An effective feature extraction method based on GDS for atrial fibrillation detection

[Display omitted] •An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of equal-length ECG segments.•Extracting the statistical and information quantity features of the GDS.•No beat detection, no denoising and normalization, s...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 119; p. 103819
Main Authors Wang, Haiyan, Dai, Honghua, Zhou, Yanjie, Zhou, Bing, Lu, Peng, Zhang, Hongpo, Wang, Zongmin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2021
Subjects
Online AccessGet full text
ISSN1532-0464
1532-0480
1532-0480
DOI10.1016/j.jbi.2021.103819

Cover

Loading…
Abstract [Display omitted] •An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of equal-length ECG segments.•Extracting the statistical and information quantity features of the GDS.•No beat detection, no denoising and normalization, suitable for most classifiers.•A simple fully connected Deep Neural Network (DNN). Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.
AbstractList Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.
[Display omitted] •An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of equal-length ECG segments.•Extracting the statistical and information quantity features of the GDS.•No beat detection, no denoising and normalization, suitable for most classifiers.•A simple fully connected Deep Neural Network (DNN). Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.
ArticleNumber 103819
Author Wang, Haiyan
Wang, Zongmin
Zhou, Yanjie
Zhou, Bing
Lu, Peng
Dai, Honghua
Zhang, Hongpo
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Wang
  fullname: Wang, Haiyan
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China
– sequence: 2
  givenname: Honghua
  surname: Dai
  fullname: Dai, Honghua
  organization: Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China
– sequence: 3
  givenname: Yanjie
  surname: Zhou
  fullname: Zhou, Yanjie
  email: ieyjzhou@zzu.edu.cn
  organization: School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 4
  givenname: Bing
  surname: Zhou
  fullname: Zhou, Bing
  organization: Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China
– sequence: 5
  givenname: Peng
  surname: Lu
  fullname: Lu, Peng
  organization: Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China
– sequence: 6
  givenname: Hongpo
  surname: Zhang
  fullname: Zhang, Hongpo
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China
– sequence: 7
  givenname: Zongmin
  surname: Wang
  fullname: Wang, Zongmin
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China
BookMark eNp9kE1PAyEQhompiW31B3jj6GUrH2XpxlNTtZo08aA9ExaGyGa7W4E2-u-lrfHgwRMMzPNm5hmhQdd3gNA1JRNKaHnbTJraTxhhNNd8RqszNKSCs4JMZ2Twey-nF2gUY0MIpUKUQ7SedxicA5P8HrADnXYBMHymoPNT3-ENpPfe4lpHsDjXy_tX7PqAdQpet9j5Ovi21cdeCwmO1CU6d7qNcPVzjtH68eFt8VSsXpbPi_mqMJyTVEgGZe1EVU9noq4qKaQttQbGBAfKK0KY5QZMaa0EzQWrjRX51xE5lRRkycfo5pS7Df3HDmJSGx8N5Hk66HdR5aAcxiSpcis9tZrQxxjAqW3wGx2-FCXqoFA1KitUB4XqpDAz8g9jfDqumvX49l_y7kRC3n7vIahoPHQGrA9ZkbK9_4f-Bu1EjSg
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106683
crossref_primary_10_1016_j_ins_2021_09_046
crossref_primary_10_1186_s12874_024_02421_0
crossref_primary_10_2196_47803
crossref_primary_10_1016_j_knosys_2023_110323
crossref_primary_10_1016_j_artmed_2021_102135
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1016_j_bspc_2023_105750
crossref_primary_10_1016_j_ins_2021_08_095
Cites_doi 10.1016/j.amjcard.2011.01.028
10.1007/BF02345439
10.1088/1742-6596/795/1/012038
10.1186/1475-925X-13-18
10.1109/51.932724
10.1109/ICPR.2008.4761755
10.1016/j.jelectrocard.2016.07.033
10.1016/j.compbiomed.2015.03.005
10.1145/1656274.1656278
10.1007/BF00058655
10.1016/j.bspc.2015.01.007
10.1109/TBME.2012.2208112
10.1109/EMBC.2012.6346465
10.1371/journal.pone.0136544
10.1007/s10994-005-0466-3
10.5334/jors.bi
10.1109/TBCAS.2014.2354054
10.1007/s13246-017-0554-2
10.1016/S0020-7373(87)80053-6
10.1109/TPAMI.2006.211
10.1038/323533a0
10.1023/A:1010933404324
10.1109/EMB-M.2006.250505
10.1016/j.eswa.2018.08.011
10.1161/01.CIR.101.23.e215
10.1145/1015330.1015432
10.1016/B978-1-55860-377-6.50023-2
10.1109/TSMC.2017.2705582
10.1016/j.compbiomed.2017.12.007
10.1016/B978-1-55860-377-6.50022-0
10.1088/1361-6579/aac76c
10.1109/10.915704
10.1088/1361-6579/aac7aa
10.1109/TIT.1967.1053964
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jbi.2021.103819
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
ExternalDocumentID 10_1016_j_jbi_2021_103819
S1532046421001489
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7X8
ID FETCH-LOGICAL-c330t-72e6bf59b485b99757d6aae2253e139002d3cec6dd7ea352bcd5e22f07471e763
IEDL.DBID IXB
ISSN 1532-0464
1532-0480
IngestDate Fri Jul 11 02:18:54 EDT 2025
Tue Jul 01 04:12:09 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Fri Feb 23 02:46:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Information quantity features
Feature extraction
DNN
Atrial fibrillation
Gradient set
Statistical distribution features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-72e6bf59b485b99757d6aae2253e139002d3cec6dd7ea352bcd5e22f07471e763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2532252709
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2532252709
crossref_primary_10_1016_j_jbi_2021_103819
crossref_citationtrail_10_1016_j_jbi_2021_103819
elsevier_sciencedirect_doi_10_1016_j_jbi_2021_103819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of biomedical informatics
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Sun, Wang, Zhou, Dang, Zhou (b0060) 2018; 39
Andersen, Peimankar, Puthusserypady (b0025) 2019; 115
Larburu, Lopetegi, Romero (b0040) 2011
Spss (b0205) 2011
Lee, Reyes, McManus, Maitas, Chon (b0010) 2013; 60
Cover, Hart (b0135) 1967; 13
R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the International Conference on Machine Learning (ICML), ACM, 2004, pp. 1-9.
F. Rincón, P.R. Grassi, N. Khaled, D. Atienza, D. Sciuto, Automated real-time atrial fibrillation detection on a wearable wireless sensor platform, in: Proceedings of 34th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), IEEE, 2012, pp. 2472-2475.
R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habetha, Detection of atrial fibrillation using model-based ECG analysis, in: IEEE 2008 19th International Conference on Pattern Recognition, IEEE, 2008, pp.1-5.
Moody, Mark (b0095) 2001; 20
Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (b0020) 2016; 49
J. Han, M. Kamber, Data mining: concepts and techniques, Second Edition (2006).
Petrutiu, Ng, Nijm, Al-Angari, Swiryn, Sahakian (b0005) 2006; 25
Li, Tang, Wang, Tang (b0080) 2017; 40
Pourbabaee, Roshtkhari, Khorasani (b0070) 2018; 48
Quinlan (b0200) 1987; 27
Landwehr, Hall, Frank (b0190) 2005; 59
Lian, Wang, Muessig (b0210) 2011; 107
Sadr, Jayawardhana, Pham, Tang, Balaei, de Chazal (b0015) 2018; 39
Tateno, Glass (b0075) 2001; 39
Moody (b0100) 2004
S. Parvaresh, A. Ayatollahi, Automatic atrial fibrillation detection using autoregressive modeling, in: International Conference on Biomedical Engineering and Technology, IPCBEE, 2011, pp,105-108.
Christov, Bortolan, Daskalov (b0045) 2001
Frank, Hall, Holmes, Kirkby, Pfahringer, Witten, Trigg (b0115) 2010
P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proceedings of the 18th international joint conference on Artificial intelligence (IJCAI), 2003, pp. 505-510.
Asgari, Mehrnia, Moussavi (b0065) 2015; 60
W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth International Conference on Machine Learning, Elsevier, (1995):115-123.
J.G. Cleary, L.E. Trigg, et al., K*: An instance-based learner using an entropic distance measure, in: Proceedings of the 12th International Conference on Machine Learning, Vol. 5, 1995, pp. 108–114..
Ladavich, Ghoraani (b0055) 2015; 18
Rodriguez, Kuncheva, Alonso (b0165) 2006; 28
M.A. Hall, E. Frank, Combining naive bayes and decision tables , in: Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), 2008, pp. 318-319.
Breiman (b0195) 2001; 45
E. Frank, I.H. Witten, Generating accurate rule sets without global optimization. in:The Fifteenth International Conference on Machine Learning, 1998, pp. 144–151.
X. Zhou, H. Ding, W. Wu, Y. Zhang, A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate, PLoS One, 10 (2015) e0136544.
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b0085) 2000; 101
Witten, Frank, Hall (b0160) 2011
Xia, Wulan, Wang, Zhang (bib236) 2018; 93
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b0110) 2009; 11
J.R. Quinlan, C 4.5: Programs for machine learning, The Morgan Kaufmann Series in Machine Learning, San Mateo, CA: Morgan Kaufmann, (1993).
Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (b0215) 2014; 13
S.M. Weiss, C.A. Kulikowski, Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems, Morgan Kaufmann Publishers Inc., (1991).
A. Afdala, N. Nuryani, A.S. Nugroho, Automatic detection of atrial fibrillation using basic shannon entropy of RR interval feature, in: Journal of Physics: Conference Series, IOP Publishing, 2017, pp. 1-5.
Silva, Moody (b0105) 2014; 2
Andersson, Chon, Sornmo, Rodrigues (b0035) 2014; 9
Moody (b0090) 1983; 227–230
Carlson, Johansson, Olsson (b0050) 2001; 48
Rumelhart, Hinton, Williams (b0130) 1986; 323
Breiman (b0145) 1996; 24
Carlson (10.1016/j.jbi.2021.103819_b0050) 2001; 48
Moody (10.1016/j.jbi.2021.103819_b0100) 2004
Larburu (10.1016/j.jbi.2021.103819_b0040) 2011
Moody (10.1016/j.jbi.2021.103819_b0090) 1983; 227–230
Petrutiu (10.1016/j.jbi.2021.103819_b0005) 2006; 25
Kennedy (10.1016/j.jbi.2021.103819_b0020) 2016; 49
10.1016/j.jbi.2021.103819_b0150
Andersson (10.1016/j.jbi.2021.103819_b0035) 2014; 9
Tateno (10.1016/j.jbi.2021.103819_b0075) 2001; 39
10.1016/j.jbi.2021.103819_b0170
Ladavich (10.1016/j.jbi.2021.103819_b0055) 2015; 18
10.1016/j.jbi.2021.103819_b0125
Quinlan (10.1016/j.jbi.2021.103819_b0200) 1987; 27
Hall (10.1016/j.jbi.2021.103819_b0110) 2009; 11
10.1016/j.jbi.2021.103819_b0120
10.1016/j.jbi.2021.103819_b0220
10.1016/j.jbi.2021.103819_b0140
10.1016/j.jbi.2021.103819_b0185
Sadr (10.1016/j.jbi.2021.103819_b0015) 2018; 39
Christov (10.1016/j.jbi.2021.103819_b0045) 2001
Spss (10.1016/j.jbi.2021.103819_b0205) 2011
Lian (10.1016/j.jbi.2021.103819_b0210) 2011; 107
Pourbabaee (10.1016/j.jbi.2021.103819_b0070) 2018; 48
10.1016/j.jbi.2021.103819_b0225
Witten (10.1016/j.jbi.2021.103819_b0160) 2011
Rumelhart (10.1016/j.jbi.2021.103819_b0130) 1986; 323
Landwehr (10.1016/j.jbi.2021.103819_b0190) 2005; 59
Andersen (10.1016/j.jbi.2021.103819_b0025) 2019; 115
10.1016/j.jbi.2021.103819_b0180
Breiman (10.1016/j.jbi.2021.103819_b0195) 2001; 45
Xia (10.1016/j.jbi.2021.103819_bib236) 2018; 93
Zhou (10.1016/j.jbi.2021.103819_b0215) 2014; 13
Lee (10.1016/j.jbi.2021.103819_b0010) 2013; 60
Li (10.1016/j.jbi.2021.103819_b0080) 2017; 40
10.1016/j.jbi.2021.103819_b0235
10.1016/j.jbi.2021.103819_b0155
Asgari (10.1016/j.jbi.2021.103819_b0065) 2015; 60
Frank (10.1016/j.jbi.2021.103819_b0115) 2010
10.1016/j.jbi.2021.103819_b0175
10.1016/j.jbi.2021.103819_b0230
Liu (10.1016/j.jbi.2021.103819_b0060) 2018; 39
Goldberger (10.1016/j.jbi.2021.103819_b0085) 2000; 101
Cover (10.1016/j.jbi.2021.103819_b0135) 1967; 13
10.1016/j.jbi.2021.103819_b0030
Silva (10.1016/j.jbi.2021.103819_b0105) 2014; 2
Moody (10.1016/j.jbi.2021.103819_b0095) 2001; 20
Rodriguez (10.1016/j.jbi.2021.103819_b0165) 2006; 28
Breiman (10.1016/j.jbi.2021.103819_b0145) 1996; 24
References_xml – reference: R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the International Conference on Machine Learning (ICML), ACM, 2004, pp. 1-9.
– volume: 59
  start-page: 161
  year: 2005
  end-page: 205
  ident: b0190
  article-title: Logistic model trees
  publication-title: Machine learning
– volume: 25
  start-page: 24
  year: 2006
  end-page: 30
  ident: b0005
  article-title: Atrial fibrillation and waveform characterization
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 48
  start-page: 2095
  year: 2018
  end-page: 2104
  ident: b0070
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 107
  start-page: 1494
  year: 2011
  end-page: 1497
  ident: b0210
  article-title: A simple method to detect atrial fibrillation using RR intervals
  publication-title: Am. J. Cardiol.
– start-page: 440
  year: 2011
  ident: b0205
  article-title: IBM SPSS statistics for windows, version 20.0
– start-page: 293
  year: 2001
  end-page: 296
  ident: b0045
  article-title: Sequential analysis for automatic detection of atrial fibrillation and flutter, in
  publication-title: Computers in Cardiology, IEEE
– start-page: 101
  year: 2004
  end-page: 104
  ident: b0100
  article-title: Spontaneous termination of atrial fibrillation: A challenge from PhysioNet and computers in cardiology 2004
  publication-title: In: Computers in Cardiology
– reference: J.R. Quinlan, C 4.5: Programs for machine learning, The Morgan Kaufmann Series in Machine Learning, San Mateo, CA: Morgan Kaufmann, (1993).
– volume: 39
  start-page: 664
  year: 2001
  end-page: 671
  ident: b0075
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals
  publication-title: Med. Biol. Eng. Comput.
– volume: 13
  start-page: 18
  year: 2014
  ident: b0215
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and shannon entropy
  publication-title: Biomed. Eng. Online.
– volume: 40
  start-page: 707
  year: 2017
  end-page: 716
  ident: b0080
  article-title: Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation
  publication-title: Australas. Phys. Eng. Sci. Med.
– reference: F. Rincón, P.R. Grassi, N. Khaled, D. Atienza, D. Sciuto, Automated real-time atrial fibrillation detection on a wearable wireless sensor platform, in: Proceedings of 34th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), IEEE, 2012, pp. 2472-2475.
– reference: P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proceedings of the 18th international joint conference on Artificial intelligence (IJCAI), 2003, pp. 505-510.
– volume: 2
  start-page: 1
  year: 2014
  end-page: 7
  ident: b0105
  article-title: An open-source toolbox for analysing and processing physionet databases in matlab and octave
  publication-title: J. Open. Res. Softw.
– volume: 28
  start-page: 1619
  year: 2006
  end-page: 1630
  ident: b0165
  article-title: Rotation forest: A new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J.G. Cleary, L.E. Trigg, et al., K*: An instance-based learner using an entropic distance measure, in: Proceedings of the 12th International Conference on Machine Learning, Vol. 5, 1995, pp. 108–114..
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: b0200
  article-title: Simplifying decision trees
  publication-title: Int. J. Man Mach. Stud.
– volume: 49
  start-page: 871
  year: 2016
  end-page: 876
  ident: b0020
  article-title: Automated detection of atrial fibrillation using RR intervals and multivariate-based classification
  publication-title: J. Electrocardiol.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b0110
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD explorations newsletter
– reference: X. Zhou, H. Ding, W. Wu, Y. Zhang, A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate, PLoS One, 10 (2015) e0136544.
– start-page: 1269
  year: 2010
  end-page: 1277
  ident: b0115
  publication-title: Data Mining and Knowledge Discovery Handbook
– volume: 18
  start-page: 274
  year: 2015
  end-page: 281
  ident: b0055
  article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity
  publication-title: Biomed. Signal Process. Control.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0145
  article-title: Bagging predictors
  publication-title: Machine learning
– reference: J. Han, M. Kamber, Data mining: concepts and techniques, Second Edition (2006).
– reference: M.A. Hall, E. Frank, Combining naive bayes and decision tables , in: Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), 2008, pp. 318-319.
– reference: W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth International Conference on Machine Learning, Elsevier, (1995):115-123.
– volume: 227–230
  year: 1983
  ident: b0090
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Comput. Cardiol.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b0135
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory.
– volume: 39
  year: 2018
  ident: b0060
  article-title: A support vector machine approach for AF classification from a short single-lead ECG recording
  publication-title: Physiol. Meas.
– reference: S. Parvaresh, A. Ayatollahi, Automatic atrial fibrillation detection using autoregressive modeling, in: International Conference on Biomedical Engineering and Technology, IPCBEE, 2011, pp,105-108.
– reference: S.M. Weiss, C.A. Kulikowski, Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems, Morgan Kaufmann Publishers Inc., (1991).
– reference: R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habetha, Detection of atrial fibrillation using model-based ECG analysis, in: IEEE 2008 19th International Conference on Pattern Recognition, IEEE, 2008, pp.1-5.
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: b0025
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
– start-page: 265
  year: 2011
  end-page: 268
  ident: b0040
  article-title: Comparative study of algorithms for atrial fibrillation detection, in:2011 Computing in Cardiology
  publication-title: IEEE
– reference: E. Frank, I.H. Witten, Generating accurate rule sets without global optimization. in:The Fifteenth International Conference on Machine Learning, 1998, pp. 144–151.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0130
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 2011
  ident: b0160
  article-title: Data mining: practical machine learning tools and techniques
– volume: 48
  start-page: 401
  year: 2001
  end-page: 405
  ident: b0050
  article-title: Classification of electrocardiographic P-wave morphology
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b0085
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 9
  start-page: 377
  year: 2014
  end-page: 386
  ident: b0035
  article-title: A 290mv sub-vt asic for real-time atrial fibrillation detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b0095
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 60
  start-page: 132
  year: 2015
  end-page: 142
  ident: b0065
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput. Biol. Med.
– volume: 93
  start-page: 84
  year: 2018
  end-page: 92
  ident: bib236
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Computers in Biology and Medicine
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0195
  article-title: Random forests
  publication-title: Machine learning
– volume: 39
  start-page: 064003
  year: 2018
  ident: b0015
  article-title: A low-complexity algorithm for detection of atrial fibrillation using an ECG
  publication-title: Physiol. Meas.
– reference: A. Afdala, N. Nuryani, A.S. Nugroho, Automatic detection of atrial fibrillation using basic shannon entropy of RR interval feature, in: Journal of Physics: Conference Series, IOP Publishing, 2017, pp. 1-5.
– volume: 60
  start-page: 203
  year: 2013
  end-page: 206
  ident: b0010
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 107
  start-page: 1494
  issue: 10
  year: 2011
  ident: 10.1016/j.jbi.2021.103819_b0210
  article-title: A simple method to detect atrial fibrillation using RR intervals
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2011.01.028
– volume: 39
  start-page: 664
  issue: 6
  year: 2001
  ident: 10.1016/j.jbi.2021.103819_b0075
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345439
– ident: 10.1016/j.jbi.2021.103819_b0220
  doi: 10.1088/1742-6596/795/1/012038
– volume: 13
  start-page: 18
  issue: 1
  year: 2014
  ident: 10.1016/j.jbi.2021.103819_b0215
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and shannon entropy
  publication-title: Biomed. Eng. Online.
  doi: 10.1186/1475-925X-13-18
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.jbi.2021.103819_b0095
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– ident: 10.1016/j.jbi.2021.103819_b0225
  doi: 10.1109/ICPR.2008.4761755
– volume: 49
  start-page: 871
  issue: 6
  year: 2016
  ident: 10.1016/j.jbi.2021.103819_b0020
  article-title: Automated detection of atrial fibrillation using RR intervals and multivariate-based classification
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2016.07.033
– volume: 60
  start-page: 132
  year: 2015
  ident: 10.1016/j.jbi.2021.103819_b0065
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.03.005
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.jbi.2021.103819_b0110
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD explorations newsletter
  doi: 10.1145/1656274.1656278
– ident: 10.1016/j.jbi.2021.103819_b0150
– start-page: 440
  year: 2011
  ident: 10.1016/j.jbi.2021.103819_b0205
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jbi.2021.103819_b0145
  article-title: Bagging predictors
  publication-title: Machine learning
  doi: 10.1007/BF00058655
– volume: 18
  start-page: 274
  year: 2015
  ident: 10.1016/j.jbi.2021.103819_b0055
  article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2015.01.007
– volume: 60
  start-page: 203
  issue: 1
  year: 2013
  ident: 10.1016/j.jbi.2021.103819_b0010
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208112
– ident: 10.1016/j.jbi.2021.103819_b0230
  doi: 10.1109/EMBC.2012.6346465
– ident: 10.1016/j.jbi.2021.103819_b0030
  doi: 10.1371/journal.pone.0136544
– ident: 10.1016/j.jbi.2021.103819_b0180
– volume: 59
  start-page: 161
  year: 2005
  ident: 10.1016/j.jbi.2021.103819_b0190
  article-title: Logistic model trees
  publication-title: Machine learning
  doi: 10.1007/s10994-005-0466-3
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.jbi.2021.103819_b0105
  article-title: An open-source toolbox for analysing and processing physionet databases in matlab and octave
  publication-title: J. Open. Res. Softw.
  doi: 10.5334/jors.bi
– ident: 10.1016/j.jbi.2021.103819_b0125
– volume: 9
  start-page: 377
  year: 2014
  ident: 10.1016/j.jbi.2021.103819_b0035
  article-title: A 290mv sub-vt asic for real-time atrial fibrillation detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2014.2354054
– start-page: 265
  year: 2011
  ident: 10.1016/j.jbi.2021.103819_b0040
  article-title: Comparative study of algorithms for atrial fibrillation detection, in:2011 Computing in Cardiology
  publication-title: IEEE
– volume: 40
  start-page: 707
  issue: 3
  year: 2017
  ident: 10.1016/j.jbi.2021.103819_b0080
  article-title: Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-017-0554-2
– volume: 27
  start-page: 221
  issue: 3
  year: 1987
  ident: 10.1016/j.jbi.2021.103819_b0200
  article-title: Simplifying decision trees
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 227–230
  year: 1983
  ident: 10.1016/j.jbi.2021.103819_b0090
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Comput. Cardiol.
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  ident: 10.1016/j.jbi.2021.103819_b0165
  article-title: Rotation forest: A new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.211
– start-page: 293
  year: 2001
  ident: 10.1016/j.jbi.2021.103819_b0045
  article-title: Sequential analysis for automatic detection of atrial fibrillation and flutter, in
  publication-title: Computers in Cardiology, IEEE
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.jbi.2021.103819_b0130
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jbi.2021.103819_b0195
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– ident: 10.1016/j.jbi.2021.103819_b0170
– volume: 25
  start-page: 24
  year: 2006
  ident: 10.1016/j.jbi.2021.103819_b0005
  article-title: Atrial fibrillation and waveform characterization
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/EMB-M.2006.250505
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.jbi.2021.103819_b0025
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.011
– start-page: 1269
  year: 2010
  ident: 10.1016/j.jbi.2021.103819_b0115
– ident: 10.1016/j.jbi.2021.103819_b0185
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.jbi.2021.103819_b0085
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: 10.1016/j.jbi.2021.103819_b0155
  doi: 10.1145/1015330.1015432
– ident: 10.1016/j.jbi.2021.103819_b0175
  doi: 10.1016/B978-1-55860-377-6.50023-2
– volume: 48
  start-page: 2095
  issue: 12
  year: 2018
  ident: 10.1016/j.jbi.2021.103819_b0070
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2705582
– year: 2011
  ident: 10.1016/j.jbi.2021.103819_b0160
– volume: 93
  start-page: 84
  year: 2018
  ident: 10.1016/j.jbi.2021.103819_bib236
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.12.007
– ident: 10.1016/j.jbi.2021.103819_b0140
  doi: 10.1016/B978-1-55860-377-6.50022-0
– ident: 10.1016/j.jbi.2021.103819_b0120
– ident: 10.1016/j.jbi.2021.103819_b0235
– volume: 39
  start-page: 064003
  issue: 6
  year: 2018
  ident: 10.1016/j.jbi.2021.103819_b0015
  article-title: A low-complexity algorithm for detection of atrial fibrillation using an ECG
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aac76c
– start-page: 101
  year: 2004
  ident: 10.1016/j.jbi.2021.103819_b0100
  article-title: Spontaneous termination of atrial fibrillation: A challenge from PhysioNet and computers in cardiology 2004
– volume: 48
  start-page: 401
  issue: 4
  year: 2001
  ident: 10.1016/j.jbi.2021.103819_b0050
  article-title: Classification of electrocardiographic P-wave morphology
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.915704
– volume: 39
  year: 2018
  ident: 10.1016/j.jbi.2021.103819_b0060
  article-title: A support vector machine approach for AF classification from a short single-lead ECG recording
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aac7aa
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.jbi.2021.103819_b0135
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory.
  doi: 10.1109/TIT.1967.1053964
SSID ssj0011556
Score 2.3891795
Snippet [Display omitted] •An effective extraction method is proposed for atrial fibrillation detection in short-term ECG.•Obtain the gradient set (GDS) of...
Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103819
SubjectTerms Atrial fibrillation
DNN
Feature extraction
Gradient set
Information quantity features
Statistical distribution features
Title An effective feature extraction method based on GDS for atrial fibrillation detection
URI https://dx.doi.org/10.1016/j.jbi.2021.103819
https://www.proquest.com/docview/2532252709
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBFFEdCrOy4jgk1DXS5q0j3NepqIvc7C3kDQpbEgV7V797Z407VARH3zsJaF8Sb5z0pzzHYBTxTk3uQ49liXMo0mucc3hZkWFLJKcJlGgbaLwwyMbjundJJ4swaDJhbFhlTX3O06v2Lq-06vR7L1Op71RYGsaUJuoaf38xCbxRdi5TeKbXCxOEtBeMqeZGtowRtqcbFYxXjM1xS1iGFQy4VZs53fb9IOlK9NzvQWbtc9I-u6ztmHJFG1Y_6Ik2IbVh_qMvA0b7k8ccQlGOzDuF8RFbSCxkdxUSp4EOfnN5TQQV0SaWHumCV7fXI4IurJEVhU9SG6TAp5dyBzRpqxit4pdGF9fPQ2GXl1MwcuiyC89Hhqm8jhVNIlVmvKYayalweUcGfQCkRh1lJmMac2NRK9MZTrGp7kV2A8MstAetIqXwuwDYejy-HGW-aGhVCLyNE4Ui7X0ZZpLpjvgNzCKrFYatwUvnkUTUjYTiLywyAuHfAfOFk1enczGXy_TZmzEt7ki0Az81eykGUeBa8gejMjCvMzfBWKAOITcTw_-1_UhrNkrF8Z7BK3ybW6O0VkpVReWzz-CLqz0b--Hj91qbn4CZi7nhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MCV4Q0ak4rxF8Esq6Nk3aR29zXubLNthbSJoUNqSOuf1_T5pWVGQPPrZpSjlJzvnSfOc7AJeKc24yHXgsjZlH40zjmsPNigpYKDmNw7a2icK9V9Yd0qdRNKrBbZULY2mVpe93Pr3w1uWdVmnN1nQ8bvXbtqYBtYmaFufHyQqsIhrgtn7D4-jm6ygBAyZzoqmB5THS6mizIHlN1Bj3iEG70Am3ajt_B6dfbrqIPZ0d2C5BI7l237ULNZM3YPOblGAD1nrlIXkDttyvOOIyjPZgeJ0TR9tAz0YyU0h5EnTKM5fUQFwVaWIDmiZ4_XDXJ4hliSxKepDMZgW8Oc4c0WZekLfyfRh27ge3Xa-spuClYejPPR4YprIoUTSOVJLwiGsmpcH1HBqEgegZdZialGnNjURYplIdYWtmFfbbBt3QAdTz99wcAmGIefwoTf3AUCrR9DSKFYu09GWSSaab4FdmFGkpNW4rXryJilM2EWh5YS0vnOWbcPXVZep0NpY9TKuxET8mi8A4sKzbRTWOAheRPRmRuXlffAi0Adoh4H5y9L9Xn8N6d9B7ES-Pr8_HsGFbHKf3BOrz2cKcInKZq7NiZn4CW2roFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+feature+extraction+method+based+on+GDS+for+atrial+fibrillation+detection&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Wang%2C+Haiyan&rft.au=Dai%2C+Honghua&rft.au=Zhou%2C+Yanjie&rft.au=Zhou%2C+Bing&rft.date=2021-07-01&rft.issn=1532-0464&rft.volume=119&rft.spage=103819&rft_id=info:doi/10.1016%2Fj.jbi.2021.103819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2021_103819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon