang, Jiwan
Jafarsalehi, Ghazaleh
Zhou, Yang
Ahn, Soyoung
Chen, Qian
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: Zachry Department of Civil and Environmental Engineering, Texas A&M, 199 Spence Street, Room 301A, College Station, TX 53706, USA
– sequence: 2
  givenname: Xinzhi
  surname: Zhong
  fullname: Zhong, Xinzhi
  organization: Department of Civil and Environmental Engineering, University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706, USA
– sequence: 3
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: School of Automation, Southeast University, PR China
– sequence: 4
  givenname: Soyoung
  orcidid: 0000-0001-8038-4806
  surname: Ahn
  fullname: Ahn, Soyoung
  email: sue.ahn@wisc.edu
  organization: Department of Civil and Environmental Engineering, University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706, USA
– sequence: 5
  givenname: Jiwan
  surname: Jiang
  fullname: Jiang, Jiwan
  organization: Department of Civil and Environmental Engineering, University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706, USA
– sequence: 6
  givenname: Ghazaleh
  surname: Jafarsalehi
  fullname: Jafarsalehi, Ghazaleh
  organization: Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, CA 95616, USA
BookMark eNp90L1OwzAQwHEPRaItPACbXyDBjhMnERMqn1IlFpit80foVWlc2W5Q354UmBg63fQ73f0XZDb4wRFyw1nOGZe32zwFnResEDmrcsaqGZkz3vKskLy6JIsYt4wxUTI-J_oBEmQ24OgGCgP0x4iRdj5QizEdgobBOAq7fY8dGkjoB4oDNRCyzve9_8Lhk2q3gREn4zsKh-R3kJylo9ug6V28Ihcd9NFd_80l-Xh6fF-9ZOu359fV_TozQrCUNbwVUtvCamtZbUxl27pstBSt1FoXTQ2FrW1ZlE1RW2g0h0rWIErdOSl1xcWS1L97TfAxBtcpg-nn4hQAe8WZOuVRWzXlUac8ilVqyjNJ_k_uA-4gHM-au1_jppdGdEFFg26KZTE4k5T1eEZ_AzIIhC4
CitedBy_id crossref_primary_10_1016_j_physa_2023_129444
crossref_primary_10_1016_j_compeleceng_2024_109624
crossref_primary_10_3390_su16229646
crossref_primary_10_1016_j_physa_2024_129541
crossref_primary_10_1016_j_trc_2024_104920
crossref_primary_10_1016_j_trb_2024_102979
crossref_primary_10_1016_j_trc_2024_104525
crossref_primary_10_1109_MITS_2023_3317081
Cites_doi 10.1109/9.486636
10.1016/j.trb.2010.08.002
10.1016/j.trc.2016.07.007
10.1016/j.seizure.2015.01.012
10.1016/j.trc.2021.103421
10.1016/j.trb.2019.06.005
10.1098/rsta.2010.0084
10.1109/TAU.1967.1161901
10.1016/j.aap.2009.10.009
10.1109/LSP.2006.888292
10.1080/03081060.2011.530826
10.1016/j.trb.2020.11.009
10.1016/j.trb.2021.01.009
10.1016/j.ijleo.2015.12.014
10.1016/j.trc.2010.12.007
10.1109/TITS.2020.2985680
10.1109/TITS.2006.884615
10.1016/j.trb.2018.07.005
10.1016/j.trc.2013.11.024
10.1016/j.trb.2016.09.016
10.1016/j.trpro.2019.05.014
10.1109/78.902129
10.1016/j.trb.2011.11.003
10.1016/j.trc.2021.103047
10.1016/j.trb.2015.06.010
10.1016/j.trb.2013.11.005
10.1103/PhysRevE.58.5429
10.1016/j.trc.2014.04.014
10.1109/TITS.2013.2278494
10.1016/j.trc.2017.07.005
10.1109/TVT.2010.2076320
10.1016/j.trc.2017.07.011
10.1109/TIV.2019.2955368
10.1016/j.trb.2016.06.010
10.1016/j.trc.2020.02.018
10.1109/MCS.2018.2830080
10.1016/j.trc.2018.07.021
10.1016/j.trb.2019.07.001
10.1080/00423119408969077
10.1177/0361198119847473
10.1109/TBME.2014.2360101
10.1109/TAU.1973.1162426
10.1007/s11465-018-0486-x
10.1016/0165-1684(90)90087-F
10.1016/j.trb.2019.05.003
10.1016/j.trc.2018.02.005
10.1016/j.trc.2019.03.002
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.trb.2023.05.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_trb_2023_05_005
S0191261523000851
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c330t-81936bd2dbdd07cc5d9748b6396bbb287a2d7d424827da8b1a567a34bfe66b513
IEDL.DBID .~1
ISSN 0191-2615
IngestDate Tue Jul 01 03:50:16 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Tue Dec 03 03:45:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive cruise control
Data-driven analysis
Carfollowing
Disturbance amplification
Frequency domain analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-81936bd2dbdd07cc5d9748b6396bbb287a2d7d424827da8b1a567a34bfe66b513
ORCID 0000-0001-8038-4806
ParticipantIDs crossref_citationtrail_10_1016_j_trb_2023_05_005
crossref_primary_10_1016_j_trb_2023_05_005
elsevier_sciencedirect_doi_10_1016_j_trb_2023_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Wang, Ouyang (bib0021) 2012; 46
Milanés, Shladover (bib0024) 2014; 48
Punzo, Teresa, Ciuffo (bib0033) 2011; 19
Swaroop, Hedrick, Chien, Ioannou (bib0043) 1994; 23
Wexler, Raz (bib0052) 1990; 21
Schoukens, Godfrey (bib0039) 2018; 38
Naus, Vugts, Ploeg, van de Molengraft, Steinbuch (bib0030) 2010, June
Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2018). Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related Constraints.
Zhou, Ahn (bib0060) 2019; 125
Samiee, Kovacs, Gabbouj (bib0037) 2014; 62
Jin, Orosz (bib0018) 2018; 95
Shi, Zhou, Wu, Wang, Lin, Ran (bib0040) 2021; 133
Ponn, Müller, Diermeyer (bib0032) 2019
Faust, Acharya, Adeli, Adeli (bib0011) 2015; 26
Li, Gao, Li, Zheng, Gao (bib0020) 2018; 13
Wang, Gong, Zhou, Li, Peeta (bib0047) 2019
Ma, Li, Zhou, Hu, Park (bib0022) 2017; 95
Qin, Orosz (bib0034) 2017; 83
Stern, Cui, Laura, Monache, Bhadani, Bunting, Work (bib0041) 2018; 89
Giammarino, Baldi, Frasca, Delle Monache (bib0045) 2020; 22
(bib0001) 2013
Bando, Hasebe, Nakanishi, Nakayama (bib0004) 1998; 58
Randall (bib0036) 2008
.
Van Arem, Van Driel, Visser (bib0002) 2006; 7
Zhou, Ahn, Chitturi, Noyce (bib0061) 2017; 83
Gunter, G., Janssen, C., Barbour, W., Stern, R.E., & Work, D.B. (2020). Model-based string stability of adaptive cruise control systems using field data. 5(1), 90–99.
Zheng, Ahn, Monsere (bib0058) 2010; 42
Kesting, Treiber, Helbing (bib0019) 2010; 368
Montanino, Punzo (bib0028) 2021; 144
Wilson, Ward (bib0053) 2011; 34
Wang, Daamen, Hoogendoorn, Van Arem (bib0050) 2014; 40
Zhou, Ahn, Wang, Hoogendoorn (bib0059) 2020; 132
Qu, Yu, Zhou, Lin, Wang (bib0035) 2020; 257
Swaroop, Hedrick (bib0042) 1996; 41
Zheng, Ahn, Chen, Laval (bib0057) 2011; 45
Milanés, Shladover, Spring, Nowakowski (bib0025) 2014; 15
(p. 14).
Montanino, Punzo (bib0026) 2015; 80
Cheng, Orosz, Murray, Burdick (bib0009) 2019; 33
Gong, Zhou, Peeta (bib0014) 2019; 2673
Jin, Orosz (bib0017) 2014; 46
Ploeg, Semsar-kazerooni, Lijster, Wouw, N.Van, Nijmeijer (bib0031) 2013
Zhou, Wang, Ahn (bib0062) 2019; 128
Montanino, Monteil, Punzo (bib0027) 2021; 146
Gong, Du (bib0012) 2018; 116
Bian, Zheng, Ren, Eben, Wang (bib0006) 2019; 102
Eberhard (bib0010) 1973; 21
Çakrak, Loughlin (bib0007) 2001; 49
Zhao, Wang, Xu, Wang, Li, Qu (bib0056) 2020; 114
Talebpour, Mahmassani (bib0044) 2016; 71
Wu, Qin, Yu, Gao, Liu, Xue (bib0055) 2016; 127
Welch (bib0051) 1967; 15
Wu, F., Stern, R., Churchill, M., Laura, M., Monache, D., Piccoli, B., … Han, K. (2017). Measuring trajectories and fuel consumption in oscillatory traffic : experimental results To cite this version : HAL Id : hal-01516133 Measuring trajectories and fuel consumption in oscillatory traffic : experimental results. In
Chen, Ahn, Laval, Zheng (bib0008) 2014; 59
Avargel, Cohen (bib0003) 2007; 14
Gong, Shen, Du (bib0013) 2016; 94
Makridis, Mattas, Anesiadou, Ciuffo (bib0023) 2021; 125
Naus, Vugts, Ploeg, Molengraft (bib0029) 2010; 59
Zhou (10.1016/j.trb.2023.05.005_bib0060) 2019; 125
Wu (10.1016/j.trb.2023.05.005_bib0055) 2016; 127
Jin (10.1016/j.trb.2023.05.005_bib0017) 2014; 46
Wilson (10.1016/j.trb.2023.05.005_bib0053) 2011; 34
Talebpour (10.1016/j.trb.2023.05.005_bib0044) 2016; 71
Gong (10.1016/j.trb.2023.05.005_bib0012) 2018; 116
Naus (10.1016/j.trb.2023.05.005_bib0029) 2010; 59
Ploeg (10.1016/j.trb.2023.05.005_bib0031) 2013
Swaroop (10.1016/j.trb.2023.05.005_bib0043) 1994; 23
Qu (10.1016/j.trb.2023.05.005_bib0035) 2020; 257
Stern (10.1016/j.trb.2023.05.005_bib0041) 2018; 89
Zheng (10.1016/j.trb.2023.05.005_bib0057) 2011; 45
Milanés (10.1016/j.trb.2023.05.005_bib0024) 2014; 48
Zheng (10.1016/j.trb.2023.05.005_bib0058) 2010; 42
Gong (10.1016/j.trb.2023.05.005_bib0013) 2016; 94
Randall (10.1016/j.trb.2023.05.005_bib0036) 2008
Milanés (10.1016/j.trb.2023.05.005_bib0025) 2014; 15
Naus (10.1016/j.trb.2023.05.005_bib0030) 2010
Li (10.1016/j.trb.2023.05.005_bib0021) 2012; 46
Avargel (10.1016/j.trb.2023.05.005_bib0003) 2007; 14
Faust (10.1016/j.trb.2023.05.005_bib0011) 2015; 26
Schoukens (10.1016/j.trb.2023.05.005_bib0039) 2018; 38
Li (10.1016/j.trb.2023.05.005_bib0020) 2018; 13
Zhou (10.1016/j.trb.2023.05.005_bib0061) 2017; 83
Eberhard (10.1016/j.trb.2023.05.005_bib0010) 1973; 21
Montanino (10.1016/j.trb.2023.05.005_bib0028) 2021; 144
Wexler (10.1016/j.trb.2023.05.005_bib0052) 1990; 21
Wang (10.1016/j.trb.2023.05.005_bib0047) 2019
Zhou (10.1016/j.trb.2023.05.005_bib0059) 2020; 132
10.1016/j.trb.2023.05.005_bib0015
(10.1016/j.trb.2023.05.005_bib0001) 2013
10.1016/j.trb.2023.05.005_bib0054
Jin (10.1016/j.trb.2023.05.005_bib0018) 2018; 95
Shi (10.1016/j.trb.2023.05.005_bib0040) 2021; 133
Bian (10.1016/j.trb.2023.05.005_bib0006) 2019; 102
Cheng (10.1016/j.trb.2023.05.005_bib0009) 2019; 33
10.1016/j.trb.2023.05.005_bib0046
Giammarino (10.1016/j.trb.2023.05.005_bib0045) 2020; 22
Gong (10.1016/j.trb.2023.05.005_bib0014) 2019; 2673
Montanino (10.1016/j.trb.2023.05.005_bib0026) 2015; 80
Montanino (10.1016/j.trb.2023.05.005_bib0027) 2021; 146
Zhao (10.1016/j.trb.2023.05.005_bib0056) 2020; 114
Punzo (10.1016/j.trb.2023.05.005_bib0033) 2011; 19
Van Arem (10.1016/j.trb.2023.05.005_bib0002) 2006; 7
Bando (10.1016/j.trb.2023.05.005_bib0004) 1998; 58
Samiee (10.1016/j.trb.2023.05.005_bib0037) 2014; 62
Zhou (10.1016/j.trb.2023.05.005_bib0062) 2019; 128
Qin (10.1016/j.trb.2023.05.005_bib0034) 2017; 83
Welch (10.1016/j.trb.2023.05.005_bib0051) 1967; 15
Chen (10.1016/j.trb.2023.05.005_bib0008) 2014; 59
Ma (10.1016/j.trb.2023.05.005_bib0022) 2017; 95
Çakrak (10.1016/j.trb.2023.05.005_bib0007) 2001; 49
Wang (10.1016/j.trb.2023.05.005_bib0050) 2014; 40
Makridis (10.1016/j.trb.2023.05.005_bib0023) 2021; 125
Ponn (10.1016/j.trb.2023.05.005_bib0032) 2019
Swaroop (10.1016/j.trb.2023.05.005_bib0042) 1996; 41
Kesting (10.1016/j.trb.2023.05.005_bib0019) 2010; 368
References_xml – volume: 14
  start-page: 337
  year: 2007
  end-page: 340
  ident: bib0003
  article-title: On multiplicative transfer function approximation in the short-time Fourier transform domain
  publication-title: IEEE Signal Process Lett.
– volume: 368
  start-page: 4585
  year: 2010
  end-page: 4605
  ident: bib0019
  article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 21
  start-page: 207
  year: 1990
  end-page: 220
  ident: bib0052
  article-title: Discrete gabor expansions
  publication-title: Signal Process.
– start-page: 1
  year: 2019
  end-page: 22
  ident: bib0047
  article-title: Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints ☆
  publication-title: Transp. Res. Part C
– volume: 13
  start-page: 354
  year: 2018
  end-page: 367
  ident: bib0020
  article-title: Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics
  publication-title: Front. Mech. Eng.
– volume: 7
  start-page: 429
  year: 2006
  end-page: 436
  ident: bib0002
  article-title: The impact of cooperative adaptive cruise control on traffic-flow characteristics
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 89
  start-page: 205
  year: 2018
  end-page: 221
  ident: bib0041
  article-title: Dissipation of stop-and-go waves
  publication-title: Transp. Res. Part C
– volume: 102
  start-page: 87
  year: 2019
  end-page: 105
  ident: bib0006
  article-title: Reducing time headway for platooning of connected vehicles
  publication-title: Transp. Res. Part C
– volume: 71
  start-page: 143
  year: 2016
  end-page: 163
  ident: bib0044
  article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput
  publication-title: Transp. Res. Part C
– volume: 46
  start-page: 46
  year: 2014
  end-page: 64
  ident: bib0017
  article-title: Dynamics of connected vehicle systems with delayed acceleration feedback
  publication-title: Transp. Res. Part C Emerg. Technol.
– start-page: 6145
  year: 2010, June
  end-page: 6150
  ident: bib0030
  publication-title: Cooperative adaptive cruise control, design and experiments
– volume: 22
  start-page: 4998
  year: 2020
  end-page: 5008
  ident: bib0045
  article-title: Traffic flow on a ring with a single autonomous vehicle: an interconnected stability perspective
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 132
  start-page: 152
  year: 2020
  end-page: 170
  ident: bib0059
  article-title: Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach
  publication-title: Transp. Res. Part B Methodol.
– volume: 15
  start-page: 296
  year: 2014
  end-page: 305
  ident: bib0025
  article-title: Cooperative adaptive cruise control in real traffic situations
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 41
  start-page: 349
  year: 1996
  end-page: 357
  ident: bib0042
  article-title: String stability of interconnected systems
  publication-title: IEEE Trans. Autom. Control.
– volume: 146
  start-page: 136
  year: 2021
  end-page: 154
  ident: bib0027
  article-title: From homogeneous to heterogeneous traffic flows: lp String stability under uncertain model parameters
  publication-title: Transp. Res. Part B Methodol.
– volume: 19
  start-page: 1243
  year: 2011
  end-page: 1262
  ident: bib0033
  article-title: On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data
  publication-title: Transp. Res. C: Emerg. Technol.
– volume: 128
  start-page: 69
  year: 2019
  end-page: 86
  ident: bib0062
  article-title: Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability
  publication-title: Transp. Res. Part B
– volume: 95
  start-page: 445
  year: 2018
  end-page: 459
  ident: bib0018
  article-title: Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 133
  year: 2021
  ident: bib0040
  article-title: Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 45
  start-page: 372
  year: 2011
  end-page: 384
  ident: bib0057
  article-title: Applications of wavelet transform for analysis of freeway traffic : bottlenecks, transient traffic, and traffic oscillations
  publication-title: Transp. Res. Part B
– volume: 2673
  start-page: 185
  year: 2019
  end-page: 198
  ident: bib0014
  article-title: Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology
  publication-title: Transp. Res. Rec.
– volume: 95
  start-page: 421
  year: 2017
  end-page: 441
  ident: bib0022
  article-title: Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: computational issues and optimization
  publication-title: Transp. Res. Part B Methodol.
– volume: 125
  start-page: 103047
  year: 2021
  ident: bib0023
  article-title: OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems
  publication-title: Transp. Res. C: Emerg. Technol. technologies
– volume: 34
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0053
  article-title: Car-following models: fifty years of linear stability analysis–a mathematical perspective
  publication-title: Transp. Plan. Technol.
– volume: 127
  start-page: 3445
  year: 2016
  end-page: 3450
  ident: bib0055
  article-title: Using improved chaotic ant swarm to tune PID controller on cooperative adaptive cruise control
  publication-title: Optik
– reference: Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2018). Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related Constraints.
– volume: 62
  start-page: 541
  year: 2014
  end-page: 552
  ident: bib0037
  article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 23
  start-page: 597
  year: 1994
  end-page: 625
  ident: bib0043
  article-title: A comparision of spacing and headway control laws for automatically controlled vehicles1
  publication-title: Veh. Syst. Dyn.
– volume: 125
  start-page: 175
  year: 2019
  end-page: 196
  ident: bib0060
  article-title: Robust local and string stability for a decentralized car following control strategy for connected automated vehicles
  publication-title: Transp. Res. Part B
– volume: 80
  start-page: 82
  year: 2015
  end-page: 106
  ident: bib0026
  article-title: Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns
  publication-title: Transp. Res. Part B
– volume: 49
  start-page: 448
  year: 2001
  end-page: 453
  ident: bib0007
  article-title: Multiple window time-varying spectral analysis
  publication-title: IEEE Trans. Signal Process.
– year: 2013
  ident: bib0001
  article-title: LIDAR Speed-Measuring Device Performance Specifications
– reference: (p. 14).
– reference: Gunter, G., Janssen, C., Barbour, W., Stern, R.E., & Work, D.B. (2020). Model-based string stability of adaptive cruise control systems using field data. 5(1), 90–99.
– volume: 40
  start-page: 290
  year: 2014
  end-page: 311
  ident: bib0050
  article-title: Rolling horizon control framework for driver assistance systems . Part II : cooperative sensing and cooperative control
  publication-title: Transp. Res. Part C
– volume: 94
  start-page: 314
  year: 2016
  end-page: 334
  ident: bib0013
  article-title: Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon
  publication-title: Transp. Res. Part B
– volume: 83
  start-page: 39
  year: 2017
  end-page: 60
  ident: bib0034
  article-title: Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 26
  start-page: 56
  year: 2015
  end-page: 64
  ident: bib0011
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
– volume: 58
  start-page: 5429
  year: 1998
  ident: bib0004
  article-title: Analysis of optimal velocity model with explicit delay
  publication-title: Phys. Rev. E
– start-page: 1000
  year: 2019
  end-page: 1006
  ident: bib0032
  article-title: Systematic analysis of the sensor coverage of automated vehicles using phenomenological sensor Models
  publication-title: Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV)
– volume: 42
  start-page: 626
  year: 2010
  end-page: 636
  ident: bib0058
  article-title: Impact of traffic oscillations on freeway crash occurrences
  publication-title: Accid. Anal. Prev.
– year: 2008
  ident: bib0036
  article-title: Spectral analysis and correlation
  publication-title: Handbook of signal processing in acoustics
– volume: 48
  start-page: 285
  year: 2014
  end-page: 300
  ident: bib0024
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transportation
– start-page: 1210
  year: 2013
  end-page: 1216
  ident: bib0031
  publication-title: Graceful degradation of CACC performance subject to unreliable wireless communication
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  ident: bib0051
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 21
  start-page: 37
  year: 1973
  end-page: 43
  ident: bib0010
  article-title: An optimal discrete window for the calculation of power spectra
  publication-title: IEEE trans. audio electroacoust.
– volume: 38
  start-page: 49
  year: 2018
  end-page: 88
  ident: bib0039
  article-title: Nonparametric data-driven modeling of linear systems: estimating the frequency response and impulse response function
  publication-title: IEEE Control Syst.
– volume: 33
  start-page: 3387
  year: 2019
  end-page: 3395
  ident: bib0009
  article-title: End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 114
  start-page: 205
  year: 2020
  end-page: 224
  ident: bib0056
  article-title: Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle ☆
  publication-title: Transp. Res. Part C
– reference: .
– volume: 59
  start-page: 4268
  year: 2010
  end-page: 4279
  ident: bib0029
  article-title: String-stable CACC design and experimental validation : a frequency-domain approach
  publication-title: IEEE Veh. Technol. Mag.
– volume: 59
  start-page: 117
  year: 2014
  end-page: 136
  ident: bib0008
  article-title: On the periodicity of traffic oscillations and capacity drop : the role of driver characteristics
  publication-title: Transp. Res. Part B
– volume: 257
  year: 2020
  ident: bib0035
  article-title: Jointly dampening tra ffi c oscillations and improving energy consumption with electric, connected and automated vehicles : a reinforcement learning based approach
  publication-title: Appl. Energy
– volume: 144
  start-page: 133
  year: 2021
  end-page: 154
  ident: bib0028
  article-title: On string stability of a mixed and heterogeneous traffic flow: a unifying modelling framework
  publication-title: Transp. Res. Part B Methodol.
– volume: 116
  start-page: 25
  year: 2018
  end-page: 61
  ident: bib0012
  article-title: Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles
  publication-title: Transp. Res. Part B
– reference: Wu, F., Stern, R., Churchill, M., Laura, M., Monache, D., Piccoli, B., … Han, K. (2017). Measuring trajectories and fuel consumption in oscillatory traffic : experimental results To cite this version : HAL Id : hal-01516133 Measuring trajectories and fuel consumption in oscillatory traffic : experimental results. In
– volume: 46
  start-page: 409
  year: 2012
  end-page: 423
  ident: bib0021
  article-title: Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws
  publication-title: Transp. Res. Part B Methodol.
– volume: 83
  start-page: 61
  year: 2017
  end-page: 76
  ident: bib0061
  article-title: Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty
  publication-title: Transp. Res. Part C
– volume: 41
  start-page: 349
  issue: 3
  year: 1996
  ident: 10.1016/j.trb.2023.05.005_bib0042
  article-title: String stability of interconnected systems
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/9.486636
– volume: 45
  start-page: 372
  issue: 2
  year: 2011
  ident: 10.1016/j.trb.2023.05.005_bib0057
  article-title: Applications of wavelet transform for analysis of freeway traffic : bottlenecks, transient traffic, and traffic oscillations
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2010.08.002
– volume: 71
  start-page: 143
  year: 2016
  ident: 10.1016/j.trb.2023.05.005_bib0044
  article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2016.07.007
– start-page: 6145
  year: 2010
  ident: 10.1016/j.trb.2023.05.005_bib0030
– volume: 26
  start-page: 56
  year: 2015
  ident: 10.1016/j.trb.2023.05.005_bib0011
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
  doi: 10.1016/j.seizure.2015.01.012
– volume: 133
  year: 2021
  ident: 10.1016/j.trb.2023.05.005_bib0040
  article-title: Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2021.103421
– volume: 132
  start-page: 152
  year: 2020
  ident: 10.1016/j.trb.2023.05.005_bib0059
  article-title: Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2019.06.005
– volume: 33
  start-page: 3387
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0009
  article-title: End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks
– volume: 368
  start-page: 4585
  year: 2010
  ident: 10.1016/j.trb.2023.05.005_bib0019
  article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2010.0084
– volume: 15
  start-page: 70
  issue: 2
  year: 1967
  ident: 10.1016/j.trb.2023.05.005_bib0051
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– volume: 42
  start-page: 626
  year: 2010
  ident: 10.1016/j.trb.2023.05.005_bib0058
  article-title: Impact of traffic oscillations on freeway crash occurrences
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2009.10.009
– volume: 14
  start-page: 337
  issue: 5
  year: 2007
  ident: 10.1016/j.trb.2023.05.005_bib0003
  article-title: On multiplicative transfer function approximation in the short-time Fourier transform domain
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2006.888292
– start-page: 1000
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0032
  article-title: Systematic analysis of the sensor coverage of automated vehicles using phenomenological sensor Models
– year: 2013
  ident: 10.1016/j.trb.2023.05.005_bib0001
– volume: 34
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.trb.2023.05.005_bib0053
  article-title: Car-following models: fifty years of linear stability analysis–a mathematical perspective
  publication-title: Transp. Plan. Technol.
  doi: 10.1080/03081060.2011.530826
– volume: 144
  start-page: 133
  year: 2021
  ident: 10.1016/j.trb.2023.05.005_bib0028
  article-title: On string stability of a mixed and heterogeneous traffic flow: a unifying modelling framework
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2020.11.009
– volume: 146
  start-page: 136
  year: 2021
  ident: 10.1016/j.trb.2023.05.005_bib0027
  article-title: From homogeneous to heterogeneous traffic flows: lp String stability under uncertain model parameters
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2021.01.009
– volume: 48
  start-page: 285
  year: 2014
  ident: 10.1016/j.trb.2023.05.005_bib0024
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transportation
– volume: 127
  start-page: 3445
  issue: 6
  year: 2016
  ident: 10.1016/j.trb.2023.05.005_bib0055
  article-title: Using improved chaotic ant swarm to tune PID controller on cooperative adaptive cruise control
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.12.014
– volume: 19
  start-page: 1243
  year: 2011
  ident: 10.1016/j.trb.2023.05.005_bib0033
  article-title: On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data
  publication-title: Transp. Res. C: Emerg. Technol.
  doi: 10.1016/j.trc.2010.12.007
– volume: 22
  start-page: 4998
  issue: 8
  year: 2020
  ident: 10.1016/j.trb.2023.05.005_bib0045
  article-title: Traffic flow on a ring with a single autonomous vehicle: an interconnected stability perspective
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2985680
– volume: 7
  start-page: 429
  issue: 4
  year: 2006
  ident: 10.1016/j.trb.2023.05.005_bib0002
  article-title: The impact of cooperative adaptive cruise control on traffic-flow characteristics
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2006.884615
– volume: 116
  start-page: 25
  year: 2018
  ident: 10.1016/j.trb.2023.05.005_bib0012
  article-title: Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2018.07.005
– volume: 40
  start-page: 290
  year: 2014
  ident: 10.1016/j.trb.2023.05.005_bib0050
  article-title: Rolling horizon control framework for driver assistance systems . Part II : cooperative sensing and cooperative control
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2013.11.024
– volume: 94
  start-page: 314
  year: 2016
  ident: 10.1016/j.trb.2023.05.005_bib0013
  article-title: Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2016.09.016
– ident: 10.1016/j.trb.2023.05.005_bib0046
  doi: 10.1016/j.trpro.2019.05.014
– volume: 49
  start-page: 448
  issue: 2
  year: 2001
  ident: 10.1016/j.trb.2023.05.005_bib0007
  article-title: Multiple window time-varying spectral analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.902129
– volume: 46
  start-page: 409
  issue: 3
  year: 2012
  ident: 10.1016/j.trb.2023.05.005_bib0021
  article-title: Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2011.11.003
– volume: 125
  start-page: 103047
  year: 2021
  ident: 10.1016/j.trb.2023.05.005_bib0023
  article-title: OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems
  publication-title: Transp. Res. C: Emerg. Technol. technologies
  doi: 10.1016/j.trc.2021.103047
– volume: 80
  start-page: 82
  year: 2015
  ident: 10.1016/j.trb.2023.05.005_bib0026
  article-title: Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2015.06.010
– volume: 59
  start-page: 117
  year: 2014
  ident: 10.1016/j.trb.2023.05.005_bib0008
  article-title: On the periodicity of traffic oscillations and capacity drop : the role of driver characteristics
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2013.11.005
– start-page: 1
  issue: November 2018
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0047
  article-title: Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints ☆
  publication-title: Transp. Res. Part C
– volume: 58
  start-page: 5429
  issue: 5
  year: 1998
  ident: 10.1016/j.trb.2023.05.005_bib0004
  article-title: Analysis of optimal velocity model with explicit delay
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.5429
– volume: 46
  start-page: 46
  year: 2014
  ident: 10.1016/j.trb.2023.05.005_bib0017
  article-title: Dynamics of connected vehicle systems with delayed acceleration feedback
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2014.04.014
– volume: 15
  start-page: 296
  issue: 1
  year: 2014
  ident: 10.1016/j.trb.2023.05.005_bib0025
  article-title: Cooperative adaptive cruise control in real traffic situations
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2278494
– volume: 83
  start-page: 39
  year: 2017
  ident: 10.1016/j.trb.2023.05.005_bib0034
  article-title: Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2017.07.005
– volume: 59
  start-page: 4268
  issue: 9
  year: 2010
  ident: 10.1016/j.trb.2023.05.005_bib0029
  article-title: String-stable CACC design and experimental validation : a frequency-domain approach
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/TVT.2010.2076320
– volume: 83
  start-page: 61
  year: 2017
  ident: 10.1016/j.trb.2023.05.005_bib0061
  article-title: Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2017.07.011
– ident: 10.1016/j.trb.2023.05.005_bib0015
  doi: 10.1109/TIV.2019.2955368
– volume: 95
  start-page: 421
  year: 2017
  ident: 10.1016/j.trb.2023.05.005_bib0022
  article-title: Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: computational issues and optimization
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2016.06.010
– volume: 257
  issue: October 2019
  year: 2020
  ident: 10.1016/j.trb.2023.05.005_bib0035
  article-title: Jointly dampening tra ffi c oscillations and improving energy consumption with electric, connected and automated vehicles : a reinforcement learning based approach
  publication-title: Appl. Energy
– volume: 114
  start-page: 205
  issue: September 2018
  year: 2020
  ident: 10.1016/j.trb.2023.05.005_bib0056
  article-title: Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle ☆
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2020.02.018
– volume: 38
  start-page: 49
  issue: August
  year: 2018
  ident: 10.1016/j.trb.2023.05.005_bib0039
  article-title: Nonparametric data-driven modeling of linear systems: estimating the frequency response and impulse response function
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2018.2830080
– volume: 95
  start-page: 445
  year: 2018
  ident: 10.1016/j.trb.2023.05.005_bib0018
  article-title: Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.07.021
– volume: 128
  start-page: 69
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0062
  article-title: Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2019.07.001
– volume: 23
  start-page: 597
  issue: 1
  year: 1994
  ident: 10.1016/j.trb.2023.05.005_bib0043
  article-title: A comparision of spacing and headway control laws for automatically controlled vehicles1
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423119408969077
– year: 2008
  ident: 10.1016/j.trb.2023.05.005_bib0036
  article-title: Spectral analysis and correlation
– volume: 2673
  start-page: 185
  issue: 10
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0014
  article-title: Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198119847473
– volume: 62
  start-page: 541
  issue: 2
  year: 2014
  ident: 10.1016/j.trb.2023.05.005_bib0037
  article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2360101
– ident: 10.1016/j.trb.2023.05.005_bib0054
– volume: 21
  start-page: 37
  issue: 1
  year: 1973
  ident: 10.1016/j.trb.2023.05.005_bib0010
  article-title: An optimal discrete window for the calculation of power spectra
  publication-title: IEEE trans. audio electroacoust.
  doi: 10.1109/TAU.1973.1162426
– volume: 13
  start-page: 354
  year: 2018
  ident: 10.1016/j.trb.2023.05.005_bib0020
  article-title: Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-018-0486-x
– volume: 21
  start-page: 207
  issue: 3
  year: 1990
  ident: 10.1016/j.trb.2023.05.005_bib0052
  article-title: Discrete gabor expansions
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(90)90087-F
– volume: 125
  start-page: 175
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0060
  article-title: Robust local and string stability for a decentralized car following control strategy for connected automated vehicles
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2019.05.003
– volume: 89
  start-page: 205
  issue: April 2017
  year: 2018
  ident: 10.1016/j.trb.2023.05.005_bib0041
  article-title: Dissipation of stop-and-go waves via control of autonomous vehicles : field experiments
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2018.02.005
– volume: 102
  start-page: 87
  issue: March
  year: 2019
  ident: 10.1016/j.trb.2023.05.005_bib0006
  article-title: Reducing time headway for platooning of connected vehicles via V2V communication
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2019.03.002
– start-page: 1210
  year: 2013
  ident: 10.1016/j.trb.2023.05.005_bib0031
SSID ssj0003401
Score 2.4620705
Snippet •We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102768
SubjectTerms Adaptive cruise control
Carfollowing
Data-driven analysis
Disturbance amplification
Frequency domain analysis
Title Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles
URI https://dx.doi.org/10.1016/j.trb.2023.05.005
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgADggKiPCoPTEhuk9hxslaFqoDoApW6RX5FFKGkCils_HbOiQNFAgbGRLYV3Z3uvnO-u0PonAdRFEaMERGbiDAICUQo6pGqs4xWKePV9Ia7KZ_M2M08nLfQqKmFsbRK5_trn155a_dm4KQ5WC4Wg3sAJz7gf3utWQEHW8HOImvl_fcvmgdlnptJ6BO7uvmzWXG8ykL27fzwqnmnnWD3U2xaizfjXbTjgCIe1t-yh1om66DNpo74pYO211oJ7iN5KUpBdGGdFxau0wgGRIo1KHJVSKtdLCx_PHXXdHiRYSUKkoIp5G9wCm5q9nGeYrEqc0CzRuNX81hx5w7QbHz1MJoQNz-BKEq9kkCwp1zqQEutvUipUEPyEEvAJFxKCamSCHSkWWA7gWoRS1-EPBKUydRwLkOfHqJ2lmfmCGEDeYXgihovkCxkUvAQDqE85kZBHhp3kddILlGuubidcfGcNCyypwSEnVhhJ16YgLC76OJzy7LurPHXYtaoI_lmHgl4_t-3Hf9v2wnask81z-8UtctiZc4Ae5SyVxlXD20Mr28n0w9Z2dhW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKd4kwMnpLCuSdNe0QBtDHYBJG5RXhVDaJtKB38fp0snkIAD16aOKtuyP6fOZ4BTEadpknJOVeZSyjElUGVYRCtmGWtyLqrpDXdD0XvkN0_JUwO69V0Y31YZYv88plfROjxpB222p6NR-x7BSQfxvz_WrIDDErQ8O1XShNZFf9AbLgIy41EYS9ihXqD-uVm1eZWFPvcjxCv-Tj_E7qf09CXlXK_DWsCK5GL-ORvQcONNWK6vEr9twuoXNsEt0JeqVNQWPn4RFchGCIJSYtGWs0J7AxPlW8jzcFJHRmNiVEFz9IbJB-5C6mv7ZJITNSsnCGidJe_uuWqf24bH66uHbo-GEQrUMBaVFPM9E9rGVlsbpcYkFuuHTCMsEVprrJZUbFPLY08GalWmOyoRqWJc504InXTYDjTHk7HbBeKwtFDCMBfFGvWslUhwEyYy4QyWotkeRLXmpAn84n7MxausG8leJCpbemXLKJGo7D04W4hM5-Qaf73Ma3PIbx4iMfj_Lrb_P7ETWO493N3K2_5wcAArfmXe9ncIzbKYuSOEIqU-Dq72Cc8F2wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+analysis+for+disturbance+amplification+in+car-following+behavior+of+automated+vehicles&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Zhou%2C+Yang&rft.au=Zhong%2C+Xinzhi&rft.au=Chen%2C+Qian&rft.au=Ahn%2C+Soyoung&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0191-2615&rft.volume=174&rft_id=info:doi/10.1016%2Fj.trb.2023.05.005&rft.externalDocID=S0191261523000851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon