High-precision adaptive temperature control performance of thin positive temperature coefficient materials with ultra-high resistance-temperature coefficient

•A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of the temperature control system is realized.•The prepared materials can achieve high-precision temperature control. Positive temperature coef...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 253; p. 123767
Main Authors Yang, Yin-Fa, Hao, Jian-Min, Zhang, Wei, Shen, Yi-Tao, Zhou, Rui, Chen, Hua, Cheng, Wen-Long
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of the temperature control system is realized.•The prepared materials can achieve high-precision temperature control. Positive temperature coefficient (PTC) material with high resistance-temperature coefficient has excellent adaptive temperature control performance. In this paper, a positive temperature coefficient material with a high resistance-temperature coefficient (2.8/°C) was prepared, and it still had excellent PTC characteristics after multiple thermal cycles, which greatly compensated for the low resistance-temperature coefficient and poor thermal cycling of previous polymer-based PTC materials. The adaptive temperature control performance of the heating system composed of PTC materials was studied experimentally, PTC materials exhibit excellent self-adaptive temperature control performance at different ambient temperatures. In order to further study the adaptive temperature control performance of heating system, the corresponding theoretical model is established and the accuracy of the model is verified by experiments. The simulation results show that when the ambient temperature changes sinusoidally with different periods or different amplitudes, the temperature control system can well weaken the influence of the change of the ambient temperature on the controlled object. In addition, when the weather data (including temperature and wind speed) of three different cities within a day are selected as the operating conditions of the temperature control system, the maximum temperature difference of the controlled object throughout the day is only 2.7 °C. The results show that PTC materials with high resistance-temperature coefficient have excellent self-adaptive temperature control performance.
AbstractList •A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of the temperature control system is realized.•The prepared materials can achieve high-precision temperature control. Positive temperature coefficient (PTC) material with high resistance-temperature coefficient has excellent adaptive temperature control performance. In this paper, a positive temperature coefficient material with a high resistance-temperature coefficient (2.8/°C) was prepared, and it still had excellent PTC characteristics after multiple thermal cycles, which greatly compensated for the low resistance-temperature coefficient and poor thermal cycling of previous polymer-based PTC materials. The adaptive temperature control performance of the heating system composed of PTC materials was studied experimentally, PTC materials exhibit excellent self-adaptive temperature control performance at different ambient temperatures. In order to further study the adaptive temperature control performance of heating system, the corresponding theoretical model is established and the accuracy of the model is verified by experiments. The simulation results show that when the ambient temperature changes sinusoidally with different periods or different amplitudes, the temperature control system can well weaken the influence of the change of the ambient temperature on the controlled object. In addition, when the weather data (including temperature and wind speed) of three different cities within a day are selected as the operating conditions of the temperature control system, the maximum temperature difference of the controlled object throughout the day is only 2.7 °C. The results show that PTC materials with high resistance-temperature coefficient have excellent self-adaptive temperature control performance.
ArticleNumber 123767
Author Zhou, Rui
Hao, Jian-Min
Zhang, Wei
Yang, Yin-Fa
Chen, Hua
Cheng, Wen-Long
Shen, Yi-Tao
Author_xml – sequence: 1
  givenname: Yin-Fa
  surname: Yang
  fullname: Yang, Yin-Fa
– sequence: 2
  givenname: Jian-Min
  surname: Hao
  fullname: Hao, Jian-Min
– sequence: 3
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 4
  givenname: Yi-Tao
  surname: Shen
  fullname: Shen, Yi-Tao
– sequence: 5
  givenname: Rui
  surname: Zhou
  fullname: Zhou, Rui
– sequence: 6
  givenname: Hua
  surname: Chen
  fullname: Chen, Hua
  email: huami@ustc.edu.cn
– sequence: 7
  givenname: Wen-Long
  orcidid: 0000-0002-9243-4126
  surname: Cheng
  fullname: Cheng, Wen-Long
  email: wlcheng@ustc.edu.cn
BookMark eNqNkcFOwyAYgDnMxG36Dhy8dkKprU286OKcyRIveiaU_qz_0pYG2IwP47tKMy8aTXYiQL6P_B8zMultD4RccbbgjOfXu4UahjY04DrVQr9dpCzNFjwVRV5MyJSLmzLJBOfnZOb9jjGe3hbZlHyucdskgwONHm1PVa2GgAegAboBnAp7B1TbPjjb0nhgbPT3Gqg1NDTY08F6_AMAY1Aj9IF2KoBD1Xr6jqGh-zY4lTTxVerAow-jLfkHviBnJpJw-b3Oydvq8XW5TjYvT8_L-02ihWAhyStTVLyqylLrrCjTElhWxy3XRqkahGZ1XRnNykwrkauaszRe8zLNC1aCEmJO7o5e7az3DowcHHbKfUjO5JhX7uTPvHLMK495I_7wC9cYVMAxm8L2VMnqKIE46AHBST820FBj_J0ga4unib4AKdWvWg
CitedBy_id crossref_primary_10_1088_1742_6596_2879_1_012017
crossref_primary_10_1002_marc_202401064
Cites_doi 10.1016/j.enconman.2013.01.025
10.1016/j.ijheatmasstransfer.2014.03.045
10.1016/j.ceramint.2019.12.119
10.1016/j.applthermaleng.2023.121700
10.1016/j.applthermaleng.2018.04.001
10.1016/j.compositesb.2019.107465
10.1016/j.coco.2023.101661
10.1007/s10853-022-07317-2
10.1016/j.enconman.2019.111950
10.1016/j.applthermaleng.2024.122770
10.1016/j.compscitech.2022.109548
10.1016/j.enconman.2023.117852
10.1016/j.polymer.2022.125587
10.1007/s12206-018-0242-5
10.1039/D2TC04593A
10.1021/acsami.9b05468
10.1016/j.apenergy.2020.115232
10.1016/j.applthermaleng.2021.116844
10.1016/j.applthermaleng.2019.114452
10.1016/j.infrared.2022.104346
10.1016/j.applthermaleng.2011.10.046
10.1038/s41586-020-2666-1
10.1016/j.icheatmasstransfer.2020.104987
10.1016/j.enconman.2013.12.053
10.1007/s42114-019-00081-z
10.1016/j.eurpolymj.2022.111334
10.1016/j.energy.2016.01.069
10.1016/j.energy.2014.07.009
10.1016/j.applthermaleng.2021.117234
10.1016/j.applthermaleng.2023.121592
10.1016/j.ijheatmasstransfer.2014.11.079
10.1016/j.ijheatmasstransfer.2015.12.057
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.123767
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_123767
S1359431124014352
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
SSH
ID FETCH-LOGICAL-c330t-6bf7b1bb99cc47929e04dbb91cfaade3c0ddbfc094ca36ad102dbb1926709ea33
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Tue Jul 01 02:06:03 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Sat Oct 26 15:40:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords PTC material
High-accuracy temperature control
Resistance-temperature coefficient
Adaptive temperature control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-6bf7b1bb99cc47929e04dbb91cfaade3c0ddbfc094ca36ad102dbb1926709ea33
ORCID 0000-0002-9243-4126
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2024_123767
crossref_citationtrail_10_1016_j_applthermaleng_2024_123767
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_123767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Zhang, Cen, Yu, Zhou, Jiang, Yu (b0120) 2023; 265
Luo, Schubert (b0140) 2022; 30
Zhao, Yu, Sun, Wu, Chen, Wu, Wang (b0105) 2022; 226
Wang, Pan, Cheng (b0125) 2021; 120
van Erp, Soleimanzadeh, Nela, Kampitsis, Matioli (b0060) 2020; 585
Liang, Sang, Wu, Zhang, Zhao (b0090) 2021; 195
Wu, Liu, Cheng, Liu (b0010) 2013; 69
Liao, Xie, Nemer, Claridge, Culp (b0020) 2019; 199
Liu, Xu, Mei, Han, Zheng, Wang, Huang, Wu, Qin, Jiang, Li (b0135) 2023; 11
Song, Cheng, Xu, Yuan, Liu (b0085) 2016; 95
He, Ma (b0070) 2015; 83
Chiang, Luo, Wang (b0045) 2018; 32
Yin, Choe (b0080) 2020; 271
Aziz, Oda, Ito (b0030) 2016; 100
Tang, Fan, Yang, Hu, Qian, Ji, Zhang, Liang, Fang (b0100) 2023; 42
Chen, Hou, Chen, Wang, Duan, Zhang (b0155) 2019; 178
Ren, Ding, Han (b0165) 2022; 126
Rostamian, Etesami, Mehrali (b0025) 2024; 236
Qu, Fu, Pang, Ding, Zhang (b0075) 2018; 138
Lu, Zhang, Zhang, Zhang, Zhu, Huang (b0065) 2024; 299
Alhusseny, Al-Aabidy, Al-Zurfi, Nasser, Aljanabi (b0015) 2021; 191
Wang, Pan, Nian, Cheng (b0095) 2020; 165
Cheng, Yuan, Song (b0170) 2014; 74
Mistry, Verma, Mukherjee (b0050) 2019; 11
Go, Park, Lim, Jang, Park, Cho, Choa (b0150) 2022; 57
Wang, Cheng (b0175) 2019; 2
Wang, Song, Valdiserri, Rossi di Schio, Yang, Wang, Cao (b0035) 2024; 236
Yu, Li (b0115) 2020; 46
Li, Chang, Li, Li, Guan (b0180) 2019; 12
Cheng, Liu, Wu (b0005) 2012; 36
Cheng, Song, Liu, Yuan, Wu, Xu (b0145) 2014; 74
Yue, Wang, Hou, Shi, Zhang (b0110) 2023; 34
Xu, Liu, Xie, Yu, Yang (b0160) 2022; 175
Ye, Fu, Zhou (b0055) 2024; 245
Cheng, Wu, Song, Liu, Yuan, Liu (b0130) 2014; 79
Shahjalal, Shams, Islam, Alam, Modak, Hossain, Ramadesigan, Ahmed, Ahmed, Iqbal (b0040) 2021; 39
Zhou (10.1016/j.applthermaleng.2024.123767_b0120) 2023; 265
Chen (10.1016/j.applthermaleng.2024.123767_b0155) 2019; 178
Chiang (10.1016/j.applthermaleng.2024.123767_b0045) 2018; 32
Tang (10.1016/j.applthermaleng.2024.123767_b0100) 2023; 42
Mistry (10.1016/j.applthermaleng.2024.123767_b0050) 2019; 11
Cheng (10.1016/j.applthermaleng.2024.123767_b0130) 2014; 79
Qu (10.1016/j.applthermaleng.2024.123767_b0075) 2018; 138
Yin (10.1016/j.applthermaleng.2024.123767_b0080) 2020; 271
Lu (10.1016/j.applthermaleng.2024.123767_b0065) 2024; 299
Wang (10.1016/j.applthermaleng.2024.123767_b0175) 2019; 2
Liu (10.1016/j.applthermaleng.2024.123767_b0135) 2023; 11
Luo (10.1016/j.applthermaleng.2024.123767_b0140) 2022; 30
Liao (10.1016/j.applthermaleng.2024.123767_b0020) 2019; 199
Song (10.1016/j.applthermaleng.2024.123767_b0085) 2016; 95
Ye (10.1016/j.applthermaleng.2024.123767_b0055) 2024; 245
Yu (10.1016/j.applthermaleng.2024.123767_b0115) 2020; 46
Wang (10.1016/j.applthermaleng.2024.123767_b0035) 2024; 236
Ren (10.1016/j.applthermaleng.2024.123767_b0165) 2022; 126
Cheng (10.1016/j.applthermaleng.2024.123767_b0005) 2012; 36
Li (10.1016/j.applthermaleng.2024.123767_b0180) 2019; 12
Go (10.1016/j.applthermaleng.2024.123767_b0150) 2022; 57
Wang (10.1016/j.applthermaleng.2024.123767_b0125) 2021; 120
Zhao (10.1016/j.applthermaleng.2024.123767_b0105) 2022; 226
Wu (10.1016/j.applthermaleng.2024.123767_b0010) 2013; 69
van Erp (10.1016/j.applthermaleng.2024.123767_b0060) 2020; 585
Liang (10.1016/j.applthermaleng.2024.123767_b0090) 2021; 195
Wang (10.1016/j.applthermaleng.2024.123767_b0095) 2020; 165
Cheng (10.1016/j.applthermaleng.2024.123767_b0170) 2014; 74
Yue (10.1016/j.applthermaleng.2024.123767_b0110) 2023; 34
He (10.1016/j.applthermaleng.2024.123767_b0070) 2015; 83
Xu (10.1016/j.applthermaleng.2024.123767_b0160) 2022; 175
Aziz (10.1016/j.applthermaleng.2024.123767_b0030) 2016; 100
Rostamian (10.1016/j.applthermaleng.2024.123767_b0025) 2024; 236
Cheng (10.1016/j.applthermaleng.2024.123767_b0145) 2014; 74
Shahjalal (10.1016/j.applthermaleng.2024.123767_b0040) 2021; 39
Alhusseny (10.1016/j.applthermaleng.2024.123767_b0015) 2021; 191
References_xml – volume: 69
  start-page: 174
  year: 2013
  end-page: 180
  ident: b0010
  article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment
  publication-title: Energ. Conver. Manage.
– volume: 191
  year: 2021
  ident: b0015
  article-title: Cooling of high-performance electronic equipment using graphite foam heat sinks
  publication-title: Appl. Therm. Eng.
– volume: 74
  start-page: 441
  year: 2014
  end-page: 447
  ident: b0145
  article-title: Theoretical and experimental studies on thermal control by using a novel PTC material with room temperature Curie point
  publication-title: Int. J. Heat Mass Transf.
– volume: 236
  year: 2024
  ident: b0025
  article-title: Microencapsulation of eutectic phase change materials for temperature management of the satellite electronic board
  publication-title: Appl. Therm. Eng.
– volume: 30
  year: 2022
  ident: b0140
  article-title: Positive temperature coefficient (PTC) materials based on amorphous poly(methyl methacrylate) with ultrahigh PTC intensity, tunable switching temperature and good reproducibility
  publication-title: Mater. Today Commun.
– volume: 39
  year: 2021
  ident: b0040
  article-title: A review of thermal management for Li-ion batteries: Prospects, challenges, and issues
  publication-title: J. Storage Mater.
– volume: 32
  start-page: 1391
  year: 2018
  end-page: 1396
  ident: b0045
  article-title: Temperature control scheme using hot-gas bypass for a machine tool oil cooler
  publication-title: J. Mech. Sci. Technol.
– volume: 138
  start-page: 83
  year: 2018
  end-page: 93
  ident: b0075
  article-title: Rapid temperature prediction method for electronic equipment cabin
  publication-title: Appl. Therm. Eng.
– volume: 195
  year: 2021
  ident: b0090
  article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions
  publication-title: Appl. Therm. Eng.
– volume: 74
  start-page: 447
  year: 2014
  end-page: 454
  ident: b0170
  article-title: Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures
  publication-title: Energy
– volume: 236
  year: 2024
  ident: b0035
  article-title: Performance analysis of CO2 thermal management system for electric vehicles in winter
  publication-title: Appl. Therm. Eng.
– volume: 83
  start-page: 164
  year: 2015
  end-page: 172
  ident: b0070
  article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 34
  year: 2023
  ident: b0110
  article-title: Enhanced reproducibility of positive temperature coefficient effect of TPO/HDPE blends via elastic crosslinking
  publication-title: Mater. Today Commun.
– volume: 199
  year: 2019
  ident: b0020
  article-title: A simplified methodology to optimize the cooling tower approach temperature control schedule in a cooling system
  publication-title: Energ. Conver. Manage.
– volume: 178
  year: 2019
  ident: b0155
  article-title: Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites
  publication-title: Compos. B Eng.
– volume: 175
  year: 2022
  ident: b0160
  article-title: Excellent positive temperature coefficient behavior and electrical reproducibility of HDPE/(TiC-CB) composites
  publication-title: Eur. Polym. J.
– volume: 46
  start-page: 8796
  year: 2020
  end-page: 8805
  ident: b0115
  article-title: Temperature-dependent resistivity performance of Mn/Y-doped Ba1Sr TiO3 compositions with potential thermal control applications
  publication-title: Ceram. Int.
– volume: 120
  year: 2021
  ident: b0125
  article-title: A dimensionless study on thermal control of positive temperature coefficient (PTC) materials
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 79
  start-page: 470
  year: 2014
  end-page: 476
  ident: b0130
  article-title: A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect
  publication-title: Energ. Conver. Manage.
– volume: 271
  year: 2020
  ident: b0080
  article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control
  publication-title: Appl. Energy
– volume: 226
  year: 2022
  ident: b0105
  article-title: Thermal conductive polymer composite with similar PTC effect through latent foaming
  publication-title: Compos. Sci. Technol.
– volume: 245
  year: 2024
  ident: b0055
  article-title: Research on control strategy of rapid preheating for power battery in electric vehicle at low temperatures
  publication-title: Appl. Therm. Eng.
– volume: 95
  start-page: 1038
  year: 2016
  end-page: 1046
  ident: b0085
  article-title: Study on PID temperature control performance of a novel PTC material with room temperature Curie point
  publication-title: Int. J. Heat Mass Transf.
– volume: 299
  year: 2024
  ident: b0065
  article-title: Control strategy of solid oxide electrolysis cell operating temperature under real fluctuating renewable power
  publication-title: Energ. Conver. Manage.
– volume: 57
  start-page: 18037
  year: 2022
  end-page: 18050
  ident: b0150
  article-title: Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites
  publication-title: J. Mater. Sci.
– volume: 265
  year: 2023
  ident: b0120
  article-title: Polymer positive temperature coefficient composites with room-temperature Curie point and superior flexibility for self-regulating heating devices
  publication-title: Polymer
– volume: 126
  year: 2022
  ident: b0165
  article-title: Study on adaptive infrared camouflage of novel positive temperature coefficient (PTC) materials in space
  publication-title: Infrared Phys. Technol.
– volume: 100
  start-page: 82
  year: 2016
  end-page: 90
  ident: b0030
  article-title: Battery-assisted charging system for simultaneous charging of electric vehicles
  publication-title: Energy
– volume: 2
  start-page: 83
  year: 2019
  end-page: 92
  ident: b0175
  article-title: A novel flexible room temperature positive temperature coefficient material for thermal management
  publication-title: Advanced Composites and Hybrid Materials
– volume: 585
  start-page: 211
  year: 2020
  end-page: 216
  ident: b0060
  article-title: Co-designing electronics with microfluidics for more sustainable cooling
  publication-title: Nature
– volume: 11
  start-page: 26764
  year: 2019
  end-page: 26769
  ident: b0050
  article-title: Controllable Electrode Stochasticity Self-Heats Lithium-Ion Batteries at Low Temperatures
  publication-title: ACS Appl. Mater. Interfaces
– volume: 165
  year: 2020
  ident: b0095
  article-title: Study on dynamic thermal control performance of positive temperature coefficient (PTC) material based on a novel heat transfer model considering internal heat transfer
  publication-title: Appl. Therm. Eng.
– volume: 42
  year: 2023
  ident: b0100
  article-title: Effect of gradient distribution of fillers on polymeric PTC thermistors prepared by solution mixing and subsiding method
  publication-title: Compos. Commun.
– volume: 12
  year: 2019
  ident: b0180
  article-title: A new thermal controlling material with positive temperature coefficient for body warming: preparation and characterization
  publication-title: Materials
– volume: 11
  start-page: 4966
  year: 2023
  end-page: 4992
  ident: b0135
  article-title: Strategies for improving positive temperature effects in conductive polymer composites – a review
  publication-title: J. Mater. Chem. C
– volume: 36
  start-page: 345
  year: 2012
  end-page: 352
  ident: b0005
  article-title: Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity
  publication-title: Appl. Therm. Eng.
– volume: 69
  start-page: 174
  year: 2013
  ident: 10.1016/j.applthermaleng.2024.123767_b0010
  article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2013.01.025
– volume: 74
  start-page: 441
  year: 2014
  ident: 10.1016/j.applthermaleng.2024.123767_b0145
  article-title: Theoretical and experimental studies on thermal control by using a novel PTC material with room temperature Curie point
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.03.045
– volume: 46
  start-page: 8796
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123767_b0115
  article-title: Temperature-dependent resistivity performance of Mn/Y-doped Ba1Sr TiO3 compositions with potential thermal control applications
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.12.119
– volume: 236
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123767_b0035
  article-title: Performance analysis of CO2 thermal management system for electric vehicles in winter
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121700
– volume: 138
  start-page: 83
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123767_b0075
  article-title: Rapid temperature prediction method for electronic equipment cabin
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.001
– volume: 178
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123767_b0155
  article-title: Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107465
– volume: 42
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123767_b0100
  article-title: Effect of gradient distribution of fillers on polymeric PTC thermistors prepared by solution mixing and subsiding method
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2023.101661
– volume: 57
  start-page: 18037
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123767_b0150
  article-title: Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-022-07317-2
– volume: 199
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123767_b0020
  article-title: A simplified methodology to optimize the cooling tower approach temperature control schedule in a cooling system
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.111950
– volume: 245
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123767_b0055
  article-title: Research on control strategy of rapid preheating for power battery in electric vehicle at low temperatures
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.122770
– volume: 226
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123767_b0105
  article-title: Thermal conductive polymer composite with similar PTC effect through latent foaming
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109548
– volume: 299
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123767_b0065
  article-title: Control strategy of solid oxide electrolysis cell operating temperature under real fluctuating renewable power
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2023.117852
– volume: 265
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123767_b0120
  article-title: Polymer positive temperature coefficient composites with room-temperature Curie point and superior flexibility for self-regulating heating devices
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.125587
– volume: 32
  start-page: 1391
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123767_b0045
  article-title: Temperature control scheme using hot-gas bypass for a machine tool oil cooler
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0242-5
– volume: 11
  start-page: 4966
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123767_b0135
  article-title: Strategies for improving positive temperature effects in conductive polymer composites – a review
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D2TC04593A
– volume: 11
  start-page: 26764
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123767_b0050
  article-title: Controllable Electrode Stochasticity Self-Heats Lithium-Ion Batteries at Low Temperatures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05468
– volume: 271
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123767_b0080
  article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115232
– volume: 30
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123767_b0140
  article-title: Positive temperature coefficient (PTC) materials based on amorphous poly(methyl methacrylate) with ultrahigh PTC intensity, tunable switching temperature and good reproducibility
  publication-title: Mater. Today Commun.
– volume: 12
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123767_b0180
  article-title: A new thermal controlling material with positive temperature coefficient for body warming: preparation and characterization
  publication-title: Materials
– volume: 191
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123767_b0015
  article-title: Cooling of high-performance electronic equipment using graphite foam heat sinks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116844
– volume: 165
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123767_b0095
  article-title: Study on dynamic thermal control performance of positive temperature coefficient (PTC) material based on a novel heat transfer model considering internal heat transfer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114452
– volume: 34
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123767_b0110
  article-title: Enhanced reproducibility of positive temperature coefficient effect of TPO/HDPE blends via elastic crosslinking
  publication-title: Mater. Today Commun.
– volume: 126
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123767_b0165
  article-title: Study on adaptive infrared camouflage of novel positive temperature coefficient (PTC) materials in space
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104346
– volume: 36
  start-page: 345
  year: 2012
  ident: 10.1016/j.applthermaleng.2024.123767_b0005
  article-title: Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.046
– volume: 585
  start-page: 211
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123767_b0060
  article-title: Co-designing electronics with microfluidics for more sustainable cooling
  publication-title: Nature
  doi: 10.1038/s41586-020-2666-1
– volume: 120
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123767_b0125
  article-title: A dimensionless study on thermal control of positive temperature coefficient (PTC) materials
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104987
– volume: 39
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123767_b0040
  article-title: A review of thermal management for Li-ion batteries: Prospects, challenges, and issues
  publication-title: J. Storage Mater.
– volume: 79
  start-page: 470
  year: 2014
  ident: 10.1016/j.applthermaleng.2024.123767_b0130
  article-title: A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2013.12.053
– volume: 2
  start-page: 83
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123767_b0175
  article-title: A novel flexible room temperature positive temperature coefficient material for thermal management
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-019-00081-z
– volume: 175
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123767_b0160
  article-title: Excellent positive temperature coefficient behavior and electrical reproducibility of HDPE/(TiC-CB) composites
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2022.111334
– volume: 100
  start-page: 82
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.123767_b0030
  article-title: Battery-assisted charging system for simultaneous charging of electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.069
– volume: 74
  start-page: 447
  year: 2014
  ident: 10.1016/j.applthermaleng.2024.123767_b0170
  article-title: Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.009
– volume: 195
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123767_b0090
  article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117234
– volume: 236
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123767_b0025
  article-title: Microencapsulation of eutectic phase change materials for temperature management of the satellite electronic board
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121592
– volume: 83
  start-page: 164
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.123767_b0070
  article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.11.079
– volume: 95
  start-page: 1038
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.123767_b0085
  article-title: Study on PID temperature control performance of a novel PTC material with room temperature Curie point
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.12.057
SSID ssj0012874
Score 2.4497335
Snippet •A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123767
SubjectTerms Adaptive temperature control
High-accuracy temperature control
PTC material
Resistance-temperature coefficient
Title High-precision adaptive temperature control performance of thin positive temperature coefficient materials with ultra-high resistance-temperature coefficient
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.123767
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrE-Sg69xnabza7Bg5RiqYq9qNDbkidWtF3K9uo_8b86000fooLgcTebsGRmZ77JfvlCSN23DPcOPqQ0sYLFzkdMa26ZTjwUHym0KVzQv-8nvaf4diAGFdKZ74VBWmWI_WVMn0XrcKcRZrORD4eNh4gLCekPEhRq1AmMw3Gcopefvy9oHhHquc-KLiEZPr1B6kuOF_4kRpz1pvDYEqgWW_F5hDyR9Oc0tZJ6ujtkO2BG2i5fa5dU3GiPbK0oCe6TD-RrsHwSTsyhyqocAxlF6amgm0wDLZ3my80CdOxp8Twc0ZK89a2DmylMQGKigGxLZ6W4dEunr8VEMRQ7plCwIwiF0dgvnQ_IU_f6sdNj4eQFZjhvFizRPtWR1lIaE6eAoFwztnAZGa-Uddw0rdXeQGloFE-UBZQCzQAWUQ3OKc4PydpoPHJHhF5IL41uGimwCge8aK20WmibCmlsElXJ5XyiMxNkyfF0jNdszj97yb6aKUMzZaWZqkQseuelPMcf-13NbZp9cbcMMsmfRjj-9wgnZBOvkHwSiVOyVkym7gwQTqFrMxeukfX2zV2v_wmPhgY0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSyQxEC5EQXcfxGvR9cqDPsaZPtJtEFnEg_F8UcG3NieO6NiMLeKL_8Rf4R_cqumMB7ogLD52h4QmlVR9lf7yFcCSj03iHW6kPLOCp85HXOvEcp15TD5ybFN0oH94lLVO070zcTYAz_27MESrDL6_9uk9bx3eNMJsNsp2u3EcJUJi-MMARRp1Ig7Myn33cI952-367hYaeTmOd7ZPNls8lBbgBhP4imfa5zrSWkpj0hwhgmumFh8j45WyLjFNa7U3mPsYlWTKYhjGZkRDJHfmFJ2Cot8fStFdUNmElccXXklEAvK9LE9ITp83DEuvpDL6K03A7lpRnRRMT-N0JSJiSv55XHwT63bGYDSAVLZRz8M4DLjOBPx8I104CU9EEOFlN5ToYcqqkjwnI62rINTMAg-ela-3E9iNZ9VFu8NqttiHDq4naYGRkCGUrncHo7NidndVdRUndWXWdbeEenE0_o_OU3D6Lfb4BYOdm46bBrYqvTS6aaSgtB8BqrXSaqFtLqSxWTQDa_2JLkzQQadyHFdFn_B2Wbw3U0FmKmozzYB46V3WeiBf7Penb9Pi3fouMHR9aYTf_z3CIoy0Tg4PioPdo_1Z-EEtxHyJxBwMVt07N4_wqtILveXM4Py7989fzqpEZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-precision+adaptive+temperature+control+performance+of+thin+positive+temperature+coefficient+materials+with+ultra-high+resistance-temperature+coefficient&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Yin-Fa&rft.au=Hao%2C+Jian-Min&rft.au=Zhang%2C+Wei&rft.au=Shen%2C+Yi-Tao&rft.date=2024-09-15&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=253&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.123767&rft.externalDocID=S1359431124014352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon