Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces

As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifyin...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 295; p. 102503
Main Authors Zheng, Shao-Fei, Gross, Ulrich, Wang, Xiao-Dong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text
ISSN0001-8686
1873-3727
1873-3727
DOI10.1016/j.cis.2021.102503

Cover

Loading…
Abstract As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation. [Display omitted] •Progress of dropwise condensation (DWC) on advanced functional surfaces.•Key components for the performance enhancement of dropwise condensation.•Overview of fundamental understanding and heat transfer enhancement.•Challenges and future prospects in the practical application of dropwise condensation.
AbstractList As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation. [Display omitted] •Progress of dropwise condensation (DWC) on advanced functional surfaces.•Key components for the performance enhancement of dropwise condensation.•Overview of fundamental understanding and heat transfer enhancement.•Challenges and future prospects in the practical application of dropwise condensation.
As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation.As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation.
ArticleNumber 102503
Author Gross, Ulrich
Zheng, Shao-Fei
Wang, Xiao-Dong
Author_xml – sequence: 1
  givenname: Shao-Fei
  surname: Zheng
  fullname: Zheng, Shao-Fei
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
– sequence: 2
  givenname: Ulrich
  surname: Gross
  fullname: Gross, Ulrich
  organization: Institute of Thermal Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 7, Freiberg 09599, Germany
– sequence: 3
  givenname: Xiao-Dong
  surname: Wang
  fullname: Wang, Xiao-Dong
  email: wangxd99@gmail.com
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
BookMark eNp9kc9u1DAQxq2qSN0WHoCbjxyaxX9iJ8AJlZZWqsQFztbEGSOvEnuxna32LXhknG5PHHqyZvT9vpnxd0nOQwxIyHvOtpxx_XG3tT5vBRO81kIxeUY2vO9kIzvRnZMNY4w3ve71BbnMeVdLoTq1IX-_pbh_8hmpjWHEkKH4GD7TuxRn6pYwwoyhwJRpdPQJS_Hh9zUNi53wWXlNIYx0rCYTFjrHwU--HGmJdI_JxTRDsEj9vE_xgKsVHY4UxsPaHtcBdnWBieYlObCY35I3ro7Ddy_vFfl1d_vz5r55_PH94ebrY2OlZKXR0PWubZlDC9pJNqBzbGg_DZKjE4NyQjOpHQ5KjQwGAK2Qd5YhcM0U4_KKfDj51s3-LJiLmX22OE0QMC7ZCKVlK7Ts2yrtTlKbYs4JnbG-PF9fEvjJcGbWDMyu9itYMzCnDCrJ_yP3yc-Qjq8yX04M1usPHpPJ1uP6XT6hLWaM_hX6H-HDpXg
CitedBy_id crossref_primary_10_1016_j_rser_2024_115135
crossref_primary_10_1016_j_cis_2023_103075
crossref_primary_10_1016_j_applthermaleng_2023_121600
crossref_primary_10_1016_j_energy_2025_134412
crossref_primary_10_1016_j_icheatmasstransfer_2024_108516
crossref_primary_10_1038_s41467_023_40157_5
crossref_primary_10_1063_5_0134579
crossref_primary_10_3390_biomimetics8010062
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126397
crossref_primary_10_1016_j_applthermaleng_2022_118233
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123929
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123926
crossref_primary_10_1016_j_icheatmasstransfer_2023_107114
crossref_primary_10_1016_j_surfin_2024_104055
crossref_primary_10_1016_j_applthermaleng_2023_120591
crossref_primary_10_1016_j_progpolymsci_2025_101933
crossref_primary_10_1021_acs_langmuir_2c00496
crossref_primary_10_1080_10407782_2022_2105059
crossref_primary_10_1063_5_0222367
crossref_primary_10_1021_acsnano_4c15277
crossref_primary_10_1016_j_applthermaleng_2022_119437
crossref_primary_10_1016_j_surfcoat_2022_128514
crossref_primary_10_1021_acs_langmuir_4c03358
crossref_primary_10_1016_j_icheatmasstransfer_2021_105836
crossref_primary_10_1021_acs_iecr_2c00717
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124929
crossref_primary_10_1016_j_pnucene_2024_105112
crossref_primary_10_1021_acs_langmuir_3c02078
crossref_primary_10_1021_acs_langmuir_4c01809
crossref_primary_10_1002_adma_202407856
crossref_primary_10_1002_pssa_202300482
crossref_primary_10_1016_j_ijft_2024_100782
crossref_primary_10_1016_j_porgcoat_2024_108814
crossref_primary_10_1021_acs_chemmater_2c00964
crossref_primary_10_1021_acs_langmuir_3c03758
crossref_primary_10_1002_adfm_202305029
crossref_primary_10_1016_j_surfin_2024_104271
crossref_primary_10_1016_j_applthermaleng_2023_120891
crossref_primary_10_1016_j_cis_2022_102684
crossref_primary_10_1016_j_icheatmasstransfer_2024_107295
crossref_primary_10_1016_j_icheatmasstransfer_2025_108585
crossref_primary_10_1021_acs_langmuir_2c02897
crossref_primary_10_1016_j_cis_2021_102564
crossref_primary_10_1016_j_energy_2024_132564
crossref_primary_10_1021_acsnano_4c17632
crossref_primary_10_1016_j_surfin_2023_102685
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126105
crossref_primary_10_1021_acsnano_4c06339
crossref_primary_10_1039_D0CS01033B
crossref_primary_10_1016_j_ijthermalsci_2024_109469
crossref_primary_10_1002_admi_202400396
crossref_primary_10_1063_5_0181485
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123757
crossref_primary_10_1016_j_applthermaleng_2022_118928
Cites_doi 10.1002/adfm.201101302
10.1016/j.ijheatmasstransfer.2015.09.079
10.1021/nl504628s
10.1016/j.ijheatmasstransfer.2020.119734
10.1021/la304264g
10.1021/nn303867y
10.1016/j.joule.2018.08.014
10.1021/acs.langmuir.9b02603
10.1115/1.4002396
10.1098/rstl.1805.0005
10.1021/acsami.9b22417
10.1016/j.ijheatmasstransfer.2018.12.068
10.1038/ncomms2253
10.1038/nature16956
10.1021/acs.langmuir.5b03778
10.1063/5.0011642
10.1016/0300-9467(76)87016-5
10.1126/sciadv.aax0746
10.1038/s41598-017-18955-x
10.1002/admi.202001176
10.1016/j.ijheatmasstransfer.2018.08.134
10.1073/pnas.0405885101
10.1002/admi.201400480
10.1016/j.ijheatmasstransfer.2014.09.080
10.1016/j.ijheatmasstransfer.2014.04.041
10.1002/adma.200501961
10.1146/annurev-fluid-121108-145558
10.1021/nl0717457
10.1038/srep30764
10.1016/j.ijheatmasstransfer.2020.119839
10.1021/acsami.6b05324
10.1038/154515a0
10.1103/PhysicsPhysiqueFizika.3.255
10.1016/S0017-9310(02)00059-5
10.1021/ie50234a018
10.1115/1.3244527
10.1021/la302599n
10.1039/C4SM01424C
10.1038/432036a
10.1016/j.ijheatmasstransfer.2019.03.019
10.1016/j.ijthermalsci.2013.01.011
10.1021/la300609f
10.1002/adma.201806501
10.1126/sciadv.aaq0919
10.1016/j.ijheatmasstransfer.2017.02.086
10.1080/15567265.2013.862889
10.1016/j.applthermaleng.2020.115264
10.1016/j.apsusc.2009.11.020
10.1016/j.ijheatmasstransfer.2019.04.135
10.1063/1.4825273
10.1063/1.5082727
10.1016/j.ijheatmasstransfer.2018.09.100
10.1002/adfm.201301984
10.1038/nature08729
10.1016/j.ijheatmasstransfer.2017.08.112
10.1016/j.ijheatmasstransfer.2020.119352
10.1038/ncomms2482
10.1021/acsami.6b00852
10.1021/nn404707j
10.1016/0017-9310(73)90068-9
10.1016/j.ijheatmasstransfer.2014.11.009
10.1126/science.291.5504.633
10.1021/nn503643m
10.1002/adfm.201300418
10.1002/adma.201703002
10.1002/adma.201303065
10.1103/PhysRevLett.103.184501
10.1021/acsami.5b02376
10.1016/j.ijheatmasstransfer.2017.05.039
10.1016/j.ijheatmasstransfer.2018.01.098
10.1021/la950418o
10.1016/j.joule.2019.08.005
10.1007/s11998-017-0011-x
10.1073/pnas.1506874112
10.1021/jz500798m
10.1016/j.ijheatmasstransfer.2017.01.119
10.1021/acsami.8b09597
10.1038/s41586-020-2331-8
10.1002/admi.201500202
10.1021/acsnano.0c05223
10.1002/adfm.201800634
10.1007/s004250050096
10.1063/1.4906877
10.1002/anie.201500137
10.1016/j.applthermaleng.2020.115733
10.1115/1.4036763
10.1039/C3NR04755E
10.1016/j.ijheatmasstransfer.2017.12.059
10.3762/bjnano.2.19
10.1016/j.applthermaleng.2018.09.076
10.1016/j.joule.2017.11.010
10.1016/j.ijheatmasstransfer.2013.01.032
10.1021/acsnano.9b10184
10.1016/S0017-9310(97)00094-X
10.1038/277548a0
10.1016/0017-9310(86)90142-0
10.1039/C5CP03243A
10.1073/pnas.1817172116
10.1016/j.nanoen.2017.01.018
10.1021/nn300183d
10.1016/j.ijheatmasstransfer.2017.04.061
10.1021/acsnano.9b03275
10.1038/nmat3545
10.1016/j.cis.2018.03.008
10.1063/1.3200951
10.1115/1.4024597
10.1038/nature10447
10.1016/j.cis.2013.10.018
10.1115/1.4003742
10.1021/acsami.7b01812
10.1016/j.ces.2007.10.016
10.1016/j.cej.2020.126901
10.1021/acs.langmuir.6b03752
10.1002/adma.201301876
10.1021/acsami.8b09067
10.1021/acsami.9b06001
10.1016/j.ijheatmasstransfer.2020.119349
10.1006/jcis.1995.1130
10.1002/anie.201001258
10.1016/j.applthermaleng.2014.10.019
10.1146/annurev.matsci.38.060407.132434
10.1021/la063130f
10.1016/j.ijheatmasstransfer.2018.01.108
10.1039/C7RA13496G
10.1063/1.4886410
10.1021/acs.nanolett.0c01086
10.1016/j.ijheatmasstransfer.2014.11.008
10.1115/1.4024424
10.1021/nn505716b
10.1021/acsnano.5b05607
10.1021/nl060644q
10.1039/C5SM01809A
10.1243/09576500260049034
10.1021/acs.langmuir.9b01253
10.1002/adfm.201707000
10.1021/acs.langmuir.8b01660
10.1021/nl303835d
10.1021/acsami.6b16248
10.1039/C5RA23836F
10.1126/science.290.5499.2130
10.1103/PhysRevFluids.1.064102
10.1073/pnas.1210770110
10.1021/acs.nanolett.9b01754
10.1016/j.ijheatmasstransfer.2018.08.015
10.1039/C4RA12352B
10.1016/j.joule.2019.03.004
10.1016/j.ijheatmasstransfer.2019.06.068
10.1021/acsnano.7b04481
10.1021/la503003r
10.1038/srep18649
10.1021/ie50320a024
10.1016/j.cis.2020.102329
10.1016/j.ijthermalsci.2009.05.004
10.1038/nature17189
10.1039/C9SM00493A
10.1038/natrevmats.2017.36
10.1038/ncomms3517
10.1093/nsr/nwy098
10.1038/35102108
10.1039/tf9444000546
10.1016/j.susc.2004.10.008
10.1021/acsnano.0c03961
10.1021/acsami.7b14960
10.1021/acsnano.0c03487
10.1088/1748-3182/3/4/046007
10.1016/j.applthermaleng.2020.115386
10.1021/la5028866
10.1016/j.jcis.2019.10.113
10.1021/ja062943n
10.1515/zpch-1926-11927
10.1021/acsami.5b03264
10.1016/j.ijheatmasstransfer.2014.11.069
10.1016/j.ijheatmasstransfer.2011.06.029
10.1002/adfm.201002733
10.1016/j.applthermaleng.2005.05.022
10.1016/j.ijheatmasstransfer.2017.11.139
10.1016/j.ijheatmasstransfer.2020.120172
10.1016/j.colsurfa.2017.04.001
10.1021/acsami.7b09681
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.cis.2021.102503
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1873-3727
ExternalDocumentID 10_1016_j_cis_2021_102503
S0001868621001445
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
7X8
ID FETCH-LOGICAL-c330t-6a78f440feca6f30beff0b49b31ef2b5f26036feb55d0abaa65e17c0ea1605013
IEDL.DBID .~1
ISSN 0001-8686
1873-3727
IngestDate Thu Sep 04 23:44:31 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Wed Sep 03 16:44:02 EDT 2025
Fri Feb 23 02:43:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Practical application
Micro/nanoscale features
Advanced functional surfaces
Dropwise condensation
Performance improvement
Fundamentals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-6a78f440feca6f30beff0b49b31ef2b5f26036feb55d0abaa65e17c0ea1605013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2563426384
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2563426384
crossref_citationtrail_10_1016_j_cis_2021_102503
crossref_primary_10_1016_j_cis_2021_102503
elsevier_sciencedirect_doi_10_1016_j_cis_2021_102503
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Advances in colloid and interface science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mukherjee, Berrier, Murphy, Vieitez, Boreyko (bb0485) 2019; 3
Miljkovic, Enright, Wang (bb0300) 1776-1785; 6
Enright, Miljkovic, Al-Obeidi, Thompson, Wang (bb0715) 2012; 28
Damle, Sun, Rykaczewski (bb0745) 2015; 2
Park, Kim, Grinthal, He, Fox, Weaver (bb0855) 2016; 531
Lo, Chu, Yen, Lu (bb0795) 2019; 3
Tian, Zhu, Guo, Li, Feng, Gao (bb0525) 2014; 5
Guo, Tang, Kumar (bb0825) 2019; 35
Oh, Zhang, Shetty, Krogstad, Braun, Miljkovic (bb0585) 2018; 28
Lv, Hao, Zhang, He (bb0560) 2015; 9
Oberli, Caruso, Hall, Fabretto, Murphy, Evans (bb0045) 2014; 210
Barthlott, Neinhuis (bb0155) 1997; 202
Wang, Li, Liang, Jiang, Zheng, Lan (bb0695) 2017; 111
Xiao, Miljkovic, Enright, Wang (bb0495) 1988; 3
Sharma, Stamatopoulos, Suter, von Rohr, Poulikakos (bb0520) 2018; 10
Enright, Miljkovic, Dou, Nam, Wang (bb0350) 2013; 135
Gong, Gao, Jiang (bb0075) 2017; 29
Xiu, Zhu, Hess, Wong (bb0765) 2007; 7
Mu, Pang, Lu, Liu (bb0210) 2008; 63
Varanasi, Hsu, Bhate, Yang, Deng (bb0225) 2009; 95
Zhai, Berg, Cebeci, Kim, Milwid, Rubner (bb0435) 2006; 6
Nam, Kim, Shin (bb0085) 2013; 103
Aili, Ge, Zhang (bb0235) 2017; 139
Castillo, Weibel, Garimella (bb0910) 2015; 80
Song, Lan, Ma, Bai (bb0230) 2009; 48
Orejon, Askounis, Takata, Attinger (bb0790) 2019; 11
Dorrer, Rühe (bb0530) 2007; 23
Lo, Wang, Lu (bb0270) 2014; 24
Shang, Hou, Yu, Yao (bb0360) 2018; 122
Vemuri, Kim, Wood, Govindaraju, Bell (bb0640) 2006; 26
Wen, Xu, Zhao, Yang, Ma, Liu (bb0580) 2018; 5
Yan, Zhang, Sett, Feng, Zhao, Huang (bb0780) 2019; 13
Rothstein (bb0065) 2010; 42
Xie, Xu, Shang, Zhang (bb0480) 2018; 122
Al-Khayat, Hong, Beck, Minett, Neto (bb0670) 2017; 9
Yang, Lin, Tu, He, Wang (bb0685) 2017; 115
Mulroe, Srijanto, Farzad Ahmadi, Patrick Collier, Boreyko (bb0730) 2017; 11
Miljkovic, Enright, Nam, Lopez, Dou, Sack (bb0105) 2013; 13
Kim, Nam (bb0365) 2016; 93
Miljkovic, Preston, Enright, Wang (bb0110) 2013; 4
Wang, Yang, Zhao (bb0100) 2011; 98
Abu-Orabi (bb0320) 1998; 41
Yan, Chen, Sett, Chavan, Li, Feng (bb0540) 2019; 13
Zhang, Lv, Askounis, Orejon, Shen (bb0880) 2017; 109
Traipattanakul, Tso, Chao (bb0505) 2019; 128
Feng, Bhushan (bb0555) 2020; 560
Donati, Lam, Milionis, Sharma, Tripathy, Zendeli (bb0955) 2021; 8
Chen, Patel, Weibel, Garimella (bb0095) 2016; 6
Ma, Sett, Cha, Yan, Miljkovic (bb0470) 2020; 116
Miljkovic, Preston, Enright, Wang (bb0500) 2013; 7
Gao, McCarthy (bb0150) 2006; 128
Shim, Seo, Oh, Lee, Nam (bb0655) 2018; 10
Wen, Li, Wu, Wu, Wang, Chen (bb0740) 2017; 33
Sadullah, Semprebon, Kusumaatmaja (bb0830) 2018; 34
Liang, He, Wang, Yang, Wang (bb0775) 2017; 523
Miljkovic, Enright, Wang (bb0345) 2013; 135
El Fil, Kini, Garimella (bb0305) 2020; 160
Wilke, Antao, Cruz, Iwata, Zhao, Leroy (bb0970) 2020; 14
Sun, Weisensee (bb0840) 2019; 15
Wang, Sun, Hokkanen, Zhang, Lin, Liu (bb0965) 2020; 582
Han, Cai, Lin, Liu, Luo, Zhang (bb0190) 2018; 8
Zheng, Eimann, Philipp, Fieback, Gross (bb0385) 2018; 120
Fogg (bb0145) 1944; 154
Huang, Leu (bb0610) 2015; 75
Zheng, Eimann, Philipp, Fieback, Gross (bb0935) 2019; 141
Le Fevre, Rose (bb0310) 1966; 2
Paxson, Yagüe, Gleason, Varanasi (bb0620) 2014; 26
Schellenberger, Xie, Encinas, Hardy, Klapper, Papadopoulos (bb0820) 2015; 11
Kaushik, Siva Reddy, Tyagi (bb0005) 1857-1872; 15
Wu, Yang, Cao, Zhang, Zhu, Wu (bb0770) 2017; 33
Cheng, Liu, Ye, Liu, Du, Jin (bb0570) 2021; 405
Baumli, D’Acunzi, Hegner, Naga, Wong, Butt (bb0810) 2021; 287
Hao, Liu, Chen, Li, Zhang, Zhao (bb0055) 1825-1839; 12
Watanabe, Aritomi, Machida (bb0395) 2014; 76
Extrand, Kumagai (bb0475) 1995; 170
Azimi, Dhiman, Kwon, Paxson, Varanasi (bb0650) 2013; 12
Luo, Li, Zhu, Zhao, Gao (bb0720) 2015; 54
Woodruff, Westwater (bb0590) 1981; 103
Maeda, Lv, Zhang, Takata, Orejon (bb0375) 2020; 176
Oh, Cha, Chen, Chavan, Kong, Miljkovic (bb0875) 2020; 14
Wang, Yao, Liu, Quéré, Jiang (bb0460) 2015; 112
Adera, Alvarenga, Shneidman, Zhang, Davitt, Aizenberg (bb0850) 2020; 14
Preston, Miljkovic, Sack, Enright, Queeney, Wang (bb0660) 2014; 105
Zheng, Eimann, Philipp, Fieback, Gross (bb0915) 2019; 139
Birbarah, Chavan, Miljkovic (bb0405) 2019; 35
Ma, Cahill, Miljkovic (bb0615) 2020; 20
Zheng, Eimann, Philipp, Fieback, Gross (bb0950) 2020; 151
Cassie, Baxter (bb0135) 1944; 40
Rose, Glicksman (bb0390) 1973; 16
Chen, Weibel, Garimella (bb0785) 2015; 2
Weisensee, Wang, Qian, Schultz, King, Miljkovic (bb0370) 2017; 109
Anderson, Gupta, Voevodin, Hunter, Putnam, Tsukruk (bb0575) 2012; 6
Chen, Zhang, Zhang, Liu, Jiang, Zhang (bb0445) 2016; 532
Jeevahan, Chandrasekaran, Britto Joseph, Durairaj, Mageshwaran (bb0185) 2018; 15
Kim, Cha, Birbarah, Chavan, Zhong, Xu (bb0690) 2015; 31
Peng, Ma, Lan, Xu, Wen (bb0280) 2015; 83
Cha, Vahabi, Wu, Chavan, Kim, Sett (bb0415) 2020; 6
Sharma, Combe, Giger, Emmerich, Poulikakos (bb0805) 1673-1682; 11
Paxson, Varanasi (bb0130) 2013; 4
Rykaczewski, Paxson, Anand, Chen, Wang, Varanasi (bb0700) 2013; 29
Sheng, Sun, Wang, Wang, Wang (bb0215) 2016; 6
Wisdom, Watson, Qu, Liu, Watson, Chen (bb0750) 2013; 110
Ju, Xiao, Yao, Bai, Jiang (bb0550) 2013; 25
Xie, Xu, Li, Liu (bb0960) 2019; 129
Eimann, Zheng, Philipp, Omranpoor, Gross (bb0945) 2020; 154
Fisher, Israelachvili (bb0205) 1979; 277
Kim, Kim (bb0330) 2011; 133
Li, Li, Sun, Feng, Wang (bb0060) 2019; 31
Ju, Bai, Zheng, Zhao, Fang, Jiang (bb0465) 2012; 3
Khandekar, Muralidhar (bb0040) 2020
Grooten, van der Geld (bb0900) 2011; 54
Baghel, Sikarwar, Muralidhar (bb0410) 2020; 181
Sett, Sokalski, Boyina, Li, Rabbi, Auby (bb0870) 2019; 19
Jiang, Gao, Zhang, He, Zhang, Daniel (bb0835) 2019; 116
Quéré (bb0050) 2008; 38
Onda, Shibuichi, Satoh, Tsujii (bb0140) 1996; 12
Liu, Cheng (bb0400) 2015; 83
Liu, Cheng (bb0335) 2015; 83
Castillo, Weibel (bb0930) 2019; 133
Ge, Raza, Li, Sett, Miljkovic, Zhang (bb0845) 2020; 12
Parker, Lawrence (bb0160) 2001; 414
Hou, Yu, Chen, Wang, Yao (bb0255) 2015; 9
Liu, Chen, Xin (bb0170) 2008; 3
Kim, Jeong (bb0595) 2019; 136
Xing, Wang, Wu, Gao (bb0760) 2020; 12
Enright, Miljkovic, Sprittles, Nolan, Mitchell, Wang (bb0090) 2014; 8
Li, Alhosani, Yuan, Liu, Al Ghaferi, Zhang (bb0380) 2014; 30
Zheng, Eimann, Fieback, Xie, Gross (bb0510) 2018; 145
Cheng, Du, Wang, Chen, Lan, Wang (bb0705) 2019; 114
Aili, Li, Alhosani, Zhang (bb0800) 2016; 8
Yan, Qin, Chen, Zhao, Sett, Hoque (bb0565) 2020; 14
Wen, Lan, Peng, Xu, Yang, Ma (bb0195) 2017; 9
Zhao, Luo, Zhu, Li, Gao (bb0755) 2015; 7
Gao, Jiang (bb0165) 2004; 432
Xu, Lan, Peng, Wen, Ma (bb0260) 2015; 142
Zhang, Maeda, Lv, Takata, Orejon (bb0535) 2017; 9
Rose (bb0030) 2002; 216
Boreyko, Chen (bb0080) 2009; 103
Xu, Lan, Peng, Wen, Ma (bb0250) 2016; 6
Chen, Wu, Ma, Hua, Koratkar, Yao (bb0275) 2011; 21
Preston, Mafra, Miljkovic, Kong, Wang (bb0665) 2015; 15
Alwazzan, Egab, Peng, Khan, Li (bb0680) 2017; 112
Wu, Maa (bb0315) 1976; 12
Sikarwar, Battoo, Khandekar, Muralidhar (bb0325) 2011; 133
Volmer, Weber (bb0220) 1926; 119
Xu, Lan, Peng, Wen, Ma (bb0245) 2015; 5
Li, Li, Sun (bb0645) 2010; 49
Wen, Xu, Zhao, Lee, Ma, Yang (bb0290) 2017; 9
Ghosh, Beaini, Zhang, Megaridis (bb0885) 2014; 30
Daniel, Chaudhury, Chen (bb0545) 2001; 291
Zhang, Mou, Zhang, Fan, Li (bb0925) 2020; 150
Fu, Liu, Wilson, Chen (bb0240) 2015; 17
Othmer (bb0890) 1929; 21
Zhu, Luo, Tian, Li, Gao (bb0725) 2015; 7
Anand, Paxson, Dhiman, David Smith, Varanasi (bb0490) 2012; 6
Wong, Kang, Tang, Smythe, Hatton, Grinthal (bb0455) 2011; 477
Bixler, Bhushan (bb0430) 2014; 6
Wenzel (bb0125) 1936; 28
Niu, Guo, Hu, Tang (bb0340) 2017; 112
Dai, Sun, Nielsen, Stogin, Wang, Yang (bb0860) 2018; 4
Fisher (bb0200) 1967; 3
Feng, Jiang (bb0180) 2006; 18
Zhao, Preston, Lu, Zhang, Queeney, Wang (bb0940) 2018; 119
Preston, Lu, Song, Zhao, Wilke, Antao (bb0865) 2018; 8
Bohn, Federle (bb0450) 2004; 101
Eimann, Zheng, Philipp, Fieback, Gross (bb0515) 2018; 127
Tokunaga, Tsuruta (bb0675) 2020; 156
Enright, Miljkovic, Alvarado, Kim, Rose (bb0070) 2014; 18
Lan, Wen, Wang, Ma (bb0905) 2013; 68
Feng, Qin, Yao (bb0710) 2012; 28
Wen, Xu, Ma, Lee, Yang (bb0295) 2018; 2
Wu, Wang, Wu, Chen, Zhao, Zhang (bb0425) 2011; 21
Kulinich, Farzaneh (bb0625) 2004; 573
Lee, Yoon, Kim, Kim, Kennedy, Zhang (bb0355) 2013; 60
Ma, Chen, Xu, Lin, Ren, Long (bb0600) 2002; 45
Ensikat, Ditsche-Kuru, Neinhuis, Barthlott (bb0420) 2011; 2
Chandekar, Sengupta, Whitten (bb0635) 2010; 256
Marto, Looney, Rose, Wanniarachchi (bb0605) 1986; 29
Ma, Zhou, Lan, Li, Zhang (bb0895) 1728-1737; 51
Schmidt, Schurig, Sellschopp (bb0035) 1930; 1
Carey (bb0010) 2008
Liu, Wang, Jiang (bb0175) 2017; 2
Mishchenko, Khan, Aizenberg, Hatton (bb0265) 2013; 23
Ölçeroğlu, McCarthy (bb0285) 2016; 8
Anand, Rykaczewski, Subramanyam, Beysens, Varanasi (bb0815) 2015; 11
Wen, Ma, Lee, Yang (bb0020) 2018; 2
Cha, Xu, Sotelo, Chun, Yokoyama, Enright (bb0115) 2016; 1
Wang, Zhu, Meng, Wang, Deng, Gao (bb0735) 2018; 28
Jeremy Cho, Preston, Zhu, Wang (bb0015) 2017; 2
Young (bb0120) 1805; 95
Genzer, Efimenko (bb0630) 2000; 290
Zheng, Bai, Huang, Tian, Nie, Zhao (bb0440) 2010; 463
Ji, Lee, Kim, Hwang, Lee (bb0920) 2020; 174
Snustad, Røe, Brunsvold, Ervik, He, Zhang (bb0025) 2018; 256
Ji (10.1016/j.cis.2021.102503_bb0920) 2020; 174
Wen (10.1016/j.cis.2021.102503_bb0740) 2017; 33
Lan (10.1016/j.cis.2021.102503_bb0905) 2013; 68
Liu (10.1016/j.cis.2021.102503_bb0175) 2017; 2
Parker (10.1016/j.cis.2021.102503_bb0160) 2001; 414
Peng (10.1016/j.cis.2021.102503_bb0280) 2015; 83
Sun (10.1016/j.cis.2021.102503_bb0840) 2019; 15
Jiang (10.1016/j.cis.2021.102503_bb0835) 2019; 116
Rothstein (10.1016/j.cis.2021.102503_bb0065) 2010; 42
Sharma (10.1016/j.cis.2021.102503_bb0520) 2018; 10
Schellenberger (10.1016/j.cis.2021.102503_bb0820) 2015; 11
Kaushik (10.1016/j.cis.2021.102503_bb0005) 1857; 15
Chen (10.1016/j.cis.2021.102503_bb0275) 2011; 21
Damle (10.1016/j.cis.2021.102503_bb0745) 2015; 2
Chandekar (10.1016/j.cis.2021.102503_bb0635) 2010; 256
Song (10.1016/j.cis.2021.102503_bb0230) 2009; 48
Xie (10.1016/j.cis.2021.102503_bb0480) 2018; 122
Mishchenko (10.1016/j.cis.2021.102503_bb0265) 2013; 23
Wang (10.1016/j.cis.2021.102503_bb0735) 2018; 28
Hou (10.1016/j.cis.2021.102503_bb0255) 2015; 9
Zhao (10.1016/j.cis.2021.102503_bb0755) 2015; 7
Abu-Orabi (10.1016/j.cis.2021.102503_bb0320) 1998; 41
Mulroe (10.1016/j.cis.2021.102503_bb0730) 2017; 11
Enright (10.1016/j.cis.2021.102503_bb0090) 2014; 8
Le Fevre (10.1016/j.cis.2021.102503_bb0310) 1966; 2
Xu (10.1016/j.cis.2021.102503_bb0250) 2016; 6
Cha (10.1016/j.cis.2021.102503_bb0115) 2016; 1
Wen (10.1016/j.cis.2021.102503_bb0020) 2018; 2
Xu (10.1016/j.cis.2021.102503_bb0260) 2015; 142
Hao (10.1016/j.cis.2021.102503_bb0055) 1825; 12
Xu (10.1016/j.cis.2021.102503_bb0245) 2015; 5
Xiao (10.1016/j.cis.2021.102503_bb0495) 1988; 3
Preston (10.1016/j.cis.2021.102503_bb0865) 2018; 8
Wen (10.1016/j.cis.2021.102503_bb0290) 2017; 9
Liu (10.1016/j.cis.2021.102503_bb0400) 2015; 83
Al-Khayat (10.1016/j.cis.2021.102503_bb0670) 2017; 9
Mu (10.1016/j.cis.2021.102503_bb0210) 2008; 63
Dorrer (10.1016/j.cis.2021.102503_bb0530) 2007; 23
Eimann (10.1016/j.cis.2021.102503_bb0515) 2018; 127
Luo (10.1016/j.cis.2021.102503_bb0720) 2015; 54
Wenzel (10.1016/j.cis.2021.102503_bb0125) 1936; 28
Barthlott (10.1016/j.cis.2021.102503_bb0155) 1997; 202
Wang (10.1016/j.cis.2021.102503_bb0695) 2017; 111
Anderson (10.1016/j.cis.2021.102503_bb0575) 2012; 6
Xie (10.1016/j.cis.2021.102503_bb0960) 2019; 129
Zhu (10.1016/j.cis.2021.102503_bb0725) 2015; 7
Tian (10.1016/j.cis.2021.102503_bb0525) 2014; 5
Yan (10.1016/j.cis.2021.102503_bb0565) 2020; 14
Preston (10.1016/j.cis.2021.102503_bb0660) 2014; 105
Anand (10.1016/j.cis.2021.102503_bb0490) 2012; 6
Wen (10.1016/j.cis.2021.102503_bb0580) 2018; 5
Eimann (10.1016/j.cis.2021.102503_bb0945) 2020; 154
Ensikat (10.1016/j.cis.2021.102503_bb0420) 2011; 2
Lv (10.1016/j.cis.2021.102503_bb0560) 2015; 9
Ma (10.1016/j.cis.2021.102503_bb0895) 1728; 51
Li (10.1016/j.cis.2021.102503_bb0060) 2019; 31
Wisdom (10.1016/j.cis.2021.102503_bb0750) 2013; 110
Carey (10.1016/j.cis.2021.102503_bb0010) 2008
Miljkovic (10.1016/j.cis.2021.102503_bb0345) 2013; 135
Li (10.1016/j.cis.2021.102503_bb0645) 2010; 49
Azimi (10.1016/j.cis.2021.102503_bb0650) 2013; 12
Liang (10.1016/j.cis.2021.102503_bb0775) 2017; 523
Dai (10.1016/j.cis.2021.102503_bb0860) 2018; 4
Weisensee (10.1016/j.cis.2021.102503_bb0370) 2017; 109
Zhang (10.1016/j.cis.2021.102503_bb0880) 2017; 109
Ghosh (10.1016/j.cis.2021.102503_bb0885) 2014; 30
Gao (10.1016/j.cis.2021.102503_bb0150) 2006; 128
Watanabe (10.1016/j.cis.2021.102503_bb0395) 2014; 76
Extrand (10.1016/j.cis.2021.102503_bb0475) 1995; 170
Zhang (10.1016/j.cis.2021.102503_bb0535) 2017; 9
Enright (10.1016/j.cis.2021.102503_bb0715) 2012; 28
Quéré (10.1016/j.cis.2021.102503_bb0050) 2008; 38
Xiu (10.1016/j.cis.2021.102503_bb0765) 2007; 7
Chen (10.1016/j.cis.2021.102503_bb0445) 2016; 532
Onda (10.1016/j.cis.2021.102503_bb0140) 1996; 12
Zhai (10.1016/j.cis.2021.102503_bb0435) 2006; 6
Ma (10.1016/j.cis.2021.102503_bb0600) 2002; 45
Aili (10.1016/j.cis.2021.102503_bb0800) 2016; 8
Boreyko (10.1016/j.cis.2021.102503_bb0080) 2009; 103
Feng (10.1016/j.cis.2021.102503_bb0710) 2012; 28
Woodruff (10.1016/j.cis.2021.102503_bb0590) 1981; 103
Wu (10.1016/j.cis.2021.102503_bb0770) 2017; 33
Daniel (10.1016/j.cis.2021.102503_bb0545) 2001; 291
Wang (10.1016/j.cis.2021.102503_bb0100) 2011; 98
Fogg (10.1016/j.cis.2021.102503_bb0145) 1944; 154
Shang (10.1016/j.cis.2021.102503_bb0360) 2018; 122
Bixler (10.1016/j.cis.2021.102503_bb0430) 2014; 6
Sikarwar (10.1016/j.cis.2021.102503_bb0325) 2011; 133
Ju (10.1016/j.cis.2021.102503_bb0465) 2012; 3
Sharma (10.1016/j.cis.2021.102503_bb0805) 1673; 11
Paxson (10.1016/j.cis.2021.102503_bb0130) 2013; 4
Mukherjee (10.1016/j.cis.2021.102503_bb0485) 2019; 3
Ge (10.1016/j.cis.2021.102503_bb0845) 2020; 12
Fu (10.1016/j.cis.2021.102503_bb0240) 2015; 17
Fisher (10.1016/j.cis.2021.102503_bb0205) 1979; 277
Enright (10.1016/j.cis.2021.102503_bb0070) 2014; 18
Miljkovic (10.1016/j.cis.2021.102503_bb0300) 1776; 6
Traipattanakul (10.1016/j.cis.2021.102503_bb0505) 2019; 128
Maeda (10.1016/j.cis.2021.102503_bb0375) 2020; 176
Rose (10.1016/j.cis.2021.102503_bb0030) 2002; 216
Wen (10.1016/j.cis.2021.102503_bb0295) 2018; 2
Zheng (10.1016/j.cis.2021.102503_bb0440) 2010; 463
Preston (10.1016/j.cis.2021.102503_bb0665) 2015; 15
Donati (10.1016/j.cis.2021.102503_bb0955) 2021; 8
Kim (10.1016/j.cis.2021.102503_bb0330) 2011; 133
Enright (10.1016/j.cis.2021.102503_bb0350) 2013; 135
Young (10.1016/j.cis.2021.102503_bb0120) 1805; 95
Guo (10.1016/j.cis.2021.102503_bb0825) 2019; 35
Khandekar (10.1016/j.cis.2021.102503_bb0040) 2020
Miljkovic (10.1016/j.cis.2021.102503_bb0105) 2013; 13
Castillo (10.1016/j.cis.2021.102503_bb0930) 2019; 133
Bohn (10.1016/j.cis.2021.102503_bb0450) 2004; 101
Adera (10.1016/j.cis.2021.102503_bb0850) 2020; 14
Paxson (10.1016/j.cis.2021.102503_bb0620) 2014; 26
Lo (10.1016/j.cis.2021.102503_bb0270) 2014; 24
Cassie (10.1016/j.cis.2021.102503_bb0135) 1944; 40
Niu (10.1016/j.cis.2021.102503_bb0340) 2017; 112
Jeevahan (10.1016/j.cis.2021.102503_bb0185) 2018; 15
Volmer (10.1016/j.cis.2021.102503_bb0220) 1926; 119
Varanasi (10.1016/j.cis.2021.102503_bb0225) 2009; 95
Schmidt (10.1016/j.cis.2021.102503_bb0035) 1930; 1
Zheng (10.1016/j.cis.2021.102503_bb0950) 2020; 151
Wilke (10.1016/j.cis.2021.102503_bb0970) 2020; 14
Baumli (10.1016/j.cis.2021.102503_bb0810) 2021; 287
Birbarah (10.1016/j.cis.2021.102503_bb0405) 2019; 35
Sadullah (10.1016/j.cis.2021.102503_bb0830) 2018; 34
Cheng (10.1016/j.cis.2021.102503_bb0705) 2019; 114
Cheng (10.1016/j.cis.2021.102503_bb0570) 2021; 405
Sett (10.1016/j.cis.2021.102503_bb0870) 2019; 19
Orejon (10.1016/j.cis.2021.102503_bb0790) 2019; 11
Nam (10.1016/j.cis.2021.102503_bb0085) 2013; 103
Aili (10.1016/j.cis.2021.102503_bb0235) 2017; 139
Yang (10.1016/j.cis.2021.102503_bb0685) 2017; 115
Wen (10.1016/j.cis.2021.102503_bb0195) 2017; 9
Gong (10.1016/j.cis.2021.102503_bb0075) 2017; 29
Vemuri (10.1016/j.cis.2021.102503_bb0640) 2006; 26
Liu (10.1016/j.cis.2021.102503_bb0170) 2008; 3
Feng (10.1016/j.cis.2021.102503_bb0180) 2006; 18
Wang (10.1016/j.cis.2021.102503_bb0460) 2015; 112
Xing (10.1016/j.cis.2021.102503_bb0760) 2020; 12
Fisher (10.1016/j.cis.2021.102503_bb0200) 1967; 3
Kim (10.1016/j.cis.2021.102503_bb0690) 2015; 31
Chen (10.1016/j.cis.2021.102503_bb0095) 2016; 6
Wang (10.1016/j.cis.2021.102503_bb0965) 2020; 582
El Fil (10.1016/j.cis.2021.102503_bb0305) 2020; 160
Ju (10.1016/j.cis.2021.102503_bb0550) 2013; 25
Othmer (10.1016/j.cis.2021.102503_bb0890) 1929; 21
Zheng (10.1016/j.cis.2021.102503_bb0510) 2018; 145
Baghel (10.1016/j.cis.2021.102503_bb0410) 2020; 181
Anand (10.1016/j.cis.2021.102503_bb0815) 2015; 11
Miljkovic (10.1016/j.cis.2021.102503_bb0500) 2013; 7
Oh (10.1016/j.cis.2021.102503_bb0585) 2018; 28
Kulinich (10.1016/j.cis.2021.102503_bb0625) 2004; 573
Wong (10.1016/j.cis.2021.102503_bb0455) 2011; 477
Huang (10.1016/j.cis.2021.102503_bb0610) 2015; 75
Cha (10.1016/j.cis.2021.102503_bb0415) 2020; 6
Sheng (10.1016/j.cis.2021.102503_bb0215) 2016; 6
Ma (10.1016/j.cis.2021.102503_bb0470) 2020; 116
Wu (10.1016/j.cis.2021.102503_bb0425) 2011; 21
Gao (10.1016/j.cis.2021.102503_bb0165) 2004; 432
Yan (10.1016/j.cis.2021.102503_bb0540) 2019; 13
Oh (10.1016/j.cis.2021.102503_bb0875) 2020; 14
Kim (10.1016/j.cis.2021.102503_bb0365) 2016; 93
Snustad (10.1016/j.cis.2021.102503_bb0025) 2018; 256
Feng (10.1016/j.cis.2021.102503_bb0555) 2020; 560
Alwazzan (10.1016/j.cis.2021.102503_bb0680) 2017; 112
Ölçeroğlu (10.1016/j.cis.2021.102503_bb0285) 2016; 8
Wu (10.1016/j.cis.2021.102503_bb0315) 1976; 12
Castillo (10.1016/j.cis.2021.102503_bb0910) 2015; 80
Marto (10.1016/j.cis.2021.102503_bb0605) 1986; 29
Park (10.1016/j.cis.2021.102503_bb0855) 2016; 531
Zhao (10.1016/j.cis.2021.102503_bb0940) 2018; 119
Rose (10.1016/j.cis.2021.102503_bb0390) 1973; 16
Tokunaga (10.1016/j.cis.2021.102503_bb0675) 2020; 156
Zheng (10.1016/j.cis.2021.102503_bb0385) 2018; 120
Liu (10.1016/j.cis.2021.102503_bb0335) 2015; 83
Rykaczewski (10.1016/j.cis.2021.102503_bb0700) 2013; 29
Ma (10.1016/j.cis.2021.102503_bb0615) 2020; 20
Shim (10.1016/j.cis.2021.102503_bb0655) 2018; 10
Zheng (10.1016/j.cis.2021.102503_bb0915) 2019; 139
Zhang (10.1016/j.cis.2021.102503_bb0925) 2020; 150
Zheng (10.1016/j.cis.2021.102503_bb0935) 2019; 141
Yan (10.1016/j.cis.2021.102503_bb0780) 2019; 13
Grooten (10.1016/j.cis.2021.102503_bb0900) 2011; 54
Miljkovic (10.1016/j.cis.2021.102503_bb0110) 2013; 4
Kim (10.1016/j.cis.2021.102503_bb0595) 2019; 136
Lee (10.1016/j.cis.2021.102503_bb0355) 2013; 60
Genzer (10.1016/j.cis.2021.102503_bb0630) 2000; 290
Jeremy Cho (10.1016/j.cis.2021.102503_bb0015) 2017; 2
Li (10.1016/j.cis.2021.102503_bb0380) 2014; 30
Han (10.1016/j.cis.2021.102503_bb0190) 2018; 8
Oberli (10.1016/j.cis.2021.102503_bb0045) 2014; 210
Lo (10.1016/j.cis.2021.102503_bb0795) 2019; 3
Chen (10.1016/j.cis.2021.102503_bb0785) 2015; 2
References_xml – volume: 133
  year: 2011
  ident: bb0330
  article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces
  publication-title: J Heat Transfer
– volume: 116
  start-page: 2482
  year: 2019
  end-page: 2487
  ident: bb0835
  article-title: Directional pumping of water and oil microdroplets on slippery surface
  publication-title: Proc Natl Acad Sci U S A
– volume: 573
  start-page: 379
  year: 2004
  end-page: 390
  ident: bb0625
  article-title: Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers
  publication-title: Surf Sci
– volume: 9
  start-page: 44911
  year: 2017
  end-page: 44921
  ident: bb0290
  article-title: Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation
  publication-title: ACS Appl Mater Interfaces
– volume: 40
  start-page: 546
  year: 1944
  end-page: 551
  ident: bb0135
  article-title: Wettability of porous surface
  publication-title: Trans Faraday Soc
– volume: 21
  start-page: 4617
  year: 2011
  end-page: 4623
  ident: bb0275
  article-title: Nanograssed micropyramidal architectures for continuous dropwise condensation
  publication-title: Adv Funct Mater
– volume: 38
  start-page: 71
  year: 2008
  end-page: 99
  ident: bb0050
  article-title: Wetting and roughness
  publication-title: Annu Rev Mat Res
– volume: 3
  start-page: 2013
  year: 1988
  ident: bb0495
  article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer
  publication-title: Sci Rep
– volume: 170
  start-page: 515
  year: 1995
  end-page: 521
  ident: bb0475
  article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force
  publication-title: J Colloid Interface Sci
– volume: 11
  start-page: 2017
  year: 1673-1682
  ident: bb0805
  article-title: Growth rates and spontaneous navigation of condensate droplets through randomly structured textures
  publication-title: ACS Nano
– volume: 83
  start-page: 842
  year: 2015
  end-page: 849
  ident: bb0400
  article-title: Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux
  publication-title: Int J Heat Mass Tran
– volume: 51
  start-page: 2008
  year: 1728-1737
  ident: bb0895
  article-title: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation
  publication-title: Int J Heat Mass Tran
– volume: 6
  start-page: 18649
  year: 2016
  ident: bb0095
  article-title: Coalescence-induced jumping of multiple condensate droplets on hierarchical superhydrophobic surfaces
  publication-title: Sci Rep
– volume: 9
  start-page: 13770
  year: 2017
  end-page: 13777
  ident: bb0195
  article-title: Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions
  publication-title: ACS Appl Mater Interfaces
– volume: 28
  start-page: 6067
  year: 2012
  end-page: 6075
  ident: bb0710
  article-title: Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces
  publication-title: Langmuir
– volume: 25
  start-page: 5937
  year: 2013
  end-page: 5942
  ident: bb0550
  article-title: Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection
  publication-title: Adv Mater
– volume: 109
  start-page: 187
  year: 2017
  end-page: 199
  ident: bb0370
  article-title: Condensate droplet size distribution on lubricant-infused surfaces
  publication-title: Int J Heat Mass Tran
– volume: 133
  year: 2011
  ident: bb0325
  article-title: Dropwise condensation underneath chemically textured surfaces: simulation and experiments
  publication-title: J Heat Transfer
– volume: 68
  start-page: 1
  year: 2013
  end-page: 7
  ident: bb0905
  article-title: A droplet model in steam condensation with noncondensable gas
  publication-title: Int J Thermal Sci
– volume: 142
  year: 2015
  ident: bb0260
  article-title: Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach
  publication-title: J Chem Phys
– volume: 6
  start-page: 76
  year: 2014
  end-page: 96
  ident: bb0430
  article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow
  publication-title: Nanoscale
– volume: 432
  start-page: 36
  year: 2004
  ident: bb0165
  article-title: Water-repellent legs of water striders
  publication-title: Nature
– volume: 95
  start-page: 65
  year: 1805
  end-page: 87
  ident: bb0120
  article-title: An essay on the cohesion of fluids
  publication-title: Phil Trans R Soc
– volume: 13
  start-page: 1309
  year: 2019
  end-page: 1323
  ident: bb0780
  article-title: Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties
  publication-title: ACS Nano
– volume: 103
  start-page: 161601
  year: 2013
  ident: bb0085
  article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets
  publication-title: Appl Phys Lett
– volume: 98
  year: 2011
  ident: bb0100
  article-title: Size effect on the coalescence-induced self-propelled droplet
  publication-title: Appl Phys Lett
– volume: 160
  start-page: 120172
  year: 2020
  ident: bb0305
  article-title: A review of dropwise condensation: theory, modeling, experiments, and applications
  publication-title: Int J Heat Mass Transf
– volume: 145
  start-page: 590
  year: 2018
  end-page: 602
  ident: bb0510
  article-title: Numerical investigation of convective dropwise condensation flow by a hybrid thermal lattice Boltzmann method
  publication-title: Appl Therm Eng
– volume: 9
  start-page: 12311
  year: 2015
  end-page: 12319
  ident: bb0560
  article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces
  publication-title: ACS Nano
– volume: 95
  year: 2009
  ident: bb0225
  article-title: Spatial control in the heterogeneous nucleation of water
  publication-title: Appl Phys Lett
– volume: 115
  start-page: 1032
  year: 2017
  end-page: 1041
  ident: bb0685
  article-title: Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces
  publication-title: Int J Heat Mass Tran
– volume: 20
  start-page: 3918
  year: 2020
  end-page: 3924
  ident: bb0615
  article-title: Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films
  publication-title: Nano Lett
– year: 2008
  ident: bb0010
  article-title: Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment
– volume: 9
  start-page: 35391
  year: 2017
  end-page: 35403
  ident: bb0535
  article-title: Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures
  publication-title: ACS Appl Mater Interfaces
– volume: 48
  start-page: 2228
  year: 2009
  end-page: 2236
  ident: bb0230
  article-title: Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution
  publication-title: Int J Thermal Sci
– volume: 28
  start-page: 1707000
  year: 2018
  ident: bb0585
  article-title: Thin film condensation on nanostructured surfaces
  publication-title: Adv Funct Mater
– volume: 290
  start-page: 2130
  year: 2000
  end-page: 2133
  ident: bb0630
  article-title: Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers
  publication-title: Science
– volume: 8
  start-page: 10352
  year: 2014
  end-page: 10362
  ident: bb0090
  article-title: How coalescing droplets jump
  publication-title: ACS Nano
– volume: 11
  start-page: 8499
  year: 2017
  end-page: 8510
  ident: bb0730
  article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation
  publication-title: ACS Nano
– volume: 23
  start-page: 3820
  year: 2007
  end-page: 3824
  ident: bb0530
  article-title: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces
  publication-title: Langmuir
– volume: 6
  start-page: 10122
  year: 2012
  end-page: 10129
  ident: bb0490
  article-title: Enhanced condensation on lubricant-impregnated nanotextured surfaces
  publication-title: ACS Nano
– volume: 103
  start-page: 685
  year: 1981
  end-page: 692
  ident: bb0590
  article-title: Steam condensation on various gold surfaces
  publication-title: J Heat Transfer
– volume: 128
  start-page: 9052
  year: 2006
  end-page: 9053
  ident: bb0150
  article-title: A perfectly hydrophobic surface (θ
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 5729
  year: 2016
  end-page: 5736
  ident: bb0285
  article-title: Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces
  publication-title: ACS Appl Mater Interfaces
– volume: 63
  start-page: 874
  year: 2008
  end-page: 880
  ident: bb0210
  article-title: Effects of surface topography of material on nucleation site density of dropwise condensation
  publication-title: Chem Eng Sci
– volume: 1
  year: 2016
  ident: bb0115
  article-title: Coalescence-induced nanodroplet jumping
  publication-title: Phys Rev Fluids
– volume: 14
  start-page: 13367
  year: 2020
  end-page: 13379
  ident: bb0875
  article-title: Enhanced condensation on liquid-infused nanoporous surfaces by vibration-assisted droplet sweeping
  publication-title: ACS Nano
– volume: 414
  start-page: 33
  year: 2001
  end-page: 34
  ident: bb0160
  article-title: Water capture by a desert beetle
  publication-title: Nature
– volume: 1
  start-page: 53
  year: 1930
  end-page: 63
  ident: bb0035
  article-title: Versuche ueber die Kondensation von Wasserdampf in film- und Tropfenform
  publication-title: Technische Mechanik und Thermodynamik
– volume: 11
  start-page: 69
  year: 2015
  end-page: 80
  ident: bb0815
  article-title: How droplets nucleate and grow on liquids and liquid impregnated surfaces
  publication-title: Soft Matter
– volume: 4
  start-page: 1492
  year: 2013
  ident: bb0130
  article-title: Self-similarity of contact line depinning from textured surfaces
  publication-title: Nat Commun
– volume: 139
  start-page: 254
  year: 2019
  end-page: 268
  ident: bb0915
  article-title: Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model
  publication-title: Int J Heat Mass Tran
– volume: 3
  start-page: 1360
  year: 2019
  end-page: 1376
  ident: bb0485
  article-title: How surface orientation affects jumping-droplet condensation
  publication-title: Joule
– volume: 110
  start-page: 7992
  year: 2013
  end-page: 7997
  ident: bb0750
  article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 1500202
  year: 2015
  ident: bb0745
  article-title: Can metal matrix-hydrophobic nanoparticle composites enhance water condensation by promoting the dropwise mode?
  publication-title: Adv Mater Interfaces
– volume: 21
  start-page: 2927
  year: 2011
  end-page: 2932
  ident: bb0425
  article-title: Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding
  publication-title: Adv Funct Mater
– volume: 4
  year: 2018
  ident: bb0860
  article-title: Hydrophilic directional slippery rough surfaces for water harvesting
  publication-title: Sci Adv
– volume: 93
  start-page: 286
  year: 2016
  end-page: 292
  ident: bb0365
  article-title: Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces
  publication-title: Int J Heat Mass Tran
– volume: 114
  year: 2019
  ident: bb0705
  article-title: Macrotextures-induced jumping relay of condensate droplets
  publication-title: Appl Phys Lett
– volume: 2
  start-page: 1400480
  year: 2015
  ident: bb0785
  article-title: Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation
  publication-title: Adv Mater Interfaces
– volume: 12
  start-page: 29946
  year: 2020
  end-page: 29952
  ident: bb0760
  article-title: Confined growth and controlled coalescence/self-removal of condensate microdrops on spatially heterogeneously-patterned superhydrophilic-superhydrophobic surface
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  year: 2020
  ident: bb0415
  article-title: Dropwise condensation on solid hydrophilic surfaces
  publication-title: Sci Adv
– volume: 112
  start-page: 9247
  year: 2015
  end-page: 9252
  ident: bb0460
  article-title: Self-removal of condensed water on the legs of water striders
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 31765
  year: 2018
  end-page: 31776
  ident: bb0655
  article-title: Condensation heat transfer performance of thermally stable superhydrophobic cerium oxide surfaces
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 2016
  year: 1825-1839
  ident: bb0055
  article-title: Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications
  publication-title: Small
– volume: 532
  start-page: 85
  year: 2016
  end-page: 89
  ident: bb0445
  article-title: Continuous directional water transport on the peristome surface of Nepenthes alata
  publication-title: Nature
– volume: 17
  start-page: 21492
  year: 2015
  end-page: 21500
  ident: bb0240
  article-title: Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness
  publication-title: Phys Chem Chem Phys
– volume: 31
  start-page: 1806501
  year: 2019
  ident: bb0060
  article-title: Biological and engineered topological droplet rectifiers
  publication-title: Adv Mater
– volume: 116
  start-page: 260501
  year: 2020
  ident: bb0470
  article-title: Recent developments, challenges, and pathways to stable dropwise condensation: a perspective
  publication-title: Appl Phys Lett
– volume: 5
  start-page: 812
  year: 2015
  end-page: 818
  ident: bb0245
  article-title: Heterogeneous nucleation capability of conical microstructures for water droplets
  publication-title: RSC Adv
– volume: 23
  start-page: 4577
  year: 2013
  end-page: 4584
  ident: bb0265
  article-title: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches
  publication-title: Adv Funct Mater
– volume: 127
  start-page: 448
  year: 2018
  end-page: 464
  ident: bb0515
  article-title: Convective dropwise condensation out of humid air inside a horizontal channel - experimental investigation of the condensate heat transfer resistance
  publication-title: Int J Heat Mass Tran
– volume: 6
  start-page: 3262
  year: 2012
  end-page: 3268
  ident: bb0575
  article-title: Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation
  publication-title: ACS Nano
– volume: 256
  start-page: 2742
  year: 2010
  end-page: 2749
  ident: bb0635
  article-title: Thermal stability of thiol and silane monolayers: a comparative study
  publication-title: Appl Surf Sci
– volume: 3
  start-page: 255
  year: 1967
  end-page: 283
  ident: bb0200
  article-title: The theory of condensation and the critical point
  publication-title: Physics
– volume: 30
  start-page: 14498
  year: 2014
  end-page: 14511
  ident: bb0380
  article-title: Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces
  publication-title: Langmuir
– volume: 135
  start-page: 111004
  year: 2013
  ident: bb0345
  article-title: Modeling and optimization of superhydrophobic condensation
  publication-title: J Heat Transfer
– volume: 2
  start-page: 362
  year: 1966
  end-page: 375
  ident: bb0310
  article-title: A theory of heat transfer by dropwise condensation
  publication-title: Proceedings of the Third International Heat Transfer Conference, Chicago
– volume: 9
  start-page: 71
  year: 2015
  end-page: 81
  ident: bb0255
  article-title: Recurrent filmwise and dropwise condensation on a beetle mimetic surface
  publication-title: ACS Nano
– volume: 287
  start-page: 102329
  year: 2021
  ident: bb0810
  article-title: The challenge of lubricant-replenishment on lubricant-impregnated surfaces
  publication-title: Adv Colloid Interface Sci
– volume: 14
  start-page: 14878
  year: 2020
  end-page: 14886
  ident: bb0970
  article-title: Polymer infused porous surfaces for robust, thermally conductive, self-healing coatings for dropwise condensation
  publication-title: ACS Nano
– volume: 405
  start-page: 126901
  year: 2021
  ident: bb0570
  article-title: Macrotextures-enabled self-propelling of large condensate droplets
  publication-title: Chem Eng J
– volume: 3
  start-page: 1247
  year: 2012
  ident: bb0465
  article-title: A multi-structural and multi-functional integrated fog collection system in cactus
  publication-title: Nat Commun
– volume: 277
  start-page: 548
  year: 1979
  end-page: 549
  ident: bb0205
  article-title: Direct experimental verification of the kelvin equation for capillary condensation
  publication-title: Nature
– volume: 523
  start-page: 98
  year: 2017
  end-page: 105
  ident: bb0775
  article-title: A 3-D model for thermodynamic analysis of hierarchical structured superhydrophobic surfaces
  publication-title: Colloids Surf A
– volume: 12
  start-page: 315
  year: 2013
  end-page: 320
  ident: bb0650
  article-title: Hydrophobicity of rare-earth oxide ceramics
  publication-title: Nat Mater
– volume: 11
  start-page: 24735
  year: 2019
  end-page: 24750
  ident: bb0790
  article-title: Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures
  publication-title: ACS Appl Mater Interfaces
– volume: 7
  start-page: 10660
  year: 2015
  end-page: 10665
  ident: bb0725
  article-title: Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance
  publication-title: ACS Appl Mater Interfaces
– volume: 477
  start-page: 443
  year: 2011
  end-page: 447
  ident: bb0455
  article-title: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
  publication-title: Nature
– volume: 8
  start-page: 21776
  year: 2016
  end-page: 21786
  ident: bb0800
  article-title: Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces
  publication-title: ACS Appl Mater Interfaces
– volume: 54
  start-page: 4876
  year: 2015
  end-page: 4879
  ident: bb0720
  article-title: Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces
  publication-title: Angew Chem Int Ed
– volume: 80
  start-page: 759
  year: 2015
  end-page: 766
  ident: bb0910
  article-title: The effect of relative humidity on dropwise condensation dynamics
  publication-title: Int J Heat Mass Tran
– volume: 29
  start-page: 1109
  year: 1986
  end-page: 1117
  ident: bb0605
  article-title: Evaluation of organic coatings for the promotion of dropwise condensation of steam
  publication-title: Int J Heat Mass Tran
– volume: 75
  start-page: 908
  year: 2015
  end-page: 917
  ident: bb0610
  article-title: Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink
  publication-title: Appl Therm Eng
– volume: 560
  start-page: 866
  year: 2020
  end-page: 873
  ident: bb0555
  article-title: Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport
  publication-title: J Colloid Interface Sci
– volume: 2
  start-page: 152
  year: 2011
  end-page: 161
  ident: bb0420
  article-title: Superhydrophobicity in perfection: the outstanding properties of the lotus leaf
  publication-title: Beilstein J Nanotechnol
– volume: 18
  start-page: 233
  year: 2014
  end-page: 250
  ident: bb0070
  article-title: Dropwise condensation on micro- and nanostructured surfaces
  publication-title: Nanosc Microsc Thermophys Eng
– volume: 16
  start-page: 411
  year: 1973
  end-page: 425
  ident: bb0390
  article-title: Dropwise condensation-the distribution of drop sizes
  publication-title: Int J Heat Mass Tran
– volume: 120
  start-page: 879
  year: 2018
  end-page: 894
  ident: bb0385
  article-title: Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation
  publication-title: Int J Heat Mass Tran
– volume: 26
  start-page: 421
  year: 2006
  end-page: 429
  ident: bb0640
  article-title: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan
  publication-title: Appl Therm Eng
– volume: 181
  start-page: 115733
  year: 2020
  ident: bb0410
  article-title: Dropwise condensation from moist air over a hydrophobic metallic substrate
  publication-title: Appl Therm Eng
– volume: 8
  start-page: 540
  year: 2018
  ident: bb0865
  article-title: Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces
  publication-title: Sci Rep
– volume: 150
  start-page: 119352
  year: 2020
  ident: bb0925
  article-title: A visualized study of enhanced steam condensation heat transfer on a honeycomb-like microporous superhydrophobic surface in the presence of a non-condensable gas
  publication-title: Int J Heat Mass Tran
– volume: 2
  start-page: 269
  year: 2018
  end-page: 279
  ident: bb0295
  article-title: Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer
  publication-title: Joule
– volume: 45
  start-page: 3405
  year: 2002
  end-page: 3411
  ident: bb0600
  article-title: Influence of processing conditions of polymer film on dropwise condensation heat transfer
  publication-title: Int J Heat Mass Tran
– volume: 9
  start-page: 13676
  year: 2017
  end-page: 13684
  ident: bb0670
  article-title: Patterned polymer coatings increase the efficiency of dew harvesting
  publication-title: ACS Appl Mater Interfaces
– volume: 29
  start-page: 881
  year: 2013
  end-page: 891
  ident: bb0700
  article-title: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces
  publication-title: Langmuir
– volume: 13
  start-page: 8169
  year: 2019
  end-page: 8184
  ident: bb0540
  article-title: Hierarchical condensation
  publication-title: ACS Nano
– volume: 41
  start-page: 81
  year: 1998
  end-page: 87
  ident: bb0320
  article-title: Modeling of heat transfer in dropwise condensation
  publication-title: Int J Heat Mass Tran
– volume: 136
  start-page: 681
  year: 2019
  end-page: 691
  ident: bb0595
  article-title: Steam condensate behavior and heat transfer performance on chromium-ion-implanted metal surfaces
  publication-title: Int J Heat Mass Tran
– volume: 111
  year: 2017
  ident: bb0695
  article-title: Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces
  publication-title: Appl Phys Lett
– volume: 35
  start-page: 16377
  year: 2019
  end-page: 16387
  ident: bb0825
  article-title: Droplet morphology and mobility on lubricant-impregnated surfaces: a molecular dynamics study
  publication-title: Langmuir
– volume: 19
  start-page: 5287
  year: 2019
  end-page: 5296
  ident: bb0870
  article-title: Stable dropwise condensation of ethanol and hexane on rationally designed ultrascalable nanostructured lubricant-infused surfaces
  publication-title: Nano Lett
– volume: 129
  start-page: 86
  year: 2019
  end-page: 95
  ident: bb0960
  article-title: Dropwise condensation on superhydrophobic nanostructure surface, part I: Long-term operation and nanostructure failure
  publication-title: Int J Heat Mass Tran
– volume: 34
  start-page: 8112
  year: 2018
  end-page: 8118
  ident: bb0830
  article-title: Drop dynamics on liquid-infused surfaces: the role of the lubricant ridge
  publication-title: Langmuir
– volume: 13
  start-page: 179
  year: 2013
  end-page: 187
  ident: bb0105
  article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
  publication-title: Nano Lett
– volume: 210
  start-page: 47
  year: 2014
  end-page: 57
  ident: bb0045
  article-title: Condensation and freezing of droplets on superhydrophobic surfaces
  publication-title: Adv Colloid Interface Sci
– volume: 12
  start-page: 2125
  year: 1996
  end-page: 2127
  ident: bb0140
  article-title: Super-water-repellent fractal surface
  publication-title: Langmuir
– volume: 28
  start-page: 14424
  year: 2012
  end-page: 14432
  ident: bb0715
  article-title: Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale
  publication-title: Langmuir
– volume: 7
  start-page: 3388
  year: 2007
  end-page: 3393
  ident: bb0765
  article-title: Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity
  publication-title: Nano Lett
– volume: 26
  start-page: 418
  year: 2014
  end-page: 423
  ident: bb0620
  article-title: Stable Dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films
  publication-title: Adv Mater
– volume: 103
  start-page: 184501
  year: 2009
  ident: bb0080
  article-title: Self-propelled dropwise condensation on superhydrophobic surfaces
  publication-title: Phys Rev Lett
– volume: 6
  start-page: 30764
  year: 2016
  ident: bb0215
  article-title: On the onset of surface condensation: formation and transition mechanisms of condensation mode
  publication-title: Sci Rep
– volume: 174
  start-page: 115264
  year: 2020
  ident: bb0920
  article-title: Effective reduction of non-condensable gas effects on condensation heat transfer: surface modification and steam jet injection
  publication-title: Appl Therm Eng
– volume: 3
  year: 2008
  ident: bb0170
  article-title: Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment
  publication-title: Bioinspir Biomim
– volume: 15
  start-page: 4808
  year: 2019
  end-page: 4817
  ident: bb0840
  article-title: Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces
  publication-title: Soft Matter
– volume: 531
  start-page: 78
  year: 2016
  end-page: 82
  ident: bb0855
  article-title: Condensation on slippery asymmetric bumps
  publication-title: Nature
– volume: 15
  start-page: 2902
  year: 2015
  end-page: 2909
  ident: bb0665
  article-title: Scalable graphene coatings for enhanced condensation heat transfer
  publication-title: Nano Lett
– volume: 176
  start-page: 115386
  year: 2020
  ident: bb0375
  article-title: Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces
  publication-title: Appl Therm Eng
– volume: 28
  start-page: 1800634
  year: 2018
  ident: bb0735
  article-title: Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer
  publication-title: Adv Funct Mater
– volume: 18
  start-page: 3063
  year: 2006
  end-page: 3078
  ident: bb0180
  article-title: Design and creation of superwetting/antiwetting surfaces
  publication-title: Adv Mater
– volume: 30
  start-page: 13103
  year: 2014
  end-page: 13115
  ident: bb0885
  article-title: Enhancing dropwise condensation through bioinspired wettability patterning
  publication-title: Langmuir
– volume: 7
  start-page: 11719
  year: 2015
  end-page: 11723
  ident: bb0755
  article-title: Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance
  publication-title: ACS Appl Mater Interfaces
– volume: 582
  start-page: 55
  year: 2020
  end-page: 59
  ident: bb0965
  article-title: Design of robust superhydrophobic surfaces
  publication-title: Nature
– volume: 31
  start-page: 13452
  year: 2015
  end-page: 13466
  ident: bb0690
  article-title: Enhanced jumping-droplet departure
  publication-title: Langmuir
– volume: 35
  start-page: 10309
  year: 2019
  end-page: 10321
  ident: bb0405
  article-title: Numerical simulation of jumping droplet condensation
  publication-title: Langmuir
– volume: 33
  start-page: 177
  year: 2017
  end-page: 183
  ident: bb0740
  article-title: Hydrophobic copper nanowires for enhancing condensation heat transfer
  publication-title: Nano Energy
– volume: 2
  start-page: 17036
  year: 2017
  ident: bb0175
  article-title: Nature-inspired superwettability systems
  publication-title: Nat Rev Mater
– volume: 5
  start-page: 878
  year: 2018
  end-page: 887
  ident: bb0580
  article-title: Sustaining enhanced condensation on hierarchical mesh-covered surfaces
  publication-title: Natl Sci Rev
– volume: 4
  start-page: 2517
  year: 2013
  ident: bb0110
  article-title: Electrostatic charging of jumping droplets
  publication-title: Nat Commun
– volume: 33
  start-page: 407
  year: 2017
  end-page: 416
  ident: bb0770
  article-title: Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures
  publication-title: Langmuir
– volume: 101
  start-page: 14138
  year: 2004
  end-page: 14143
  ident: bb0450
  article-title: Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface
  publication-title: Proc Natl Acad Sci U S A
– volume: 151
  start-page: 119349
  year: 2020
  ident: bb0950
  article-title: Experimental and modeling investigations of dropwise condensation out of convective humid air flow
  publication-title: Int J Heat Mass Tran
– volume: 112
  start-page: 333
  year: 2017
  end-page: 342
  ident: bb0340
  article-title: Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance
  publication-title: Int J Heat Mass Tran
– volume: 2
  start-page: 2307
  year: 2018
  end-page: 2347
  ident: bb0020
  article-title: Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond
  publication-title: Joule
– volume: 49
  start-page: 6129
  year: 2010
  end-page: 6133
  ident: bb0645
  article-title: Bioinspired self-healing superhydrophobic coatings
  publication-title: Angew Chem Int Ed
– volume: 14
  start-page: 12796
  year: 2020
  end-page: 12809
  ident: bb0565
  article-title: Laplace pressure driven single-droplet jumping on structured surfaces
  publication-title: ACS Nano
– volume: 463
  start-page: 640
  year: 2010
  end-page: 643
  ident: bb0440
  article-title: Directional water collection on wetted spider silk
  publication-title: Nature
– volume: 119
  start-page: 277
  year: 1926
  end-page: 301
  ident: bb0220
  article-title: Keimbildung in Übersättigten Gebilden
  publication-title: Z Phys Chem
– volume: 141
  start-page: 34
  year: 2019
  end-page: 47
  ident: bb0935
  article-title: Dropwise condensation in the presence of non-condensable gas: interaction effects of the droplet array using the distributed point sink method
  publication-title: Int J Heat Mass Tran
– volume: 202
  start-page: 1
  year: 1997
  end-page: 8
  ident: bb0155
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
– volume: 154
  start-page: 515
  year: 1944
  ident: bb0145
  article-title: Diurnal fluctuation in a physical property of leaf cuticle
  publication-title: Nature
– volume: 11
  start-page: 7617
  year: 2015
  end-page: 7626
  ident: bb0820
  article-title: Direct observation of drops on slippery lubricant-infused surfaces
  publication-title: Soft Matter
– volume: 54
  start-page: 4507
  year: 2011
  end-page: 4517
  ident: bb0900
  article-title: Dropwise condensation from flowing air-steam mixtures: diffusion resistance assessed by controlled drainage
  publication-title: Int J Heat Mass Tran
– volume: 12
  start-page: 22246
  year: 2020
  end-page: 22255
  ident: bb0845
  article-title: Condensation of satellite droplets on lubricant-cloaked droplets
  publication-title: ACS Appl Mater Interfaces
– volume: 122
  start-page: 117
  year: 2018
  end-page: 127
  ident: bb0360
  article-title: Modeling and optimization of condensation heat transfer at biphilic interface
  publication-title: Int J Heat Mass Tran
– volume: 10
  start-page: 29127
  year: 2018
  end-page: 29135
  ident: bb0520
  article-title: Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 2012
  year: 1776-1785
  ident: bb0300
  article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
  publication-title: ACS Nano
– volume: 83
  start-page: 27
  year: 2015
  end-page: 38
  ident: bb0280
  article-title: Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces
  publication-title: Int J Heat Mass Tran
– volume: 8
  start-page: 2001176
  year: 2021
  ident: bb0955
  article-title: Sprayable thin and robust carbon nanofiber composite coating for extreme jumping dropwise condensation performance
  publication-title: Adv Mater Interfaces
– volume: 12
  start-page: 225
  year: 1976
  end-page: 231
  ident: bb0315
  article-title: On the heat transfer in dropwise condensation
  publication-title: Chem Eng J
– volume: 29
  start-page: 1703002
  year: 2017
  ident: bb0075
  article-title: Recent progress in bionic condensate microdrop self-propelling surfaces
  publication-title: Adv Mater
– volume: 7
  start-page: 11043
  year: 2013
  end-page: 11054
  ident: bb0500
  article-title: Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces
  publication-title: ACS Nano
– volume: 6
  start-page: 1213
  year: 2006
  end-page: 1217
  ident: bb0435
  article-title: Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle
  publication-title: Nano Lett
– year: 2020
  ident: bb0040
  article-title: Drop dynamics and dropwise condensation on textured surfaces
– volume: 5
  start-page: 2084
  year: 2014
  end-page: 2088
  ident: bb0525
  article-title: Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles
  publication-title: J Phys Chem Lett
– volume: 139
  start-page: 112401
  year: 2017
  ident: bb0235
  article-title: How nanostructures affect water droplet nucleation on superhydrophobic surfaces
  publication-title: J Heat Transfer
– volume: 135
  year: 2013
  ident: bb0350
  article-title: Condensation on superhydrophobic copper oxide nanostructures
  publication-title: J Heat Transfer
– volume: 21
  start-page: 577
  year: 1929
  end-page: 583
  ident: bb0890
  article-title: The condensation of steam
  publication-title: Ind Eng Chem
– volume: 60
  start-page: 664
  year: 2013
  end-page: 671
  ident: bb0355
  article-title: A dropwise condensation model using a nano-scale, pin structured surface
  publication-title: Int J Heat Mass Tran
– volume: 154
  start-page: 119734
  year: 2020
  ident: bb0945
  article-title: Dropwise condensation of humid air - experimental investigation and modelling of the convective heat transfer
  publication-title: Int J Heat Mass Tran
– volume: 216
  start-page: 115
  year: 2002
  end-page: 128
  ident: bb0030
  article-title: Dropwise condensation theory and experiment: a review
  publication-title: Proc Inst Mech Eng, Part A: J Power Energy
– volume: 2
  start-page: 16092
  year: 2017
  ident: bb0015
  article-title: Nanoengineered materials for liquid-vapor phase-change heat transfer
  publication-title: Nat Rev Mater
– volume: 3
  start-page: 2806
  year: 2019
  end-page: 2823
  ident: bb0795
  article-title: Enhancing condensation heat transfer on three-dimensional hybrid surfaces
  publication-title: Joule
– volume: 14
  start-page: 8024
  year: 2020
  end-page: 8035
  ident: bb0850
  article-title: Depletion of lubricant from nanostructured oil-infused surfaces by pendant condensate droplets
  publication-title: ACS Nano
– volume: 112
  start-page: 991
  year: 2017
  end-page: 1004
  ident: bb0680
  article-title: Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer
  publication-title: Int J Heat Mass Tran
– volume: 24
  start-page: 1211
  year: 2014
  end-page: 1217
  ident: bb0270
  article-title: Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array
  publication-title: Adv Funct Mater
– volume: 15
  start-page: 2011
  year: 1857-1872
  ident: bb0005
  article-title: Energy and exergy analyses of thermal power plants: a review
  publication-title: Renew Sustain Energy Rev
– volume: 119
  start-page: 931
  year: 2018
  end-page: 938
  ident: bb0940
  article-title: Effects of millimetric geometric features on dropwise condensation under different vapor conditions
  publication-title: Int J Heat Mass Tran
– volume: 122
  start-page: 45
  year: 2018
  end-page: 58
  ident: bb0480
  article-title: Mode selection between sliding and rolling for droplet on inclined surface: effect of surface wettability
  publication-title: Int J Heat Mass Tran
– volume: 42
  start-page: 89
  year: 2010
  end-page: 109
  ident: bb0065
  article-title: Slip on Superhydrophobic surfaces
  publication-title: Annu Rev Fluid Mech
– volume: 256
  start-page: 291
  year: 2018
  end-page: 304
  ident: bb0025
  article-title: A review on wetting and water condensation - perspectives for CO
  publication-title: Adv Colloid Interface Sci
– volume: 28
  start-page: 988
  year: 1936
  end-page: 994
  ident: bb0125
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind Eng Chem
– volume: 15
  start-page: 231
  year: 2018
  end-page: 250
  ident: bb0185
  article-title: Superhydrophobic surfaces: a review on fundamentals, applications, and challenges
  publication-title: J Coat Technol Res
– volume: 6
  start-page: 7923
  year: 2016
  end-page: 7932
  ident: bb0250
  article-title: Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface
  publication-title: RSC Adv
– volume: 76
  start-page: 467
  year: 2014
  end-page: 483
  ident: bb0395
  article-title: Time-series characteristics and geometric structures of drop-size distribution density in dropwise condensation
  publication-title: Int J Heat Mass Tran
– volume: 109
  start-page: 1229
  year: 2017
  end-page: 1238
  ident: bb0880
  article-title: Role of impregnated lubricant in enhancing thermosyphon performance
  publication-title: Int J Heat Mass Tran
– volume: 291
  start-page: 633
  year: 2001
  end-page: 636
  ident: bb0545
  article-title: Fast drop movements resulting from the phase change on a gradient surface
  publication-title: Science
– volume: 8
  start-page: 6733
  year: 2018
  end-page: 6744
  ident: bb0190
  article-title: Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures
  publication-title: RSC Adv
– volume: 156
  start-page: 119839
  year: 2020
  ident: bb0675
  article-title: Enhancement of condensation heat transfer on a microstructured surface with wettability gradient
  publication-title: Int J Heat Mass Tran
– volume: 128
  start-page: 550
  year: 2019
  end-page: 561
  ident: bb0505
  article-title: Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces
  publication-title: Int J Heat Mass Tran
– volume: 133
  start-page: 641
  year: 2019
  end-page: 651
  ident: bb0930
  article-title: Predicting the growth of many droplets during vapor-diffusion-driven dropwise condensation experiments using the point sink superposition method
  publication-title: Int J Heat Mass Tran
– volume: 83
  start-page: 833
  year: 2015
  end-page: 841
  ident: bb0335
  article-title: Dropwise condensation theory revisited: Part I. droplet nucleation radius
  publication-title: Int J Heat Mass Tran
– volume: 105
  year: 2014
  ident: bb0660
  article-title: Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics
  publication-title: Appl Phys Lett
– volume: 21
  start-page: 4617
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0275
  article-title: Nanograssed micropyramidal architectures for continuous dropwise condensation
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201101302
– volume: 93
  start-page: 286
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0365
  article-title: Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2015.09.079
– volume: 15
  start-page: 2902
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0665
  article-title: Scalable graphene coatings for enhanced condensation heat transfer
  publication-title: Nano Lett
  doi: 10.1021/nl504628s
– volume: 154
  start-page: 119734
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0945
  article-title: Dropwise condensation of humid air - experimental investigation and modelling of the convective heat transfer
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2020.119734
– volume: 29
  start-page: 881
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0700
  article-title: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la304264g
– volume: 6
  start-page: 10122
  year: 2012
  ident: 10.1016/j.cis.2021.102503_bb0490
  article-title: Enhanced condensation on lubricant-impregnated nanotextured surfaces
  publication-title: ACS Nano
  doi: 10.1021/nn303867y
– volume: 2
  start-page: 2307
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0020
  article-title: Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.014
– volume: 35
  start-page: 16377
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0825
  article-title: Droplet morphology and mobility on lubricant-impregnated surfaces: a molecular dynamics study
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b02603
– volume: 133
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0325
  article-title: Dropwise condensation underneath chemically textured surfaces: simulation and experiments
  publication-title: J Heat Transfer
  doi: 10.1115/1.4002396
– volume: 111
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0695
  article-title: Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces
  publication-title: Appl Phys Lett
– volume: 95
  start-page: 65
  year: 1805
  ident: 10.1016/j.cis.2021.102503_bb0120
  article-title: An essay on the cohesion of fluids
  publication-title: Phil Trans R Soc
  doi: 10.1098/rstl.1805.0005
– volume: 12
  start-page: 22246
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0845
  article-title: Condensation of satellite droplets on lubricant-cloaked droplets
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b22417
– volume: 133
  start-page: 641
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0930
  article-title: Predicting the growth of many droplets during vapor-diffusion-driven dropwise condensation experiments using the point sink superposition method
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.12.068
– volume: 3
  start-page: 1247
  year: 2012
  ident: 10.1016/j.cis.2021.102503_bb0465
  article-title: A multi-structural and multi-functional integrated fog collection system in cactus
  publication-title: Nat Commun
  doi: 10.1038/ncomms2253
– volume: 531
  start-page: 78
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0855
  article-title: Condensation on slippery asymmetric bumps
  publication-title: Nature
  doi: 10.1038/nature16956
– volume: 31
  start-page: 13452
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0690
  article-title: Enhanced jumping-droplet departure
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b03778
– volume: 116
  start-page: 260501
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0470
  article-title: Recent developments, challenges, and pathways to stable dropwise condensation: a perspective
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0011642
– volume: 12
  start-page: 225
  year: 1976
  ident: 10.1016/j.cis.2021.102503_bb0315
  article-title: On the heat transfer in dropwise condensation
  publication-title: Chem Eng J
  doi: 10.1016/0300-9467(76)87016-5
– volume: 2
  start-page: 16092
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0015
  article-title: Nanoengineered materials for liquid-vapor phase-change heat transfer
  publication-title: Nat Rev Mater
– volume: 6
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0415
  article-title: Dropwise condensation on solid hydrophilic surfaces
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax0746
– volume: 8
  start-page: 540
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0865
  article-title: Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18955-x
– volume: 8
  start-page: 2001176
  year: 2021
  ident: 10.1016/j.cis.2021.102503_bb0955
  article-title: Sprayable thin and robust carbon nanofiber composite coating for extreme jumping dropwise condensation performance
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.202001176
– volume: 128
  start-page: 550
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0505
  article-title: Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.08.134
– volume: 101
  start-page: 14138
  year: 2004
  ident: 10.1016/j.cis.2021.102503_bb0450
  article-title: Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0405885101
– volume: 2
  start-page: 1400480
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0785
  article-title: Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201400480
– volume: 80
  start-page: 759
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0910
  article-title: The effect of relative humidity on dropwise condensation dynamics
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2014.09.080
– volume: 76
  start-page: 467
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0395
  article-title: Time-series characteristics and geometric structures of drop-size distribution density in dropwise condensation
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2014.04.041
– volume: 18
  start-page: 3063
  year: 2006
  ident: 10.1016/j.cis.2021.102503_bb0180
  article-title: Design and creation of superwetting/antiwetting surfaces
  publication-title: Adv Mater
  doi: 10.1002/adma.200501961
– volume: 42
  start-page: 89
  year: 2010
  ident: 10.1016/j.cis.2021.102503_bb0065
  article-title: Slip on Superhydrophobic surfaces
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-121108-145558
– volume: 7
  start-page: 3388
  year: 2007
  ident: 10.1016/j.cis.2021.102503_bb0765
  article-title: Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity
  publication-title: Nano Lett
  doi: 10.1021/nl0717457
– volume: 6
  start-page: 30764
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0215
  article-title: On the onset of surface condensation: formation and transition mechanisms of condensation mode
  publication-title: Sci Rep
  doi: 10.1038/srep30764
– volume: 156
  start-page: 119839
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0675
  article-title: Enhancement of condensation heat transfer on a microstructured surface with wettability gradient
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2020.119839
– volume: 8
  start-page: 21776
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0800
  article-title: Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b05324
– volume: 154
  start-page: 515
  year: 1944
  ident: 10.1016/j.cis.2021.102503_bb0145
  article-title: Diurnal fluctuation in a physical property of leaf cuticle
  publication-title: Nature
  doi: 10.1038/154515a0
– volume: 3
  start-page: 255
  year: 1967
  ident: 10.1016/j.cis.2021.102503_bb0200
  article-title: The theory of condensation and the critical point
  publication-title: Physics
  doi: 10.1103/PhysicsPhysiqueFizika.3.255
– volume: 45
  start-page: 3405
  year: 2002
  ident: 10.1016/j.cis.2021.102503_bb0600
  article-title: Influence of processing conditions of polymer film on dropwise condensation heat transfer
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/S0017-9310(02)00059-5
– volume: 21
  start-page: 577
  year: 1929
  ident: 10.1016/j.cis.2021.102503_bb0890
  article-title: The condensation of steam
  publication-title: Ind Eng Chem
  doi: 10.1021/ie50234a018
– volume: 103
  start-page: 685
  year: 1981
  ident: 10.1016/j.cis.2021.102503_bb0590
  article-title: Steam condensation on various gold surfaces
  publication-title: J Heat Transfer
  doi: 10.1115/1.3244527
– volume: 28
  start-page: 14424
  year: 2012
  ident: 10.1016/j.cis.2021.102503_bb0715
  article-title: Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale
  publication-title: Langmuir
  doi: 10.1021/la302599n
– volume: 11
  start-page: 69
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0815
  article-title: How droplets nucleate and grow on liquids and liquid impregnated surfaces
  publication-title: Soft Matter
  doi: 10.1039/C4SM01424C
– volume: 432
  start-page: 36
  year: 2004
  ident: 10.1016/j.cis.2021.102503_bb0165
  article-title: Water-repellent legs of water striders
  publication-title: Nature
  doi: 10.1038/432036a
– volume: 136
  start-page: 681
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0595
  article-title: Steam condensate behavior and heat transfer performance on chromium-ion-implanted metal surfaces
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2019.03.019
– volume: 68
  start-page: 1
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0905
  article-title: A droplet model in steam condensation with noncondensable gas
  publication-title: Int J Thermal Sci
  doi: 10.1016/j.ijthermalsci.2013.01.011
– volume: 28
  start-page: 6067
  year: 2012
  ident: 10.1016/j.cis.2021.102503_bb0710
  article-title: Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces
  publication-title: Langmuir
  doi: 10.1021/la300609f
– volume: 31
  start-page: 1806501
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0060
  article-title: Biological and engineered topological droplet rectifiers
  publication-title: Adv Mater
  doi: 10.1002/adma.201806501
– volume: 4
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0860
  article-title: Hydrophilic directional slippery rough surfaces for water harvesting
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaq0919
– volume: 109
  start-page: 1229
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0880
  article-title: Role of impregnated lubricant in enhancing thermosyphon performance
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.02.086
– volume: 6
  start-page: 2012
  year: 1776
  ident: 10.1016/j.cis.2021.102503_bb0300
  article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
  publication-title: ACS Nano
– volume: 18
  start-page: 233
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0070
  article-title: Dropwise condensation on micro- and nanostructured surfaces
  publication-title: Nanosc Microsc Thermophys Eng
  doi: 10.1080/15567265.2013.862889
– volume: 174
  start-page: 115264
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0920
  article-title: Effective reduction of non-condensable gas effects on condensation heat transfer: surface modification and steam jet injection
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115264
– volume: 256
  start-page: 2742
  year: 2010
  ident: 10.1016/j.cis.2021.102503_bb0635
  article-title: Thermal stability of thiol and silane monolayers: a comparative study
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2009.11.020
– volume: 139
  start-page: 254
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0915
  article-title: Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2019.04.135
– volume: 103
  start-page: 161601
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0085
  article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4825273
– volume: 114
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0705
  article-title: Macrotextures-induced jumping relay of condensate droplets
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5082727
– volume: 129
  start-page: 86
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0960
  article-title: Dropwise condensation on superhydrophobic nanostructure surface, part I: Long-term operation and nanostructure failure
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.09.100
– volume: 24
  start-page: 1211
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0270
  article-title: Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201301984
– volume: 463
  start-page: 640
  year: 2010
  ident: 10.1016/j.cis.2021.102503_bb0440
  article-title: Directional water collection on wetted spider silk
  publication-title: Nature
  doi: 10.1038/nature08729
– volume: 115
  start-page: 1032
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0685
  article-title: Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.08.112
– volume: 12
  start-page: 29946
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0760
  article-title: Confined growth and controlled coalescence/self-removal of condensate microdrops on spatially heterogeneously-patterned superhydrophilic-superhydrophobic surface
  publication-title: ACS Appl Mater Interfaces
– volume: 150
  start-page: 119352
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0925
  article-title: A visualized study of enhanced steam condensation heat transfer on a honeycomb-like microporous superhydrophobic surface in the presence of a non-condensable gas
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2020.119352
– volume: 4
  start-page: 1492
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0130
  article-title: Self-similarity of contact line depinning from textured surfaces
  publication-title: Nat Commun
  doi: 10.1038/ncomms2482
– volume: 8
  start-page: 5729
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0285
  article-title: Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b00852
– volume: 11
  start-page: 2017
  year: 1673
  ident: 10.1016/j.cis.2021.102503_bb0805
  article-title: Growth rates and spontaneous navigation of condensate droplets through randomly structured textures
  publication-title: ACS Nano
– volume: 7
  start-page: 11043
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0500
  article-title: Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces
  publication-title: ACS Nano
  doi: 10.1021/nn404707j
– volume: 16
  start-page: 411
  year: 1973
  ident: 10.1016/j.cis.2021.102503_bb0390
  article-title: Dropwise condensation-the distribution of drop sizes
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/0017-9310(73)90068-9
– volume: 83
  start-page: 833
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0335
  article-title: Dropwise condensation theory revisited: Part I. droplet nucleation radius
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2014.11.009
– volume: 291
  start-page: 633
  year: 2001
  ident: 10.1016/j.cis.2021.102503_bb0545
  article-title: Fast drop movements resulting from the phase change on a gradient surface
  publication-title: Science
  doi: 10.1126/science.291.5504.633
– volume: 8
  start-page: 10352
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0090
  article-title: How coalescing droplets jump
  publication-title: ACS Nano
  doi: 10.1021/nn503643m
– volume: 23
  start-page: 4577
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0265
  article-title: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201300418
– volume: 29
  start-page: 1703002
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0075
  article-title: Recent progress in bionic condensate microdrop self-propelling surfaces
  publication-title: Adv Mater
  doi: 10.1002/adma.201703002
– volume: 26
  start-page: 418
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0620
  article-title: Stable Dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films
  publication-title: Adv Mater
  doi: 10.1002/adma.201303065
– volume: 103
  start-page: 184501
  year: 2009
  ident: 10.1016/j.cis.2021.102503_bb0080
  article-title: Self-propelled dropwise condensation on superhydrophobic surfaces
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.103.184501
– volume: 7
  start-page: 10660
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0725
  article-title: Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b02376
– volume: 112
  start-page: 991
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0680
  article-title: Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.05.039
– volume: 122
  start-page: 45
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0480
  article-title: Mode selection between sliding and rolling for droplet on inclined surface: effect of surface wettability
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.01.098
– volume: 12
  start-page: 2125
  year: 1996
  ident: 10.1016/j.cis.2021.102503_bb0140
  article-title: Super-water-repellent fractal surface
  publication-title: Langmuir
  doi: 10.1021/la950418o
– volume: 3
  start-page: 2806
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0795
  article-title: Enhancing condensation heat transfer on three-dimensional hybrid surfaces
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.005
– volume: 15
  start-page: 231
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0185
  article-title: Superhydrophobic surfaces: a review on fundamentals, applications, and challenges
  publication-title: J Coat Technol Res
  doi: 10.1007/s11998-017-0011-x
– volume: 112
  start-page: 9247
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0460
  article-title: Self-removal of condensed water on the legs of water striders
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1506874112
– volume: 5
  start-page: 2084
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0525
  article-title: Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz500798m
– volume: 109
  start-page: 187
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0370
  article-title: Condensate droplet size distribution on lubricant-infused surfaces
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.01.119
– volume: 10
  start-page: 31765
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0655
  article-title: Condensation heat transfer performance of thermally stable superhydrophobic cerium oxide surfaces
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b09597
– volume: 582
  start-page: 55
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0965
  article-title: Design of robust superhydrophobic surfaces
  publication-title: Nature
  doi: 10.1038/s41586-020-2331-8
– volume: 2
  start-page: 1500202
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0745
  article-title: Can metal matrix-hydrophobic nanoparticle composites enhance water condensation by promoting the dropwise mode?
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201500202
– volume: 14
  start-page: 13367
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0875
  article-title: Enhanced condensation on liquid-infused nanoporous surfaces by vibration-assisted droplet sweeping
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05223
– volume: 28
  start-page: 1800634
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0735
  article-title: Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201800634
– volume: 202
  start-page: 1
  year: 1997
  ident: 10.1016/j.cis.2021.102503_bb0155
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
  doi: 10.1007/s004250050096
– volume: 1
  start-page: 53
  year: 1930
  ident: 10.1016/j.cis.2021.102503_bb0035
  article-title: Versuche ueber die Kondensation von Wasserdampf in film- und Tropfenform
  publication-title: Technische Mechanik und Thermodynamik
– volume: 142
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0260
  article-title: Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach
  publication-title: J Chem Phys
  doi: 10.1063/1.4906877
– volume: 54
  start-page: 4876
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0720
  article-title: Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201500137
– volume: 181
  start-page: 115733
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0410
  article-title: Dropwise condensation from moist air over a hydrophobic metallic substrate
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115733
– volume: 139
  start-page: 112401
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0235
  article-title: How nanostructures affect water droplet nucleation on superhydrophobic surfaces
  publication-title: J Heat Transfer
  doi: 10.1115/1.4036763
– volume: 6
  start-page: 76
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0430
  article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow
  publication-title: Nanoscale
  doi: 10.1039/C3NR04755E
– volume: 120
  start-page: 879
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0385
  article-title: Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.12.059
– volume: 2
  start-page: 152
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0420
  article-title: Superhydrophobicity in perfection: the outstanding properties of the lotus leaf
  publication-title: Beilstein J Nanotechnol
  doi: 10.3762/bjnano.2.19
– volume: 145
  start-page: 590
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0510
  article-title: Numerical investigation of convective dropwise condensation flow by a hybrid thermal lattice Boltzmann method
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.09.076
– year: 2008
  ident: 10.1016/j.cis.2021.102503_bb0010
– volume: 2
  start-page: 269
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0295
  article-title: Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer
  publication-title: Joule
  doi: 10.1016/j.joule.2017.11.010
– year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0040
– volume: 60
  start-page: 664
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0355
  article-title: A dropwise condensation model using a nano-scale, pin structured surface
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2013.01.032
– volume: 14
  start-page: 8024
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0850
  article-title: Depletion of lubricant from nanostructured oil-infused surfaces by pendant condensate droplets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b10184
– volume: 41
  start-page: 81
  year: 1998
  ident: 10.1016/j.cis.2021.102503_bb0320
  article-title: Modeling of heat transfer in dropwise condensation
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/S0017-9310(97)00094-X
– volume: 277
  start-page: 548
  year: 1979
  ident: 10.1016/j.cis.2021.102503_bb0205
  article-title: Direct experimental verification of the kelvin equation for capillary condensation
  publication-title: Nature
  doi: 10.1038/277548a0
– volume: 29
  start-page: 1109
  year: 1986
  ident: 10.1016/j.cis.2021.102503_bb0605
  article-title: Evaluation of organic coatings for the promotion of dropwise condensation of steam
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/0017-9310(86)90142-0
– volume: 17
  start-page: 21492
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0240
  article-title: Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP03243A
– volume: 116
  start-page: 2482
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0835
  article-title: Directional pumping of water and oil microdroplets on slippery surface
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1817172116
– volume: 33
  start-page: 177
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0740
  article-title: Hydrophobic copper nanowires for enhancing condensation heat transfer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.018
– volume: 6
  start-page: 3262
  year: 2012
  ident: 10.1016/j.cis.2021.102503_bb0575
  article-title: Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation
  publication-title: ACS Nano
  doi: 10.1021/nn300183d
– volume: 112
  start-page: 333
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0340
  article-title: Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.04.061
– volume: 13
  start-page: 8169
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0540
  article-title: Hierarchical condensation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03275
– volume: 12
  start-page: 315
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0650
  article-title: Hydrophobicity of rare-earth oxide ceramics
  publication-title: Nat Mater
  doi: 10.1038/nmat3545
– volume: 256
  start-page: 291
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0025
  article-title: A review on wetting and water condensation - perspectives for CO2 condensation
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2018.03.008
– volume: 12
  start-page: 2016
  year: 1825
  ident: 10.1016/j.cis.2021.102503_bb0055
  article-title: Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications
  publication-title: Small
– volume: 95
  year: 2009
  ident: 10.1016/j.cis.2021.102503_bb0225
  article-title: Spatial control in the heterogeneous nucleation of water
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3200951
– volume: 135
  start-page: 111004
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0345
  article-title: Modeling and optimization of superhydrophobic condensation
  publication-title: J Heat Transfer
  doi: 10.1115/1.4024597
– volume: 477
  start-page: 443
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0455
  article-title: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
  publication-title: Nature
  doi: 10.1038/nature10447
– volume: 210
  start-page: 47
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0045
  article-title: Condensation and freezing of droplets on superhydrophobic surfaces
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2013.10.018
– volume: 133
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0330
  article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces
  publication-title: J Heat Transfer
  doi: 10.1115/1.4003742
– volume: 9
  start-page: 13770
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0195
  article-title: Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b01812
– volume: 63
  start-page: 874
  year: 2008
  ident: 10.1016/j.cis.2021.102503_bb0210
  article-title: Effects of surface topography of material on nucleation site density of dropwise condensation
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2007.10.016
– volume: 405
  start-page: 126901
  year: 2021
  ident: 10.1016/j.cis.2021.102503_bb0570
  article-title: Macrotextures-enabled self-propelling of large condensate droplets
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126901
– volume: 33
  start-page: 407
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0770
  article-title: Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03752
– volume: 25
  start-page: 5937
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0550
  article-title: Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection
  publication-title: Adv Mater
  doi: 10.1002/adma.201301876
– volume: 10
  start-page: 29127
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0520
  article-title: Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b09067
– volume: 11
  start-page: 24735
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0790
  article-title: Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b06001
– volume: 151
  start-page: 119349
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0950
  article-title: Experimental and modeling investigations of dropwise condensation out of convective humid air flow
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2020.119349
– volume: 170
  start-page: 515
  year: 1995
  ident: 10.1016/j.cis.2021.102503_bb0475
  article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1995.1130
– volume: 49
  start-page: 6129
  year: 2010
  ident: 10.1016/j.cis.2021.102503_bb0645
  article-title: Bioinspired self-healing superhydrophobic coatings
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201001258
– volume: 3
  start-page: 2013
  year: 1988
  ident: 10.1016/j.cis.2021.102503_bb0495
  article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer
  publication-title: Sci Rep
– volume: 75
  start-page: 908
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0610
  article-title: Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.10.019
– volume: 38
  start-page: 71
  year: 2008
  ident: 10.1016/j.cis.2021.102503_bb0050
  article-title: Wetting and roughness
  publication-title: Annu Rev Mat Res
  doi: 10.1146/annurev.matsci.38.060407.132434
– volume: 23
  start-page: 3820
  year: 2007
  ident: 10.1016/j.cis.2021.102503_bb0530
  article-title: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la063130f
– volume: 122
  start-page: 117
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0360
  article-title: Modeling and optimization of condensation heat transfer at biphilic interface
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.01.108
– volume: 8
  start-page: 6733
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0190
  article-title: Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures
  publication-title: RSC Adv
  doi: 10.1039/C7RA13496G
– volume: 105
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0660
  article-title: Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4886410
– volume: 20
  start-page: 3918
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0615
  article-title: Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c01086
– volume: 83
  start-page: 842
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0400
  article-title: Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2014.11.008
– volume: 135
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0350
  article-title: Condensation on superhydrophobic copper oxide nanostructures
  publication-title: J Heat Transfer
  doi: 10.1115/1.4024424
– volume: 9
  start-page: 71
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0255
  article-title: Recurrent filmwise and dropwise condensation on a beetle mimetic surface
  publication-title: ACS Nano
  doi: 10.1021/nn505716b
– volume: 9
  start-page: 12311
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0560
  article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05607
– volume: 6
  start-page: 1213
  year: 2006
  ident: 10.1016/j.cis.2021.102503_bb0435
  article-title: Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle
  publication-title: Nano Lett
  doi: 10.1021/nl060644q
– volume: 11
  start-page: 7617
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0820
  article-title: Direct observation of drops on slippery lubricant-infused surfaces
  publication-title: Soft Matter
  doi: 10.1039/C5SM01809A
– volume: 216
  start-page: 115
  year: 2002
  ident: 10.1016/j.cis.2021.102503_bb0030
  article-title: Dropwise condensation theory and experiment: a review
  publication-title: Proc Inst Mech Eng, Part A: J Power Energy
  doi: 10.1243/09576500260049034
– volume: 13
  start-page: 1309
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0780
  article-title: Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties
  publication-title: ACS Nano
– volume: 35
  start-page: 10309
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0405
  article-title: Numerical simulation of jumping droplet condensation
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b01253
– volume: 28
  start-page: 1707000
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0585
  article-title: Thin film condensation on nanostructured surfaces
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201707000
– volume: 34
  start-page: 8112
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0830
  article-title: Drop dynamics on liquid-infused surfaces: the role of the lubricant ridge
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01660
– volume: 13
  start-page: 179
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0105
  article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
  publication-title: Nano Lett
  doi: 10.1021/nl303835d
– volume: 9
  start-page: 13676
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0670
  article-title: Patterned polymer coatings increase the efficiency of dew harvesting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b16248
– volume: 6
  start-page: 7923
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0250
  article-title: Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface
  publication-title: RSC Adv
  doi: 10.1039/C5RA23836F
– volume: 290
  start-page: 2130
  year: 2000
  ident: 10.1016/j.cis.2021.102503_bb0630
  article-title: Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers
  publication-title: Science
  doi: 10.1126/science.290.5499.2130
– volume: 1
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0115
  article-title: Coalescence-induced nanodroplet jumping
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.1.064102
– volume: 110
  start-page: 7992
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0750
  article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1210770110
– volume: 19
  start-page: 5287
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0870
  article-title: Stable dropwise condensation of ethanol and hexane on rationally designed ultrascalable nanostructured lubricant-infused surfaces
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b01754
– volume: 127
  start-page: 448
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0515
  article-title: Convective dropwise condensation out of humid air inside a horizontal channel - experimental investigation of the condensate heat transfer resistance
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.08.015
– volume: 5
  start-page: 812
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0245
  article-title: Heterogeneous nucleation capability of conical microstructures for water droplets
  publication-title: RSC Adv
  doi: 10.1039/C4RA12352B
– volume: 3
  start-page: 1360
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0485
  article-title: How surface orientation affects jumping-droplet condensation
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.004
– volume: 141
  start-page: 34
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0935
  article-title: Dropwise condensation in the presence of non-condensable gas: interaction effects of the droplet array using the distributed point sink method
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2019.06.068
– volume: 11
  start-page: 8499
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0730
  article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04481
– volume: 30
  start-page: 14498
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0380
  article-title: Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces
  publication-title: Langmuir
  doi: 10.1021/la503003r
– volume: 6
  start-page: 18649
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0095
  article-title: Coalescence-induced jumping of multiple condensate droplets on hierarchical superhydrophobic surfaces
  publication-title: Sci Rep
  doi: 10.1038/srep18649
– volume: 28
  start-page: 988
  year: 1936
  ident: 10.1016/j.cis.2021.102503_bb0125
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind Eng Chem
  doi: 10.1021/ie50320a024
– volume: 287
  start-page: 102329
  year: 2021
  ident: 10.1016/j.cis.2021.102503_bb0810
  article-title: The challenge of lubricant-replenishment on lubricant-impregnated surfaces
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2020.102329
– volume: 51
  start-page: 2008
  year: 1728
  ident: 10.1016/j.cis.2021.102503_bb0895
  article-title: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation
  publication-title: Int J Heat Mass Tran
– volume: 2
  start-page: 362
  year: 1966
  ident: 10.1016/j.cis.2021.102503_bb0310
  article-title: A theory of heat transfer by dropwise condensation
– volume: 48
  start-page: 2228
  year: 2009
  ident: 10.1016/j.cis.2021.102503_bb0230
  article-title: Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution
  publication-title: Int J Thermal Sci
  doi: 10.1016/j.ijthermalsci.2009.05.004
– volume: 532
  start-page: 85
  year: 2016
  ident: 10.1016/j.cis.2021.102503_bb0445
  article-title: Continuous directional water transport on the peristome surface of Nepenthes alata
  publication-title: Nature
  doi: 10.1038/nature17189
– volume: 15
  start-page: 4808
  year: 2019
  ident: 10.1016/j.cis.2021.102503_bb0840
  article-title: Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces
  publication-title: Soft Matter
  doi: 10.1039/C9SM00493A
– volume: 15
  start-page: 2011
  year: 1857
  ident: 10.1016/j.cis.2021.102503_bb0005
  article-title: Energy and exergy analyses of thermal power plants: a review
  publication-title: Renew Sustain Energy Rev
– volume: 2
  start-page: 17036
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0175
  article-title: Nature-inspired superwettability systems
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2017.36
– volume: 4
  start-page: 2517
  year: 2013
  ident: 10.1016/j.cis.2021.102503_bb0110
  article-title: Electrostatic charging of jumping droplets
  publication-title: Nat Commun
  doi: 10.1038/ncomms3517
– volume: 5
  start-page: 878
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0580
  article-title: Sustaining enhanced condensation on hierarchical mesh-covered surfaces
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwy098
– volume: 414
  start-page: 33
  year: 2001
  ident: 10.1016/j.cis.2021.102503_bb0160
  article-title: Water capture by a desert beetle
  publication-title: Nature
  doi: 10.1038/35102108
– volume: 40
  start-page: 546
  year: 1944
  ident: 10.1016/j.cis.2021.102503_bb0135
  article-title: Wettability of porous surface
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9444000546
– volume: 573
  start-page: 379
  year: 2004
  ident: 10.1016/j.cis.2021.102503_bb0625
  article-title: Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2004.10.008
– volume: 14
  start-page: 14878
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0970
  article-title: Polymer infused porous surfaces for robust, thermally conductive, self-healing coatings for dropwise condensation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03961
– volume: 9
  start-page: 44911
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0290
  article-title: Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b14960
– volume: 14
  start-page: 12796
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0565
  article-title: Laplace pressure driven single-droplet jumping on structured surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03487
– volume: 3
  year: 2008
  ident: 10.1016/j.cis.2021.102503_bb0170
  article-title: Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3182/3/4/046007
– volume: 176
  start-page: 115386
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0375
  article-title: Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115386
– volume: 30
  start-page: 13103
  year: 2014
  ident: 10.1016/j.cis.2021.102503_bb0885
  article-title: Enhancing dropwise condensation through bioinspired wettability patterning
  publication-title: Langmuir
  doi: 10.1021/la5028866
– volume: 560
  start-page: 866
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0555
  article-title: Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.10.113
– volume: 128
  start-page: 9052
  year: 2006
  ident: 10.1016/j.cis.2021.102503_bb0150
  article-title: A perfectly hydrophobic surface (θA/θR = 180°/180°)
  publication-title: J Am Chem Soc
  doi: 10.1021/ja062943n
– volume: 119
  start-page: 277
  year: 1926
  ident: 10.1016/j.cis.2021.102503_bb0220
  article-title: Keimbildung in Übersättigten Gebilden
  publication-title: Z Phys Chem
  doi: 10.1515/zpch-1926-11927
– volume: 7
  start-page: 11719
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0755
  article-title: Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b03264
– volume: 83
  start-page: 27
  year: 2015
  ident: 10.1016/j.cis.2021.102503_bb0280
  article-title: Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2014.11.069
– volume: 54
  start-page: 4507
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0900
  article-title: Dropwise condensation from flowing air-steam mixtures: diffusion resistance assessed by controlled drainage
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2011.06.029
– volume: 21
  start-page: 2927
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0425
  article-title: Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201002733
– volume: 26
  start-page: 421
  year: 2006
  ident: 10.1016/j.cis.2021.102503_bb0640
  article-title: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.05.022
– volume: 98
  year: 2011
  ident: 10.1016/j.cis.2021.102503_bb0100
  article-title: Size effect on the coalescence-induced self-propelled droplet
  publication-title: Appl Phys Lett
– volume: 119
  start-page: 931
  year: 2018
  ident: 10.1016/j.cis.2021.102503_bb0940
  article-title: Effects of millimetric geometric features on dropwise condensation under different vapor conditions
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.11.139
– volume: 160
  start-page: 120172
  year: 2020
  ident: 10.1016/j.cis.2021.102503_bb0305
  article-title: A review of dropwise condensation: theory, modeling, experiments, and applications
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2020.120172
– volume: 523
  start-page: 98
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0775
  article-title: A 3-D model for thermodynamic analysis of hierarchical structured superhydrophobic surfaces
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2017.04.001
– volume: 9
  start-page: 35391
  year: 2017
  ident: 10.1016/j.cis.2021.102503_bb0535
  article-title: Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b09681
SSID ssj0002575
Score 2.5854452
SecondaryResourceType review_article
Snippet As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102503
SubjectTerms Advanced functional surfaces
Dropwise condensation
Fundamentals
Micro/nanoscale features
Performance improvement
Practical application
Title Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces
URI https://dx.doi.org/10.1016/j.cis.2021.102503
https://www.proquest.com/docview/2563426384
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIgQXBAVE-aiMxAk11Nk4TpZbtbBaWNEDoqK3yOPYUhBNVklW1V74DfxkZuyYCpB64BTFGieRx5nx2G_eMPZK5CU6EQlJaVyZ4J_okrmuZTJXrtYZ1IXwxWA-nanVufx4kV_ssUXMhSFY5WT7g0331npqOZlG82TTNJTjK4jrXc2IRkhKSjSXsiD-_Dc_rmEeOCVDFQMMm0k6nmx6jJdpiLF7lhKBQR7rZv3rm_6y0t71LO-ze9OakZ-Gz3rA9mx7wG6HKpK7A3ZnEYu2YatHdJrhIfv5ru82V81gOUa8aFwCauctX_bdJXeU_xFo_QfeOX5lPfz5mLdEb-wlj7lua173BDAf-WXnQbQ7PnZ8c51rwBu_J-G3GDnseEQU0AtM2GXkw7Z3hPt6xM6X778sVslUfiExWSbGROmidFIKZ41WLhNgnRMg55Cl1s0gdxgKZcpZyPNaaNBa5TYtjLA6xRgJl5aP2X7btfYJ44BxkStw6QPGyJmBEiyYFFRtnSqLORwyEQe-MhM3OZXI-F5FENo3bB8q0lUVdHXIXv_usgnEHDcJy6jN6o_ZVaHjuKnby6j5CvVIRym6td0WhXKVEdV9KZ_-36Ofsbt0F9Bqz9n-2G_tC1zejHDk5-8Ru3X6Yb06o-v689f1L-6L_lc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK1QuFS0gCoUaiRNqqLOxnWxvaGG1hbanVuotsh1bCqLJKsmq2gu_gZ_cGTumAqQeuDrOQ57JPOxvviHkPRMFOBGuk8K4IoE_0SVTVfFkKl2lMl3lzDeDOb-Qiyv-9Vpcb5BZrIVBWOVo-4NN99Z6HDkeV_N4WddY48uQ611OkEaIc_GIbHGR5ajaH3_e4zxAJ0MbA8ibcXo82vQgL1MjZfckRQYDERtn_euc_jLT3vfMn5KdMWikn8J37ZIN2-yRx6GN5HqPbM9i1zYY9ZBO0z8jvz537fK27i2FlBesS4DtnNB5195QhwUggde_p62jt9bjn49og_zGfuYRVU1Fqw4R5gO9aT2Kdk2Hli7viw1o7Tcl_B4j1WsaIQX4AhO2GWm_6hwCv56Tq_mXy9kiGfsvJCbL2JBIlReOc-asUdJlTFvnmOZTnaXWTbRwkAtl0lktRMWUVkoKm-aGWZVCkgSx5Quy2bSNfUmohsTI5RD7aGP4xOhCW21SLSvrZJFP9T5hceFLM5KTY4-MH2VEoX2H8b5EWZVBVvvkw-9bloGZ46HJPEqz_EO9SvAcD932Lkq-BDniWYpqbLuCSUJmyHVf8Ff_9-hDsr24PD8rz04vvr0mT_BKgK4dkM2hW9k3EOsM-q3X5TvTJ_5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dropwise+condensation%3A+From+fundamentals+of+wetting%2C+nucleation%2C+and+droplet+mobility+to+performance+improvement+by+advanced+functional+surfaces&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Zheng%2C+Shao-Fei&rft.au=Gross%2C+Ulrich&rft.au=Wang%2C+Xiao-Dong&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=0001-8686&rft.eissn=1873-3727&rft.volume=295&rft_id=info:doi/10.1016%2Fj.cis.2021.102503&rft.externalDocID=S0001868621001445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon