Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces
As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifyin...
Saved in:
Published in | Advances in colloid and interface science Vol. 295; p. 102503 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8686 1873-3727 1873-3727 |
DOI | 10.1016/j.cis.2021.102503 |
Cover
Loading…
Abstract | As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation.
[Display omitted]
•Progress of dropwise condensation (DWC) on advanced functional surfaces.•Key components for the performance enhancement of dropwise condensation.•Overview of fundamental understanding and heat transfer enhancement.•Challenges and future prospects in the practical application of dropwise condensation. |
---|---|
AbstractList | As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation.
[Display omitted]
•Progress of dropwise condensation (DWC) on advanced functional surfaces.•Key components for the performance enhancement of dropwise condensation.•Overview of fundamental understanding and heat transfer enhancement.•Challenges and future prospects in the practical application of dropwise condensation. As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation.As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation. |
ArticleNumber | 102503 |
Author | Gross, Ulrich Zheng, Shao-Fei Wang, Xiao-Dong |
Author_xml | – sequence: 1 givenname: Shao-Fei surname: Zheng fullname: Zheng, Shao-Fei organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China – sequence: 2 givenname: Ulrich surname: Gross fullname: Gross, Ulrich organization: Institute of Thermal Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 7, Freiberg 09599, Germany – sequence: 3 givenname: Xiao-Dong surname: Wang fullname: Wang, Xiao-Dong email: wangxd99@gmail.com organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China |
BookMark | eNp9kc9u1DAQxq2qSN0WHoCbjxyaxX9iJ8AJlZZWqsQFztbEGSOvEnuxna32LXhknG5PHHqyZvT9vpnxd0nOQwxIyHvOtpxx_XG3tT5vBRO81kIxeUY2vO9kIzvRnZMNY4w3ve71BbnMeVdLoTq1IX-_pbh_8hmpjWHEkKH4GD7TuxRn6pYwwoyhwJRpdPQJS_Hh9zUNi53wWXlNIYx0rCYTFjrHwU--HGmJdI_JxTRDsEj9vE_xgKsVHY4UxsPaHtcBdnWBieYlObCY35I3ro7Ddy_vFfl1d_vz5r55_PH94ebrY2OlZKXR0PWubZlDC9pJNqBzbGg_DZKjE4NyQjOpHQ5KjQwGAK2Qd5YhcM0U4_KKfDj51s3-LJiLmX22OE0QMC7ZCKVlK7Ts2yrtTlKbYs4JnbG-PF9fEvjJcGbWDMyu9itYMzCnDCrJ_yP3yc-Qjq8yX04M1usPHpPJ1uP6XT6hLWaM_hX6H-HDpXg |
CitedBy_id | crossref_primary_10_1016_j_rser_2024_115135 crossref_primary_10_1016_j_cis_2023_103075 crossref_primary_10_1016_j_applthermaleng_2023_121600 crossref_primary_10_1016_j_energy_2025_134412 crossref_primary_10_1016_j_icheatmasstransfer_2024_108516 crossref_primary_10_1038_s41467_023_40157_5 crossref_primary_10_1063_5_0134579 crossref_primary_10_3390_biomimetics8010062 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126397 crossref_primary_10_1016_j_applthermaleng_2022_118233 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123929 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123926 crossref_primary_10_1016_j_icheatmasstransfer_2023_107114 crossref_primary_10_1016_j_surfin_2024_104055 crossref_primary_10_1016_j_applthermaleng_2023_120591 crossref_primary_10_1016_j_progpolymsci_2025_101933 crossref_primary_10_1021_acs_langmuir_2c00496 crossref_primary_10_1080_10407782_2022_2105059 crossref_primary_10_1063_5_0222367 crossref_primary_10_1021_acsnano_4c15277 crossref_primary_10_1016_j_applthermaleng_2022_119437 crossref_primary_10_1016_j_surfcoat_2022_128514 crossref_primary_10_1021_acs_langmuir_4c03358 crossref_primary_10_1016_j_icheatmasstransfer_2021_105836 crossref_primary_10_1021_acs_iecr_2c00717 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124929 crossref_primary_10_1016_j_pnucene_2024_105112 crossref_primary_10_1021_acs_langmuir_3c02078 crossref_primary_10_1021_acs_langmuir_4c01809 crossref_primary_10_1002_adma_202407856 crossref_primary_10_1002_pssa_202300482 crossref_primary_10_1016_j_ijft_2024_100782 crossref_primary_10_1016_j_porgcoat_2024_108814 crossref_primary_10_1021_acs_chemmater_2c00964 crossref_primary_10_1021_acs_langmuir_3c03758 crossref_primary_10_1002_adfm_202305029 crossref_primary_10_1016_j_surfin_2024_104271 crossref_primary_10_1016_j_applthermaleng_2023_120891 crossref_primary_10_1016_j_cis_2022_102684 crossref_primary_10_1016_j_icheatmasstransfer_2024_107295 crossref_primary_10_1016_j_icheatmasstransfer_2025_108585 crossref_primary_10_1021_acs_langmuir_2c02897 crossref_primary_10_1016_j_cis_2021_102564 crossref_primary_10_1016_j_energy_2024_132564 crossref_primary_10_1021_acsnano_4c17632 crossref_primary_10_1016_j_surfin_2023_102685 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126105 crossref_primary_10_1021_acsnano_4c06339 crossref_primary_10_1039_D0CS01033B crossref_primary_10_1016_j_ijthermalsci_2024_109469 crossref_primary_10_1002_admi_202400396 crossref_primary_10_1063_5_0181485 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123757 crossref_primary_10_1016_j_applthermaleng_2022_118928 |
Cites_doi | 10.1002/adfm.201101302 10.1016/j.ijheatmasstransfer.2015.09.079 10.1021/nl504628s 10.1016/j.ijheatmasstransfer.2020.119734 10.1021/la304264g 10.1021/nn303867y 10.1016/j.joule.2018.08.014 10.1021/acs.langmuir.9b02603 10.1115/1.4002396 10.1098/rstl.1805.0005 10.1021/acsami.9b22417 10.1016/j.ijheatmasstransfer.2018.12.068 10.1038/ncomms2253 10.1038/nature16956 10.1021/acs.langmuir.5b03778 10.1063/5.0011642 10.1016/0300-9467(76)87016-5 10.1126/sciadv.aax0746 10.1038/s41598-017-18955-x 10.1002/admi.202001176 10.1016/j.ijheatmasstransfer.2018.08.134 10.1073/pnas.0405885101 10.1002/admi.201400480 10.1016/j.ijheatmasstransfer.2014.09.080 10.1016/j.ijheatmasstransfer.2014.04.041 10.1002/adma.200501961 10.1146/annurev-fluid-121108-145558 10.1021/nl0717457 10.1038/srep30764 10.1016/j.ijheatmasstransfer.2020.119839 10.1021/acsami.6b05324 10.1038/154515a0 10.1103/PhysicsPhysiqueFizika.3.255 10.1016/S0017-9310(02)00059-5 10.1021/ie50234a018 10.1115/1.3244527 10.1021/la302599n 10.1039/C4SM01424C 10.1038/432036a 10.1016/j.ijheatmasstransfer.2019.03.019 10.1016/j.ijthermalsci.2013.01.011 10.1021/la300609f 10.1002/adma.201806501 10.1126/sciadv.aaq0919 10.1016/j.ijheatmasstransfer.2017.02.086 10.1080/15567265.2013.862889 10.1016/j.applthermaleng.2020.115264 10.1016/j.apsusc.2009.11.020 10.1016/j.ijheatmasstransfer.2019.04.135 10.1063/1.4825273 10.1063/1.5082727 10.1016/j.ijheatmasstransfer.2018.09.100 10.1002/adfm.201301984 10.1038/nature08729 10.1016/j.ijheatmasstransfer.2017.08.112 10.1016/j.ijheatmasstransfer.2020.119352 10.1038/ncomms2482 10.1021/acsami.6b00852 10.1021/nn404707j 10.1016/0017-9310(73)90068-9 10.1016/j.ijheatmasstransfer.2014.11.009 10.1126/science.291.5504.633 10.1021/nn503643m 10.1002/adfm.201300418 10.1002/adma.201703002 10.1002/adma.201303065 10.1103/PhysRevLett.103.184501 10.1021/acsami.5b02376 10.1016/j.ijheatmasstransfer.2017.05.039 10.1016/j.ijheatmasstransfer.2018.01.098 10.1021/la950418o 10.1016/j.joule.2019.08.005 10.1007/s11998-017-0011-x 10.1073/pnas.1506874112 10.1021/jz500798m 10.1016/j.ijheatmasstransfer.2017.01.119 10.1021/acsami.8b09597 10.1038/s41586-020-2331-8 10.1002/admi.201500202 10.1021/acsnano.0c05223 10.1002/adfm.201800634 10.1007/s004250050096 10.1063/1.4906877 10.1002/anie.201500137 10.1016/j.applthermaleng.2020.115733 10.1115/1.4036763 10.1039/C3NR04755E 10.1016/j.ijheatmasstransfer.2017.12.059 10.3762/bjnano.2.19 10.1016/j.applthermaleng.2018.09.076 10.1016/j.joule.2017.11.010 10.1016/j.ijheatmasstransfer.2013.01.032 10.1021/acsnano.9b10184 10.1016/S0017-9310(97)00094-X 10.1038/277548a0 10.1016/0017-9310(86)90142-0 10.1039/C5CP03243A 10.1073/pnas.1817172116 10.1016/j.nanoen.2017.01.018 10.1021/nn300183d 10.1016/j.ijheatmasstransfer.2017.04.061 10.1021/acsnano.9b03275 10.1038/nmat3545 10.1016/j.cis.2018.03.008 10.1063/1.3200951 10.1115/1.4024597 10.1038/nature10447 10.1016/j.cis.2013.10.018 10.1115/1.4003742 10.1021/acsami.7b01812 10.1016/j.ces.2007.10.016 10.1016/j.cej.2020.126901 10.1021/acs.langmuir.6b03752 10.1002/adma.201301876 10.1021/acsami.8b09067 10.1021/acsami.9b06001 10.1016/j.ijheatmasstransfer.2020.119349 10.1006/jcis.1995.1130 10.1002/anie.201001258 10.1016/j.applthermaleng.2014.10.019 10.1146/annurev.matsci.38.060407.132434 10.1021/la063130f 10.1016/j.ijheatmasstransfer.2018.01.108 10.1039/C7RA13496G 10.1063/1.4886410 10.1021/acs.nanolett.0c01086 10.1016/j.ijheatmasstransfer.2014.11.008 10.1115/1.4024424 10.1021/nn505716b 10.1021/acsnano.5b05607 10.1021/nl060644q 10.1039/C5SM01809A 10.1243/09576500260049034 10.1021/acs.langmuir.9b01253 10.1002/adfm.201707000 10.1021/acs.langmuir.8b01660 10.1021/nl303835d 10.1021/acsami.6b16248 10.1039/C5RA23836F 10.1126/science.290.5499.2130 10.1103/PhysRevFluids.1.064102 10.1073/pnas.1210770110 10.1021/acs.nanolett.9b01754 10.1016/j.ijheatmasstransfer.2018.08.015 10.1039/C4RA12352B 10.1016/j.joule.2019.03.004 10.1016/j.ijheatmasstransfer.2019.06.068 10.1021/acsnano.7b04481 10.1021/la503003r 10.1038/srep18649 10.1021/ie50320a024 10.1016/j.cis.2020.102329 10.1016/j.ijthermalsci.2009.05.004 10.1038/nature17189 10.1039/C9SM00493A 10.1038/natrevmats.2017.36 10.1038/ncomms3517 10.1093/nsr/nwy098 10.1038/35102108 10.1039/tf9444000546 10.1016/j.susc.2004.10.008 10.1021/acsnano.0c03961 10.1021/acsami.7b14960 10.1021/acsnano.0c03487 10.1088/1748-3182/3/4/046007 10.1016/j.applthermaleng.2020.115386 10.1021/la5028866 10.1016/j.jcis.2019.10.113 10.1021/ja062943n 10.1515/zpch-1926-11927 10.1021/acsami.5b03264 10.1016/j.ijheatmasstransfer.2014.11.069 10.1016/j.ijheatmasstransfer.2011.06.029 10.1002/adfm.201002733 10.1016/j.applthermaleng.2005.05.022 10.1016/j.ijheatmasstransfer.2017.11.139 10.1016/j.ijheatmasstransfer.2020.120172 10.1016/j.colsurfa.2017.04.001 10.1021/acsami.7b09681 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.cis.2021.102503 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1873-3727 |
ExternalDocumentID | 10_1016_j_cis_2021_102503 S0001868621001445 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K WUQ XPP ZGI ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS 7X8 |
ID | FETCH-LOGICAL-c330t-6a78f440feca6f30beff0b49b31ef2b5f26036feb55d0abaa65e17c0ea1605013 |
IEDL.DBID | .~1 |
ISSN | 0001-8686 1873-3727 |
IngestDate | Thu Sep 04 23:44:31 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Wed Sep 03 16:44:02 EDT 2025 Fri Feb 23 02:43:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Practical application Micro/nanoscale features Advanced functional surfaces Dropwise condensation Performance improvement Fundamentals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-6a78f440feca6f30beff0b49b31ef2b5f26036feb55d0abaa65e17c0ea1605013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2563426384 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2563426384 crossref_citationtrail_10_1016_j_cis_2021_102503 crossref_primary_10_1016_j_cis_2021_102503 elsevier_sciencedirect_doi_10_1016_j_cis_2021_102503 |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Advances in colloid and interface science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mukherjee, Berrier, Murphy, Vieitez, Boreyko (bb0485) 2019; 3 Miljkovic, Enright, Wang (bb0300) 1776-1785; 6 Enright, Miljkovic, Al-Obeidi, Thompson, Wang (bb0715) 2012; 28 Damle, Sun, Rykaczewski (bb0745) 2015; 2 Park, Kim, Grinthal, He, Fox, Weaver (bb0855) 2016; 531 Lo, Chu, Yen, Lu (bb0795) 2019; 3 Tian, Zhu, Guo, Li, Feng, Gao (bb0525) 2014; 5 Guo, Tang, Kumar (bb0825) 2019; 35 Oh, Zhang, Shetty, Krogstad, Braun, Miljkovic (bb0585) 2018; 28 Lv, Hao, Zhang, He (bb0560) 2015; 9 Oberli, Caruso, Hall, Fabretto, Murphy, Evans (bb0045) 2014; 210 Barthlott, Neinhuis (bb0155) 1997; 202 Wang, Li, Liang, Jiang, Zheng, Lan (bb0695) 2017; 111 Xiao, Miljkovic, Enright, Wang (bb0495) 1988; 3 Sharma, Stamatopoulos, Suter, von Rohr, Poulikakos (bb0520) 2018; 10 Enright, Miljkovic, Dou, Nam, Wang (bb0350) 2013; 135 Gong, Gao, Jiang (bb0075) 2017; 29 Xiu, Zhu, Hess, Wong (bb0765) 2007; 7 Mu, Pang, Lu, Liu (bb0210) 2008; 63 Varanasi, Hsu, Bhate, Yang, Deng (bb0225) 2009; 95 Zhai, Berg, Cebeci, Kim, Milwid, Rubner (bb0435) 2006; 6 Nam, Kim, Shin (bb0085) 2013; 103 Aili, Ge, Zhang (bb0235) 2017; 139 Castillo, Weibel, Garimella (bb0910) 2015; 80 Song, Lan, Ma, Bai (bb0230) 2009; 48 Orejon, Askounis, Takata, Attinger (bb0790) 2019; 11 Dorrer, Rühe (bb0530) 2007; 23 Lo, Wang, Lu (bb0270) 2014; 24 Shang, Hou, Yu, Yao (bb0360) 2018; 122 Vemuri, Kim, Wood, Govindaraju, Bell (bb0640) 2006; 26 Wen, Xu, Zhao, Yang, Ma, Liu (bb0580) 2018; 5 Yan, Zhang, Sett, Feng, Zhao, Huang (bb0780) 2019; 13 Rothstein (bb0065) 2010; 42 Xie, Xu, Shang, Zhang (bb0480) 2018; 122 Al-Khayat, Hong, Beck, Minett, Neto (bb0670) 2017; 9 Yang, Lin, Tu, He, Wang (bb0685) 2017; 115 Mulroe, Srijanto, Farzad Ahmadi, Patrick Collier, Boreyko (bb0730) 2017; 11 Miljkovic, Enright, Nam, Lopez, Dou, Sack (bb0105) 2013; 13 Kim, Nam (bb0365) 2016; 93 Miljkovic, Preston, Enright, Wang (bb0110) 2013; 4 Wang, Yang, Zhao (bb0100) 2011; 98 Abu-Orabi (bb0320) 1998; 41 Yan, Chen, Sett, Chavan, Li, Feng (bb0540) 2019; 13 Zhang, Lv, Askounis, Orejon, Shen (bb0880) 2017; 109 Traipattanakul, Tso, Chao (bb0505) 2019; 128 Feng, Bhushan (bb0555) 2020; 560 Donati, Lam, Milionis, Sharma, Tripathy, Zendeli (bb0955) 2021; 8 Chen, Patel, Weibel, Garimella (bb0095) 2016; 6 Ma, Sett, Cha, Yan, Miljkovic (bb0470) 2020; 116 Miljkovic, Preston, Enright, Wang (bb0500) 2013; 7 Gao, McCarthy (bb0150) 2006; 128 Shim, Seo, Oh, Lee, Nam (bb0655) 2018; 10 Wen, Li, Wu, Wu, Wang, Chen (bb0740) 2017; 33 Sadullah, Semprebon, Kusumaatmaja (bb0830) 2018; 34 Liang, He, Wang, Yang, Wang (bb0775) 2017; 523 Miljkovic, Enright, Wang (bb0345) 2013; 135 El Fil, Kini, Garimella (bb0305) 2020; 160 Wilke, Antao, Cruz, Iwata, Zhao, Leroy (bb0970) 2020; 14 Sun, Weisensee (bb0840) 2019; 15 Wang, Sun, Hokkanen, Zhang, Lin, Liu (bb0965) 2020; 582 Han, Cai, Lin, Liu, Luo, Zhang (bb0190) 2018; 8 Zheng, Eimann, Philipp, Fieback, Gross (bb0385) 2018; 120 Fogg (bb0145) 1944; 154 Huang, Leu (bb0610) 2015; 75 Zheng, Eimann, Philipp, Fieback, Gross (bb0935) 2019; 141 Le Fevre, Rose (bb0310) 1966; 2 Paxson, Yagüe, Gleason, Varanasi (bb0620) 2014; 26 Schellenberger, Xie, Encinas, Hardy, Klapper, Papadopoulos (bb0820) 2015; 11 Kaushik, Siva Reddy, Tyagi (bb0005) 1857-1872; 15 Wu, Yang, Cao, Zhang, Zhu, Wu (bb0770) 2017; 33 Cheng, Liu, Ye, Liu, Du, Jin (bb0570) 2021; 405 Baumli, D’Acunzi, Hegner, Naga, Wong, Butt (bb0810) 2021; 287 Hao, Liu, Chen, Li, Zhang, Zhao (bb0055) 1825-1839; 12 Watanabe, Aritomi, Machida (bb0395) 2014; 76 Extrand, Kumagai (bb0475) 1995; 170 Azimi, Dhiman, Kwon, Paxson, Varanasi (bb0650) 2013; 12 Luo, Li, Zhu, Zhao, Gao (bb0720) 2015; 54 Woodruff, Westwater (bb0590) 1981; 103 Maeda, Lv, Zhang, Takata, Orejon (bb0375) 2020; 176 Oh, Cha, Chen, Chavan, Kong, Miljkovic (bb0875) 2020; 14 Wang, Yao, Liu, Quéré, Jiang (bb0460) 2015; 112 Adera, Alvarenga, Shneidman, Zhang, Davitt, Aizenberg (bb0850) 2020; 14 Preston, Miljkovic, Sack, Enright, Queeney, Wang (bb0660) 2014; 105 Zheng, Eimann, Philipp, Fieback, Gross (bb0915) 2019; 139 Birbarah, Chavan, Miljkovic (bb0405) 2019; 35 Ma, Cahill, Miljkovic (bb0615) 2020; 20 Zheng, Eimann, Philipp, Fieback, Gross (bb0950) 2020; 151 Cassie, Baxter (bb0135) 1944; 40 Rose, Glicksman (bb0390) 1973; 16 Chen, Weibel, Garimella (bb0785) 2015; 2 Weisensee, Wang, Qian, Schultz, King, Miljkovic (bb0370) 2017; 109 Anderson, Gupta, Voevodin, Hunter, Putnam, Tsukruk (bb0575) 2012; 6 Chen, Zhang, Zhang, Liu, Jiang, Zhang (bb0445) 2016; 532 Jeevahan, Chandrasekaran, Britto Joseph, Durairaj, Mageshwaran (bb0185) 2018; 15 Kim, Cha, Birbarah, Chavan, Zhong, Xu (bb0690) 2015; 31 Peng, Ma, Lan, Xu, Wen (bb0280) 2015; 83 Cha, Vahabi, Wu, Chavan, Kim, Sett (bb0415) 2020; 6 Sharma, Combe, Giger, Emmerich, Poulikakos (bb0805) 1673-1682; 11 Paxson, Varanasi (bb0130) 2013; 4 Rykaczewski, Paxson, Anand, Chen, Wang, Varanasi (bb0700) 2013; 29 Sheng, Sun, Wang, Wang, Wang (bb0215) 2016; 6 Wisdom, Watson, Qu, Liu, Watson, Chen (bb0750) 2013; 110 Ju, Xiao, Yao, Bai, Jiang (bb0550) 2013; 25 Xie, Xu, Li, Liu (bb0960) 2019; 129 Eimann, Zheng, Philipp, Omranpoor, Gross (bb0945) 2020; 154 Fisher, Israelachvili (bb0205) 1979; 277 Kim, Kim (bb0330) 2011; 133 Li, Li, Sun, Feng, Wang (bb0060) 2019; 31 Ju, Bai, Zheng, Zhao, Fang, Jiang (bb0465) 2012; 3 Khandekar, Muralidhar (bb0040) 2020 Grooten, van der Geld (bb0900) 2011; 54 Baghel, Sikarwar, Muralidhar (bb0410) 2020; 181 Sett, Sokalski, Boyina, Li, Rabbi, Auby (bb0870) 2019; 19 Jiang, Gao, Zhang, He, Zhang, Daniel (bb0835) 2019; 116 Quéré (bb0050) 2008; 38 Onda, Shibuichi, Satoh, Tsujii (bb0140) 1996; 12 Liu, Cheng (bb0400) 2015; 83 Liu, Cheng (bb0335) 2015; 83 Castillo, Weibel (bb0930) 2019; 133 Ge, Raza, Li, Sett, Miljkovic, Zhang (bb0845) 2020; 12 Parker, Lawrence (bb0160) 2001; 414 Hou, Yu, Chen, Wang, Yao (bb0255) 2015; 9 Liu, Chen, Xin (bb0170) 2008; 3 Kim, Jeong (bb0595) 2019; 136 Xing, Wang, Wu, Gao (bb0760) 2020; 12 Enright, Miljkovic, Sprittles, Nolan, Mitchell, Wang (bb0090) 2014; 8 Li, Alhosani, Yuan, Liu, Al Ghaferi, Zhang (bb0380) 2014; 30 Zheng, Eimann, Fieback, Xie, Gross (bb0510) 2018; 145 Cheng, Du, Wang, Chen, Lan, Wang (bb0705) 2019; 114 Aili, Li, Alhosani, Zhang (bb0800) 2016; 8 Yan, Qin, Chen, Zhao, Sett, Hoque (bb0565) 2020; 14 Wen, Lan, Peng, Xu, Yang, Ma (bb0195) 2017; 9 Zhao, Luo, Zhu, Li, Gao (bb0755) 2015; 7 Gao, Jiang (bb0165) 2004; 432 Xu, Lan, Peng, Wen, Ma (bb0260) 2015; 142 Zhang, Maeda, Lv, Takata, Orejon (bb0535) 2017; 9 Rose (bb0030) 2002; 216 Boreyko, Chen (bb0080) 2009; 103 Xu, Lan, Peng, Wen, Ma (bb0250) 2016; 6 Chen, Wu, Ma, Hua, Koratkar, Yao (bb0275) 2011; 21 Preston, Mafra, Miljkovic, Kong, Wang (bb0665) 2015; 15 Alwazzan, Egab, Peng, Khan, Li (bb0680) 2017; 112 Wu, Maa (bb0315) 1976; 12 Sikarwar, Battoo, Khandekar, Muralidhar (bb0325) 2011; 133 Volmer, Weber (bb0220) 1926; 119 Xu, Lan, Peng, Wen, Ma (bb0245) 2015; 5 Li, Li, Sun (bb0645) 2010; 49 Wen, Xu, Zhao, Lee, Ma, Yang (bb0290) 2017; 9 Ghosh, Beaini, Zhang, Megaridis (bb0885) 2014; 30 Daniel, Chaudhury, Chen (bb0545) 2001; 291 Zhang, Mou, Zhang, Fan, Li (bb0925) 2020; 150 Fu, Liu, Wilson, Chen (bb0240) 2015; 17 Othmer (bb0890) 1929; 21 Zhu, Luo, Tian, Li, Gao (bb0725) 2015; 7 Anand, Paxson, Dhiman, David Smith, Varanasi (bb0490) 2012; 6 Wong, Kang, Tang, Smythe, Hatton, Grinthal (bb0455) 2011; 477 Bixler, Bhushan (bb0430) 2014; 6 Wenzel (bb0125) 1936; 28 Niu, Guo, Hu, Tang (bb0340) 2017; 112 Dai, Sun, Nielsen, Stogin, Wang, Yang (bb0860) 2018; 4 Fisher (bb0200) 1967; 3 Feng, Jiang (bb0180) 2006; 18 Zhao, Preston, Lu, Zhang, Queeney, Wang (bb0940) 2018; 119 Preston, Lu, Song, Zhao, Wilke, Antao (bb0865) 2018; 8 Bohn, Federle (bb0450) 2004; 101 Eimann, Zheng, Philipp, Fieback, Gross (bb0515) 2018; 127 Tokunaga, Tsuruta (bb0675) 2020; 156 Enright, Miljkovic, Alvarado, Kim, Rose (bb0070) 2014; 18 Lan, Wen, Wang, Ma (bb0905) 2013; 68 Feng, Qin, Yao (bb0710) 2012; 28 Wen, Xu, Ma, Lee, Yang (bb0295) 2018; 2 Wu, Wang, Wu, Chen, Zhao, Zhang (bb0425) 2011; 21 Kulinich, Farzaneh (bb0625) 2004; 573 Lee, Yoon, Kim, Kim, Kennedy, Zhang (bb0355) 2013; 60 Ma, Chen, Xu, Lin, Ren, Long (bb0600) 2002; 45 Ensikat, Ditsche-Kuru, Neinhuis, Barthlott (bb0420) 2011; 2 Chandekar, Sengupta, Whitten (bb0635) 2010; 256 Marto, Looney, Rose, Wanniarachchi (bb0605) 1986; 29 Ma, Zhou, Lan, Li, Zhang (bb0895) 1728-1737; 51 Schmidt, Schurig, Sellschopp (bb0035) 1930; 1 Carey (bb0010) 2008 Liu, Wang, Jiang (bb0175) 2017; 2 Mishchenko, Khan, Aizenberg, Hatton (bb0265) 2013; 23 Ölçeroğlu, McCarthy (bb0285) 2016; 8 Anand, Rykaczewski, Subramanyam, Beysens, Varanasi (bb0815) 2015; 11 Wen, Ma, Lee, Yang (bb0020) 2018; 2 Cha, Xu, Sotelo, Chun, Yokoyama, Enright (bb0115) 2016; 1 Wang, Zhu, Meng, Wang, Deng, Gao (bb0735) 2018; 28 Jeremy Cho, Preston, Zhu, Wang (bb0015) 2017; 2 Young (bb0120) 1805; 95 Genzer, Efimenko (bb0630) 2000; 290 Zheng, Bai, Huang, Tian, Nie, Zhao (bb0440) 2010; 463 Ji, Lee, Kim, Hwang, Lee (bb0920) 2020; 174 Snustad, Røe, Brunsvold, Ervik, He, Zhang (bb0025) 2018; 256 Ji (10.1016/j.cis.2021.102503_bb0920) 2020; 174 Wen (10.1016/j.cis.2021.102503_bb0740) 2017; 33 Lan (10.1016/j.cis.2021.102503_bb0905) 2013; 68 Liu (10.1016/j.cis.2021.102503_bb0175) 2017; 2 Parker (10.1016/j.cis.2021.102503_bb0160) 2001; 414 Peng (10.1016/j.cis.2021.102503_bb0280) 2015; 83 Sun (10.1016/j.cis.2021.102503_bb0840) 2019; 15 Jiang (10.1016/j.cis.2021.102503_bb0835) 2019; 116 Rothstein (10.1016/j.cis.2021.102503_bb0065) 2010; 42 Sharma (10.1016/j.cis.2021.102503_bb0520) 2018; 10 Schellenberger (10.1016/j.cis.2021.102503_bb0820) 2015; 11 Kaushik (10.1016/j.cis.2021.102503_bb0005) 1857; 15 Chen (10.1016/j.cis.2021.102503_bb0275) 2011; 21 Damle (10.1016/j.cis.2021.102503_bb0745) 2015; 2 Chandekar (10.1016/j.cis.2021.102503_bb0635) 2010; 256 Song (10.1016/j.cis.2021.102503_bb0230) 2009; 48 Xie (10.1016/j.cis.2021.102503_bb0480) 2018; 122 Mishchenko (10.1016/j.cis.2021.102503_bb0265) 2013; 23 Wang (10.1016/j.cis.2021.102503_bb0735) 2018; 28 Hou (10.1016/j.cis.2021.102503_bb0255) 2015; 9 Zhao (10.1016/j.cis.2021.102503_bb0755) 2015; 7 Abu-Orabi (10.1016/j.cis.2021.102503_bb0320) 1998; 41 Mulroe (10.1016/j.cis.2021.102503_bb0730) 2017; 11 Enright (10.1016/j.cis.2021.102503_bb0090) 2014; 8 Le Fevre (10.1016/j.cis.2021.102503_bb0310) 1966; 2 Xu (10.1016/j.cis.2021.102503_bb0250) 2016; 6 Cha (10.1016/j.cis.2021.102503_bb0115) 2016; 1 Wen (10.1016/j.cis.2021.102503_bb0020) 2018; 2 Xu (10.1016/j.cis.2021.102503_bb0260) 2015; 142 Hao (10.1016/j.cis.2021.102503_bb0055) 1825; 12 Xu (10.1016/j.cis.2021.102503_bb0245) 2015; 5 Xiao (10.1016/j.cis.2021.102503_bb0495) 1988; 3 Preston (10.1016/j.cis.2021.102503_bb0865) 2018; 8 Wen (10.1016/j.cis.2021.102503_bb0290) 2017; 9 Liu (10.1016/j.cis.2021.102503_bb0400) 2015; 83 Al-Khayat (10.1016/j.cis.2021.102503_bb0670) 2017; 9 Mu (10.1016/j.cis.2021.102503_bb0210) 2008; 63 Dorrer (10.1016/j.cis.2021.102503_bb0530) 2007; 23 Eimann (10.1016/j.cis.2021.102503_bb0515) 2018; 127 Luo (10.1016/j.cis.2021.102503_bb0720) 2015; 54 Wenzel (10.1016/j.cis.2021.102503_bb0125) 1936; 28 Barthlott (10.1016/j.cis.2021.102503_bb0155) 1997; 202 Wang (10.1016/j.cis.2021.102503_bb0695) 2017; 111 Anderson (10.1016/j.cis.2021.102503_bb0575) 2012; 6 Xie (10.1016/j.cis.2021.102503_bb0960) 2019; 129 Zhu (10.1016/j.cis.2021.102503_bb0725) 2015; 7 Tian (10.1016/j.cis.2021.102503_bb0525) 2014; 5 Yan (10.1016/j.cis.2021.102503_bb0565) 2020; 14 Preston (10.1016/j.cis.2021.102503_bb0660) 2014; 105 Anand (10.1016/j.cis.2021.102503_bb0490) 2012; 6 Wen (10.1016/j.cis.2021.102503_bb0580) 2018; 5 Eimann (10.1016/j.cis.2021.102503_bb0945) 2020; 154 Ensikat (10.1016/j.cis.2021.102503_bb0420) 2011; 2 Lv (10.1016/j.cis.2021.102503_bb0560) 2015; 9 Ma (10.1016/j.cis.2021.102503_bb0895) 1728; 51 Li (10.1016/j.cis.2021.102503_bb0060) 2019; 31 Wisdom (10.1016/j.cis.2021.102503_bb0750) 2013; 110 Carey (10.1016/j.cis.2021.102503_bb0010) 2008 Miljkovic (10.1016/j.cis.2021.102503_bb0345) 2013; 135 Li (10.1016/j.cis.2021.102503_bb0645) 2010; 49 Azimi (10.1016/j.cis.2021.102503_bb0650) 2013; 12 Liang (10.1016/j.cis.2021.102503_bb0775) 2017; 523 Dai (10.1016/j.cis.2021.102503_bb0860) 2018; 4 Weisensee (10.1016/j.cis.2021.102503_bb0370) 2017; 109 Zhang (10.1016/j.cis.2021.102503_bb0880) 2017; 109 Ghosh (10.1016/j.cis.2021.102503_bb0885) 2014; 30 Gao (10.1016/j.cis.2021.102503_bb0150) 2006; 128 Watanabe (10.1016/j.cis.2021.102503_bb0395) 2014; 76 Extrand (10.1016/j.cis.2021.102503_bb0475) 1995; 170 Zhang (10.1016/j.cis.2021.102503_bb0535) 2017; 9 Enright (10.1016/j.cis.2021.102503_bb0715) 2012; 28 Quéré (10.1016/j.cis.2021.102503_bb0050) 2008; 38 Xiu (10.1016/j.cis.2021.102503_bb0765) 2007; 7 Chen (10.1016/j.cis.2021.102503_bb0445) 2016; 532 Onda (10.1016/j.cis.2021.102503_bb0140) 1996; 12 Zhai (10.1016/j.cis.2021.102503_bb0435) 2006; 6 Ma (10.1016/j.cis.2021.102503_bb0600) 2002; 45 Aili (10.1016/j.cis.2021.102503_bb0800) 2016; 8 Boreyko (10.1016/j.cis.2021.102503_bb0080) 2009; 103 Feng (10.1016/j.cis.2021.102503_bb0710) 2012; 28 Woodruff (10.1016/j.cis.2021.102503_bb0590) 1981; 103 Wu (10.1016/j.cis.2021.102503_bb0770) 2017; 33 Daniel (10.1016/j.cis.2021.102503_bb0545) 2001; 291 Wang (10.1016/j.cis.2021.102503_bb0100) 2011; 98 Fogg (10.1016/j.cis.2021.102503_bb0145) 1944; 154 Shang (10.1016/j.cis.2021.102503_bb0360) 2018; 122 Bixler (10.1016/j.cis.2021.102503_bb0430) 2014; 6 Sikarwar (10.1016/j.cis.2021.102503_bb0325) 2011; 133 Ju (10.1016/j.cis.2021.102503_bb0465) 2012; 3 Sharma (10.1016/j.cis.2021.102503_bb0805) 1673; 11 Paxson (10.1016/j.cis.2021.102503_bb0130) 2013; 4 Mukherjee (10.1016/j.cis.2021.102503_bb0485) 2019; 3 Ge (10.1016/j.cis.2021.102503_bb0845) 2020; 12 Fu (10.1016/j.cis.2021.102503_bb0240) 2015; 17 Fisher (10.1016/j.cis.2021.102503_bb0205) 1979; 277 Enright (10.1016/j.cis.2021.102503_bb0070) 2014; 18 Miljkovic (10.1016/j.cis.2021.102503_bb0300) 1776; 6 Traipattanakul (10.1016/j.cis.2021.102503_bb0505) 2019; 128 Maeda (10.1016/j.cis.2021.102503_bb0375) 2020; 176 Rose (10.1016/j.cis.2021.102503_bb0030) 2002; 216 Wen (10.1016/j.cis.2021.102503_bb0295) 2018; 2 Zheng (10.1016/j.cis.2021.102503_bb0440) 2010; 463 Preston (10.1016/j.cis.2021.102503_bb0665) 2015; 15 Donati (10.1016/j.cis.2021.102503_bb0955) 2021; 8 Kim (10.1016/j.cis.2021.102503_bb0330) 2011; 133 Enright (10.1016/j.cis.2021.102503_bb0350) 2013; 135 Young (10.1016/j.cis.2021.102503_bb0120) 1805; 95 Guo (10.1016/j.cis.2021.102503_bb0825) 2019; 35 Khandekar (10.1016/j.cis.2021.102503_bb0040) 2020 Miljkovic (10.1016/j.cis.2021.102503_bb0105) 2013; 13 Castillo (10.1016/j.cis.2021.102503_bb0930) 2019; 133 Bohn (10.1016/j.cis.2021.102503_bb0450) 2004; 101 Adera (10.1016/j.cis.2021.102503_bb0850) 2020; 14 Paxson (10.1016/j.cis.2021.102503_bb0620) 2014; 26 Lo (10.1016/j.cis.2021.102503_bb0270) 2014; 24 Cassie (10.1016/j.cis.2021.102503_bb0135) 1944; 40 Niu (10.1016/j.cis.2021.102503_bb0340) 2017; 112 Jeevahan (10.1016/j.cis.2021.102503_bb0185) 2018; 15 Volmer (10.1016/j.cis.2021.102503_bb0220) 1926; 119 Varanasi (10.1016/j.cis.2021.102503_bb0225) 2009; 95 Schmidt (10.1016/j.cis.2021.102503_bb0035) 1930; 1 Zheng (10.1016/j.cis.2021.102503_bb0950) 2020; 151 Wilke (10.1016/j.cis.2021.102503_bb0970) 2020; 14 Baumli (10.1016/j.cis.2021.102503_bb0810) 2021; 287 Birbarah (10.1016/j.cis.2021.102503_bb0405) 2019; 35 Sadullah (10.1016/j.cis.2021.102503_bb0830) 2018; 34 Cheng (10.1016/j.cis.2021.102503_bb0705) 2019; 114 Cheng (10.1016/j.cis.2021.102503_bb0570) 2021; 405 Sett (10.1016/j.cis.2021.102503_bb0870) 2019; 19 Orejon (10.1016/j.cis.2021.102503_bb0790) 2019; 11 Nam (10.1016/j.cis.2021.102503_bb0085) 2013; 103 Aili (10.1016/j.cis.2021.102503_bb0235) 2017; 139 Yang (10.1016/j.cis.2021.102503_bb0685) 2017; 115 Wen (10.1016/j.cis.2021.102503_bb0195) 2017; 9 Gong (10.1016/j.cis.2021.102503_bb0075) 2017; 29 Vemuri (10.1016/j.cis.2021.102503_bb0640) 2006; 26 Liu (10.1016/j.cis.2021.102503_bb0170) 2008; 3 Feng (10.1016/j.cis.2021.102503_bb0180) 2006; 18 Wang (10.1016/j.cis.2021.102503_bb0460) 2015; 112 Xing (10.1016/j.cis.2021.102503_bb0760) 2020; 12 Fisher (10.1016/j.cis.2021.102503_bb0200) 1967; 3 Kim (10.1016/j.cis.2021.102503_bb0690) 2015; 31 Chen (10.1016/j.cis.2021.102503_bb0095) 2016; 6 Wang (10.1016/j.cis.2021.102503_bb0965) 2020; 582 El Fil (10.1016/j.cis.2021.102503_bb0305) 2020; 160 Ju (10.1016/j.cis.2021.102503_bb0550) 2013; 25 Othmer (10.1016/j.cis.2021.102503_bb0890) 1929; 21 Zheng (10.1016/j.cis.2021.102503_bb0510) 2018; 145 Baghel (10.1016/j.cis.2021.102503_bb0410) 2020; 181 Anand (10.1016/j.cis.2021.102503_bb0815) 2015; 11 Miljkovic (10.1016/j.cis.2021.102503_bb0500) 2013; 7 Oh (10.1016/j.cis.2021.102503_bb0585) 2018; 28 Kulinich (10.1016/j.cis.2021.102503_bb0625) 2004; 573 Wong (10.1016/j.cis.2021.102503_bb0455) 2011; 477 Huang (10.1016/j.cis.2021.102503_bb0610) 2015; 75 Cha (10.1016/j.cis.2021.102503_bb0415) 2020; 6 Sheng (10.1016/j.cis.2021.102503_bb0215) 2016; 6 Ma (10.1016/j.cis.2021.102503_bb0470) 2020; 116 Wu (10.1016/j.cis.2021.102503_bb0425) 2011; 21 Gao (10.1016/j.cis.2021.102503_bb0165) 2004; 432 Yan (10.1016/j.cis.2021.102503_bb0540) 2019; 13 Oh (10.1016/j.cis.2021.102503_bb0875) 2020; 14 Kim (10.1016/j.cis.2021.102503_bb0365) 2016; 93 Snustad (10.1016/j.cis.2021.102503_bb0025) 2018; 256 Feng (10.1016/j.cis.2021.102503_bb0555) 2020; 560 Alwazzan (10.1016/j.cis.2021.102503_bb0680) 2017; 112 Ölçeroğlu (10.1016/j.cis.2021.102503_bb0285) 2016; 8 Wu (10.1016/j.cis.2021.102503_bb0315) 1976; 12 Castillo (10.1016/j.cis.2021.102503_bb0910) 2015; 80 Marto (10.1016/j.cis.2021.102503_bb0605) 1986; 29 Park (10.1016/j.cis.2021.102503_bb0855) 2016; 531 Zhao (10.1016/j.cis.2021.102503_bb0940) 2018; 119 Rose (10.1016/j.cis.2021.102503_bb0390) 1973; 16 Tokunaga (10.1016/j.cis.2021.102503_bb0675) 2020; 156 Zheng (10.1016/j.cis.2021.102503_bb0385) 2018; 120 Liu (10.1016/j.cis.2021.102503_bb0335) 2015; 83 Rykaczewski (10.1016/j.cis.2021.102503_bb0700) 2013; 29 Ma (10.1016/j.cis.2021.102503_bb0615) 2020; 20 Shim (10.1016/j.cis.2021.102503_bb0655) 2018; 10 Zheng (10.1016/j.cis.2021.102503_bb0915) 2019; 139 Zhang (10.1016/j.cis.2021.102503_bb0925) 2020; 150 Zheng (10.1016/j.cis.2021.102503_bb0935) 2019; 141 Yan (10.1016/j.cis.2021.102503_bb0780) 2019; 13 Grooten (10.1016/j.cis.2021.102503_bb0900) 2011; 54 Miljkovic (10.1016/j.cis.2021.102503_bb0110) 2013; 4 Kim (10.1016/j.cis.2021.102503_bb0595) 2019; 136 Lee (10.1016/j.cis.2021.102503_bb0355) 2013; 60 Genzer (10.1016/j.cis.2021.102503_bb0630) 2000; 290 Jeremy Cho (10.1016/j.cis.2021.102503_bb0015) 2017; 2 Li (10.1016/j.cis.2021.102503_bb0380) 2014; 30 Han (10.1016/j.cis.2021.102503_bb0190) 2018; 8 Oberli (10.1016/j.cis.2021.102503_bb0045) 2014; 210 Lo (10.1016/j.cis.2021.102503_bb0795) 2019; 3 Chen (10.1016/j.cis.2021.102503_bb0785) 2015; 2 |
References_xml | – volume: 133 year: 2011 ident: bb0330 article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces publication-title: J Heat Transfer – volume: 116 start-page: 2482 year: 2019 end-page: 2487 ident: bb0835 article-title: Directional pumping of water and oil microdroplets on slippery surface publication-title: Proc Natl Acad Sci U S A – volume: 573 start-page: 379 year: 2004 end-page: 390 ident: bb0625 article-title: Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers publication-title: Surf Sci – volume: 9 start-page: 44911 year: 2017 end-page: 44921 ident: bb0290 article-title: Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation publication-title: ACS Appl Mater Interfaces – volume: 40 start-page: 546 year: 1944 end-page: 551 ident: bb0135 article-title: Wettability of porous surface publication-title: Trans Faraday Soc – volume: 21 start-page: 4617 year: 2011 end-page: 4623 ident: bb0275 article-title: Nanograssed micropyramidal architectures for continuous dropwise condensation publication-title: Adv Funct Mater – volume: 38 start-page: 71 year: 2008 end-page: 99 ident: bb0050 article-title: Wetting and roughness publication-title: Annu Rev Mat Res – volume: 3 start-page: 2013 year: 1988 ident: bb0495 article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer publication-title: Sci Rep – volume: 170 start-page: 515 year: 1995 end-page: 521 ident: bb0475 article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force publication-title: J Colloid Interface Sci – volume: 11 start-page: 2017 year: 1673-1682 ident: bb0805 article-title: Growth rates and spontaneous navigation of condensate droplets through randomly structured textures publication-title: ACS Nano – volume: 83 start-page: 842 year: 2015 end-page: 849 ident: bb0400 article-title: Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux publication-title: Int J Heat Mass Tran – volume: 51 start-page: 2008 year: 1728-1737 ident: bb0895 article-title: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation publication-title: Int J Heat Mass Tran – volume: 6 start-page: 18649 year: 2016 ident: bb0095 article-title: Coalescence-induced jumping of multiple condensate droplets on hierarchical superhydrophobic surfaces publication-title: Sci Rep – volume: 9 start-page: 13770 year: 2017 end-page: 13777 ident: bb0195 article-title: Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions publication-title: ACS Appl Mater Interfaces – volume: 28 start-page: 6067 year: 2012 end-page: 6075 ident: bb0710 article-title: Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces publication-title: Langmuir – volume: 25 start-page: 5937 year: 2013 end-page: 5942 ident: bb0550 article-title: Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection publication-title: Adv Mater – volume: 109 start-page: 187 year: 2017 end-page: 199 ident: bb0370 article-title: Condensate droplet size distribution on lubricant-infused surfaces publication-title: Int J Heat Mass Tran – volume: 133 year: 2011 ident: bb0325 article-title: Dropwise condensation underneath chemically textured surfaces: simulation and experiments publication-title: J Heat Transfer – volume: 68 start-page: 1 year: 2013 end-page: 7 ident: bb0905 article-title: A droplet model in steam condensation with noncondensable gas publication-title: Int J Thermal Sci – volume: 142 year: 2015 ident: bb0260 article-title: Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach publication-title: J Chem Phys – volume: 6 start-page: 76 year: 2014 end-page: 96 ident: bb0430 article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow publication-title: Nanoscale – volume: 432 start-page: 36 year: 2004 ident: bb0165 article-title: Water-repellent legs of water striders publication-title: Nature – volume: 95 start-page: 65 year: 1805 end-page: 87 ident: bb0120 article-title: An essay on the cohesion of fluids publication-title: Phil Trans R Soc – volume: 13 start-page: 1309 year: 2019 end-page: 1323 ident: bb0780 article-title: Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties publication-title: ACS Nano – volume: 103 start-page: 161601 year: 2013 ident: bb0085 article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets publication-title: Appl Phys Lett – volume: 98 year: 2011 ident: bb0100 article-title: Size effect on the coalescence-induced self-propelled droplet publication-title: Appl Phys Lett – volume: 160 start-page: 120172 year: 2020 ident: bb0305 article-title: A review of dropwise condensation: theory, modeling, experiments, and applications publication-title: Int J Heat Mass Transf – volume: 145 start-page: 590 year: 2018 end-page: 602 ident: bb0510 article-title: Numerical investigation of convective dropwise condensation flow by a hybrid thermal lattice Boltzmann method publication-title: Appl Therm Eng – volume: 9 start-page: 12311 year: 2015 end-page: 12319 ident: bb0560 article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces publication-title: ACS Nano – volume: 95 year: 2009 ident: bb0225 article-title: Spatial control in the heterogeneous nucleation of water publication-title: Appl Phys Lett – volume: 115 start-page: 1032 year: 2017 end-page: 1041 ident: bb0685 article-title: Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces publication-title: Int J Heat Mass Tran – volume: 20 start-page: 3918 year: 2020 end-page: 3924 ident: bb0615 article-title: Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films publication-title: Nano Lett – year: 2008 ident: bb0010 article-title: Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment – volume: 9 start-page: 35391 year: 2017 end-page: 35403 ident: bb0535 article-title: Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures publication-title: ACS Appl Mater Interfaces – volume: 48 start-page: 2228 year: 2009 end-page: 2236 ident: bb0230 article-title: Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution publication-title: Int J Thermal Sci – volume: 28 start-page: 1707000 year: 2018 ident: bb0585 article-title: Thin film condensation on nanostructured surfaces publication-title: Adv Funct Mater – volume: 290 start-page: 2130 year: 2000 end-page: 2133 ident: bb0630 article-title: Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers publication-title: Science – volume: 8 start-page: 10352 year: 2014 end-page: 10362 ident: bb0090 article-title: How coalescing droplets jump publication-title: ACS Nano – volume: 11 start-page: 8499 year: 2017 end-page: 8510 ident: bb0730 article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation publication-title: ACS Nano – volume: 23 start-page: 3820 year: 2007 end-page: 3824 ident: bb0530 article-title: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces publication-title: Langmuir – volume: 6 start-page: 10122 year: 2012 end-page: 10129 ident: bb0490 article-title: Enhanced condensation on lubricant-impregnated nanotextured surfaces publication-title: ACS Nano – volume: 103 start-page: 685 year: 1981 end-page: 692 ident: bb0590 article-title: Steam condensation on various gold surfaces publication-title: J Heat Transfer – volume: 128 start-page: 9052 year: 2006 end-page: 9053 ident: bb0150 article-title: A perfectly hydrophobic surface (θ publication-title: J Am Chem Soc – volume: 8 start-page: 5729 year: 2016 end-page: 5736 ident: bb0285 article-title: Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces publication-title: ACS Appl Mater Interfaces – volume: 63 start-page: 874 year: 2008 end-page: 880 ident: bb0210 article-title: Effects of surface topography of material on nucleation site density of dropwise condensation publication-title: Chem Eng Sci – volume: 1 year: 2016 ident: bb0115 article-title: Coalescence-induced nanodroplet jumping publication-title: Phys Rev Fluids – volume: 14 start-page: 13367 year: 2020 end-page: 13379 ident: bb0875 article-title: Enhanced condensation on liquid-infused nanoporous surfaces by vibration-assisted droplet sweeping publication-title: ACS Nano – volume: 414 start-page: 33 year: 2001 end-page: 34 ident: bb0160 article-title: Water capture by a desert beetle publication-title: Nature – volume: 1 start-page: 53 year: 1930 end-page: 63 ident: bb0035 article-title: Versuche ueber die Kondensation von Wasserdampf in film- und Tropfenform publication-title: Technische Mechanik und Thermodynamik – volume: 11 start-page: 69 year: 2015 end-page: 80 ident: bb0815 article-title: How droplets nucleate and grow on liquids and liquid impregnated surfaces publication-title: Soft Matter – volume: 4 start-page: 1492 year: 2013 ident: bb0130 article-title: Self-similarity of contact line depinning from textured surfaces publication-title: Nat Commun – volume: 139 start-page: 254 year: 2019 end-page: 268 ident: bb0915 article-title: Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model publication-title: Int J Heat Mass Tran – volume: 3 start-page: 1360 year: 2019 end-page: 1376 ident: bb0485 article-title: How surface orientation affects jumping-droplet condensation publication-title: Joule – volume: 110 start-page: 7992 year: 2013 end-page: 7997 ident: bb0750 article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 1500202 year: 2015 ident: bb0745 article-title: Can metal matrix-hydrophobic nanoparticle composites enhance water condensation by promoting the dropwise mode? publication-title: Adv Mater Interfaces – volume: 21 start-page: 2927 year: 2011 end-page: 2932 ident: bb0425 article-title: Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding publication-title: Adv Funct Mater – volume: 4 year: 2018 ident: bb0860 article-title: Hydrophilic directional slippery rough surfaces for water harvesting publication-title: Sci Adv – volume: 93 start-page: 286 year: 2016 end-page: 292 ident: bb0365 article-title: Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces publication-title: Int J Heat Mass Tran – volume: 114 year: 2019 ident: bb0705 article-title: Macrotextures-induced jumping relay of condensate droplets publication-title: Appl Phys Lett – volume: 2 start-page: 1400480 year: 2015 ident: bb0785 article-title: Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation publication-title: Adv Mater Interfaces – volume: 12 start-page: 29946 year: 2020 end-page: 29952 ident: bb0760 article-title: Confined growth and controlled coalescence/self-removal of condensate microdrops on spatially heterogeneously-patterned superhydrophilic-superhydrophobic surface publication-title: ACS Appl Mater Interfaces – volume: 6 year: 2020 ident: bb0415 article-title: Dropwise condensation on solid hydrophilic surfaces publication-title: Sci Adv – volume: 112 start-page: 9247 year: 2015 end-page: 9252 ident: bb0460 article-title: Self-removal of condensed water on the legs of water striders publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 31765 year: 2018 end-page: 31776 ident: bb0655 article-title: Condensation heat transfer performance of thermally stable superhydrophobic cerium oxide surfaces publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 2016 year: 1825-1839 ident: bb0055 article-title: Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications publication-title: Small – volume: 532 start-page: 85 year: 2016 end-page: 89 ident: bb0445 article-title: Continuous directional water transport on the peristome surface of Nepenthes alata publication-title: Nature – volume: 17 start-page: 21492 year: 2015 end-page: 21500 ident: bb0240 article-title: Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness publication-title: Phys Chem Chem Phys – volume: 31 start-page: 1806501 year: 2019 ident: bb0060 article-title: Biological and engineered topological droplet rectifiers publication-title: Adv Mater – volume: 116 start-page: 260501 year: 2020 ident: bb0470 article-title: Recent developments, challenges, and pathways to stable dropwise condensation: a perspective publication-title: Appl Phys Lett – volume: 5 start-page: 812 year: 2015 end-page: 818 ident: bb0245 article-title: Heterogeneous nucleation capability of conical microstructures for water droplets publication-title: RSC Adv – volume: 23 start-page: 4577 year: 2013 end-page: 4584 ident: bb0265 article-title: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches publication-title: Adv Funct Mater – volume: 127 start-page: 448 year: 2018 end-page: 464 ident: bb0515 article-title: Convective dropwise condensation out of humid air inside a horizontal channel - experimental investigation of the condensate heat transfer resistance publication-title: Int J Heat Mass Tran – volume: 6 start-page: 3262 year: 2012 end-page: 3268 ident: bb0575 article-title: Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation publication-title: ACS Nano – volume: 256 start-page: 2742 year: 2010 end-page: 2749 ident: bb0635 article-title: Thermal stability of thiol and silane monolayers: a comparative study publication-title: Appl Surf Sci – volume: 3 start-page: 255 year: 1967 end-page: 283 ident: bb0200 article-title: The theory of condensation and the critical point publication-title: Physics – volume: 30 start-page: 14498 year: 2014 end-page: 14511 ident: bb0380 article-title: Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces publication-title: Langmuir – volume: 135 start-page: 111004 year: 2013 ident: bb0345 article-title: Modeling and optimization of superhydrophobic condensation publication-title: J Heat Transfer – volume: 2 start-page: 362 year: 1966 end-page: 375 ident: bb0310 article-title: A theory of heat transfer by dropwise condensation publication-title: Proceedings of the Third International Heat Transfer Conference, Chicago – volume: 9 start-page: 71 year: 2015 end-page: 81 ident: bb0255 article-title: Recurrent filmwise and dropwise condensation on a beetle mimetic surface publication-title: ACS Nano – volume: 287 start-page: 102329 year: 2021 ident: bb0810 article-title: The challenge of lubricant-replenishment on lubricant-impregnated surfaces publication-title: Adv Colloid Interface Sci – volume: 14 start-page: 14878 year: 2020 end-page: 14886 ident: bb0970 article-title: Polymer infused porous surfaces for robust, thermally conductive, self-healing coatings for dropwise condensation publication-title: ACS Nano – volume: 405 start-page: 126901 year: 2021 ident: bb0570 article-title: Macrotextures-enabled self-propelling of large condensate droplets publication-title: Chem Eng J – volume: 3 start-page: 1247 year: 2012 ident: bb0465 article-title: A multi-structural and multi-functional integrated fog collection system in cactus publication-title: Nat Commun – volume: 277 start-page: 548 year: 1979 end-page: 549 ident: bb0205 article-title: Direct experimental verification of the kelvin equation for capillary condensation publication-title: Nature – volume: 523 start-page: 98 year: 2017 end-page: 105 ident: bb0775 article-title: A 3-D model for thermodynamic analysis of hierarchical structured superhydrophobic surfaces publication-title: Colloids Surf A – volume: 12 start-page: 315 year: 2013 end-page: 320 ident: bb0650 article-title: Hydrophobicity of rare-earth oxide ceramics publication-title: Nat Mater – volume: 11 start-page: 24735 year: 2019 end-page: 24750 ident: bb0790 article-title: Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures publication-title: ACS Appl Mater Interfaces – volume: 7 start-page: 10660 year: 2015 end-page: 10665 ident: bb0725 article-title: Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance publication-title: ACS Appl Mater Interfaces – volume: 477 start-page: 443 year: 2011 end-page: 447 ident: bb0455 article-title: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity publication-title: Nature – volume: 8 start-page: 21776 year: 2016 end-page: 21786 ident: bb0800 article-title: Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces publication-title: ACS Appl Mater Interfaces – volume: 54 start-page: 4876 year: 2015 end-page: 4879 ident: bb0720 article-title: Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces publication-title: Angew Chem Int Ed – volume: 80 start-page: 759 year: 2015 end-page: 766 ident: bb0910 article-title: The effect of relative humidity on dropwise condensation dynamics publication-title: Int J Heat Mass Tran – volume: 29 start-page: 1109 year: 1986 end-page: 1117 ident: bb0605 article-title: Evaluation of organic coatings for the promotion of dropwise condensation of steam publication-title: Int J Heat Mass Tran – volume: 75 start-page: 908 year: 2015 end-page: 917 ident: bb0610 article-title: Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink publication-title: Appl Therm Eng – volume: 560 start-page: 866 year: 2020 end-page: 873 ident: bb0555 article-title: Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport publication-title: J Colloid Interface Sci – volume: 2 start-page: 152 year: 2011 end-page: 161 ident: bb0420 article-title: Superhydrophobicity in perfection: the outstanding properties of the lotus leaf publication-title: Beilstein J Nanotechnol – volume: 18 start-page: 233 year: 2014 end-page: 250 ident: bb0070 article-title: Dropwise condensation on micro- and nanostructured surfaces publication-title: Nanosc Microsc Thermophys Eng – volume: 16 start-page: 411 year: 1973 end-page: 425 ident: bb0390 article-title: Dropwise condensation-the distribution of drop sizes publication-title: Int J Heat Mass Tran – volume: 120 start-page: 879 year: 2018 end-page: 894 ident: bb0385 article-title: Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation publication-title: Int J Heat Mass Tran – volume: 26 start-page: 421 year: 2006 end-page: 429 ident: bb0640 article-title: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan publication-title: Appl Therm Eng – volume: 181 start-page: 115733 year: 2020 ident: bb0410 article-title: Dropwise condensation from moist air over a hydrophobic metallic substrate publication-title: Appl Therm Eng – volume: 8 start-page: 540 year: 2018 ident: bb0865 article-title: Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces publication-title: Sci Rep – volume: 150 start-page: 119352 year: 2020 ident: bb0925 article-title: A visualized study of enhanced steam condensation heat transfer on a honeycomb-like microporous superhydrophobic surface in the presence of a non-condensable gas publication-title: Int J Heat Mass Tran – volume: 2 start-page: 269 year: 2018 end-page: 279 ident: bb0295 article-title: Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer publication-title: Joule – volume: 45 start-page: 3405 year: 2002 end-page: 3411 ident: bb0600 article-title: Influence of processing conditions of polymer film on dropwise condensation heat transfer publication-title: Int J Heat Mass Tran – volume: 9 start-page: 13676 year: 2017 end-page: 13684 ident: bb0670 article-title: Patterned polymer coatings increase the efficiency of dew harvesting publication-title: ACS Appl Mater Interfaces – volume: 29 start-page: 881 year: 2013 end-page: 891 ident: bb0700 article-title: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces publication-title: Langmuir – volume: 13 start-page: 8169 year: 2019 end-page: 8184 ident: bb0540 article-title: Hierarchical condensation publication-title: ACS Nano – volume: 41 start-page: 81 year: 1998 end-page: 87 ident: bb0320 article-title: Modeling of heat transfer in dropwise condensation publication-title: Int J Heat Mass Tran – volume: 136 start-page: 681 year: 2019 end-page: 691 ident: bb0595 article-title: Steam condensate behavior and heat transfer performance on chromium-ion-implanted metal surfaces publication-title: Int J Heat Mass Tran – volume: 111 year: 2017 ident: bb0695 article-title: Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces publication-title: Appl Phys Lett – volume: 35 start-page: 16377 year: 2019 end-page: 16387 ident: bb0825 article-title: Droplet morphology and mobility on lubricant-impregnated surfaces: a molecular dynamics study publication-title: Langmuir – volume: 19 start-page: 5287 year: 2019 end-page: 5296 ident: bb0870 article-title: Stable dropwise condensation of ethanol and hexane on rationally designed ultrascalable nanostructured lubricant-infused surfaces publication-title: Nano Lett – volume: 129 start-page: 86 year: 2019 end-page: 95 ident: bb0960 article-title: Dropwise condensation on superhydrophobic nanostructure surface, part I: Long-term operation and nanostructure failure publication-title: Int J Heat Mass Tran – volume: 34 start-page: 8112 year: 2018 end-page: 8118 ident: bb0830 article-title: Drop dynamics on liquid-infused surfaces: the role of the lubricant ridge publication-title: Langmuir – volume: 13 start-page: 179 year: 2013 end-page: 187 ident: bb0105 article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces publication-title: Nano Lett – volume: 210 start-page: 47 year: 2014 end-page: 57 ident: bb0045 article-title: Condensation and freezing of droplets on superhydrophobic surfaces publication-title: Adv Colloid Interface Sci – volume: 12 start-page: 2125 year: 1996 end-page: 2127 ident: bb0140 article-title: Super-water-repellent fractal surface publication-title: Langmuir – volume: 28 start-page: 14424 year: 2012 end-page: 14432 ident: bb0715 article-title: Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale publication-title: Langmuir – volume: 7 start-page: 3388 year: 2007 end-page: 3393 ident: bb0765 article-title: Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity publication-title: Nano Lett – volume: 26 start-page: 418 year: 2014 end-page: 423 ident: bb0620 article-title: Stable Dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films publication-title: Adv Mater – volume: 103 start-page: 184501 year: 2009 ident: bb0080 article-title: Self-propelled dropwise condensation on superhydrophobic surfaces publication-title: Phys Rev Lett – volume: 6 start-page: 30764 year: 2016 ident: bb0215 article-title: On the onset of surface condensation: formation and transition mechanisms of condensation mode publication-title: Sci Rep – volume: 174 start-page: 115264 year: 2020 ident: bb0920 article-title: Effective reduction of non-condensable gas effects on condensation heat transfer: surface modification and steam jet injection publication-title: Appl Therm Eng – volume: 3 year: 2008 ident: bb0170 article-title: Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment publication-title: Bioinspir Biomim – volume: 15 start-page: 4808 year: 2019 end-page: 4817 ident: bb0840 article-title: Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces publication-title: Soft Matter – volume: 531 start-page: 78 year: 2016 end-page: 82 ident: bb0855 article-title: Condensation on slippery asymmetric bumps publication-title: Nature – volume: 15 start-page: 2902 year: 2015 end-page: 2909 ident: bb0665 article-title: Scalable graphene coatings for enhanced condensation heat transfer publication-title: Nano Lett – volume: 176 start-page: 115386 year: 2020 ident: bb0375 article-title: Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces publication-title: Appl Therm Eng – volume: 28 start-page: 1800634 year: 2018 ident: bb0735 article-title: Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer publication-title: Adv Funct Mater – volume: 18 start-page: 3063 year: 2006 end-page: 3078 ident: bb0180 article-title: Design and creation of superwetting/antiwetting surfaces publication-title: Adv Mater – volume: 30 start-page: 13103 year: 2014 end-page: 13115 ident: bb0885 article-title: Enhancing dropwise condensation through bioinspired wettability patterning publication-title: Langmuir – volume: 7 start-page: 11719 year: 2015 end-page: 11723 ident: bb0755 article-title: Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance publication-title: ACS Appl Mater Interfaces – volume: 582 start-page: 55 year: 2020 end-page: 59 ident: bb0965 article-title: Design of robust superhydrophobic surfaces publication-title: Nature – volume: 31 start-page: 13452 year: 2015 end-page: 13466 ident: bb0690 article-title: Enhanced jumping-droplet departure publication-title: Langmuir – volume: 35 start-page: 10309 year: 2019 end-page: 10321 ident: bb0405 article-title: Numerical simulation of jumping droplet condensation publication-title: Langmuir – volume: 33 start-page: 177 year: 2017 end-page: 183 ident: bb0740 article-title: Hydrophobic copper nanowires for enhancing condensation heat transfer publication-title: Nano Energy – volume: 2 start-page: 17036 year: 2017 ident: bb0175 article-title: Nature-inspired superwettability systems publication-title: Nat Rev Mater – volume: 5 start-page: 878 year: 2018 end-page: 887 ident: bb0580 article-title: Sustaining enhanced condensation on hierarchical mesh-covered surfaces publication-title: Natl Sci Rev – volume: 4 start-page: 2517 year: 2013 ident: bb0110 article-title: Electrostatic charging of jumping droplets publication-title: Nat Commun – volume: 33 start-page: 407 year: 2017 end-page: 416 ident: bb0770 article-title: Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures publication-title: Langmuir – volume: 101 start-page: 14138 year: 2004 end-page: 14143 ident: bb0450 article-title: Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface publication-title: Proc Natl Acad Sci U S A – volume: 151 start-page: 119349 year: 2020 ident: bb0950 article-title: Experimental and modeling investigations of dropwise condensation out of convective humid air flow publication-title: Int J Heat Mass Tran – volume: 112 start-page: 333 year: 2017 end-page: 342 ident: bb0340 article-title: Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance publication-title: Int J Heat Mass Tran – volume: 2 start-page: 2307 year: 2018 end-page: 2347 ident: bb0020 article-title: Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond publication-title: Joule – volume: 49 start-page: 6129 year: 2010 end-page: 6133 ident: bb0645 article-title: Bioinspired self-healing superhydrophobic coatings publication-title: Angew Chem Int Ed – volume: 14 start-page: 12796 year: 2020 end-page: 12809 ident: bb0565 article-title: Laplace pressure driven single-droplet jumping on structured surfaces publication-title: ACS Nano – volume: 463 start-page: 640 year: 2010 end-page: 643 ident: bb0440 article-title: Directional water collection on wetted spider silk publication-title: Nature – volume: 119 start-page: 277 year: 1926 end-page: 301 ident: bb0220 article-title: Keimbildung in Übersättigten Gebilden publication-title: Z Phys Chem – volume: 141 start-page: 34 year: 2019 end-page: 47 ident: bb0935 article-title: Dropwise condensation in the presence of non-condensable gas: interaction effects of the droplet array using the distributed point sink method publication-title: Int J Heat Mass Tran – volume: 202 start-page: 1 year: 1997 end-page: 8 ident: bb0155 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta – volume: 154 start-page: 515 year: 1944 ident: bb0145 article-title: Diurnal fluctuation in a physical property of leaf cuticle publication-title: Nature – volume: 11 start-page: 7617 year: 2015 end-page: 7626 ident: bb0820 article-title: Direct observation of drops on slippery lubricant-infused surfaces publication-title: Soft Matter – volume: 54 start-page: 4507 year: 2011 end-page: 4517 ident: bb0900 article-title: Dropwise condensation from flowing air-steam mixtures: diffusion resistance assessed by controlled drainage publication-title: Int J Heat Mass Tran – volume: 12 start-page: 22246 year: 2020 end-page: 22255 ident: bb0845 article-title: Condensation of satellite droplets on lubricant-cloaked droplets publication-title: ACS Appl Mater Interfaces – volume: 122 start-page: 117 year: 2018 end-page: 127 ident: bb0360 article-title: Modeling and optimization of condensation heat transfer at biphilic interface publication-title: Int J Heat Mass Tran – volume: 10 start-page: 29127 year: 2018 end-page: 29135 ident: bb0520 article-title: Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 2012 year: 1776-1785 ident: bb0300 article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces publication-title: ACS Nano – volume: 83 start-page: 27 year: 2015 end-page: 38 ident: bb0280 article-title: Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces publication-title: Int J Heat Mass Tran – volume: 8 start-page: 2001176 year: 2021 ident: bb0955 article-title: Sprayable thin and robust carbon nanofiber composite coating for extreme jumping dropwise condensation performance publication-title: Adv Mater Interfaces – volume: 12 start-page: 225 year: 1976 end-page: 231 ident: bb0315 article-title: On the heat transfer in dropwise condensation publication-title: Chem Eng J – volume: 29 start-page: 1703002 year: 2017 ident: bb0075 article-title: Recent progress in bionic condensate microdrop self-propelling surfaces publication-title: Adv Mater – volume: 7 start-page: 11043 year: 2013 end-page: 11054 ident: bb0500 article-title: Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces publication-title: ACS Nano – volume: 6 start-page: 1213 year: 2006 end-page: 1217 ident: bb0435 article-title: Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle publication-title: Nano Lett – year: 2020 ident: bb0040 article-title: Drop dynamics and dropwise condensation on textured surfaces – volume: 5 start-page: 2084 year: 2014 end-page: 2088 ident: bb0525 article-title: Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles publication-title: J Phys Chem Lett – volume: 139 start-page: 112401 year: 2017 ident: bb0235 article-title: How nanostructures affect water droplet nucleation on superhydrophobic surfaces publication-title: J Heat Transfer – volume: 135 year: 2013 ident: bb0350 article-title: Condensation on superhydrophobic copper oxide nanostructures publication-title: J Heat Transfer – volume: 21 start-page: 577 year: 1929 end-page: 583 ident: bb0890 article-title: The condensation of steam publication-title: Ind Eng Chem – volume: 60 start-page: 664 year: 2013 end-page: 671 ident: bb0355 article-title: A dropwise condensation model using a nano-scale, pin structured surface publication-title: Int J Heat Mass Tran – volume: 154 start-page: 119734 year: 2020 ident: bb0945 article-title: Dropwise condensation of humid air - experimental investigation and modelling of the convective heat transfer publication-title: Int J Heat Mass Tran – volume: 216 start-page: 115 year: 2002 end-page: 128 ident: bb0030 article-title: Dropwise condensation theory and experiment: a review publication-title: Proc Inst Mech Eng, Part A: J Power Energy – volume: 2 start-page: 16092 year: 2017 ident: bb0015 article-title: Nanoengineered materials for liquid-vapor phase-change heat transfer publication-title: Nat Rev Mater – volume: 3 start-page: 2806 year: 2019 end-page: 2823 ident: bb0795 article-title: Enhancing condensation heat transfer on three-dimensional hybrid surfaces publication-title: Joule – volume: 14 start-page: 8024 year: 2020 end-page: 8035 ident: bb0850 article-title: Depletion of lubricant from nanostructured oil-infused surfaces by pendant condensate droplets publication-title: ACS Nano – volume: 112 start-page: 991 year: 2017 end-page: 1004 ident: bb0680 article-title: Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer publication-title: Int J Heat Mass Tran – volume: 24 start-page: 1211 year: 2014 end-page: 1217 ident: bb0270 article-title: Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array publication-title: Adv Funct Mater – volume: 15 start-page: 2011 year: 1857-1872 ident: bb0005 article-title: Energy and exergy analyses of thermal power plants: a review publication-title: Renew Sustain Energy Rev – volume: 119 start-page: 931 year: 2018 end-page: 938 ident: bb0940 article-title: Effects of millimetric geometric features on dropwise condensation under different vapor conditions publication-title: Int J Heat Mass Tran – volume: 122 start-page: 45 year: 2018 end-page: 58 ident: bb0480 article-title: Mode selection between sliding and rolling for droplet on inclined surface: effect of surface wettability publication-title: Int J Heat Mass Tran – volume: 42 start-page: 89 year: 2010 end-page: 109 ident: bb0065 article-title: Slip on Superhydrophobic surfaces publication-title: Annu Rev Fluid Mech – volume: 256 start-page: 291 year: 2018 end-page: 304 ident: bb0025 article-title: A review on wetting and water condensation - perspectives for CO publication-title: Adv Colloid Interface Sci – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: bb0125 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind Eng Chem – volume: 15 start-page: 231 year: 2018 end-page: 250 ident: bb0185 article-title: Superhydrophobic surfaces: a review on fundamentals, applications, and challenges publication-title: J Coat Technol Res – volume: 6 start-page: 7923 year: 2016 end-page: 7932 ident: bb0250 article-title: Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface publication-title: RSC Adv – volume: 76 start-page: 467 year: 2014 end-page: 483 ident: bb0395 article-title: Time-series characteristics and geometric structures of drop-size distribution density in dropwise condensation publication-title: Int J Heat Mass Tran – volume: 109 start-page: 1229 year: 2017 end-page: 1238 ident: bb0880 article-title: Role of impregnated lubricant in enhancing thermosyphon performance publication-title: Int J Heat Mass Tran – volume: 291 start-page: 633 year: 2001 end-page: 636 ident: bb0545 article-title: Fast drop movements resulting from the phase change on a gradient surface publication-title: Science – volume: 8 start-page: 6733 year: 2018 end-page: 6744 ident: bb0190 article-title: Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures publication-title: RSC Adv – volume: 156 start-page: 119839 year: 2020 ident: bb0675 article-title: Enhancement of condensation heat transfer on a microstructured surface with wettability gradient publication-title: Int J Heat Mass Tran – volume: 128 start-page: 550 year: 2019 end-page: 561 ident: bb0505 article-title: Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces publication-title: Int J Heat Mass Tran – volume: 133 start-page: 641 year: 2019 end-page: 651 ident: bb0930 article-title: Predicting the growth of many droplets during vapor-diffusion-driven dropwise condensation experiments using the point sink superposition method publication-title: Int J Heat Mass Tran – volume: 83 start-page: 833 year: 2015 end-page: 841 ident: bb0335 article-title: Dropwise condensation theory revisited: Part I. droplet nucleation radius publication-title: Int J Heat Mass Tran – volume: 105 year: 2014 ident: bb0660 article-title: Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics publication-title: Appl Phys Lett – volume: 21 start-page: 4617 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0275 article-title: Nanograssed micropyramidal architectures for continuous dropwise condensation publication-title: Adv Funct Mater doi: 10.1002/adfm.201101302 – volume: 93 start-page: 286 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0365 article-title: Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2015.09.079 – volume: 15 start-page: 2902 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0665 article-title: Scalable graphene coatings for enhanced condensation heat transfer publication-title: Nano Lett doi: 10.1021/nl504628s – volume: 154 start-page: 119734 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0945 article-title: Dropwise condensation of humid air - experimental investigation and modelling of the convective heat transfer publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2020.119734 – volume: 29 start-page: 881 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0700 article-title: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/la304264g – volume: 6 start-page: 10122 year: 2012 ident: 10.1016/j.cis.2021.102503_bb0490 article-title: Enhanced condensation on lubricant-impregnated nanotextured surfaces publication-title: ACS Nano doi: 10.1021/nn303867y – volume: 2 start-page: 2307 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0020 article-title: Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond publication-title: Joule doi: 10.1016/j.joule.2018.08.014 – volume: 35 start-page: 16377 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0825 article-title: Droplet morphology and mobility on lubricant-impregnated surfaces: a molecular dynamics study publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02603 – volume: 133 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0325 article-title: Dropwise condensation underneath chemically textured surfaces: simulation and experiments publication-title: J Heat Transfer doi: 10.1115/1.4002396 – volume: 111 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0695 article-title: Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces publication-title: Appl Phys Lett – volume: 95 start-page: 65 year: 1805 ident: 10.1016/j.cis.2021.102503_bb0120 article-title: An essay on the cohesion of fluids publication-title: Phil Trans R Soc doi: 10.1098/rstl.1805.0005 – volume: 12 start-page: 22246 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0845 article-title: Condensation of satellite droplets on lubricant-cloaked droplets publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b22417 – volume: 133 start-page: 641 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0930 article-title: Predicting the growth of many droplets during vapor-diffusion-driven dropwise condensation experiments using the point sink superposition method publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.12.068 – volume: 3 start-page: 1247 year: 2012 ident: 10.1016/j.cis.2021.102503_bb0465 article-title: A multi-structural and multi-functional integrated fog collection system in cactus publication-title: Nat Commun doi: 10.1038/ncomms2253 – volume: 531 start-page: 78 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0855 article-title: Condensation on slippery asymmetric bumps publication-title: Nature doi: 10.1038/nature16956 – volume: 31 start-page: 13452 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0690 article-title: Enhanced jumping-droplet departure publication-title: Langmuir doi: 10.1021/acs.langmuir.5b03778 – volume: 116 start-page: 260501 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0470 article-title: Recent developments, challenges, and pathways to stable dropwise condensation: a perspective publication-title: Appl Phys Lett doi: 10.1063/5.0011642 – volume: 12 start-page: 225 year: 1976 ident: 10.1016/j.cis.2021.102503_bb0315 article-title: On the heat transfer in dropwise condensation publication-title: Chem Eng J doi: 10.1016/0300-9467(76)87016-5 – volume: 2 start-page: 16092 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0015 article-title: Nanoengineered materials for liquid-vapor phase-change heat transfer publication-title: Nat Rev Mater – volume: 6 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0415 article-title: Dropwise condensation on solid hydrophilic surfaces publication-title: Sci Adv doi: 10.1126/sciadv.aax0746 – volume: 8 start-page: 540 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0865 article-title: Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces publication-title: Sci Rep doi: 10.1038/s41598-017-18955-x – volume: 8 start-page: 2001176 year: 2021 ident: 10.1016/j.cis.2021.102503_bb0955 article-title: Sprayable thin and robust carbon nanofiber composite coating for extreme jumping dropwise condensation performance publication-title: Adv Mater Interfaces doi: 10.1002/admi.202001176 – volume: 128 start-page: 550 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0505 article-title: Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.08.134 – volume: 101 start-page: 14138 year: 2004 ident: 10.1016/j.cis.2021.102503_bb0450 article-title: Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0405885101 – volume: 2 start-page: 1400480 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0785 article-title: Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation publication-title: Adv Mater Interfaces doi: 10.1002/admi.201400480 – volume: 80 start-page: 759 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0910 article-title: The effect of relative humidity on dropwise condensation dynamics publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2014.09.080 – volume: 76 start-page: 467 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0395 article-title: Time-series characteristics and geometric structures of drop-size distribution density in dropwise condensation publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2014.04.041 – volume: 18 start-page: 3063 year: 2006 ident: 10.1016/j.cis.2021.102503_bb0180 article-title: Design and creation of superwetting/antiwetting surfaces publication-title: Adv Mater doi: 10.1002/adma.200501961 – volume: 42 start-page: 89 year: 2010 ident: 10.1016/j.cis.2021.102503_bb0065 article-title: Slip on Superhydrophobic surfaces publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-121108-145558 – volume: 7 start-page: 3388 year: 2007 ident: 10.1016/j.cis.2021.102503_bb0765 article-title: Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity publication-title: Nano Lett doi: 10.1021/nl0717457 – volume: 6 start-page: 30764 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0215 article-title: On the onset of surface condensation: formation and transition mechanisms of condensation mode publication-title: Sci Rep doi: 10.1038/srep30764 – volume: 156 start-page: 119839 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0675 article-title: Enhancement of condensation heat transfer on a microstructured surface with wettability gradient publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2020.119839 – volume: 8 start-page: 21776 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0800 article-title: Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b05324 – volume: 154 start-page: 515 year: 1944 ident: 10.1016/j.cis.2021.102503_bb0145 article-title: Diurnal fluctuation in a physical property of leaf cuticle publication-title: Nature doi: 10.1038/154515a0 – volume: 3 start-page: 255 year: 1967 ident: 10.1016/j.cis.2021.102503_bb0200 article-title: The theory of condensation and the critical point publication-title: Physics doi: 10.1103/PhysicsPhysiqueFizika.3.255 – volume: 45 start-page: 3405 year: 2002 ident: 10.1016/j.cis.2021.102503_bb0600 article-title: Influence of processing conditions of polymer film on dropwise condensation heat transfer publication-title: Int J Heat Mass Tran doi: 10.1016/S0017-9310(02)00059-5 – volume: 21 start-page: 577 year: 1929 ident: 10.1016/j.cis.2021.102503_bb0890 article-title: The condensation of steam publication-title: Ind Eng Chem doi: 10.1021/ie50234a018 – volume: 103 start-page: 685 year: 1981 ident: 10.1016/j.cis.2021.102503_bb0590 article-title: Steam condensation on various gold surfaces publication-title: J Heat Transfer doi: 10.1115/1.3244527 – volume: 28 start-page: 14424 year: 2012 ident: 10.1016/j.cis.2021.102503_bb0715 article-title: Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale publication-title: Langmuir doi: 10.1021/la302599n – volume: 11 start-page: 69 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0815 article-title: How droplets nucleate and grow on liquids and liquid impregnated surfaces publication-title: Soft Matter doi: 10.1039/C4SM01424C – volume: 432 start-page: 36 year: 2004 ident: 10.1016/j.cis.2021.102503_bb0165 article-title: Water-repellent legs of water striders publication-title: Nature doi: 10.1038/432036a – volume: 136 start-page: 681 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0595 article-title: Steam condensate behavior and heat transfer performance on chromium-ion-implanted metal surfaces publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2019.03.019 – volume: 68 start-page: 1 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0905 article-title: A droplet model in steam condensation with noncondensable gas publication-title: Int J Thermal Sci doi: 10.1016/j.ijthermalsci.2013.01.011 – volume: 28 start-page: 6067 year: 2012 ident: 10.1016/j.cis.2021.102503_bb0710 article-title: Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces publication-title: Langmuir doi: 10.1021/la300609f – volume: 31 start-page: 1806501 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0060 article-title: Biological and engineered topological droplet rectifiers publication-title: Adv Mater doi: 10.1002/adma.201806501 – volume: 4 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0860 article-title: Hydrophilic directional slippery rough surfaces for water harvesting publication-title: Sci Adv doi: 10.1126/sciadv.aaq0919 – volume: 109 start-page: 1229 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0880 article-title: Role of impregnated lubricant in enhancing thermosyphon performance publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.02.086 – volume: 6 start-page: 2012 year: 1776 ident: 10.1016/j.cis.2021.102503_bb0300 article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces publication-title: ACS Nano – volume: 18 start-page: 233 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0070 article-title: Dropwise condensation on micro- and nanostructured surfaces publication-title: Nanosc Microsc Thermophys Eng doi: 10.1080/15567265.2013.862889 – volume: 174 start-page: 115264 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0920 article-title: Effective reduction of non-condensable gas effects on condensation heat transfer: surface modification and steam jet injection publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115264 – volume: 256 start-page: 2742 year: 2010 ident: 10.1016/j.cis.2021.102503_bb0635 article-title: Thermal stability of thiol and silane monolayers: a comparative study publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2009.11.020 – volume: 139 start-page: 254 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0915 article-title: Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2019.04.135 – volume: 103 start-page: 161601 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0085 article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets publication-title: Appl Phys Lett doi: 10.1063/1.4825273 – volume: 114 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0705 article-title: Macrotextures-induced jumping relay of condensate droplets publication-title: Appl Phys Lett doi: 10.1063/1.5082727 – volume: 129 start-page: 86 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0960 article-title: Dropwise condensation on superhydrophobic nanostructure surface, part I: Long-term operation and nanostructure failure publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.09.100 – volume: 24 start-page: 1211 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0270 article-title: Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array publication-title: Adv Funct Mater doi: 10.1002/adfm.201301984 – volume: 463 start-page: 640 year: 2010 ident: 10.1016/j.cis.2021.102503_bb0440 article-title: Directional water collection on wetted spider silk publication-title: Nature doi: 10.1038/nature08729 – volume: 115 start-page: 1032 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0685 article-title: Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.08.112 – volume: 12 start-page: 29946 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0760 article-title: Confined growth and controlled coalescence/self-removal of condensate microdrops on spatially heterogeneously-patterned superhydrophilic-superhydrophobic surface publication-title: ACS Appl Mater Interfaces – volume: 150 start-page: 119352 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0925 article-title: A visualized study of enhanced steam condensation heat transfer on a honeycomb-like microporous superhydrophobic surface in the presence of a non-condensable gas publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2020.119352 – volume: 4 start-page: 1492 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0130 article-title: Self-similarity of contact line depinning from textured surfaces publication-title: Nat Commun doi: 10.1038/ncomms2482 – volume: 8 start-page: 5729 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0285 article-title: Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b00852 – volume: 11 start-page: 2017 year: 1673 ident: 10.1016/j.cis.2021.102503_bb0805 article-title: Growth rates and spontaneous navigation of condensate droplets through randomly structured textures publication-title: ACS Nano – volume: 7 start-page: 11043 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0500 article-title: Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces publication-title: ACS Nano doi: 10.1021/nn404707j – volume: 16 start-page: 411 year: 1973 ident: 10.1016/j.cis.2021.102503_bb0390 article-title: Dropwise condensation-the distribution of drop sizes publication-title: Int J Heat Mass Tran doi: 10.1016/0017-9310(73)90068-9 – volume: 83 start-page: 833 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0335 article-title: Dropwise condensation theory revisited: Part I. droplet nucleation radius publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2014.11.009 – volume: 291 start-page: 633 year: 2001 ident: 10.1016/j.cis.2021.102503_bb0545 article-title: Fast drop movements resulting from the phase change on a gradient surface publication-title: Science doi: 10.1126/science.291.5504.633 – volume: 8 start-page: 10352 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0090 article-title: How coalescing droplets jump publication-title: ACS Nano doi: 10.1021/nn503643m – volume: 23 start-page: 4577 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0265 article-title: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches publication-title: Adv Funct Mater doi: 10.1002/adfm.201300418 – volume: 29 start-page: 1703002 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0075 article-title: Recent progress in bionic condensate microdrop self-propelling surfaces publication-title: Adv Mater doi: 10.1002/adma.201703002 – volume: 26 start-page: 418 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0620 article-title: Stable Dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films publication-title: Adv Mater doi: 10.1002/adma.201303065 – volume: 103 start-page: 184501 year: 2009 ident: 10.1016/j.cis.2021.102503_bb0080 article-title: Self-propelled dropwise condensation on superhydrophobic surfaces publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.103.184501 – volume: 7 start-page: 10660 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0725 article-title: Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b02376 – volume: 112 start-page: 991 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0680 article-title: Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.05.039 – volume: 122 start-page: 45 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0480 article-title: Mode selection between sliding and rolling for droplet on inclined surface: effect of surface wettability publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.01.098 – volume: 12 start-page: 2125 year: 1996 ident: 10.1016/j.cis.2021.102503_bb0140 article-title: Super-water-repellent fractal surface publication-title: Langmuir doi: 10.1021/la950418o – volume: 3 start-page: 2806 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0795 article-title: Enhancing condensation heat transfer on three-dimensional hybrid surfaces publication-title: Joule doi: 10.1016/j.joule.2019.08.005 – volume: 15 start-page: 231 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0185 article-title: Superhydrophobic surfaces: a review on fundamentals, applications, and challenges publication-title: J Coat Technol Res doi: 10.1007/s11998-017-0011-x – volume: 112 start-page: 9247 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0460 article-title: Self-removal of condensed water on the legs of water striders publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1506874112 – volume: 5 start-page: 2084 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0525 article-title: Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles publication-title: J Phys Chem Lett doi: 10.1021/jz500798m – volume: 109 start-page: 187 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0370 article-title: Condensate droplet size distribution on lubricant-infused surfaces publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.01.119 – volume: 10 start-page: 31765 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0655 article-title: Condensation heat transfer performance of thermally stable superhydrophobic cerium oxide surfaces publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b09597 – volume: 582 start-page: 55 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0965 article-title: Design of robust superhydrophobic surfaces publication-title: Nature doi: 10.1038/s41586-020-2331-8 – volume: 2 start-page: 1500202 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0745 article-title: Can metal matrix-hydrophobic nanoparticle composites enhance water condensation by promoting the dropwise mode? publication-title: Adv Mater Interfaces doi: 10.1002/admi.201500202 – volume: 14 start-page: 13367 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0875 article-title: Enhanced condensation on liquid-infused nanoporous surfaces by vibration-assisted droplet sweeping publication-title: ACS Nano doi: 10.1021/acsnano.0c05223 – volume: 28 start-page: 1800634 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0735 article-title: Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer publication-title: Adv Funct Mater doi: 10.1002/adfm.201800634 – volume: 202 start-page: 1 year: 1997 ident: 10.1016/j.cis.2021.102503_bb0155 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta doi: 10.1007/s004250050096 – volume: 1 start-page: 53 year: 1930 ident: 10.1016/j.cis.2021.102503_bb0035 article-title: Versuche ueber die Kondensation von Wasserdampf in film- und Tropfenform publication-title: Technische Mechanik und Thermodynamik – volume: 142 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0260 article-title: Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach publication-title: J Chem Phys doi: 10.1063/1.4906877 – volume: 54 start-page: 4876 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0720 article-title: Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces publication-title: Angew Chem Int Ed doi: 10.1002/anie.201500137 – volume: 181 start-page: 115733 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0410 article-title: Dropwise condensation from moist air over a hydrophobic metallic substrate publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115733 – volume: 139 start-page: 112401 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0235 article-title: How nanostructures affect water droplet nucleation on superhydrophobic surfaces publication-title: J Heat Transfer doi: 10.1115/1.4036763 – volume: 6 start-page: 76 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0430 article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow publication-title: Nanoscale doi: 10.1039/C3NR04755E – volume: 120 start-page: 879 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0385 article-title: Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.12.059 – volume: 2 start-page: 152 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0420 article-title: Superhydrophobicity in perfection: the outstanding properties of the lotus leaf publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.2.19 – volume: 145 start-page: 590 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0510 article-title: Numerical investigation of convective dropwise condensation flow by a hybrid thermal lattice Boltzmann method publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.09.076 – year: 2008 ident: 10.1016/j.cis.2021.102503_bb0010 – volume: 2 start-page: 269 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0295 article-title: Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer publication-title: Joule doi: 10.1016/j.joule.2017.11.010 – year: 2020 ident: 10.1016/j.cis.2021.102503_bb0040 – volume: 60 start-page: 664 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0355 article-title: A dropwise condensation model using a nano-scale, pin structured surface publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2013.01.032 – volume: 14 start-page: 8024 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0850 article-title: Depletion of lubricant from nanostructured oil-infused surfaces by pendant condensate droplets publication-title: ACS Nano doi: 10.1021/acsnano.9b10184 – volume: 41 start-page: 81 year: 1998 ident: 10.1016/j.cis.2021.102503_bb0320 article-title: Modeling of heat transfer in dropwise condensation publication-title: Int J Heat Mass Tran doi: 10.1016/S0017-9310(97)00094-X – volume: 277 start-page: 548 year: 1979 ident: 10.1016/j.cis.2021.102503_bb0205 article-title: Direct experimental verification of the kelvin equation for capillary condensation publication-title: Nature doi: 10.1038/277548a0 – volume: 29 start-page: 1109 year: 1986 ident: 10.1016/j.cis.2021.102503_bb0605 article-title: Evaluation of organic coatings for the promotion of dropwise condensation of steam publication-title: Int J Heat Mass Tran doi: 10.1016/0017-9310(86)90142-0 – volume: 17 start-page: 21492 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0240 article-title: Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP03243A – volume: 116 start-page: 2482 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0835 article-title: Directional pumping of water and oil microdroplets on slippery surface publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1817172116 – volume: 33 start-page: 177 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0740 article-title: Hydrophobic copper nanowires for enhancing condensation heat transfer publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.018 – volume: 6 start-page: 3262 year: 2012 ident: 10.1016/j.cis.2021.102503_bb0575 article-title: Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation publication-title: ACS Nano doi: 10.1021/nn300183d – volume: 112 start-page: 333 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0340 article-title: Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.04.061 – volume: 13 start-page: 8169 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0540 article-title: Hierarchical condensation publication-title: ACS Nano doi: 10.1021/acsnano.9b03275 – volume: 12 start-page: 315 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0650 article-title: Hydrophobicity of rare-earth oxide ceramics publication-title: Nat Mater doi: 10.1038/nmat3545 – volume: 256 start-page: 291 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0025 article-title: A review on wetting and water condensation - perspectives for CO2 condensation publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2018.03.008 – volume: 12 start-page: 2016 year: 1825 ident: 10.1016/j.cis.2021.102503_bb0055 article-title: Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications publication-title: Small – volume: 95 year: 2009 ident: 10.1016/j.cis.2021.102503_bb0225 article-title: Spatial control in the heterogeneous nucleation of water publication-title: Appl Phys Lett doi: 10.1063/1.3200951 – volume: 135 start-page: 111004 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0345 article-title: Modeling and optimization of superhydrophobic condensation publication-title: J Heat Transfer doi: 10.1115/1.4024597 – volume: 477 start-page: 443 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0455 article-title: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity publication-title: Nature doi: 10.1038/nature10447 – volume: 210 start-page: 47 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0045 article-title: Condensation and freezing of droplets on superhydrophobic surfaces publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2013.10.018 – volume: 133 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0330 article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces publication-title: J Heat Transfer doi: 10.1115/1.4003742 – volume: 9 start-page: 13770 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0195 article-title: Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b01812 – volume: 63 start-page: 874 year: 2008 ident: 10.1016/j.cis.2021.102503_bb0210 article-title: Effects of surface topography of material on nucleation site density of dropwise condensation publication-title: Chem Eng Sci doi: 10.1016/j.ces.2007.10.016 – volume: 405 start-page: 126901 year: 2021 ident: 10.1016/j.cis.2021.102503_bb0570 article-title: Macrotextures-enabled self-propelling of large condensate droplets publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126901 – volume: 33 start-page: 407 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0770 article-title: Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03752 – volume: 25 start-page: 5937 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0550 article-title: Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection publication-title: Adv Mater doi: 10.1002/adma.201301876 – volume: 10 start-page: 29127 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0520 article-title: Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b09067 – volume: 11 start-page: 24735 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0790 article-title: Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b06001 – volume: 151 start-page: 119349 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0950 article-title: Experimental and modeling investigations of dropwise condensation out of convective humid air flow publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2020.119349 – volume: 170 start-page: 515 year: 1995 ident: 10.1016/j.cis.2021.102503_bb0475 article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1995.1130 – volume: 49 start-page: 6129 year: 2010 ident: 10.1016/j.cis.2021.102503_bb0645 article-title: Bioinspired self-healing superhydrophobic coatings publication-title: Angew Chem Int Ed doi: 10.1002/anie.201001258 – volume: 3 start-page: 2013 year: 1988 ident: 10.1016/j.cis.2021.102503_bb0495 article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer publication-title: Sci Rep – volume: 75 start-page: 908 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0610 article-title: Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.10.019 – volume: 38 start-page: 71 year: 2008 ident: 10.1016/j.cis.2021.102503_bb0050 article-title: Wetting and roughness publication-title: Annu Rev Mat Res doi: 10.1146/annurev.matsci.38.060407.132434 – volume: 23 start-page: 3820 year: 2007 ident: 10.1016/j.cis.2021.102503_bb0530 article-title: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces publication-title: Langmuir doi: 10.1021/la063130f – volume: 122 start-page: 117 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0360 article-title: Modeling and optimization of condensation heat transfer at biphilic interface publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.01.108 – volume: 8 start-page: 6733 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0190 article-title: Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures publication-title: RSC Adv doi: 10.1039/C7RA13496G – volume: 105 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0660 article-title: Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics publication-title: Appl Phys Lett doi: 10.1063/1.4886410 – volume: 20 start-page: 3918 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0615 article-title: Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c01086 – volume: 83 start-page: 842 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0400 article-title: Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2014.11.008 – volume: 135 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0350 article-title: Condensation on superhydrophobic copper oxide nanostructures publication-title: J Heat Transfer doi: 10.1115/1.4024424 – volume: 9 start-page: 71 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0255 article-title: Recurrent filmwise and dropwise condensation on a beetle mimetic surface publication-title: ACS Nano doi: 10.1021/nn505716b – volume: 9 start-page: 12311 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0560 article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces publication-title: ACS Nano doi: 10.1021/acsnano.5b05607 – volume: 6 start-page: 1213 year: 2006 ident: 10.1016/j.cis.2021.102503_bb0435 article-title: Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle publication-title: Nano Lett doi: 10.1021/nl060644q – volume: 11 start-page: 7617 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0820 article-title: Direct observation of drops on slippery lubricant-infused surfaces publication-title: Soft Matter doi: 10.1039/C5SM01809A – volume: 216 start-page: 115 year: 2002 ident: 10.1016/j.cis.2021.102503_bb0030 article-title: Dropwise condensation theory and experiment: a review publication-title: Proc Inst Mech Eng, Part A: J Power Energy doi: 10.1243/09576500260049034 – volume: 13 start-page: 1309 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0780 article-title: Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties publication-title: ACS Nano – volume: 35 start-page: 10309 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0405 article-title: Numerical simulation of jumping droplet condensation publication-title: Langmuir doi: 10.1021/acs.langmuir.9b01253 – volume: 28 start-page: 1707000 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0585 article-title: Thin film condensation on nanostructured surfaces publication-title: Adv Funct Mater doi: 10.1002/adfm.201707000 – volume: 34 start-page: 8112 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0830 article-title: Drop dynamics on liquid-infused surfaces: the role of the lubricant ridge publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01660 – volume: 13 start-page: 179 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0105 article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces publication-title: Nano Lett doi: 10.1021/nl303835d – volume: 9 start-page: 13676 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0670 article-title: Patterned polymer coatings increase the efficiency of dew harvesting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b16248 – volume: 6 start-page: 7923 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0250 article-title: Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface publication-title: RSC Adv doi: 10.1039/C5RA23836F – volume: 290 start-page: 2130 year: 2000 ident: 10.1016/j.cis.2021.102503_bb0630 article-title: Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers publication-title: Science doi: 10.1126/science.290.5499.2130 – volume: 1 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0115 article-title: Coalescence-induced nanodroplet jumping publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.1.064102 – volume: 110 start-page: 7992 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0750 article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1210770110 – volume: 19 start-page: 5287 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0870 article-title: Stable dropwise condensation of ethanol and hexane on rationally designed ultrascalable nanostructured lubricant-infused surfaces publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b01754 – volume: 127 start-page: 448 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0515 article-title: Convective dropwise condensation out of humid air inside a horizontal channel - experimental investigation of the condensate heat transfer resistance publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.08.015 – volume: 5 start-page: 812 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0245 article-title: Heterogeneous nucleation capability of conical microstructures for water droplets publication-title: RSC Adv doi: 10.1039/C4RA12352B – volume: 3 start-page: 1360 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0485 article-title: How surface orientation affects jumping-droplet condensation publication-title: Joule doi: 10.1016/j.joule.2019.03.004 – volume: 141 start-page: 34 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0935 article-title: Dropwise condensation in the presence of non-condensable gas: interaction effects of the droplet array using the distributed point sink method publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2019.06.068 – volume: 11 start-page: 8499 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0730 article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation publication-title: ACS Nano doi: 10.1021/acsnano.7b04481 – volume: 30 start-page: 14498 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0380 article-title: Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces publication-title: Langmuir doi: 10.1021/la503003r – volume: 6 start-page: 18649 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0095 article-title: Coalescence-induced jumping of multiple condensate droplets on hierarchical superhydrophobic surfaces publication-title: Sci Rep doi: 10.1038/srep18649 – volume: 28 start-page: 988 year: 1936 ident: 10.1016/j.cis.2021.102503_bb0125 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind Eng Chem doi: 10.1021/ie50320a024 – volume: 287 start-page: 102329 year: 2021 ident: 10.1016/j.cis.2021.102503_bb0810 article-title: The challenge of lubricant-replenishment on lubricant-impregnated surfaces publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2020.102329 – volume: 51 start-page: 2008 year: 1728 ident: 10.1016/j.cis.2021.102503_bb0895 article-title: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation publication-title: Int J Heat Mass Tran – volume: 2 start-page: 362 year: 1966 ident: 10.1016/j.cis.2021.102503_bb0310 article-title: A theory of heat transfer by dropwise condensation – volume: 48 start-page: 2228 year: 2009 ident: 10.1016/j.cis.2021.102503_bb0230 article-title: Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution publication-title: Int J Thermal Sci doi: 10.1016/j.ijthermalsci.2009.05.004 – volume: 532 start-page: 85 year: 2016 ident: 10.1016/j.cis.2021.102503_bb0445 article-title: Continuous directional water transport on the peristome surface of Nepenthes alata publication-title: Nature doi: 10.1038/nature17189 – volume: 15 start-page: 4808 year: 2019 ident: 10.1016/j.cis.2021.102503_bb0840 article-title: Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces publication-title: Soft Matter doi: 10.1039/C9SM00493A – volume: 15 start-page: 2011 year: 1857 ident: 10.1016/j.cis.2021.102503_bb0005 article-title: Energy and exergy analyses of thermal power plants: a review publication-title: Renew Sustain Energy Rev – volume: 2 start-page: 17036 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0175 article-title: Nature-inspired superwettability systems publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2017.36 – volume: 4 start-page: 2517 year: 2013 ident: 10.1016/j.cis.2021.102503_bb0110 article-title: Electrostatic charging of jumping droplets publication-title: Nat Commun doi: 10.1038/ncomms3517 – volume: 5 start-page: 878 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0580 article-title: Sustaining enhanced condensation on hierarchical mesh-covered surfaces publication-title: Natl Sci Rev doi: 10.1093/nsr/nwy098 – volume: 414 start-page: 33 year: 2001 ident: 10.1016/j.cis.2021.102503_bb0160 article-title: Water capture by a desert beetle publication-title: Nature doi: 10.1038/35102108 – volume: 40 start-page: 546 year: 1944 ident: 10.1016/j.cis.2021.102503_bb0135 article-title: Wettability of porous surface publication-title: Trans Faraday Soc doi: 10.1039/tf9444000546 – volume: 573 start-page: 379 year: 2004 ident: 10.1016/j.cis.2021.102503_bb0625 article-title: Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers publication-title: Surf Sci doi: 10.1016/j.susc.2004.10.008 – volume: 14 start-page: 14878 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0970 article-title: Polymer infused porous surfaces for robust, thermally conductive, self-healing coatings for dropwise condensation publication-title: ACS Nano doi: 10.1021/acsnano.0c03961 – volume: 9 start-page: 44911 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0290 article-title: Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b14960 – volume: 14 start-page: 12796 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0565 article-title: Laplace pressure driven single-droplet jumping on structured surfaces publication-title: ACS Nano doi: 10.1021/acsnano.0c03487 – volume: 3 year: 2008 ident: 10.1016/j.cis.2021.102503_bb0170 article-title: Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment publication-title: Bioinspir Biomim doi: 10.1088/1748-3182/3/4/046007 – volume: 176 start-page: 115386 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0375 article-title: Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115386 – volume: 30 start-page: 13103 year: 2014 ident: 10.1016/j.cis.2021.102503_bb0885 article-title: Enhancing dropwise condensation through bioinspired wettability patterning publication-title: Langmuir doi: 10.1021/la5028866 – volume: 560 start-page: 866 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0555 article-title: Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.10.113 – volume: 128 start-page: 9052 year: 2006 ident: 10.1016/j.cis.2021.102503_bb0150 article-title: A perfectly hydrophobic surface (θA/θR = 180°/180°) publication-title: J Am Chem Soc doi: 10.1021/ja062943n – volume: 119 start-page: 277 year: 1926 ident: 10.1016/j.cis.2021.102503_bb0220 article-title: Keimbildung in Übersättigten Gebilden publication-title: Z Phys Chem doi: 10.1515/zpch-1926-11927 – volume: 7 start-page: 11719 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0755 article-title: Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b03264 – volume: 83 start-page: 27 year: 2015 ident: 10.1016/j.cis.2021.102503_bb0280 article-title: Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2014.11.069 – volume: 54 start-page: 4507 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0900 article-title: Dropwise condensation from flowing air-steam mixtures: diffusion resistance assessed by controlled drainage publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2011.06.029 – volume: 21 start-page: 2927 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0425 article-title: Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding publication-title: Adv Funct Mater doi: 10.1002/adfm.201002733 – volume: 26 start-page: 421 year: 2006 ident: 10.1016/j.cis.2021.102503_bb0640 article-title: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.05.022 – volume: 98 year: 2011 ident: 10.1016/j.cis.2021.102503_bb0100 article-title: Size effect on the coalescence-induced self-propelled droplet publication-title: Appl Phys Lett – volume: 119 start-page: 931 year: 2018 ident: 10.1016/j.cis.2021.102503_bb0940 article-title: Effects of millimetric geometric features on dropwise condensation under different vapor conditions publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.11.139 – volume: 160 start-page: 120172 year: 2020 ident: 10.1016/j.cis.2021.102503_bb0305 article-title: A review of dropwise condensation: theory, modeling, experiments, and applications publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2020.120172 – volume: 523 start-page: 98 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0775 article-title: A 3-D model for thermodynamic analysis of hierarchical structured superhydrophobic surfaces publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2017.04.001 – volume: 9 start-page: 35391 year: 2017 ident: 10.1016/j.cis.2021.102503_bb0535 article-title: Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b09681 |
SSID | ssj0002575 |
Score | 2.5854452 |
SecondaryResourceType | review_article |
Snippet | As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102503 |
SubjectTerms | Advanced functional surfaces Dropwise condensation Fundamentals Micro/nanoscale features Performance improvement Practical application |
Title | Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces |
URI | https://dx.doi.org/10.1016/j.cis.2021.102503 https://www.proquest.com/docview/2563426384 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIgQXBAVE-aiMxAk11Nk4TpZbtbBaWNEDoqK3yOPYUhBNVklW1V74DfxkZuyYCpB64BTFGieRx5nx2G_eMPZK5CU6EQlJaVyZ4J_okrmuZTJXrtYZ1IXwxWA-nanVufx4kV_ssUXMhSFY5WT7g0331npqOZlG82TTNJTjK4jrXc2IRkhKSjSXsiD-_Dc_rmEeOCVDFQMMm0k6nmx6jJdpiLF7lhKBQR7rZv3rm_6y0t71LO-ze9OakZ-Gz3rA9mx7wG6HKpK7A3ZnEYu2YatHdJrhIfv5ru82V81gOUa8aFwCauctX_bdJXeU_xFo_QfeOX5lPfz5mLdEb-wlj7lua173BDAf-WXnQbQ7PnZ8c51rwBu_J-G3GDnseEQU0AtM2GXkw7Z3hPt6xM6X778sVslUfiExWSbGROmidFIKZ41WLhNgnRMg55Cl1s0gdxgKZcpZyPNaaNBa5TYtjLA6xRgJl5aP2X7btfYJ44BxkStw6QPGyJmBEiyYFFRtnSqLORwyEQe-MhM3OZXI-F5FENo3bB8q0lUVdHXIXv_usgnEHDcJy6jN6o_ZVaHjuKnby6j5CvVIRym6td0WhXKVEdV9KZ_-36Ofsbt0F9Bqz9n-2G_tC1zejHDk5-8Ru3X6Yb06o-v689f1L-6L_lc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK1QuFS0gCoUaiRNqqLOxnWxvaGG1hbanVuotsh1bCqLJKsmq2gu_gZ_cGTumAqQeuDrOQ57JPOxvviHkPRMFOBGuk8K4IoE_0SVTVfFkKl2lMl3lzDeDOb-Qiyv-9Vpcb5BZrIVBWOVo-4NN99Z6HDkeV_N4WddY48uQ611OkEaIc_GIbHGR5ajaH3_e4zxAJ0MbA8ibcXo82vQgL1MjZfckRQYDERtn_euc_jLT3vfMn5KdMWikn8J37ZIN2-yRx6GN5HqPbM9i1zYY9ZBO0z8jvz537fK27i2FlBesS4DtnNB5195QhwUggde_p62jt9bjn49og_zGfuYRVU1Fqw4R5gO9aT2Kdk2Hli7viw1o7Tcl_B4j1WsaIQX4AhO2GWm_6hwCv56Tq_mXy9kiGfsvJCbL2JBIlReOc-asUdJlTFvnmOZTnaXWTbRwkAtl0lktRMWUVkoKm-aGWZVCkgSx5Quy2bSNfUmohsTI5RD7aGP4xOhCW21SLSvrZJFP9T5hceFLM5KTY4-MH2VEoX2H8b5EWZVBVvvkw-9bloGZ46HJPEqz_EO9SvAcD932Lkq-BDniWYpqbLuCSUJmyHVf8Ff_9-hDsr24PD8rz04vvr0mT_BKgK4dkM2hW9k3EOsM-q3X5TvTJ_5K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dropwise+condensation%3A+From+fundamentals+of+wetting%2C+nucleation%2C+and+droplet+mobility+to+performance+improvement+by+advanced+functional+surfaces&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Zheng%2C+Shao-Fei&rft.au=Gross%2C+Ulrich&rft.au=Wang%2C+Xiao-Dong&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=0001-8686&rft.eissn=1873-3727&rft.volume=295&rft_id=info:doi/10.1016%2Fj.cis.2021.102503&rft.externalDocID=S0001868621001445 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon |