Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles
•We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis of stochastic time-invariant disturbance amplification.•The framework facilitates a disturbance amplification analysis for unknown or nonlin...
Saved in:
Published in | Transportation research. Part B: methodological Vol. 174; p. 102768 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis of stochastic time-invariant disturbance amplification.•The framework facilitates a disturbance amplification analysis for unknown or nonlinear car following laws.
This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch's method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories. |
---|---|
AbstractList | •We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis of stochastic time-invariant disturbance amplification.•The framework facilitates a disturbance amplification analysis for unknown or nonlinear car following laws.
This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch's method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories. |
ArticleNumber | 102768 |
Author | Zhong, Xinzhi Jiang, Jiwan Jafarsalehi, Ghazaleh Zhou, Yang Ahn, Soyoung Chen, Qian |
Author_xml | – sequence: 1 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: Zachry Department of Civil and Environmental Engineering, Texas A&M, 199 Spence Street, Room 301A, College Station, TX 53706, USA – sequence: 2 givenname: Xinzhi surname: Zhong fullname: Zhong, Xinzhi organization: Department of Civil and Environmental Engineering, University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706, USA – sequence: 3 givenname: Qian surname: Chen fullname: Chen, Qian organization: School of Automation, Southeast University, PR China – sequence: 4 givenname: Soyoung orcidid: 0000-0001-8038-4806 surname: Ahn fullname: Ahn, Soyoung email: sue.ahn@wisc.edu organization: Department of Civil and Environmental Engineering, University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706, USA – sequence: 5 givenname: Jiwan surname: Jiang fullname: Jiang, Jiwan organization: Department of Civil and Environmental Engineering, University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706, USA – sequence: 6 givenname: Ghazaleh surname: Jafarsalehi fullname: Jafarsalehi, Ghazaleh organization: Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, CA 95616, USA |
BookMark | eNp90L1OwzAQwHEPRaItPACbXyDBjhMnERMqn1IlFpit80foVWlc2W5Q354UmBg63fQ73f0XZDb4wRFyw1nOGZe32zwFnResEDmrcsaqGZkz3vKskLy6JIsYt4wxUTI-J_oBEmQ24OgGCgP0x4iRdj5QizEdgobBOAq7fY8dGkjoB4oDNRCyzve9_8Lhk2q3gREn4zsKh-R3kJylo9ug6V28Ihcd9NFd_80l-Xh6fF-9ZOu359fV_TozQrCUNbwVUtvCamtZbUxl27pstBSt1FoXTQ2FrW1ZlE1RW2g0h0rWIErdOSl1xcWS1L97TfAxBtcpg-nn4hQAe8WZOuVRWzXlUac8ilVqyjNJ_k_uA-4gHM-au1_jppdGdEFFg26KZTE4k5T1eEZ_AzIIhC4 |
CitedBy_id | crossref_primary_10_1016_j_physa_2023_129444 crossref_primary_10_1016_j_compeleceng_2024_109624 crossref_primary_10_3390_su16229646 crossref_primary_10_1016_j_physa_2024_129541 crossref_primary_10_1016_j_trc_2024_104920 crossref_primary_10_1016_j_trb_2024_102979 crossref_primary_10_1016_j_trc_2024_104525 crossref_primary_10_1109_MITS_2023_3317081 |
Cites_doi | 10.1109/9.486636 10.1016/j.trb.2010.08.002 10.1016/j.trc.2016.07.007 10.1016/j.seizure.2015.01.012 10.1016/j.trc.2021.103421 10.1016/j.trb.2019.06.005 10.1098/rsta.2010.0084 10.1109/TAU.1967.1161901 10.1016/j.aap.2009.10.009 10.1109/LSP.2006.888292 10.1080/03081060.2011.530826 10.1016/j.trb.2020.11.009 10.1016/j.trb.2021.01.009 10.1016/j.ijleo.2015.12.014 10.1016/j.trc.2010.12.007 10.1109/TITS.2020.2985680 10.1109/TITS.2006.884615 10.1016/j.trb.2018.07.005 10.1016/j.trc.2013.11.024 10.1016/j.trb.2016.09.016 10.1016/j.trpro.2019.05.014 10.1109/78.902129 10.1016/j.trb.2011.11.003 10.1016/j.trc.2021.103047 10.1016/j.trb.2015.06.010 10.1016/j.trb.2013.11.005 10.1103/PhysRevE.58.5429 10.1016/j.trc.2014.04.014 10.1109/TITS.2013.2278494 10.1016/j.trc.2017.07.005 10.1109/TVT.2010.2076320 10.1016/j.trc.2017.07.011 10.1109/TIV.2019.2955368 10.1016/j.trb.2016.06.010 10.1016/j.trc.2020.02.018 10.1109/MCS.2018.2830080 10.1016/j.trc.2018.07.021 10.1016/j.trb.2019.07.001 10.1080/00423119408969077 10.1177/0361198119847473 10.1109/TBME.2014.2360101 10.1109/TAU.1973.1162426 10.1007/s11465-018-0486-x 10.1016/0165-1684(90)90087-F 10.1016/j.trb.2019.05.003 10.1016/j.trc.2018.02.005 10.1016/j.trc.2019.03.002 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trb.2023.05.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
ExternalDocumentID | 10_1016_j_trb_2023_05_005 S0191261523000851 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- AATTM AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c330t-81936bd2dbdd07cc5d9748b6396bbb287a2d7d424827da8b1a567a34bfe66b513 |
IEDL.DBID | .~1 |
ISSN | 0191-2615 |
IngestDate | Tue Jul 01 03:50:16 EDT 2025 Thu Apr 24 22:58:08 EDT 2025 Tue Dec 03 03:45:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Adaptive cruise control Data-driven analysis Carfollowing Disturbance amplification Frequency domain analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-81936bd2dbdd07cc5d9748b6396bbb287a2d7d424827da8b1a567a34bfe66b513 |
ORCID | 0000-0001-8038-4806 |
ParticipantIDs | crossref_citationtrail_10_1016_j_trb_2023_05_005 crossref_primary_10_1016_j_trb_2023_05_005 elsevier_sciencedirect_doi_10_1016_j_trb_2023_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Transportation research. Part B: methodological |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Wang, Ouyang (bib0021) 2012; 46 Milanés, Shladover (bib0024) 2014; 48 Punzo, Teresa, Ciuffo (bib0033) 2011; 19 Swaroop, Hedrick, Chien, Ioannou (bib0043) 1994; 23 Wexler, Raz (bib0052) 1990; 21 Schoukens, Godfrey (bib0039) 2018; 38 Naus, Vugts, Ploeg, van de Molengraft, Steinbuch (bib0030) 2010, June Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2018). Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related Constraints. Zhou, Ahn (bib0060) 2019; 125 Samiee, Kovacs, Gabbouj (bib0037) 2014; 62 Jin, Orosz (bib0018) 2018; 95 Shi, Zhou, Wu, Wang, Lin, Ran (bib0040) 2021; 133 Ponn, Müller, Diermeyer (bib0032) 2019 Faust, Acharya, Adeli, Adeli (bib0011) 2015; 26 Li, Gao, Li, Zheng, Gao (bib0020) 2018; 13 Wang, Gong, Zhou, Li, Peeta (bib0047) 2019 Ma, Li, Zhou, Hu, Park (bib0022) 2017; 95 Qin, Orosz (bib0034) 2017; 83 Stern, Cui, Laura, Monache, Bhadani, Bunting, Work (bib0041) 2018; 89 Giammarino, Baldi, Frasca, Delle Monache (bib0045) 2020; 22 (bib0001) 2013 Bando, Hasebe, Nakanishi, Nakayama (bib0004) 1998; 58 Randall (bib0036) 2008 . Van Arem, Van Driel, Visser (bib0002) 2006; 7 Zhou, Ahn, Chitturi, Noyce (bib0061) 2017; 83 Gunter, G., Janssen, C., Barbour, W., Stern, R.E., & Work, D.B. (2020). Model-based string stability of adaptive cruise control systems using field data. 5(1), 90–99. Zheng, Ahn, Monsere (bib0058) 2010; 42 Kesting, Treiber, Helbing (bib0019) 2010; 368 Montanino, Punzo (bib0028) 2021; 144 Wilson, Ward (bib0053) 2011; 34 Wang, Daamen, Hoogendoorn, Van Arem (bib0050) 2014; 40 Zhou, Ahn, Wang, Hoogendoorn (bib0059) 2020; 132 Qu, Yu, Zhou, Lin, Wang (bib0035) 2020; 257 Swaroop, Hedrick (bib0042) 1996; 41 Zheng, Ahn, Chen, Laval (bib0057) 2011; 45 Milanés, Shladover, Spring, Nowakowski (bib0025) 2014; 15 (p. 14). Montanino, Punzo (bib0026) 2015; 80 Cheng, Orosz, Murray, Burdick (bib0009) 2019; 33 Gong, Zhou, Peeta (bib0014) 2019; 2673 Jin, Orosz (bib0017) 2014; 46 Ploeg, Semsar-kazerooni, Lijster, Wouw, N.Van, Nijmeijer (bib0031) 2013 Zhou, Wang, Ahn (bib0062) 2019; 128 Montanino, Monteil, Punzo (bib0027) 2021; 146 Gong, Du (bib0012) 2018; 116 Bian, Zheng, Ren, Eben, Wang (bib0006) 2019; 102 Eberhard (bib0010) 1973; 21 Çakrak, Loughlin (bib0007) 2001; 49 Zhao, Wang, Xu, Wang, Li, Qu (bib0056) 2020; 114 Talebpour, Mahmassani (bib0044) 2016; 71 Wu, Qin, Yu, Gao, Liu, Xue (bib0055) 2016; 127 Welch (bib0051) 1967; 15 Wu, F., Stern, R., Churchill, M., Laura, M., Monache, D., Piccoli, B., … Han, K. (2017). Measuring trajectories and fuel consumption in oscillatory traffic : experimental results To cite this version : HAL Id : hal-01516133 Measuring trajectories and fuel consumption in oscillatory traffic : experimental results. In Chen, Ahn, Laval, Zheng (bib0008) 2014; 59 Avargel, Cohen (bib0003) 2007; 14 Gong, Shen, Du (bib0013) 2016; 94 Makridis, Mattas, Anesiadou, Ciuffo (bib0023) 2021; 125 Naus, Vugts, Ploeg, Molengraft (bib0029) 2010; 59 Zhou (10.1016/j.trb.2023.05.005_bib0060) 2019; 125 Wu (10.1016/j.trb.2023.05.005_bib0055) 2016; 127 Jin (10.1016/j.trb.2023.05.005_bib0017) 2014; 46 Wilson (10.1016/j.trb.2023.05.005_bib0053) 2011; 34 Talebpour (10.1016/j.trb.2023.05.005_bib0044) 2016; 71 Gong (10.1016/j.trb.2023.05.005_bib0012) 2018; 116 Naus (10.1016/j.trb.2023.05.005_bib0029) 2010; 59 Ploeg (10.1016/j.trb.2023.05.005_bib0031) 2013 Swaroop (10.1016/j.trb.2023.05.005_bib0043) 1994; 23 Qu (10.1016/j.trb.2023.05.005_bib0035) 2020; 257 Stern (10.1016/j.trb.2023.05.005_bib0041) 2018; 89 Zheng (10.1016/j.trb.2023.05.005_bib0057) 2011; 45 Milanés (10.1016/j.trb.2023.05.005_bib0024) 2014; 48 Zheng (10.1016/j.trb.2023.05.005_bib0058) 2010; 42 Gong (10.1016/j.trb.2023.05.005_bib0013) 2016; 94 Randall (10.1016/j.trb.2023.05.005_bib0036) 2008 Milanés (10.1016/j.trb.2023.05.005_bib0025) 2014; 15 Naus (10.1016/j.trb.2023.05.005_bib0030) 2010 Li (10.1016/j.trb.2023.05.005_bib0021) 2012; 46 Avargel (10.1016/j.trb.2023.05.005_bib0003) 2007; 14 Faust (10.1016/j.trb.2023.05.005_bib0011) 2015; 26 Schoukens (10.1016/j.trb.2023.05.005_bib0039) 2018; 38 Li (10.1016/j.trb.2023.05.005_bib0020) 2018; 13 Zhou (10.1016/j.trb.2023.05.005_bib0061) 2017; 83 Eberhard (10.1016/j.trb.2023.05.005_bib0010) 1973; 21 Montanino (10.1016/j.trb.2023.05.005_bib0028) 2021; 144 Wexler (10.1016/j.trb.2023.05.005_bib0052) 1990; 21 Wang (10.1016/j.trb.2023.05.005_bib0047) 2019 Zhou (10.1016/j.trb.2023.05.005_bib0059) 2020; 132 10.1016/j.trb.2023.05.005_bib0015 (10.1016/j.trb.2023.05.005_bib0001) 2013 10.1016/j.trb.2023.05.005_bib0054 Jin (10.1016/j.trb.2023.05.005_bib0018) 2018; 95 Shi (10.1016/j.trb.2023.05.005_bib0040) 2021; 133 Bian (10.1016/j.trb.2023.05.005_bib0006) 2019; 102 Cheng (10.1016/j.trb.2023.05.005_bib0009) 2019; 33 10.1016/j.trb.2023.05.005_bib0046 Giammarino (10.1016/j.trb.2023.05.005_bib0045) 2020; 22 Gong (10.1016/j.trb.2023.05.005_bib0014) 2019; 2673 Montanino (10.1016/j.trb.2023.05.005_bib0026) 2015; 80 Montanino (10.1016/j.trb.2023.05.005_bib0027) 2021; 146 Zhao (10.1016/j.trb.2023.05.005_bib0056) 2020; 114 Punzo (10.1016/j.trb.2023.05.005_bib0033) 2011; 19 Van Arem (10.1016/j.trb.2023.05.005_bib0002) 2006; 7 Bando (10.1016/j.trb.2023.05.005_bib0004) 1998; 58 Samiee (10.1016/j.trb.2023.05.005_bib0037) 2014; 62 Zhou (10.1016/j.trb.2023.05.005_bib0062) 2019; 128 Qin (10.1016/j.trb.2023.05.005_bib0034) 2017; 83 Welch (10.1016/j.trb.2023.05.005_bib0051) 1967; 15 Chen (10.1016/j.trb.2023.05.005_bib0008) 2014; 59 Ma (10.1016/j.trb.2023.05.005_bib0022) 2017; 95 Çakrak (10.1016/j.trb.2023.05.005_bib0007) 2001; 49 Wang (10.1016/j.trb.2023.05.005_bib0050) 2014; 40 Makridis (10.1016/j.trb.2023.05.005_bib0023) 2021; 125 Ponn (10.1016/j.trb.2023.05.005_bib0032) 2019 Swaroop (10.1016/j.trb.2023.05.005_bib0042) 1996; 41 Kesting (10.1016/j.trb.2023.05.005_bib0019) 2010; 368 |
References_xml | – volume: 14 start-page: 337 year: 2007 end-page: 340 ident: bib0003 article-title: On multiplicative transfer function approximation in the short-time Fourier transform domain publication-title: IEEE Signal Process Lett. – volume: 368 start-page: 4585 year: 2010 end-page: 4605 ident: bib0019 article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 21 start-page: 207 year: 1990 end-page: 220 ident: bib0052 article-title: Discrete gabor expansions publication-title: Signal Process. – start-page: 1 year: 2019 end-page: 22 ident: bib0047 article-title: Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints ☆ publication-title: Transp. Res. Part C – volume: 13 start-page: 354 year: 2018 end-page: 367 ident: bib0020 article-title: Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics publication-title: Front. Mech. Eng. – volume: 7 start-page: 429 year: 2006 end-page: 436 ident: bib0002 article-title: The impact of cooperative adaptive cruise control on traffic-flow characteristics publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 89 start-page: 205 year: 2018 end-page: 221 ident: bib0041 article-title: Dissipation of stop-and-go waves publication-title: Transp. Res. Part C – volume: 102 start-page: 87 year: 2019 end-page: 105 ident: bib0006 article-title: Reducing time headway for platooning of connected vehicles publication-title: Transp. Res. Part C – volume: 71 start-page: 143 year: 2016 end-page: 163 ident: bib0044 article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput publication-title: Transp. Res. Part C – volume: 46 start-page: 46 year: 2014 end-page: 64 ident: bib0017 article-title: Dynamics of connected vehicle systems with delayed acceleration feedback publication-title: Transp. Res. Part C Emerg. Technol. – start-page: 6145 year: 2010, June end-page: 6150 ident: bib0030 publication-title: Cooperative adaptive cruise control, design and experiments – volume: 22 start-page: 4998 year: 2020 end-page: 5008 ident: bib0045 article-title: Traffic flow on a ring with a single autonomous vehicle: an interconnected stability perspective publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 132 start-page: 152 year: 2020 end-page: 170 ident: bib0059 article-title: Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach publication-title: Transp. Res. Part B Methodol. – volume: 15 start-page: 296 year: 2014 end-page: 305 ident: bib0025 article-title: Cooperative adaptive cruise control in real traffic situations publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 41 start-page: 349 year: 1996 end-page: 357 ident: bib0042 article-title: String stability of interconnected systems publication-title: IEEE Trans. Autom. Control. – volume: 146 start-page: 136 year: 2021 end-page: 154 ident: bib0027 article-title: From homogeneous to heterogeneous traffic flows: lp String stability under uncertain model parameters publication-title: Transp. Res. Part B Methodol. – volume: 19 start-page: 1243 year: 2011 end-page: 1262 ident: bib0033 article-title: On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data publication-title: Transp. Res. C: Emerg. Technol. – volume: 128 start-page: 69 year: 2019 end-page: 86 ident: bib0062 article-title: Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability publication-title: Transp. Res. Part B – volume: 95 start-page: 445 year: 2018 end-page: 459 ident: bib0018 article-title: Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design publication-title: Transp. Res. Part C Emerg. Technol. – volume: 133 year: 2021 ident: bib0040 article-title: Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment publication-title: Transp. Res. Part C Emerg. Technol. – volume: 45 start-page: 372 year: 2011 end-page: 384 ident: bib0057 article-title: Applications of wavelet transform for analysis of freeway traffic : bottlenecks, transient traffic, and traffic oscillations publication-title: Transp. Res. Part B – volume: 2673 start-page: 185 year: 2019 end-page: 198 ident: bib0014 article-title: Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology publication-title: Transp. Res. Rec. – volume: 95 start-page: 421 year: 2017 end-page: 441 ident: bib0022 article-title: Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: computational issues and optimization publication-title: Transp. Res. Part B Methodol. – volume: 125 start-page: 103047 year: 2021 ident: bib0023 article-title: OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems publication-title: Transp. Res. C: Emerg. Technol. technologies – volume: 34 start-page: 3 year: 2011 end-page: 18 ident: bib0053 article-title: Car-following models: fifty years of linear stability analysis–a mathematical perspective publication-title: Transp. Plan. Technol. – volume: 127 start-page: 3445 year: 2016 end-page: 3450 ident: bib0055 article-title: Using improved chaotic ant swarm to tune PID controller on cooperative adaptive cruise control publication-title: Optik – reference: Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2018). Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related Constraints. – volume: 62 start-page: 541 year: 2014 end-page: 552 ident: bib0037 article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform publication-title: IEEE Trans. Biomed. Eng. – volume: 23 start-page: 597 year: 1994 end-page: 625 ident: bib0043 article-title: A comparision of spacing and headway control laws for automatically controlled vehicles1 publication-title: Veh. Syst. Dyn. – volume: 125 start-page: 175 year: 2019 end-page: 196 ident: bib0060 article-title: Robust local and string stability for a decentralized car following control strategy for connected automated vehicles publication-title: Transp. Res. Part B – volume: 80 start-page: 82 year: 2015 end-page: 106 ident: bib0026 article-title: Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns publication-title: Transp. Res. Part B – volume: 49 start-page: 448 year: 2001 end-page: 453 ident: bib0007 article-title: Multiple window time-varying spectral analysis publication-title: IEEE Trans. Signal Process. – year: 2013 ident: bib0001 article-title: LIDAR Speed-Measuring Device Performance Specifications – reference: (p. 14). – reference: Gunter, G., Janssen, C., Barbour, W., Stern, R.E., & Work, D.B. (2020). Model-based string stability of adaptive cruise control systems using field data. 5(1), 90–99. – volume: 40 start-page: 290 year: 2014 end-page: 311 ident: bib0050 article-title: Rolling horizon control framework for driver assistance systems . Part II : cooperative sensing and cooperative control publication-title: Transp. Res. Part C – volume: 94 start-page: 314 year: 2016 end-page: 334 ident: bib0013 article-title: Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon publication-title: Transp. Res. Part B – volume: 83 start-page: 39 year: 2017 end-page: 60 ident: bib0034 article-title: Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays publication-title: Transp. Res. Part C Emerg. Technol. – volume: 26 start-page: 56 year: 2015 end-page: 64 ident: bib0011 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure – volume: 58 start-page: 5429 year: 1998 ident: bib0004 article-title: Analysis of optimal velocity model with explicit delay publication-title: Phys. Rev. E – start-page: 1000 year: 2019 end-page: 1006 ident: bib0032 article-title: Systematic analysis of the sensor coverage of automated vehicles using phenomenological sensor Models publication-title: Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV) – volume: 42 start-page: 626 year: 2010 end-page: 636 ident: bib0058 article-title: Impact of traffic oscillations on freeway crash occurrences publication-title: Accid. Anal. Prev. – year: 2008 ident: bib0036 article-title: Spectral analysis and correlation publication-title: Handbook of signal processing in acoustics – volume: 48 start-page: 285 year: 2014 end-page: 300 ident: bib0024 article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data publication-title: Transportation – start-page: 1210 year: 2013 end-page: 1216 ident: bib0031 publication-title: Graceful degradation of CACC performance subject to unreliable wireless communication – volume: 15 start-page: 70 year: 1967 end-page: 73 ident: bib0051 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. – volume: 21 start-page: 37 year: 1973 end-page: 43 ident: bib0010 article-title: An optimal discrete window for the calculation of power spectra publication-title: IEEE trans. audio electroacoust. – volume: 38 start-page: 49 year: 2018 end-page: 88 ident: bib0039 article-title: Nonparametric data-driven modeling of linear systems: estimating the frequency response and impulse response function publication-title: IEEE Control Syst. – volume: 33 start-page: 3387 year: 2019 end-page: 3395 ident: bib0009 article-title: End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 114 start-page: 205 year: 2020 end-page: 224 ident: bib0056 article-title: Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle ☆ publication-title: Transp. Res. Part C – reference: . – volume: 59 start-page: 4268 year: 2010 end-page: 4279 ident: bib0029 article-title: String-stable CACC design and experimental validation : a frequency-domain approach publication-title: IEEE Veh. Technol. Mag. – volume: 59 start-page: 117 year: 2014 end-page: 136 ident: bib0008 article-title: On the periodicity of traffic oscillations and capacity drop : the role of driver characteristics publication-title: Transp. Res. Part B – volume: 257 year: 2020 ident: bib0035 article-title: Jointly dampening tra ffi c oscillations and improving energy consumption with electric, connected and automated vehicles : a reinforcement learning based approach publication-title: Appl. Energy – volume: 144 start-page: 133 year: 2021 end-page: 154 ident: bib0028 article-title: On string stability of a mixed and heterogeneous traffic flow: a unifying modelling framework publication-title: Transp. Res. Part B Methodol. – volume: 116 start-page: 25 year: 2018 end-page: 61 ident: bib0012 article-title: Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles publication-title: Transp. Res. Part B – reference: Wu, F., Stern, R., Churchill, M., Laura, M., Monache, D., Piccoli, B., … Han, K. (2017). Measuring trajectories and fuel consumption in oscillatory traffic : experimental results To cite this version : HAL Id : hal-01516133 Measuring trajectories and fuel consumption in oscillatory traffic : experimental results. In – volume: 46 start-page: 409 year: 2012 end-page: 423 ident: bib0021 article-title: Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws publication-title: Transp. Res. Part B Methodol. – volume: 83 start-page: 61 year: 2017 end-page: 76 ident: bib0061 article-title: Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty publication-title: Transp. Res. Part C – volume: 41 start-page: 349 issue: 3 year: 1996 ident: 10.1016/j.trb.2023.05.005_bib0042 article-title: String stability of interconnected systems publication-title: IEEE Trans. Autom. Control. doi: 10.1109/9.486636 – volume: 45 start-page: 372 issue: 2 year: 2011 ident: 10.1016/j.trb.2023.05.005_bib0057 article-title: Applications of wavelet transform for analysis of freeway traffic : bottlenecks, transient traffic, and traffic oscillations publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2010.08.002 – volume: 71 start-page: 143 year: 2016 ident: 10.1016/j.trb.2023.05.005_bib0044 article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2016.07.007 – start-page: 6145 year: 2010 ident: 10.1016/j.trb.2023.05.005_bib0030 – volume: 26 start-page: 56 year: 2015 ident: 10.1016/j.trb.2023.05.005_bib0011 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure doi: 10.1016/j.seizure.2015.01.012 – volume: 133 year: 2021 ident: 10.1016/j.trb.2023.05.005_bib0040 article-title: Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2021.103421 – volume: 132 start-page: 152 year: 2020 ident: 10.1016/j.trb.2023.05.005_bib0059 article-title: Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2019.06.005 – volume: 33 start-page: 3387 year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0009 article-title: End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks – volume: 368 start-page: 4585 year: 2010 ident: 10.1016/j.trb.2023.05.005_bib0019 article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2010.0084 – volume: 15 start-page: 70 issue: 2 year: 1967 ident: 10.1016/j.trb.2023.05.005_bib0051 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume: 42 start-page: 626 year: 2010 ident: 10.1016/j.trb.2023.05.005_bib0058 article-title: Impact of traffic oscillations on freeway crash occurrences publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2009.10.009 – volume: 14 start-page: 337 issue: 5 year: 2007 ident: 10.1016/j.trb.2023.05.005_bib0003 article-title: On multiplicative transfer function approximation in the short-time Fourier transform domain publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2006.888292 – start-page: 1000 year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0032 article-title: Systematic analysis of the sensor coverage of automated vehicles using phenomenological sensor Models – year: 2013 ident: 10.1016/j.trb.2023.05.005_bib0001 – volume: 34 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.trb.2023.05.005_bib0053 article-title: Car-following models: fifty years of linear stability analysis–a mathematical perspective publication-title: Transp. Plan. Technol. doi: 10.1080/03081060.2011.530826 – volume: 144 start-page: 133 year: 2021 ident: 10.1016/j.trb.2023.05.005_bib0028 article-title: On string stability of a mixed and heterogeneous traffic flow: a unifying modelling framework publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2020.11.009 – volume: 146 start-page: 136 year: 2021 ident: 10.1016/j.trb.2023.05.005_bib0027 article-title: From homogeneous to heterogeneous traffic flows: lp String stability under uncertain model parameters publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2021.01.009 – volume: 48 start-page: 285 year: 2014 ident: 10.1016/j.trb.2023.05.005_bib0024 article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data publication-title: Transportation – volume: 127 start-page: 3445 issue: 6 year: 2016 ident: 10.1016/j.trb.2023.05.005_bib0055 article-title: Using improved chaotic ant swarm to tune PID controller on cooperative adaptive cruise control publication-title: Optik doi: 10.1016/j.ijleo.2015.12.014 – volume: 19 start-page: 1243 year: 2011 ident: 10.1016/j.trb.2023.05.005_bib0033 article-title: On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data publication-title: Transp. Res. C: Emerg. Technol. doi: 10.1016/j.trc.2010.12.007 – volume: 22 start-page: 4998 issue: 8 year: 2020 ident: 10.1016/j.trb.2023.05.005_bib0045 article-title: Traffic flow on a ring with a single autonomous vehicle: an interconnected stability perspective publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2985680 – volume: 7 start-page: 429 issue: 4 year: 2006 ident: 10.1016/j.trb.2023.05.005_bib0002 article-title: The impact of cooperative adaptive cruise control on traffic-flow characteristics publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2006.884615 – volume: 116 start-page: 25 year: 2018 ident: 10.1016/j.trb.2023.05.005_bib0012 article-title: Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2018.07.005 – volume: 40 start-page: 290 year: 2014 ident: 10.1016/j.trb.2023.05.005_bib0050 article-title: Rolling horizon control framework for driver assistance systems . Part II : cooperative sensing and cooperative control publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2013.11.024 – volume: 94 start-page: 314 year: 2016 ident: 10.1016/j.trb.2023.05.005_bib0013 article-title: Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2016.09.016 – ident: 10.1016/j.trb.2023.05.005_bib0046 doi: 10.1016/j.trpro.2019.05.014 – volume: 49 start-page: 448 issue: 2 year: 2001 ident: 10.1016/j.trb.2023.05.005_bib0007 article-title: Multiple window time-varying spectral analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.902129 – volume: 46 start-page: 409 issue: 3 year: 2012 ident: 10.1016/j.trb.2023.05.005_bib0021 article-title: Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2011.11.003 – volume: 125 start-page: 103047 year: 2021 ident: 10.1016/j.trb.2023.05.005_bib0023 article-title: OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems publication-title: Transp. Res. C: Emerg. Technol. technologies doi: 10.1016/j.trc.2021.103047 – volume: 80 start-page: 82 year: 2015 ident: 10.1016/j.trb.2023.05.005_bib0026 article-title: Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2015.06.010 – volume: 59 start-page: 117 year: 2014 ident: 10.1016/j.trb.2023.05.005_bib0008 article-title: On the periodicity of traffic oscillations and capacity drop : the role of driver characteristics publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2013.11.005 – start-page: 1 issue: November 2018 year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0047 article-title: Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints ☆ publication-title: Transp. Res. Part C – volume: 58 start-page: 5429 issue: 5 year: 1998 ident: 10.1016/j.trb.2023.05.005_bib0004 article-title: Analysis of optimal velocity model with explicit delay publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.5429 – volume: 46 start-page: 46 year: 2014 ident: 10.1016/j.trb.2023.05.005_bib0017 article-title: Dynamics of connected vehicle systems with delayed acceleration feedback publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.04.014 – volume: 15 start-page: 296 issue: 1 year: 2014 ident: 10.1016/j.trb.2023.05.005_bib0025 article-title: Cooperative adaptive cruise control in real traffic situations publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2278494 – volume: 83 start-page: 39 year: 2017 ident: 10.1016/j.trb.2023.05.005_bib0034 article-title: Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2017.07.005 – volume: 59 start-page: 4268 issue: 9 year: 2010 ident: 10.1016/j.trb.2023.05.005_bib0029 article-title: String-stable CACC design and experimental validation : a frequency-domain approach publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/TVT.2010.2076320 – volume: 83 start-page: 61 year: 2017 ident: 10.1016/j.trb.2023.05.005_bib0061 article-title: Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2017.07.011 – ident: 10.1016/j.trb.2023.05.005_bib0015 doi: 10.1109/TIV.2019.2955368 – volume: 95 start-page: 421 year: 2017 ident: 10.1016/j.trb.2023.05.005_bib0022 article-title: Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: computational issues and optimization publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2016.06.010 – volume: 257 issue: October 2019 year: 2020 ident: 10.1016/j.trb.2023.05.005_bib0035 article-title: Jointly dampening tra ffi c oscillations and improving energy consumption with electric, connected and automated vehicles : a reinforcement learning based approach publication-title: Appl. Energy – volume: 114 start-page: 205 issue: September 2018 year: 2020 ident: 10.1016/j.trb.2023.05.005_bib0056 article-title: Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle ☆ publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2020.02.018 – volume: 38 start-page: 49 issue: August year: 2018 ident: 10.1016/j.trb.2023.05.005_bib0039 article-title: Nonparametric data-driven modeling of linear systems: estimating the frequency response and impulse response function publication-title: IEEE Control Syst. doi: 10.1109/MCS.2018.2830080 – volume: 95 start-page: 445 year: 2018 ident: 10.1016/j.trb.2023.05.005_bib0018 article-title: Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.07.021 – volume: 128 start-page: 69 year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0062 article-title: Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2019.07.001 – volume: 23 start-page: 597 issue: 1 year: 1994 ident: 10.1016/j.trb.2023.05.005_bib0043 article-title: A comparision of spacing and headway control laws for automatically controlled vehicles1 publication-title: Veh. Syst. Dyn. doi: 10.1080/00423119408969077 – year: 2008 ident: 10.1016/j.trb.2023.05.005_bib0036 article-title: Spectral analysis and correlation – volume: 2673 start-page: 185 issue: 10 year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0014 article-title: Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology publication-title: Transp. Res. Rec. doi: 10.1177/0361198119847473 – volume: 62 start-page: 541 issue: 2 year: 2014 ident: 10.1016/j.trb.2023.05.005_bib0037 article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2360101 – ident: 10.1016/j.trb.2023.05.005_bib0054 – volume: 21 start-page: 37 issue: 1 year: 1973 ident: 10.1016/j.trb.2023.05.005_bib0010 article-title: An optimal discrete window for the calculation of power spectra publication-title: IEEE trans. audio electroacoust. doi: 10.1109/TAU.1973.1162426 – volume: 13 start-page: 354 year: 2018 ident: 10.1016/j.trb.2023.05.005_bib0020 article-title: Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics publication-title: Front. Mech. Eng. doi: 10.1007/s11465-018-0486-x – volume: 21 start-page: 207 issue: 3 year: 1990 ident: 10.1016/j.trb.2023.05.005_bib0052 article-title: Discrete gabor expansions publication-title: Signal Process. doi: 10.1016/0165-1684(90)90087-F – volume: 125 start-page: 175 year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0060 article-title: Robust local and string stability for a decentralized car following control strategy for connected automated vehicles publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2019.05.003 – volume: 89 start-page: 205 issue: April 2017 year: 2018 ident: 10.1016/j.trb.2023.05.005_bib0041 article-title: Dissipation of stop-and-go waves via control of autonomous vehicles : field experiments publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2018.02.005 – volume: 102 start-page: 87 issue: March year: 2019 ident: 10.1016/j.trb.2023.05.005_bib0006 article-title: Reducing time headway for platooning of connected vehicles via V2V communication publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2019.03.002 – start-page: 1210 year: 2013 ident: 10.1016/j.trb.2023.05.005_bib0031 |
SSID | ssj0003401 |
Score | 2.4620705 |
Snippet | •We develop a data-driven framework to analyze disturbance amplification for automated vehicle car following.•The data-driven framework facilitates an analysis... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102768 |
SubjectTerms | Adaptive cruise control Carfollowing Data-driven analysis Disturbance amplification Frequency domain analysis |
Title | Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles |
URI | https://dx.doi.org/10.1016/j.trb.2023.05.005 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgADggKiPCoPTEhuk9hxslaFqoDoApW6RX5FFKGkCils_HbOiQNFAgbGRLYV3Z3uvnO-u0PonAdRFEaMERGbiDAICUQo6pGqs4xWKePV9Ia7KZ_M2M08nLfQqKmFsbRK5_trn155a_dm4KQ5WC4Wg3sAJz7gf3utWQEHW8HOImvl_fcvmgdlnptJ6BO7uvmzWXG8ykL27fzwqnmnnWD3U2xaizfjXbTjgCIe1t-yh1om66DNpo74pYO211oJ7iN5KUpBdGGdFxau0wgGRIo1KHJVSKtdLCx_PHXXdHiRYSUKkoIp5G9wCm5q9nGeYrEqc0CzRuNX81hx5w7QbHz1MJoQNz-BKEq9kkCwp1zqQEutvUipUEPyEEvAJFxKCamSCHSkWWA7gWoRS1-EPBKUydRwLkOfHqJ2lmfmCGEDeYXgihovkCxkUvAQDqE85kZBHhp3kddILlGuubidcfGcNCyypwSEnVhhJ16YgLC76OJzy7LurPHXYtaoI_lmHgl4_t-3Hf9v2wnask81z-8UtctiZc4Ae5SyVxlXD20Mr28n0w9Z2dhW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKd4kwMnpLCuSdNe0QBtDHYBJG5RXhVDaJtKB38fp0snkIAD16aOKtuyP6fOZ4BTEadpknJOVeZSyjElUGVYRCtmGWtyLqrpDXdD0XvkN0_JUwO69V0Y31YZYv88plfROjxpB222p6NR-x7BSQfxvz_WrIDDErQ8O1XShNZFf9AbLgIy41EYS9ihXqD-uVm1eZWFPvcjxCv-Tj_E7qf09CXlXK_DWsCK5GL-ORvQcONNWK6vEr9twuoXNsEt0JeqVNQWPn4RFchGCIJSYtGWs0J7AxPlW8jzcFJHRmNiVEFz9IbJB-5C6mv7ZJITNSsnCGidJe_uuWqf24bH66uHbo-GEQrUMBaVFPM9E9rGVlsbpcYkFuuHTCMsEVprrJZUbFPLY08GalWmOyoRqWJc504InXTYDjTHk7HbBeKwtFDCMBfFGvWslUhwEyYy4QyWotkeRLXmpAn84n7MxausG8leJCpbemXLKJGo7D04W4hM5-Qaf73Ma3PIbx4iMfj_Lrb_P7ETWO493N3K2_5wcAArfmXe9ncIzbKYuSOEIqU-Dq72Cc8F2wc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+analysis+for+disturbance+amplification+in+car-following+behavior+of+automated+vehicles&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Zhou%2C+Yang&rft.au=Zhong%2C+Xinzhi&rft.au=Chen%2C+Qian&rft.au=Ahn%2C+Soyoung&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0191-2615&rft.volume=174&rft_id=info:doi/10.1016%2Fj.trb.2023.05.005&rft.externalDocID=S0191261523000851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |