Crowding effects promote coexistence in the chemostat
This paper deals with an almost-global stability result for a particular chemostat model. It deviates from the classical chemostat because crowding effects are taken into consideration. This model can be rewritten as a negative feedback interconnection of two systems which are monotone (as input/out...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 319; no. 1; pp. 48 - 60 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.07.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper deals with an almost-global stability result for a particular chemostat model. It deviates from the classical chemostat because crowding effects are taken into consideration. This model can be rewritten as a negative feedback interconnection of two systems which are monotone (as input/output systems). Moreover, these subsystems behave nicely when subject to constant inputs. This allows the use of a particular small-gain theorem which has recently been developed for feedback interconnections of monotone systems. Application of this theorem requires—at least approximate—knowledge of two gain functions associated to the subsystems. It turns out that for the chemostat model proposed here, these approximations can be obtained explicitly and this leads to a sufficient condition for almost-global stability. In addition, we show that coexistence occurs in this model if the crowding effects are large enough. |
---|---|
AbstractList | This paper deals with an almost-global stability result for a particular chemostat model. It deviates from the classical chemostat because crowding effects are taken into consideration. This model can be rewritten as a negative feedback interconnection of two systems which are monotone (as input/output systems). Moreover, these subsystems behave nicely when subject to constant inputs. This allows the use of a particular small-gain theorem which has recently been developed for feedback interconnections of monotone systems. Application of this theorem requires—at least approximate—knowledge of two gain functions associated to the subsystems. It turns out that for the chemostat model proposed here, these approximations can be obtained explicitly and this leads to a sufficient condition for almost-global stability. In addition, we show that coexistence occurs in this model if the crowding effects are large enough. |
Author | De Leenheer, Patrick Angeli, David Sontag, Eduardo D. |
Author_xml | – sequence: 1 givenname: Patrick surname: De Leenheer fullname: De Leenheer, Patrick email: deleenhe@math.ufl.edu organization: Department of Mathematics, 358 Little Hall, Gainesville, FL 32611-8105, USA – sequence: 2 givenname: David surname: Angeli fullname: Angeli, David email: angeli@dsi.unifi.it organization: Dipartimento di Sistemi e Informatica, Universitá di Firenze, Via di S. Marta 3, 50139 Firenze, Italy – sequence: 3 givenname: Eduardo D. surname: Sontag fullname: Sontag, Eduardo D. email: sontag@control.rutgers.edu organization: Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17713891$$DView record in Pascal Francis |
BookMark | eNp9kDtrwzAUhUVJoUnaP9DJS0e7V5ItydClhL4g0CVDNyHLciMTW0YSffz7yqRQ6JDpwuV8B863QovRjQahawwFBsxu-6IflCoIACuAFEDZGVpiqFkOAtMFWgIQkpOSv12gVQg9AMYVx0tUbbz7bO34npmuMzqGbPJucNFk2pkvG6IZtcnsmMV9eu3N4EJU8RKdd-oQzNXvXaPd48Nu85xvX59eNvfbXFMKMeeCK1HjhhCqWSs6xVoGou5awWoBdVUpoFUrcF3Rsmwo0bqivBFUNbw0QtA1ujnWTipodei8GrUNcvJ2UP5bYs4xTf0pR4457V0I3nR_EZCzH9nL2Y-c_UggMvlJkPgHaZumWTdGr-zhNHp3RE3a_mGNl0HbWVRrfXIoW2dP4T9PiIGn |
CODEN | JMANAK |
CitedBy_id | crossref_primary_10_3934_eect_2015_4_143 crossref_primary_10_1016_j_jmaa_2012_07_055 crossref_primary_10_3182_20080706_5_KR_1001_01058 crossref_primary_10_1007_s10957_020_01665_2 crossref_primary_10_1016_j_jmaa_2024_128801 crossref_primary_10_1016_j_apm_2016_03_028 crossref_primary_10_1142_S1793524518501115 crossref_primary_10_3934_dcdsb_2020369 crossref_primary_10_1142_S0218339017400071 crossref_primary_10_3934_dcdsb_2022049 crossref_primary_10_1016_j_mbs_2017_02_007 crossref_primary_10_3389_frwa_2021_590378 crossref_primary_10_1016_j_nonrwa_2011_07_049 crossref_primary_10_3934_mbe_2016012 crossref_primary_10_1016_j_nonrwa_2007_02_003 crossref_primary_10_1016_j_nonrwa_2012_07_001 crossref_primary_10_1142_S1793524520500862 crossref_primary_10_1080_00036811_2016_1171319 crossref_primary_10_1073_pnas_1506184112 crossref_primary_10_1017_S0956792518000141 crossref_primary_10_1016_j_tpb_2010_07_003 |
Cites_doi | 10.1137/0516030 10.1109/TAC.2003.817920 10.3934/mbe.2005.2.25 10.1007/s00285-002-0170-x 10.1016/S0167-6911(02)00191-3 10.1007/BF00275886 10.1002/aic.690250515 10.1007/BF00275917 10.1016/j.sysconle.2004.02.017 10.1137/S0036139902406905 10.1137/0152012 10.1137/0145025 10.1016/0025-5564(95)92756-5 10.1007/BF00276091 10.1007/BF01211469 10.1002/bit.260210817 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Inc. – notice: 2006 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW |
DOI | 10.1016/j.jmaa.2006.02.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 60 |
ExternalDocumentID | 17713891 10_1016_j_jmaa_2006_02_036 S0022247X06001211 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c330t-787a891b223c6d8fa6d6089fd86980955a035d8195344b32cc537b83ab74e883 |
IEDL.DBID | AIKHN |
ISSN | 0022-247X |
IngestDate | Mon Jul 21 09:16:57 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Tue Jul 01 02:40:51 EDT 2025 Fri Feb 23 02:18:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Coexistence Monotone systems Chemostat Feedback systems Crowding Input output Monotone system Sufficient condition Feedback system Mathematical analysis Interconnection |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-787a891b223c6d8fa6d6089fd86980955a035d8195344b32cc537b83ab74e883 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022247X06001211 |
PageCount | 13 |
ParticipantIDs | pascalfrancis_primary_17713891 crossref_primary_10_1016_j_jmaa_2006_02_036 crossref_citationtrail_10_1016_j_jmaa_2006_02_036 elsevier_sciencedirect_doi_10_1016_j_jmaa_2006_02_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-07-01 |
PublicationDateYYYYMMDD | 2006-07-01 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | San Diego, CA |
PublicationPlace_xml | – name: San Diego, CA |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2006 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Hsu (bib010) 1980; 9 Jager, So, Tang, Waltman (bib011) 1987; 25 Stephanopoulos, Fredrickson (bib017) 1979; XXI Angeli, De Leenheer, Sontag (bib002) 2004; 52 Hale, Somolinas (bib007) 1983; 18 De Leenheer, Smith (bib004) 2003; 46 Butler, Hsu, Waltman (bib003) 1985; 45 De Leenheer, Angeli, Sontag (bib005) 2005; 2 Li, Muldowney (bib013) 1995; 125 De Leenheer, Smith (bib006) 2003; 63 Smith, Waltman (bib015) 1995 Angeli, Sontag (bib001) 2003; 48 Wolkowicz, Lu (bib020) 1992; 52 Vidyasagar (bib019) 1993 Hirsch (bib008) 1985; 16 Stephanopoulos, Fredrickson, Aris (bib018) 1979; 25 Jiang, Teel, Praly (bib012) 1994; 7 Smith (bib014) 1995 Hofbauer, Sigmund (bib009) 1998 Sontag (bib016) 2002; 47 Hofbauer (10.1016/j.jmaa.2006.02.036_bib009) 1998 Hsu (10.1016/j.jmaa.2006.02.036_bib010) 1980; 9 Smith (10.1016/j.jmaa.2006.02.036_bib014) 1995 Butler (10.1016/j.jmaa.2006.02.036_bib003) 1985; 45 Stephanopoulos (10.1016/j.jmaa.2006.02.036_bib017) 1979; XXI Angeli (10.1016/j.jmaa.2006.02.036_bib002) 2004; 52 De Leenheer (10.1016/j.jmaa.2006.02.036_bib006) 2003; 63 De Leenheer (10.1016/j.jmaa.2006.02.036_bib005) 2005; 2 Hale (10.1016/j.jmaa.2006.02.036_bib007) 1983; 18 Wolkowicz (10.1016/j.jmaa.2006.02.036_bib020) 1992; 52 Smith (10.1016/j.jmaa.2006.02.036_bib015) 1995 Li (10.1016/j.jmaa.2006.02.036_bib013) 1995; 125 De Leenheer (10.1016/j.jmaa.2006.02.036_bib004) 2003; 46 Vidyasagar (10.1016/j.jmaa.2006.02.036_bib019) 1993 Sontag (10.1016/j.jmaa.2006.02.036_bib016) 2002; 47 Angeli (10.1016/j.jmaa.2006.02.036_bib001) 2003; 48 Hirsch (10.1016/j.jmaa.2006.02.036_bib008) 1985; 16 Jager (10.1016/j.jmaa.2006.02.036_bib011) 1987; 25 Jiang (10.1016/j.jmaa.2006.02.036_bib012) 1994; 7 Stephanopoulos (10.1016/j.jmaa.2006.02.036_bib018) 1979; 25 |
References_xml | – volume: XXI start-page: 1491 year: 1979 end-page: 1498 ident: bib017 article-title: Effect of spatial inhomogeneities on the coexistence of competing microbial populations publication-title: Biotech. Bioeng. – volume: 9 start-page: 115 year: 1980 end-page: 132 ident: bib010 article-title: A competition model for a seasonally fluctuating nutrient publication-title: J. Math. Biol. – volume: 48 start-page: 1684 year: 2003 end-page: 1698 ident: bib001 article-title: Monotone control systems publication-title: Trans. Automat. Control – volume: 16 start-page: 423 year: 1985 end-page: 439 ident: bib008 article-title: Systems of differential equations which are competitive or cooperative II: Convergence almost everywhere publication-title: SIAM J. Math. Anal. – volume: 125 start-page: 155 year: 1995 end-page: 164 ident: bib013 article-title: Global stability for the SEIR model in epidemiology publication-title: Math. Biosci. – volume: 52 start-page: 222 year: 1992 end-page: 233 ident: bib020 article-title: Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates publication-title: SIAM J. Appl. Math. – volume: 18 start-page: 255 year: 1983 end-page: 280 ident: bib007 article-title: Competition for fluctuating nutrient publication-title: J. Math. Biol. – year: 1998 ident: bib009 article-title: Evolutionary Games and Population Dynamics – volume: 45 start-page: 435 year: 1985 end-page: 449 ident: bib003 article-title: A mathematical model of the chemostat with periodic washout rate publication-title: SIAM J. Appl. Math. – volume: 52 start-page: 407 year: 2004 end-page: 414 ident: bib002 article-title: A small-gain theorem for almost global convergence of monotone systems publication-title: Systems Control Lett. – volume: 7 start-page: 95 year: 1994 end-page: 120 ident: bib012 article-title: Small-gain theorem for ISS systems and applications publication-title: Math. Control Signals Systems – year: 1995 ident: bib015 article-title: The Theory of the Chemostat – volume: 25 start-page: 863 year: 1979 end-page: 872 ident: bib018 article-title: The growth of competing microbial populations in CSTR with periodically varying inputs publication-title: Amer. Instit. Chem. Eng. J. – year: 1993 ident: bib019 article-title: Nonlinear Systems Analysis – year: 1995 ident: bib014 article-title: Monotone Dynamical Systems – volume: 46 start-page: 48 year: 2003 end-page: 70 ident: bib004 article-title: Feedback control for chemostat models publication-title: J. Math. Biol. – volume: 63 start-page: 1313 year: 2003 end-page: 1327 ident: bib006 article-title: Virus dynamics: a global analysis publication-title: SIAM J. Appl. Math. – volume: 2 start-page: 25 year: 2005 end-page: 42 ident: bib005 article-title: On predator–prey systems and small-gain theorems publication-title: Math. Biosci. Engrg. – volume: 25 start-page: 23 year: 1987 end-page: 42 ident: bib011 article-title: Competition in the gradostat publication-title: J. Math. Biol. – volume: 47 start-page: 167 year: 2002 end-page: 179 ident: bib016 article-title: Asymptotic amplitudes and Cauchy gains: A small-gain principle and an application to inhibitory biological feedback publication-title: Systems Control Lett. – volume: 16 start-page: 423 year: 1985 ident: 10.1016/j.jmaa.2006.02.036_bib008 article-title: Systems of differential equations which are competitive or cooperative II: Convergence almost everywhere publication-title: SIAM J. Math. Anal. doi: 10.1137/0516030 – volume: 48 start-page: 1684 year: 2003 ident: 10.1016/j.jmaa.2006.02.036_bib001 article-title: Monotone control systems publication-title: Trans. Automat. Control doi: 10.1109/TAC.2003.817920 – volume: 2 start-page: 25 year: 2005 ident: 10.1016/j.jmaa.2006.02.036_bib005 article-title: On predator–prey systems and small-gain theorems publication-title: Math. Biosci. Engrg. doi: 10.3934/mbe.2005.2.25 – volume: 46 start-page: 48 year: 2003 ident: 10.1016/j.jmaa.2006.02.036_bib004 article-title: Feedback control for chemostat models publication-title: J. Math. Biol. doi: 10.1007/s00285-002-0170-x – year: 1995 ident: 10.1016/j.jmaa.2006.02.036_bib014 – volume: 47 start-page: 167 year: 2002 ident: 10.1016/j.jmaa.2006.02.036_bib016 article-title: Asymptotic amplitudes and Cauchy gains: A small-gain principle and an application to inhibitory biological feedback publication-title: Systems Control Lett. doi: 10.1016/S0167-6911(02)00191-3 – year: 1998 ident: 10.1016/j.jmaa.2006.02.036_bib009 – volume: 25 start-page: 23 year: 1987 ident: 10.1016/j.jmaa.2006.02.036_bib011 article-title: Competition in the gradostat publication-title: J. Math. Biol. doi: 10.1007/BF00275886 – volume: 25 start-page: 863 year: 1979 ident: 10.1016/j.jmaa.2006.02.036_bib018 article-title: The growth of competing microbial populations in CSTR with periodically varying inputs publication-title: Amer. Instit. Chem. Eng. J. doi: 10.1002/aic.690250515 – volume: 9 start-page: 115 year: 1980 ident: 10.1016/j.jmaa.2006.02.036_bib010 article-title: A competition model for a seasonally fluctuating nutrient publication-title: J. Math. Biol. doi: 10.1007/BF00275917 – volume: 52 start-page: 407 year: 2004 ident: 10.1016/j.jmaa.2006.02.036_bib002 article-title: A small-gain theorem for almost global convergence of monotone systems publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2004.02.017 – year: 1995 ident: 10.1016/j.jmaa.2006.02.036_bib015 – volume: 63 start-page: 1313 year: 2003 ident: 10.1016/j.jmaa.2006.02.036_bib006 article-title: Virus dynamics: a global analysis publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139902406905 – year: 1993 ident: 10.1016/j.jmaa.2006.02.036_bib019 – volume: 52 start-page: 222 year: 1992 ident: 10.1016/j.jmaa.2006.02.036_bib020 article-title: Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates publication-title: SIAM J. Appl. Math. doi: 10.1137/0152012 – volume: 45 start-page: 435 year: 1985 ident: 10.1016/j.jmaa.2006.02.036_bib003 article-title: A mathematical model of the chemostat with periodic washout rate publication-title: SIAM J. Appl. Math. doi: 10.1137/0145025 – volume: 125 start-page: 155 year: 1995 ident: 10.1016/j.jmaa.2006.02.036_bib013 article-title: Global stability for the SEIR model in epidemiology publication-title: Math. Biosci. doi: 10.1016/0025-5564(95)92756-5 – volume: 18 start-page: 255 year: 1983 ident: 10.1016/j.jmaa.2006.02.036_bib007 article-title: Competition for fluctuating nutrient publication-title: J. Math. Biol. doi: 10.1007/BF00276091 – volume: 7 start-page: 95 year: 1994 ident: 10.1016/j.jmaa.2006.02.036_bib012 article-title: Small-gain theorem for ISS systems and applications publication-title: Math. Control Signals Systems doi: 10.1007/BF01211469 – volume: XXI start-page: 1491 year: 1979 ident: 10.1016/j.jmaa.2006.02.036_bib017 article-title: Effect of spatial inhomogeneities on the coexistence of competing microbial populations publication-title: Biotech. Bioeng. doi: 10.1002/bit.260210817 |
SSID | ssj0011571 |
Score | 1.9456438 |
Snippet | This paper deals with an almost-global stability result for a particular chemostat model. It deviates from the classical chemostat because crowding effects are... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 48 |
SubjectTerms | Chemostat Coexistence Crowding Exact sciences and technology Feedback systems Global analysis, analysis on manifolds Mathematical analysis Mathematics Monotone systems Ordinary differential equations Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
Title | Crowding effects promote coexistence in the chemostat |
URI | https://dx.doi.org/10.1016/j.jmaa.2006.02.036 |
Volume | 319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76uCgiPrE-Sg7eJG2SfeZYi6VV7KlCbmF3k4UWmwZbr_52dzebakF68JiQScLMZmY28803ANwLQhRGkfIxltxHUMU-p4r4WcY55IwrwS1AdkrGb-g5wUkDDOteGAOrdL6_8unWW7szfafNfjmfmx5fHdsQTQJSEZU1QTuCMdFLuz2YvIyn22JCiGlYk4YbAdc7U8G8FkvOXU0i6gWWqfnP-HRU8rXWmqrGXfyKQaMTcOySR29Qvd8paOTFGTh83TKvrs8BHup9tYlHnkNqeKUF3OWeXBnWS5sie_PC0zKeNthyZVqKLsBs9DQbjn03GsGXEAYbX39mnMWh0MFdkowpTjISsFhljMTMsMrxAOLM1sgQEjCSEkMqGOSCopwxeAlaxarIr4BHI5YjxAWK8kxHa8vWElMhkWBSb41kB4S1PlLpaMPN9Ir3tMaHLVKjQzPPkqRBlGoddsDDVqasSDP2Xo1rNac7pk-1V98r192xyc-jKLXl1-t_3vgGHFQ_Wgwo9xa0Nh-f-Z1OPTaiC5q9r7DrFpg-miSP347e1_8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD2qM8TPiB_bgzQzG-rHuaIgEFThhwq1puzWByFgEr_7ttl2HkhgOXpd2W97b--je7_0eAPeSUk1wpANClAgw0kkgYk2DNBUCCSa0FA4gO6L9N_wyIZMa6Fa9MBZW6X1_6dOdt_ZX2l6a7WI6tT2-JrbheBLSkqhsB-xiY77WOltfa5yHJZPpVJThdrnvnClBXrO5EL4iEbVCx9P8Z3Q6LMTSyEyXwy5-RaDeMTjyqSN8LN_uBNSy_BQcDNe8q8szQLrmVG2jEfQ4DVg4uF0G1cJyXroEGU5zaPZAo675wjYUnYNx72nc7Qd-MEKgEApXgTEywZKONKFd0ZRpQVMaskSnjCbMcsqJEJHUVcgwlihSiqBYMiRkjDPG0AWo54s8uwQwjliGsZA4ylITqx1XSxJLhSVT5mCkGqBTyYMrTxpuZ1e88wodNuNWhnaaJeVhxI0MG-BhvacoKTO2riaVmPmG4rnx6Vv3NTd08vOoOHbF16t_3vgO7PXHwwEfPI9er8F--cvFwnNvQH318ZndmiRkJZvuI_sGOl_Xvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowding+effects+promote+coexistence+in+the+chemostat&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=De+Leenheer%2C+Patrick&rft.au=Angeli%2C+David&rft.au=Sontag%2C+Eduardo+D.&rft.date=2006-07-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=319&rft.issue=1&rft.spage=48&rft.epage=60&rft_id=info:doi/10.1016%2Fj.jmaa.2006.02.036&rft.externalDocID=S0022247X06001211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |