High-precision adaptive temperature control performance of thin positive temperature coefficient materials with ultra-high resistance-temperature coefficient
•A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of the temperature control system is realized.•The prepared materials can achieve high-precision temperature control. Positive temperature coef...
Saved in:
Published in | Applied thermal engineering Vol. 253; p. 123767 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of the temperature control system is realized.•The prepared materials can achieve high-precision temperature control.
Positive temperature coefficient (PTC) material with high resistance-temperature coefficient has excellent adaptive temperature control performance. In this paper, a positive temperature coefficient material with a high resistance-temperature coefficient (2.8/°C) was prepared, and it still had excellent PTC characteristics after multiple thermal cycles, which greatly compensated for the low resistance-temperature coefficient and poor thermal cycling of previous polymer-based PTC materials. The adaptive temperature control performance of the heating system composed of PTC materials was studied experimentally, PTC materials exhibit excellent self-adaptive temperature control performance at different ambient temperatures. In order to further study the adaptive temperature control performance of heating system, the corresponding theoretical model is established and the accuracy of the model is verified by experiments. The simulation results show that when the ambient temperature changes sinusoidally with different periods or different amplitudes, the temperature control system can well weaken the influence of the change of the ambient temperature on the controlled object. In addition, when the weather data (including temperature and wind speed) of three different cities within a day are selected as the operating conditions of the temperature control system, the maximum temperature difference of the controlled object throughout the day is only 2.7 °C. The results show that PTC materials with high resistance-temperature coefficient have excellent self-adaptive temperature control performance. |
---|---|
AbstractList | •A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of the temperature control system is realized.•The prepared materials can achieve high-precision temperature control.
Positive temperature coefficient (PTC) material with high resistance-temperature coefficient has excellent adaptive temperature control performance. In this paper, a positive temperature coefficient material with a high resistance-temperature coefficient (2.8/°C) was prepared, and it still had excellent PTC characteristics after multiple thermal cycles, which greatly compensated for the low resistance-temperature coefficient and poor thermal cycling of previous polymer-based PTC materials. The adaptive temperature control performance of the heating system composed of PTC materials was studied experimentally, PTC materials exhibit excellent self-adaptive temperature control performance at different ambient temperatures. In order to further study the adaptive temperature control performance of heating system, the corresponding theoretical model is established and the accuracy of the model is verified by experiments. The simulation results show that when the ambient temperature changes sinusoidally with different periods or different amplitudes, the temperature control system can well weaken the influence of the change of the ambient temperature on the controlled object. In addition, when the weather data (including temperature and wind speed) of three different cities within a day are selected as the operating conditions of the temperature control system, the maximum temperature difference of the controlled object throughout the day is only 2.7 °C. The results show that PTC materials with high resistance-temperature coefficient have excellent self-adaptive temperature control performance. |
ArticleNumber | 123767 |
Author | Zhou, Rui Hao, Jian-Min Zhang, Wei Yang, Yin-Fa Chen, Hua Cheng, Wen-Long Shen, Yi-Tao |
Author_xml | – sequence: 1 givenname: Yin-Fa surname: Yang fullname: Yang, Yin-Fa – sequence: 2 givenname: Jian-Min surname: Hao fullname: Hao, Jian-Min – sequence: 3 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 4 givenname: Yi-Tao surname: Shen fullname: Shen, Yi-Tao – sequence: 5 givenname: Rui surname: Zhou fullname: Zhou, Rui – sequence: 6 givenname: Hua surname: Chen fullname: Chen, Hua email: huami@ustc.edu.cn – sequence: 7 givenname: Wen-Long orcidid: 0000-0002-9243-4126 surname: Cheng fullname: Cheng, Wen-Long email: wlcheng@ustc.edu.cn |
BookMark | eNqNkcFOwyAYgDnMxG36Dhy8dkKprU286OKcyRIveiaU_qz_0pYG2IwP47tKMy8aTXYiQL6P_B8zMultD4RccbbgjOfXu4UahjY04DrVQr9dpCzNFjwVRV5MyJSLmzLJBOfnZOb9jjGe3hbZlHyucdskgwONHm1PVa2GgAegAboBnAp7B1TbPjjb0nhgbPT3Gqg1NDTY08F6_AMAY1Aj9IF2KoBD1Xr6jqGh-zY4lTTxVerAow-jLfkHviBnJpJw-b3Oydvq8XW5TjYvT8_L-02ihWAhyStTVLyqylLrrCjTElhWxy3XRqkahGZ1XRnNykwrkauaszRe8zLNC1aCEmJO7o5e7az3DowcHHbKfUjO5JhX7uTPvHLMK495I_7wC9cYVMAxm8L2VMnqKIE46AHBST820FBj_J0ga4unib4AKdWvWg |
CitedBy_id | crossref_primary_10_1088_1742_6596_2879_1_012017 crossref_primary_10_1002_marc_202401064 |
Cites_doi | 10.1016/j.enconman.2013.01.025 10.1016/j.ijheatmasstransfer.2014.03.045 10.1016/j.ceramint.2019.12.119 10.1016/j.applthermaleng.2023.121700 10.1016/j.applthermaleng.2018.04.001 10.1016/j.compositesb.2019.107465 10.1016/j.coco.2023.101661 10.1007/s10853-022-07317-2 10.1016/j.enconman.2019.111950 10.1016/j.applthermaleng.2024.122770 10.1016/j.compscitech.2022.109548 10.1016/j.enconman.2023.117852 10.1016/j.polymer.2022.125587 10.1007/s12206-018-0242-5 10.1039/D2TC04593A 10.1021/acsami.9b05468 10.1016/j.apenergy.2020.115232 10.1016/j.applthermaleng.2021.116844 10.1016/j.applthermaleng.2019.114452 10.1016/j.infrared.2022.104346 10.1016/j.applthermaleng.2011.10.046 10.1038/s41586-020-2666-1 10.1016/j.icheatmasstransfer.2020.104987 10.1016/j.enconman.2013.12.053 10.1007/s42114-019-00081-z 10.1016/j.eurpolymj.2022.111334 10.1016/j.energy.2016.01.069 10.1016/j.energy.2014.07.009 10.1016/j.applthermaleng.2021.117234 10.1016/j.applthermaleng.2023.121592 10.1016/j.ijheatmasstransfer.2014.11.079 10.1016/j.ijheatmasstransfer.2015.12.057 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2024.123767 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2024_123767 S1359431124014352 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- SSH |
ID | FETCH-LOGICAL-c330t-6bf7b1bb99cc47929e04dbb91cfaade3c0ddbfc094ca36ad102dbb1926709ea33 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Tue Jul 01 02:06:03 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Sat Oct 26 15:40:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PTC material High-accuracy temperature control Resistance-temperature coefficient Adaptive temperature control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-6bf7b1bb99cc47929e04dbb91cfaade3c0ddbfc094ca36ad102dbb1926709ea33 |
ORCID | 0000-0002-9243-4126 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2024_123767 crossref_citationtrail_10_1016_j_applthermaleng_2024_123767 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_123767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-15 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhou, Zhang, Cen, Yu, Zhou, Jiang, Yu (b0120) 2023; 265 Luo, Schubert (b0140) 2022; 30 Zhao, Yu, Sun, Wu, Chen, Wu, Wang (b0105) 2022; 226 Wang, Pan, Cheng (b0125) 2021; 120 van Erp, Soleimanzadeh, Nela, Kampitsis, Matioli (b0060) 2020; 585 Liang, Sang, Wu, Zhang, Zhao (b0090) 2021; 195 Wu, Liu, Cheng, Liu (b0010) 2013; 69 Liao, Xie, Nemer, Claridge, Culp (b0020) 2019; 199 Liu, Xu, Mei, Han, Zheng, Wang, Huang, Wu, Qin, Jiang, Li (b0135) 2023; 11 Song, Cheng, Xu, Yuan, Liu (b0085) 2016; 95 He, Ma (b0070) 2015; 83 Chiang, Luo, Wang (b0045) 2018; 32 Yin, Choe (b0080) 2020; 271 Aziz, Oda, Ito (b0030) 2016; 100 Tang, Fan, Yang, Hu, Qian, Ji, Zhang, Liang, Fang (b0100) 2023; 42 Chen, Hou, Chen, Wang, Duan, Zhang (b0155) 2019; 178 Ren, Ding, Han (b0165) 2022; 126 Rostamian, Etesami, Mehrali (b0025) 2024; 236 Qu, Fu, Pang, Ding, Zhang (b0075) 2018; 138 Lu, Zhang, Zhang, Zhang, Zhu, Huang (b0065) 2024; 299 Alhusseny, Al-Aabidy, Al-Zurfi, Nasser, Aljanabi (b0015) 2021; 191 Wang, Pan, Nian, Cheng (b0095) 2020; 165 Cheng, Yuan, Song (b0170) 2014; 74 Mistry, Verma, Mukherjee (b0050) 2019; 11 Go, Park, Lim, Jang, Park, Cho, Choa (b0150) 2022; 57 Wang, Cheng (b0175) 2019; 2 Wang, Song, Valdiserri, Rossi di Schio, Yang, Wang, Cao (b0035) 2024; 236 Yu, Li (b0115) 2020; 46 Li, Chang, Li, Li, Guan (b0180) 2019; 12 Cheng, Liu, Wu (b0005) 2012; 36 Cheng, Song, Liu, Yuan, Wu, Xu (b0145) 2014; 74 Yue, Wang, Hou, Shi, Zhang (b0110) 2023; 34 Xu, Liu, Xie, Yu, Yang (b0160) 2022; 175 Ye, Fu, Zhou (b0055) 2024; 245 Cheng, Wu, Song, Liu, Yuan, Liu (b0130) 2014; 79 Shahjalal, Shams, Islam, Alam, Modak, Hossain, Ramadesigan, Ahmed, Ahmed, Iqbal (b0040) 2021; 39 Zhou (10.1016/j.applthermaleng.2024.123767_b0120) 2023; 265 Chen (10.1016/j.applthermaleng.2024.123767_b0155) 2019; 178 Chiang (10.1016/j.applthermaleng.2024.123767_b0045) 2018; 32 Tang (10.1016/j.applthermaleng.2024.123767_b0100) 2023; 42 Mistry (10.1016/j.applthermaleng.2024.123767_b0050) 2019; 11 Cheng (10.1016/j.applthermaleng.2024.123767_b0130) 2014; 79 Qu (10.1016/j.applthermaleng.2024.123767_b0075) 2018; 138 Yin (10.1016/j.applthermaleng.2024.123767_b0080) 2020; 271 Lu (10.1016/j.applthermaleng.2024.123767_b0065) 2024; 299 Wang (10.1016/j.applthermaleng.2024.123767_b0175) 2019; 2 Liu (10.1016/j.applthermaleng.2024.123767_b0135) 2023; 11 Luo (10.1016/j.applthermaleng.2024.123767_b0140) 2022; 30 Liao (10.1016/j.applthermaleng.2024.123767_b0020) 2019; 199 Song (10.1016/j.applthermaleng.2024.123767_b0085) 2016; 95 Ye (10.1016/j.applthermaleng.2024.123767_b0055) 2024; 245 Yu (10.1016/j.applthermaleng.2024.123767_b0115) 2020; 46 Wang (10.1016/j.applthermaleng.2024.123767_b0035) 2024; 236 Ren (10.1016/j.applthermaleng.2024.123767_b0165) 2022; 126 Cheng (10.1016/j.applthermaleng.2024.123767_b0005) 2012; 36 Li (10.1016/j.applthermaleng.2024.123767_b0180) 2019; 12 Go (10.1016/j.applthermaleng.2024.123767_b0150) 2022; 57 Wang (10.1016/j.applthermaleng.2024.123767_b0125) 2021; 120 Zhao (10.1016/j.applthermaleng.2024.123767_b0105) 2022; 226 Wu (10.1016/j.applthermaleng.2024.123767_b0010) 2013; 69 van Erp (10.1016/j.applthermaleng.2024.123767_b0060) 2020; 585 Liang (10.1016/j.applthermaleng.2024.123767_b0090) 2021; 195 Wang (10.1016/j.applthermaleng.2024.123767_b0095) 2020; 165 Cheng (10.1016/j.applthermaleng.2024.123767_b0170) 2014; 74 Yue (10.1016/j.applthermaleng.2024.123767_b0110) 2023; 34 He (10.1016/j.applthermaleng.2024.123767_b0070) 2015; 83 Xu (10.1016/j.applthermaleng.2024.123767_b0160) 2022; 175 Aziz (10.1016/j.applthermaleng.2024.123767_b0030) 2016; 100 Rostamian (10.1016/j.applthermaleng.2024.123767_b0025) 2024; 236 Cheng (10.1016/j.applthermaleng.2024.123767_b0145) 2014; 74 Shahjalal (10.1016/j.applthermaleng.2024.123767_b0040) 2021; 39 Alhusseny (10.1016/j.applthermaleng.2024.123767_b0015) 2021; 191 |
References_xml | – volume: 69 start-page: 174 year: 2013 end-page: 180 ident: b0010 article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment publication-title: Energ. Conver. Manage. – volume: 191 year: 2021 ident: b0015 article-title: Cooling of high-performance electronic equipment using graphite foam heat sinks publication-title: Appl. Therm. Eng. – volume: 74 start-page: 441 year: 2014 end-page: 447 ident: b0145 article-title: Theoretical and experimental studies on thermal control by using a novel PTC material with room temperature Curie point publication-title: Int. J. Heat Mass Transf. – volume: 236 year: 2024 ident: b0025 article-title: Microencapsulation of eutectic phase change materials for temperature management of the satellite electronic board publication-title: Appl. Therm. Eng. – volume: 30 year: 2022 ident: b0140 article-title: Positive temperature coefficient (PTC) materials based on amorphous poly(methyl methacrylate) with ultrahigh PTC intensity, tunable switching temperature and good reproducibility publication-title: Mater. Today Commun. – volume: 39 year: 2021 ident: b0040 article-title: A review of thermal management for Li-ion batteries: Prospects, challenges, and issues publication-title: J. Storage Mater. – volume: 32 start-page: 1391 year: 2018 end-page: 1396 ident: b0045 article-title: Temperature control scheme using hot-gas bypass for a machine tool oil cooler publication-title: J. Mech. Sci. Technol. – volume: 138 start-page: 83 year: 2018 end-page: 93 ident: b0075 article-title: Rapid temperature prediction method for electronic equipment cabin publication-title: Appl. Therm. Eng. – volume: 195 year: 2021 ident: b0090 article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions publication-title: Appl. Therm. Eng. – volume: 74 start-page: 447 year: 2014 end-page: 454 ident: b0170 article-title: Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures publication-title: Energy – volume: 236 year: 2024 ident: b0035 article-title: Performance analysis of CO2 thermal management system for electric vehicles in winter publication-title: Appl. Therm. Eng. – volume: 83 start-page: 164 year: 2015 end-page: 172 ident: b0070 article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow publication-title: Int. J. Heat Mass Transf. – volume: 34 year: 2023 ident: b0110 article-title: Enhanced reproducibility of positive temperature coefficient effect of TPO/HDPE blends via elastic crosslinking publication-title: Mater. Today Commun. – volume: 199 year: 2019 ident: b0020 article-title: A simplified methodology to optimize the cooling tower approach temperature control schedule in a cooling system publication-title: Energ. Conver. Manage. – volume: 178 year: 2019 ident: b0155 article-title: Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites publication-title: Compos. B Eng. – volume: 175 year: 2022 ident: b0160 article-title: Excellent positive temperature coefficient behavior and electrical reproducibility of HDPE/(TiC-CB) composites publication-title: Eur. Polym. J. – volume: 46 start-page: 8796 year: 2020 end-page: 8805 ident: b0115 article-title: Temperature-dependent resistivity performance of Mn/Y-doped Ba1Sr TiO3 compositions with potential thermal control applications publication-title: Ceram. Int. – volume: 120 year: 2021 ident: b0125 article-title: A dimensionless study on thermal control of positive temperature coefficient (PTC) materials publication-title: Int. Commun. Heat Mass Transfer – volume: 79 start-page: 470 year: 2014 end-page: 476 ident: b0130 article-title: A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect publication-title: Energ. Conver. Manage. – volume: 271 year: 2020 ident: b0080 article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control publication-title: Appl. Energy – volume: 226 year: 2022 ident: b0105 article-title: Thermal conductive polymer composite with similar PTC effect through latent foaming publication-title: Compos. Sci. Technol. – volume: 245 year: 2024 ident: b0055 article-title: Research on control strategy of rapid preheating for power battery in electric vehicle at low temperatures publication-title: Appl. Therm. Eng. – volume: 95 start-page: 1038 year: 2016 end-page: 1046 ident: b0085 article-title: Study on PID temperature control performance of a novel PTC material with room temperature Curie point publication-title: Int. J. Heat Mass Transf. – volume: 299 year: 2024 ident: b0065 article-title: Control strategy of solid oxide electrolysis cell operating temperature under real fluctuating renewable power publication-title: Energ. Conver. Manage. – volume: 57 start-page: 18037 year: 2022 end-page: 18050 ident: b0150 article-title: Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites publication-title: J. Mater. Sci. – volume: 265 year: 2023 ident: b0120 article-title: Polymer positive temperature coefficient composites with room-temperature Curie point and superior flexibility for self-regulating heating devices publication-title: Polymer – volume: 126 year: 2022 ident: b0165 article-title: Study on adaptive infrared camouflage of novel positive temperature coefficient (PTC) materials in space publication-title: Infrared Phys. Technol. – volume: 100 start-page: 82 year: 2016 end-page: 90 ident: b0030 article-title: Battery-assisted charging system for simultaneous charging of electric vehicles publication-title: Energy – volume: 2 start-page: 83 year: 2019 end-page: 92 ident: b0175 article-title: A novel flexible room temperature positive temperature coefficient material for thermal management publication-title: Advanced Composites and Hybrid Materials – volume: 585 start-page: 211 year: 2020 end-page: 216 ident: b0060 article-title: Co-designing electronics with microfluidics for more sustainable cooling publication-title: Nature – volume: 11 start-page: 26764 year: 2019 end-page: 26769 ident: b0050 article-title: Controllable Electrode Stochasticity Self-Heats Lithium-Ion Batteries at Low Temperatures publication-title: ACS Appl. Mater. Interfaces – volume: 165 year: 2020 ident: b0095 article-title: Study on dynamic thermal control performance of positive temperature coefficient (PTC) material based on a novel heat transfer model considering internal heat transfer publication-title: Appl. Therm. Eng. – volume: 42 year: 2023 ident: b0100 article-title: Effect of gradient distribution of fillers on polymeric PTC thermistors prepared by solution mixing and subsiding method publication-title: Compos. Commun. – volume: 12 year: 2019 ident: b0180 article-title: A new thermal controlling material with positive temperature coefficient for body warming: preparation and characterization publication-title: Materials – volume: 11 start-page: 4966 year: 2023 end-page: 4992 ident: b0135 article-title: Strategies for improving positive temperature effects in conductive polymer composites – a review publication-title: J. Mater. Chem. C – volume: 36 start-page: 345 year: 2012 end-page: 352 ident: b0005 article-title: Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity publication-title: Appl. Therm. Eng. – volume: 69 start-page: 174 year: 2013 ident: 10.1016/j.applthermaleng.2024.123767_b0010 article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2013.01.025 – volume: 74 start-page: 441 year: 2014 ident: 10.1016/j.applthermaleng.2024.123767_b0145 article-title: Theoretical and experimental studies on thermal control by using a novel PTC material with room temperature Curie point publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.03.045 – volume: 46 start-page: 8796 year: 2020 ident: 10.1016/j.applthermaleng.2024.123767_b0115 article-title: Temperature-dependent resistivity performance of Mn/Y-doped Ba1Sr TiO3 compositions with potential thermal control applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.12.119 – volume: 236 year: 2024 ident: 10.1016/j.applthermaleng.2024.123767_b0035 article-title: Performance analysis of CO2 thermal management system for electric vehicles in winter publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121700 – volume: 138 start-page: 83 year: 2018 ident: 10.1016/j.applthermaleng.2024.123767_b0075 article-title: Rapid temperature prediction method for electronic equipment cabin publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.001 – volume: 178 year: 2019 ident: 10.1016/j.applthermaleng.2024.123767_b0155 article-title: Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107465 – volume: 42 year: 2023 ident: 10.1016/j.applthermaleng.2024.123767_b0100 article-title: Effect of gradient distribution of fillers on polymeric PTC thermistors prepared by solution mixing and subsiding method publication-title: Compos. Commun. doi: 10.1016/j.coco.2023.101661 – volume: 57 start-page: 18037 year: 2022 ident: 10.1016/j.applthermaleng.2024.123767_b0150 article-title: Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites publication-title: J. Mater. Sci. doi: 10.1007/s10853-022-07317-2 – volume: 199 year: 2019 ident: 10.1016/j.applthermaleng.2024.123767_b0020 article-title: A simplified methodology to optimize the cooling tower approach temperature control schedule in a cooling system publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.111950 – volume: 245 year: 2024 ident: 10.1016/j.applthermaleng.2024.123767_b0055 article-title: Research on control strategy of rapid preheating for power battery in electric vehicle at low temperatures publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.122770 – volume: 226 year: 2022 ident: 10.1016/j.applthermaleng.2024.123767_b0105 article-title: Thermal conductive polymer composite with similar PTC effect through latent foaming publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109548 – volume: 299 year: 2024 ident: 10.1016/j.applthermaleng.2024.123767_b0065 article-title: Control strategy of solid oxide electrolysis cell operating temperature under real fluctuating renewable power publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2023.117852 – volume: 265 year: 2023 ident: 10.1016/j.applthermaleng.2024.123767_b0120 article-title: Polymer positive temperature coefficient composites with room-temperature Curie point and superior flexibility for self-regulating heating devices publication-title: Polymer doi: 10.1016/j.polymer.2022.125587 – volume: 32 start-page: 1391 year: 2018 ident: 10.1016/j.applthermaleng.2024.123767_b0045 article-title: Temperature control scheme using hot-gas bypass for a machine tool oil cooler publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0242-5 – volume: 11 start-page: 4966 year: 2023 ident: 10.1016/j.applthermaleng.2024.123767_b0135 article-title: Strategies for improving positive temperature effects in conductive polymer composites – a review publication-title: J. Mater. Chem. C doi: 10.1039/D2TC04593A – volume: 11 start-page: 26764 year: 2019 ident: 10.1016/j.applthermaleng.2024.123767_b0050 article-title: Controllable Electrode Stochasticity Self-Heats Lithium-Ion Batteries at Low Temperatures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05468 – volume: 271 year: 2020 ident: 10.1016/j.applthermaleng.2024.123767_b0080 article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115232 – volume: 30 year: 2022 ident: 10.1016/j.applthermaleng.2024.123767_b0140 article-title: Positive temperature coefficient (PTC) materials based on amorphous poly(methyl methacrylate) with ultrahigh PTC intensity, tunable switching temperature and good reproducibility publication-title: Mater. Today Commun. – volume: 12 year: 2019 ident: 10.1016/j.applthermaleng.2024.123767_b0180 article-title: A new thermal controlling material with positive temperature coefficient for body warming: preparation and characterization publication-title: Materials – volume: 191 year: 2021 ident: 10.1016/j.applthermaleng.2024.123767_b0015 article-title: Cooling of high-performance electronic equipment using graphite foam heat sinks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116844 – volume: 165 year: 2020 ident: 10.1016/j.applthermaleng.2024.123767_b0095 article-title: Study on dynamic thermal control performance of positive temperature coefficient (PTC) material based on a novel heat transfer model considering internal heat transfer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114452 – volume: 34 year: 2023 ident: 10.1016/j.applthermaleng.2024.123767_b0110 article-title: Enhanced reproducibility of positive temperature coefficient effect of TPO/HDPE blends via elastic crosslinking publication-title: Mater. Today Commun. – volume: 126 year: 2022 ident: 10.1016/j.applthermaleng.2024.123767_b0165 article-title: Study on adaptive infrared camouflage of novel positive temperature coefficient (PTC) materials in space publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104346 – volume: 36 start-page: 345 year: 2012 ident: 10.1016/j.applthermaleng.2024.123767_b0005 article-title: Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.046 – volume: 585 start-page: 211 year: 2020 ident: 10.1016/j.applthermaleng.2024.123767_b0060 article-title: Co-designing electronics with microfluidics for more sustainable cooling publication-title: Nature doi: 10.1038/s41586-020-2666-1 – volume: 120 year: 2021 ident: 10.1016/j.applthermaleng.2024.123767_b0125 article-title: A dimensionless study on thermal control of positive temperature coefficient (PTC) materials publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104987 – volume: 39 year: 2021 ident: 10.1016/j.applthermaleng.2024.123767_b0040 article-title: A review of thermal management for Li-ion batteries: Prospects, challenges, and issues publication-title: J. Storage Mater. – volume: 79 start-page: 470 year: 2014 ident: 10.1016/j.applthermaleng.2024.123767_b0130 article-title: A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2013.12.053 – volume: 2 start-page: 83 year: 2019 ident: 10.1016/j.applthermaleng.2024.123767_b0175 article-title: A novel flexible room temperature positive temperature coefficient material for thermal management publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-019-00081-z – volume: 175 year: 2022 ident: 10.1016/j.applthermaleng.2024.123767_b0160 article-title: Excellent positive temperature coefficient behavior and electrical reproducibility of HDPE/(TiC-CB) composites publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2022.111334 – volume: 100 start-page: 82 year: 2016 ident: 10.1016/j.applthermaleng.2024.123767_b0030 article-title: Battery-assisted charging system for simultaneous charging of electric vehicles publication-title: Energy doi: 10.1016/j.energy.2016.01.069 – volume: 74 start-page: 447 year: 2014 ident: 10.1016/j.applthermaleng.2024.123767_b0170 article-title: Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures publication-title: Energy doi: 10.1016/j.energy.2014.07.009 – volume: 195 year: 2021 ident: 10.1016/j.applthermaleng.2024.123767_b0090 article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117234 – volume: 236 year: 2024 ident: 10.1016/j.applthermaleng.2024.123767_b0025 article-title: Microencapsulation of eutectic phase change materials for temperature management of the satellite electronic board publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121592 – volume: 83 start-page: 164 year: 2015 ident: 10.1016/j.applthermaleng.2024.123767_b0070 article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.11.079 – volume: 95 start-page: 1038 year: 2016 ident: 10.1016/j.applthermaleng.2024.123767_b0085 article-title: Study on PID temperature control performance of a novel PTC material with room temperature Curie point publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.12.057 |
SSID | ssj0012874 |
Score | 2.4497335 |
Snippet | •A material with high resistance temperature coefficient was prepared.•The prepared material has excellent thermal cycling stability.•The lightweight design of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123767 |
SubjectTerms | Adaptive temperature control High-accuracy temperature control PTC material Resistance-temperature coefficient |
Title | High-precision adaptive temperature control performance of thin positive temperature coefficient materials with ultra-high resistance-temperature coefficient |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.123767 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrE-Sg69xnabza7Bg5RiqYq9qNDbkidWtF3K9uo_8b86000fooLgcTebsGRmZ77JfvlCSN23DPcOPqQ0sYLFzkdMa26ZTjwUHym0KVzQv-8nvaf4diAGFdKZ74VBWmWI_WVMn0XrcKcRZrORD4eNh4gLCekPEhRq1AmMw3Gcopefvy9oHhHquc-KLiEZPr1B6kuOF_4kRpz1pvDYEqgWW_F5hDyR9Oc0tZJ6ujtkO2BG2i5fa5dU3GiPbK0oCe6TD-RrsHwSTsyhyqocAxlF6amgm0wDLZ3my80CdOxp8Twc0ZK89a2DmylMQGKigGxLZ6W4dEunr8VEMRQ7plCwIwiF0dgvnQ_IU_f6sdNj4eQFZjhvFizRPtWR1lIaE6eAoFwztnAZGa-Uddw0rdXeQGloFE-UBZQCzQAWUQ3OKc4PydpoPHJHhF5IL41uGimwCge8aK20WmibCmlsElXJ5XyiMxNkyfF0jNdszj97yb6aKUMzZaWZqkQseuelPMcf-13NbZp9cbcMMsmfRjj-9wgnZBOvkHwSiVOyVkym7gwQTqFrMxeukfX2zV2v_wmPhgY0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSyQxEC5EQXcfxGvR9cqDPsaZPtJtEFnEg_F8UcG3NieO6NiMLeKL_8Rf4R_cqumMB7ogLD52h4QmlVR9lf7yFcCSj03iHW6kPLOCp85HXOvEcp15TD5ybFN0oH94lLVO070zcTYAz_27MESrDL6_9uk9bx3eNMJsNsp2u3EcJUJi-MMARRp1Ig7Myn33cI952-367hYaeTmOd7ZPNls8lBbgBhP4imfa5zrSWkpj0hwhgmumFh8j45WyLjFNa7U3mPsYlWTKYhjGZkRDJHfmFJ2Cot8fStFdUNmElccXXklEAvK9LE9ITp83DEuvpDL6K03A7lpRnRRMT-N0JSJiSv55XHwT63bGYDSAVLZRz8M4DLjOBPx8I104CU9EEOFlN5ToYcqqkjwnI62rINTMAg-ela-3E9iNZ9VFu8NqttiHDq4naYGRkCGUrncHo7NidndVdRUndWXWdbeEenE0_o_OU3D6Lfb4BYOdm46bBrYqvTS6aaSgtB8BqrXSaqFtLqSxWTQDa_2JLkzQQadyHFdFn_B2Wbw3U0FmKmozzYB46V3WeiBf7Penb9Pi3fouMHR9aYTf_z3CIoy0Tg4PioPdo_1Z-EEtxHyJxBwMVt07N4_wqtILveXM4Py7989fzqpEZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-precision+adaptive+temperature+control+performance+of+thin+positive+temperature+coefficient+materials+with+ultra-high+resistance-temperature+coefficient&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Yin-Fa&rft.au=Hao%2C+Jian-Min&rft.au=Zhang%2C+Wei&rft.au=Shen%2C+Yi-Tao&rft.date=2024-09-15&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=253&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.123767&rft.externalDocID=S1359431124014352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |