An effective feature extraction method based on GDS for atrial fibrillation detection
[Display omitted] •An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of equal-length ECG segments.•Extracting the statistical and information quantity features of the GDS.•No beat detection, no denoising and normalization, s...
Saved in:
Published in | Journal of biomedical informatics Vol. 119; p. 103819 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1532-0464 1532-0480 1532-0480 |
DOI | 10.1016/j.jbi.2021.103819 |
Cover
Loading…
Abstract | [Display omitted]
•An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of equal-length ECG segments.•Extracting the statistical and information quantity features of the GDS.•No beat detection, no denoising and normalization, suitable for most classifiers.•A simple fully connected Deep Neural Network (DNN).
Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection. |
---|---|
AbstractList | Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection. [Display omitted] •An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of equal-length ECG segments.•Extracting the statistical and information quantity features of the GDS.•No beat detection, no denoising and normalization, suitable for most classifiers.•A simple fully connected Deep Neural Network (DNN). Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection. |
ArticleNumber | 103819 |
Author | Wang, Haiyan Wang, Zongmin Zhou, Yanjie Zhou, Bing Lu, Peng Dai, Honghua Zhang, Hongpo |
Author_xml | – sequence: 1 givenname: Haiyan surname: Wang fullname: Wang, Haiyan organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China – sequence: 2 givenname: Honghua surname: Dai fullname: Dai, Honghua organization: Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China – sequence: 3 givenname: Yanjie surname: Zhou fullname: Zhou, Yanjie email: ieyjzhou@zzu.edu.cn organization: School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China – sequence: 4 givenname: Bing surname: Zhou fullname: Zhou, Bing organization: Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China – sequence: 5 givenname: Peng surname: Lu fullname: Lu, Peng organization: Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China – sequence: 6 givenname: Hongpo surname: Zhang fullname: Zhang, Hongpo organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China – sequence: 7 givenname: Zongmin surname: Wang fullname: Wang, Zongmin organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China |
BookMark | eNp9kE1PAyEQhompiW31B3jj6GUrH2XpxlNTtZo08aA9ExaGyGa7W4E2-u-lrfHgwRMMzPNm5hmhQdd3gNA1JRNKaHnbTJraTxhhNNd8RqszNKSCs4JMZ2Twey-nF2gUY0MIpUKUQ7SedxicA5P8HrADnXYBMHymoPNT3-ENpPfe4lpHsDjXy_tX7PqAdQpet9j5Ovi21cdeCwmO1CU6d7qNcPVzjtH68eFt8VSsXpbPi_mqMJyTVEgGZe1EVU9noq4qKaQttQbGBAfKK0KY5QZMaa0EzQWrjRX51xE5lRRkycfo5pS7Df3HDmJSGx8N5Hk66HdR5aAcxiSpcis9tZrQxxjAqW3wGx2-FCXqoFA1KitUB4XqpDAz8g9jfDqumvX49l_y7kRC3n7vIahoPHQGrA9ZkbK9_4f-Bu1EjSg |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106683 crossref_primary_10_1016_j_ins_2021_09_046 crossref_primary_10_1186_s12874_024_02421_0 crossref_primary_10_2196_47803 crossref_primary_10_1016_j_knosys_2023_110323 crossref_primary_10_1016_j_artmed_2021_102135 crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1016_j_bspc_2023_105750 crossref_primary_10_1016_j_ins_2021_08_095 |
Cites_doi | 10.1016/j.amjcard.2011.01.028 10.1007/BF02345439 10.1088/1742-6596/795/1/012038 10.1186/1475-925X-13-18 10.1109/51.932724 10.1109/ICPR.2008.4761755 10.1016/j.jelectrocard.2016.07.033 10.1016/j.compbiomed.2015.03.005 10.1145/1656274.1656278 10.1007/BF00058655 10.1016/j.bspc.2015.01.007 10.1109/TBME.2012.2208112 10.1109/EMBC.2012.6346465 10.1371/journal.pone.0136544 10.1007/s10994-005-0466-3 10.5334/jors.bi 10.1109/TBCAS.2014.2354054 10.1007/s13246-017-0554-2 10.1016/S0020-7373(87)80053-6 10.1109/TPAMI.2006.211 10.1038/323533a0 10.1023/A:1010933404324 10.1109/EMB-M.2006.250505 10.1016/j.eswa.2018.08.011 10.1161/01.CIR.101.23.e215 10.1145/1015330.1015432 10.1016/B978-1-55860-377-6.50023-2 10.1109/TSMC.2017.2705582 10.1016/j.compbiomed.2017.12.007 10.1016/B978-1-55860-377-6.50022-0 10.1088/1361-6579/aac76c 10.1109/10.915704 10.1088/1361-6579/aac7aa 10.1109/TIT.1967.1053964 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jbi.2021.103819 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Public Health |
EISSN | 1532-0480 |
ExternalDocumentID | 10_1016_j_jbi_2021_103819 S1532046421001489 |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7X8 |
ID | FETCH-LOGICAL-c330t-72e6bf59b485b99757d6aae2253e139002d3cec6dd7ea352bcd5e22f07471e763 |
IEDL.DBID | IXB |
ISSN | 1532-0464 1532-0480 |
IngestDate | Fri Jul 11 02:18:54 EDT 2025 Tue Jul 01 04:12:09 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Fri Feb 23 02:46:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Information quantity features Feature extraction DNN Atrial fibrillation Gradient set Statistical distribution features |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-72e6bf59b485b99757d6aae2253e139002d3cec6dd7ea352bcd5e22f07471e763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2532252709 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2532252709 crossref_primary_10_1016_j_jbi_2021_103819 crossref_citationtrail_10_1016_j_jbi_2021_103819 elsevier_sciencedirect_doi_10_1016_j_jbi_2021_103819 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of biomedical informatics |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Sun, Wang, Zhou, Dang, Zhou (b0060) 2018; 39 Andersen, Peimankar, Puthusserypady (b0025) 2019; 115 Larburu, Lopetegi, Romero (b0040) 2011 Spss (b0205) 2011 Lee, Reyes, McManus, Maitas, Chon (b0010) 2013; 60 Cover, Hart (b0135) 1967; 13 R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the International Conference on Machine Learning (ICML), ACM, 2004, pp. 1-9. F. Rincón, P.R. Grassi, N. Khaled, D. Atienza, D. Sciuto, Automated real-time atrial fibrillation detection on a wearable wireless sensor platform, in: Proceedings of 34th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), IEEE, 2012, pp. 2472-2475. R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habetha, Detection of atrial fibrillation using model-based ECG analysis, in: IEEE 2008 19th International Conference on Pattern Recognition, IEEE, 2008, pp.1-5. Moody, Mark (b0095) 2001; 20 Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (b0020) 2016; 49 J. Han, M. Kamber, Data mining: concepts and techniques, Second Edition (2006). Petrutiu, Ng, Nijm, Al-Angari, Swiryn, Sahakian (b0005) 2006; 25 Li, Tang, Wang, Tang (b0080) 2017; 40 Pourbabaee, Roshtkhari, Khorasani (b0070) 2018; 48 Quinlan (b0200) 1987; 27 Landwehr, Hall, Frank (b0190) 2005; 59 Lian, Wang, Muessig (b0210) 2011; 107 Sadr, Jayawardhana, Pham, Tang, Balaei, de Chazal (b0015) 2018; 39 Tateno, Glass (b0075) 2001; 39 Moody (b0100) 2004 S. Parvaresh, A. Ayatollahi, Automatic atrial fibrillation detection using autoregressive modeling, in: International Conference on Biomedical Engineering and Technology, IPCBEE, 2011, pp,105-108. Christov, Bortolan, Daskalov (b0045) 2001 Frank, Hall, Holmes, Kirkby, Pfahringer, Witten, Trigg (b0115) 2010 P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proceedings of the 18th international joint conference on Artificial intelligence (IJCAI), 2003, pp. 505-510. Asgari, Mehrnia, Moussavi (b0065) 2015; 60 W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth International Conference on Machine Learning, Elsevier, (1995):115-123. J.G. Cleary, L.E. Trigg, et al., K*: An instance-based learner using an entropic distance measure, in: Proceedings of the 12th International Conference on Machine Learning, Vol. 5, 1995, pp. 108–114.. Ladavich, Ghoraani (b0055) 2015; 18 Rodriguez, Kuncheva, Alonso (b0165) 2006; 28 M.A. Hall, E. Frank, Combining naive bayes and decision tables , in: Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), 2008, pp. 318-319. Breiman (b0195) 2001; 45 E. Frank, I.H. Witten, Generating accurate rule sets without global optimization. in:The Fifteenth International Conference on Machine Learning, 1998, pp. 144–151. X. Zhou, H. Ding, W. Wu, Y. Zhang, A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate, PLoS One, 10 (2015) e0136544. Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b0085) 2000; 101 Witten, Frank, Hall (b0160) 2011 Xia, Wulan, Wang, Zhang (bib236) 2018; 93 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b0110) 2009; 11 J.R. Quinlan, C 4.5: Programs for machine learning, The Morgan Kaufmann Series in Machine Learning, San Mateo, CA: Morgan Kaufmann, (1993). Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (b0215) 2014; 13 S.M. Weiss, C.A. Kulikowski, Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems, Morgan Kaufmann Publishers Inc., (1991). A. Afdala, N. Nuryani, A.S. Nugroho, Automatic detection of atrial fibrillation using basic shannon entropy of RR interval feature, in: Journal of Physics: Conference Series, IOP Publishing, 2017, pp. 1-5. Silva, Moody (b0105) 2014; 2 Andersson, Chon, Sornmo, Rodrigues (b0035) 2014; 9 Moody (b0090) 1983; 227–230 Carlson, Johansson, Olsson (b0050) 2001; 48 Rumelhart, Hinton, Williams (b0130) 1986; 323 Breiman (b0145) 1996; 24 Carlson (10.1016/j.jbi.2021.103819_b0050) 2001; 48 Moody (10.1016/j.jbi.2021.103819_b0100) 2004 Larburu (10.1016/j.jbi.2021.103819_b0040) 2011 Moody (10.1016/j.jbi.2021.103819_b0090) 1983; 227–230 Petrutiu (10.1016/j.jbi.2021.103819_b0005) 2006; 25 Kennedy (10.1016/j.jbi.2021.103819_b0020) 2016; 49 10.1016/j.jbi.2021.103819_b0150 Andersson (10.1016/j.jbi.2021.103819_b0035) 2014; 9 Tateno (10.1016/j.jbi.2021.103819_b0075) 2001; 39 10.1016/j.jbi.2021.103819_b0170 Ladavich (10.1016/j.jbi.2021.103819_b0055) 2015; 18 10.1016/j.jbi.2021.103819_b0125 Quinlan (10.1016/j.jbi.2021.103819_b0200) 1987; 27 Hall (10.1016/j.jbi.2021.103819_b0110) 2009; 11 10.1016/j.jbi.2021.103819_b0120 10.1016/j.jbi.2021.103819_b0220 10.1016/j.jbi.2021.103819_b0140 10.1016/j.jbi.2021.103819_b0185 Sadr (10.1016/j.jbi.2021.103819_b0015) 2018; 39 Christov (10.1016/j.jbi.2021.103819_b0045) 2001 Spss (10.1016/j.jbi.2021.103819_b0205) 2011 Lian (10.1016/j.jbi.2021.103819_b0210) 2011; 107 Pourbabaee (10.1016/j.jbi.2021.103819_b0070) 2018; 48 10.1016/j.jbi.2021.103819_b0225 Witten (10.1016/j.jbi.2021.103819_b0160) 2011 Rumelhart (10.1016/j.jbi.2021.103819_b0130) 1986; 323 Landwehr (10.1016/j.jbi.2021.103819_b0190) 2005; 59 Andersen (10.1016/j.jbi.2021.103819_b0025) 2019; 115 10.1016/j.jbi.2021.103819_b0180 Breiman (10.1016/j.jbi.2021.103819_b0195) 2001; 45 Xia (10.1016/j.jbi.2021.103819_bib236) 2018; 93 Zhou (10.1016/j.jbi.2021.103819_b0215) 2014; 13 Lee (10.1016/j.jbi.2021.103819_b0010) 2013; 60 Li (10.1016/j.jbi.2021.103819_b0080) 2017; 40 10.1016/j.jbi.2021.103819_b0235 10.1016/j.jbi.2021.103819_b0155 Asgari (10.1016/j.jbi.2021.103819_b0065) 2015; 60 Frank (10.1016/j.jbi.2021.103819_b0115) 2010 10.1016/j.jbi.2021.103819_b0175 10.1016/j.jbi.2021.103819_b0230 Liu (10.1016/j.jbi.2021.103819_b0060) 2018; 39 Goldberger (10.1016/j.jbi.2021.103819_b0085) 2000; 101 Cover (10.1016/j.jbi.2021.103819_b0135) 1967; 13 10.1016/j.jbi.2021.103819_b0030 Silva (10.1016/j.jbi.2021.103819_b0105) 2014; 2 Moody (10.1016/j.jbi.2021.103819_b0095) 2001; 20 Rodriguez (10.1016/j.jbi.2021.103819_b0165) 2006; 28 Breiman (10.1016/j.jbi.2021.103819_b0145) 1996; 24 |
References_xml | – reference: R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the International Conference on Machine Learning (ICML), ACM, 2004, pp. 1-9. – volume: 59 start-page: 161 year: 2005 end-page: 205 ident: b0190 article-title: Logistic model trees publication-title: Machine learning – volume: 25 start-page: 24 year: 2006 end-page: 30 ident: b0005 article-title: Atrial fibrillation and waveform characterization publication-title: IEEE Eng. Med. Biol. Mag. – volume: 48 start-page: 2095 year: 2018 end-page: 2104 ident: b0070 article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 107 start-page: 1494 year: 2011 end-page: 1497 ident: b0210 article-title: A simple method to detect atrial fibrillation using RR intervals publication-title: Am. J. Cardiol. – start-page: 440 year: 2011 ident: b0205 article-title: IBM SPSS statistics for windows, version 20.0 – start-page: 293 year: 2001 end-page: 296 ident: b0045 article-title: Sequential analysis for automatic detection of atrial fibrillation and flutter, in publication-title: Computers in Cardiology, IEEE – start-page: 101 year: 2004 end-page: 104 ident: b0100 article-title: Spontaneous termination of atrial fibrillation: A challenge from PhysioNet and computers in cardiology 2004 publication-title: In: Computers in Cardiology – reference: J.R. Quinlan, C 4.5: Programs for machine learning, The Morgan Kaufmann Series in Machine Learning, San Mateo, CA: Morgan Kaufmann, (1993). – volume: 39 start-page: 664 year: 2001 end-page: 671 ident: b0075 article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals publication-title: Med. Biol. Eng. Comput. – volume: 13 start-page: 18 year: 2014 ident: b0215 article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and shannon entropy publication-title: Biomed. Eng. Online. – volume: 40 start-page: 707 year: 2017 end-page: 716 ident: b0080 article-title: Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation publication-title: Australas. Phys. Eng. Sci. Med. – reference: F. Rincón, P.R. Grassi, N. Khaled, D. Atienza, D. Sciuto, Automated real-time atrial fibrillation detection on a wearable wireless sensor platform, in: Proceedings of 34th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), IEEE, 2012, pp. 2472-2475. – reference: P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proceedings of the 18th international joint conference on Artificial intelligence (IJCAI), 2003, pp. 505-510. – volume: 2 start-page: 1 year: 2014 end-page: 7 ident: b0105 article-title: An open-source toolbox for analysing and processing physionet databases in matlab and octave publication-title: J. Open. Res. Softw. – volume: 28 start-page: 1619 year: 2006 end-page: 1630 ident: b0165 article-title: Rotation forest: A new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J.G. Cleary, L.E. Trigg, et al., K*: An instance-based learner using an entropic distance measure, in: Proceedings of the 12th International Conference on Machine Learning, Vol. 5, 1995, pp. 108–114.. – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: b0200 article-title: Simplifying decision trees publication-title: Int. J. Man Mach. Stud. – volume: 49 start-page: 871 year: 2016 end-page: 876 ident: b0020 article-title: Automated detection of atrial fibrillation using RR intervals and multivariate-based classification publication-title: J. Electrocardiol. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: b0110 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD explorations newsletter – reference: X. Zhou, H. Ding, W. Wu, Y. Zhang, A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate, PLoS One, 10 (2015) e0136544. – start-page: 1269 year: 2010 end-page: 1277 ident: b0115 publication-title: Data Mining and Knowledge Discovery Handbook – volume: 18 start-page: 274 year: 2015 end-page: 281 ident: b0055 article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity publication-title: Biomed. Signal Process. Control. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0145 article-title: Bagging predictors publication-title: Machine learning – reference: J. Han, M. Kamber, Data mining: concepts and techniques, Second Edition (2006). – reference: M.A. Hall, E. Frank, Combining naive bayes and decision tables , in: Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), 2008, pp. 318-319. – reference: W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth International Conference on Machine Learning, Elsevier, (1995):115-123. – volume: 227–230 year: 1983 ident: b0090 article-title: A new method for detecting atrial fibrillation using RR intervals publication-title: Comput. Cardiol. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: b0135 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory. – volume: 39 year: 2018 ident: b0060 article-title: A support vector machine approach for AF classification from a short single-lead ECG recording publication-title: Physiol. Meas. – reference: S. Parvaresh, A. Ayatollahi, Automatic atrial fibrillation detection using autoregressive modeling, in: International Conference on Biomedical Engineering and Technology, IPCBEE, 2011, pp,105-108. – reference: S.M. Weiss, C.A. Kulikowski, Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems, Morgan Kaufmann Publishers Inc., (1991). – reference: R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habetha, Detection of atrial fibrillation using model-based ECG analysis, in: IEEE 2008 19th International Conference on Pattern Recognition, IEEE, 2008, pp.1-5. – volume: 115 start-page: 465 year: 2019 end-page: 473 ident: b0025 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Syst. Appl. – start-page: 265 year: 2011 end-page: 268 ident: b0040 article-title: Comparative study of algorithms for atrial fibrillation detection, in:2011 Computing in Cardiology publication-title: IEEE – reference: E. Frank, I.H. Witten, Generating accurate rule sets without global optimization. in:The Fifteenth International Conference on Machine Learning, 1998, pp. 144–151. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b0130 article-title: Learning representations by back-propagating errors publication-title: Nature – year: 2011 ident: b0160 article-title: Data mining: practical machine learning tools and techniques – volume: 48 start-page: 401 year: 2001 end-page: 405 ident: b0050 article-title: Classification of electrocardiographic P-wave morphology publication-title: IEEE Trans. Biomed. Eng. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b0085 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 9 start-page: 377 year: 2014 end-page: 386 ident: b0035 article-title: A 290mv sub-vt asic for real-time atrial fibrillation detection publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b0095 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 60 start-page: 132 year: 2015 end-page: 142 ident: b0065 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Comput. Biol. Med. – volume: 93 start-page: 84 year: 2018 end-page: 92 ident: bib236 article-title: Detecting atrial fibrillation by deep convolutional neural networks publication-title: Computers in Biology and Medicine – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0195 article-title: Random forests publication-title: Machine learning – volume: 39 start-page: 064003 year: 2018 ident: b0015 article-title: A low-complexity algorithm for detection of atrial fibrillation using an ECG publication-title: Physiol. Meas. – reference: A. Afdala, N. Nuryani, A.S. Nugroho, Automatic detection of atrial fibrillation using basic shannon entropy of RR interval feature, in: Journal of Physics: Conference Series, IOP Publishing, 2017, pp. 1-5. – volume: 60 start-page: 203 year: 2013 end-page: 206 ident: b0010 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. – volume: 107 start-page: 1494 issue: 10 year: 2011 ident: 10.1016/j.jbi.2021.103819_b0210 article-title: A simple method to detect atrial fibrillation using RR intervals publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2011.01.028 – volume: 39 start-page: 664 issue: 6 year: 2001 ident: 10.1016/j.jbi.2021.103819_b0075 article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345439 – ident: 10.1016/j.jbi.2021.103819_b0220 doi: 10.1088/1742-6596/795/1/012038 – volume: 13 start-page: 18 issue: 1 year: 2014 ident: 10.1016/j.jbi.2021.103819_b0215 article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and shannon entropy publication-title: Biomed. Eng. Online. doi: 10.1186/1475-925X-13-18 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.jbi.2021.103819_b0095 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – ident: 10.1016/j.jbi.2021.103819_b0225 doi: 10.1109/ICPR.2008.4761755 – volume: 49 start-page: 871 issue: 6 year: 2016 ident: 10.1016/j.jbi.2021.103819_b0020 article-title: Automated detection of atrial fibrillation using RR intervals and multivariate-based classification publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2016.07.033 – volume: 60 start-page: 132 year: 2015 ident: 10.1016/j.jbi.2021.103819_b0065 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.03.005 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.jbi.2021.103819_b0110 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD explorations newsletter doi: 10.1145/1656274.1656278 – ident: 10.1016/j.jbi.2021.103819_b0150 – start-page: 440 year: 2011 ident: 10.1016/j.jbi.2021.103819_b0205 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jbi.2021.103819_b0145 article-title: Bagging predictors publication-title: Machine learning doi: 10.1007/BF00058655 – volume: 18 start-page: 274 year: 2015 ident: 10.1016/j.jbi.2021.103819_b0055 article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2015.01.007 – volume: 60 start-page: 203 issue: 1 year: 2013 ident: 10.1016/j.jbi.2021.103819_b0010 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208112 – ident: 10.1016/j.jbi.2021.103819_b0230 doi: 10.1109/EMBC.2012.6346465 – ident: 10.1016/j.jbi.2021.103819_b0030 doi: 10.1371/journal.pone.0136544 – ident: 10.1016/j.jbi.2021.103819_b0180 – volume: 59 start-page: 161 year: 2005 ident: 10.1016/j.jbi.2021.103819_b0190 article-title: Logistic model trees publication-title: Machine learning doi: 10.1007/s10994-005-0466-3 – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.jbi.2021.103819_b0105 article-title: An open-source toolbox for analysing and processing physionet databases in matlab and octave publication-title: J. Open. Res. Softw. doi: 10.5334/jors.bi – ident: 10.1016/j.jbi.2021.103819_b0125 – volume: 9 start-page: 377 year: 2014 ident: 10.1016/j.jbi.2021.103819_b0035 article-title: A 290mv sub-vt asic for real-time atrial fibrillation detection publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2014.2354054 – start-page: 265 year: 2011 ident: 10.1016/j.jbi.2021.103819_b0040 article-title: Comparative study of algorithms for atrial fibrillation detection, in:2011 Computing in Cardiology publication-title: IEEE – volume: 40 start-page: 707 issue: 3 year: 2017 ident: 10.1016/j.jbi.2021.103819_b0080 article-title: Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-017-0554-2 – volume: 27 start-page: 221 issue: 3 year: 1987 ident: 10.1016/j.jbi.2021.103819_b0200 article-title: Simplifying decision trees publication-title: Int. J. Man Mach. Stud. doi: 10.1016/S0020-7373(87)80053-6 – volume: 227–230 year: 1983 ident: 10.1016/j.jbi.2021.103819_b0090 article-title: A new method for detecting atrial fibrillation using RR intervals publication-title: Comput. Cardiol. – volume: 28 start-page: 1619 issue: 10 year: 2006 ident: 10.1016/j.jbi.2021.103819_b0165 article-title: Rotation forest: A new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.211 – start-page: 293 year: 2001 ident: 10.1016/j.jbi.2021.103819_b0045 article-title: Sequential analysis for automatic detection of atrial fibrillation and flutter, in publication-title: Computers in Cardiology, IEEE – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.jbi.2021.103819_b0130 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jbi.2021.103819_b0195 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – ident: 10.1016/j.jbi.2021.103819_b0170 – volume: 25 start-page: 24 year: 2006 ident: 10.1016/j.jbi.2021.103819_b0005 article-title: Atrial fibrillation and waveform characterization publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/EMB-M.2006.250505 – volume: 115 start-page: 465 year: 2019 ident: 10.1016/j.jbi.2021.103819_b0025 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.011 – start-page: 1269 year: 2010 ident: 10.1016/j.jbi.2021.103819_b0115 – ident: 10.1016/j.jbi.2021.103819_b0185 – volume: 101 start-page: e215 year: 2000 ident: 10.1016/j.jbi.2021.103819_b0085 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: 10.1016/j.jbi.2021.103819_b0155 doi: 10.1145/1015330.1015432 – ident: 10.1016/j.jbi.2021.103819_b0175 doi: 10.1016/B978-1-55860-377-6.50023-2 – volume: 48 start-page: 2095 issue: 12 year: 2018 ident: 10.1016/j.jbi.2021.103819_b0070 article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2705582 – year: 2011 ident: 10.1016/j.jbi.2021.103819_b0160 – volume: 93 start-page: 84 year: 2018 ident: 10.1016/j.jbi.2021.103819_bib236 article-title: Detecting atrial fibrillation by deep convolutional neural networks publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2017.12.007 – ident: 10.1016/j.jbi.2021.103819_b0140 doi: 10.1016/B978-1-55860-377-6.50022-0 – ident: 10.1016/j.jbi.2021.103819_b0120 – ident: 10.1016/j.jbi.2021.103819_b0235 – volume: 39 start-page: 064003 issue: 6 year: 2018 ident: 10.1016/j.jbi.2021.103819_b0015 article-title: A low-complexity algorithm for detection of atrial fibrillation using an ECG publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aac76c – start-page: 101 year: 2004 ident: 10.1016/j.jbi.2021.103819_b0100 article-title: Spontaneous termination of atrial fibrillation: A challenge from PhysioNet and computers in cardiology 2004 – volume: 48 start-page: 401 issue: 4 year: 2001 ident: 10.1016/j.jbi.2021.103819_b0050 article-title: Classification of electrocardiographic P-wave morphology publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.915704 – volume: 39 year: 2018 ident: 10.1016/j.jbi.2021.103819_b0060 article-title: A support vector machine approach for AF classification from a short single-lead ECG recording publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aac7aa – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.jbi.2021.103819_b0135 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory. doi: 10.1109/TIT.1967.1053964 |
SSID | ssj0011556 |
Score | 2.3891795 |
Snippet | [Display omitted]
•An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of... Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103819 |
SubjectTerms | Atrial fibrillation DNN Feature extraction Gradient set Information quantity features Statistical distribution features |
Title | An effective feature extraction method based on GDS for atrial fibrillation detection |
URI | https://dx.doi.org/10.1016/j.jbi.2021.103819 https://www.proquest.com/docview/2532252709 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBFFEdCrOy4jgk1DXS5q0j3NepqIvc7C3kDQpbEgV7V797Z407VARH3zsJaF8Sb5z0pzzHYBTxTk3uQ49liXMo0mucc3hZkWFLJKcJlGgbaLwwyMbjundJJ4swaDJhbFhlTX3O06v2Lq-06vR7L1Op71RYGsaUJuoaf38xCbxRdi5TeKbXCxOEtBeMqeZGtowRtqcbFYxXjM1xS1iGFQy4VZs53fb9IOlK9NzvQWbtc9I-u6ztmHJFG1Y_6Ik2IbVh_qMvA0b7k8ccQlGOzDuF8RFbSCxkdxUSp4EOfnN5TQQV0SaWHumCV7fXI4IurJEVhU9SG6TAp5dyBzRpqxit4pdGF9fPQ2GXl1MwcuiyC89Hhqm8jhVNIlVmvKYayalweUcGfQCkRh1lJmMac2NRK9MZTrGp7kV2A8MstAetIqXwuwDYejy-HGW-aGhVCLyNE4Ui7X0ZZpLpjvgNzCKrFYatwUvnkUTUjYTiLywyAuHfAfOFk1enczGXy_TZmzEt7ki0Az81eykGUeBa8gejMjCvMzfBWKAOITcTw_-1_UhrNkrF8Z7BK3ybW6O0VkpVReWzz-CLqz0b--Hj91qbn4CZi7nhA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MCV4Q0ak4rxF8Esq6Nk3aR29zXubLNthbSJoUNqSOuf1_T5pWVGQPPrZpSjlJzvnSfOc7AJeKc24yHXgsjZlH40zjmsPNigpYKDmNw7a2icK9V9Yd0qdRNKrBbZULY2mVpe93Pr3w1uWdVmnN1nQ8bvXbtqYBtYmaFufHyQqsIhrgtn7D4-jm6ygBAyZzoqmB5THS6mizIHlN1Bj3iEG70Am3ajt_B6dfbrqIPZ0d2C5BI7l237ULNZM3YPOblGAD1nrlIXkDttyvOOIyjPZgeJ0TR9tAz0YyU0h5EnTKM5fUQFwVaWIDmiZ4_XDXJ4hliSxKepDMZgW8Oc4c0WZekLfyfRh27ge3Xa-spuClYejPPR4YprIoUTSOVJLwiGsmpcH1HBqEgegZdZialGnNjURYplIdYWtmFfbbBt3QAdTz99wcAmGIefwoTf3AUCrR9DSKFYu09GWSSaab4FdmFGkpNW4rXryJilM2EWh5YS0vnOWbcPXVZep0NpY9TKuxET8mi8A4sKzbRTWOAheRPRmRuXlffAi0Adoh4H5y9L9Xn8N6d9B7ES-Pr8_HsGFbHKf3BOrz2cKcInKZq7NiZn4CW2roFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+feature+extraction+method+based+on+GDS+for+atrial+fibrillation+detection&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Wang%2C+Haiyan&rft.au=Dai%2C+Honghua&rft.au=Zhou%2C+Yanjie&rft.au=Zhou%2C+Bing&rft.date=2021-07-01&rft.issn=1532-0464&rft.volume=119&rft.spage=103819&rft_id=info:doi/10.1016%2Fj.jbi.2021.103819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2021_103819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |