Weakly nonlinear discrete multipoint boundary value problems
In this paper we study nonlinear, discrete, multipoint boundary value problems of the form x ( t + 1 ) = A ( t ) x ( t ) + ϵ f ( t , x ( t ) ) subject to B 0 x ( 0 ) + B 1 x ( 1 ) + ⋯ + B N x ( N ) = 0 . We provide sufficient conditions for the existence of solutions and we present a qualitative ana...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 329; no. 1; pp. 77 - 91 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.05.2007
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-247X 1096-0813 |
DOI | 10.1016/j.jmaa.2006.06.024 |
Cover
Loading…
Abstract | In this paper we study nonlinear, discrete, multipoint boundary value problems of the form
x
(
t
+
1
)
=
A
(
t
)
x
(
t
)
+
ϵ
f
(
t
,
x
(
t
)
)
subject to
B
0
x
(
0
)
+
B
1
x
(
1
)
+
⋯
+
B
N
x
(
N
)
=
0
.
We provide sufficient conditions for the existence of solutions and we present a qualitative analysis of the way the solutions depend on the parameter ϵ. |
---|---|
AbstractList | In this paper we study nonlinear, discrete, multipoint boundary value problems of the form
x
(
t
+
1
)
=
A
(
t
)
x
(
t
)
+
ϵ
f
(
t
,
x
(
t
)
)
subject to
B
0
x
(
0
)
+
B
1
x
(
1
)
+
⋯
+
B
N
x
(
N
)
=
0
.
We provide sufficient conditions for the existence of solutions and we present a qualitative analysis of the way the solutions depend on the parameter ϵ. |
Author | Rodriguez, Jesús Taylor, Padraic |
Author_xml | – sequence: 1 givenname: Jesús surname: Rodriguez fullname: Rodriguez, Jesús email: rodrigu@math.ncsu.edu – sequence: 2 givenname: Padraic surname: Taylor fullname: Taylor, Padraic |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18513096$$DView record in Pascal Francis |
BookMark | eNp9kEtrwzAQhEVJoUnaP9CTLz3aXUl-Qi4l9AWBXlram5DlNciVZSMpgfz72qT00ENgYC_zDTuzIgs7WCTklkJCgeb3XdL1UiYMIE9msfSCLClUeQwl5QuyBGAsZmnxdUVW3ncAlGYFXZLNJ8pvc4ymPKMtShc12iuHAaN-b4IeB21DVA9720h3jA7S7DEa3VAb7P01uWyl8Xjze9fk4-nxffsS796eX7cPu1hxDiHOZIuyLtOUV5gx4IzlEjCnPEOoa9qqolFpUVRKtRXPlKzrirUpqIqXVVNixtfk7pQ7Sq-kaZ20SnsxOt1PTwlaZpRPXSdfefIpN3jvsBVKBxn0YIOT2ggKYl5LdGJeS8xriVksnVD2D_1LPwdtThBO5Q8anfBKo1XYaIcqiGbQ5_AfKZuGZg |
CODEN | JMANAK |
CitedBy_id | crossref_primary_10_1016_j_camwa_2010_10_041 crossref_primary_10_1080_10236198_2010_505237 crossref_primary_10_1016_j_jmaa_2011_08_079 crossref_primary_10_1080_10236198_2013_805216 crossref_primary_10_1080_10236198_2018_1458843 crossref_primary_10_1080_10236190903150161 crossref_primary_10_1080_10236198_2016_1158255 crossref_primary_10_1080_10236198_2018_1551378 crossref_primary_10_1016_j_jmaa_2011_06_028 |
Cites_doi | 10.1016/j.jmaa.2005.01.032 10.1016/0022-0396(82)90088-2 10.1080/00036819608840473 10.1016/0022-0396(68)90047-8 10.1016/0022-0396(85)90017-8 10.1016/0022-0396(92)90086-3 10.1080/10236199808808133 10.1080/00036818508839551 10.1016/0022-247X(83)90058-6 10.1016/0022-247X(86)90092-2 10.1307/mmj/1028999194 10.1007/BF00281222 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Inc. – notice: 2007 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW |
DOI | 10.1016/j.jmaa.2006.06.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 91 |
ExternalDocumentID | 18513096 10_1016_j_jmaa_2006_06_024 S0022247X0600638X |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW |
ID | FETCH-LOGICAL-c330t-5afeab84439e5203226a0e6135e0bb1fc7dc4779ccf935cabb92f40c9389d8e53 |
IEDL.DBID | IXB |
ISSN | 0022-247X |
IngestDate | Wed Apr 02 07:23:35 EDT 2025 Tue Jul 01 02:40:52 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Fri Feb 23 02:27:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Projection Boundary value problems Implicit Function Theorem Lyapunov–Schmidt Existence condition Sufficient condition Boundary value problem Mathematical analysis Existence of solution Implicit function theorem Qualitative analysis Lyapunov-Schmidt |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-5afeab84439e5203226a0e6135e0bb1fc7dc4779ccf935cabb92f40c9389d8e53 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022247X0600638X |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_18513096 crossref_citationtrail_10_1016_j_jmaa_2006_06_024 crossref_primary_10_1016_j_jmaa_2006_06_024 elsevier_sciencedirect_doi_10_1016_j_jmaa_2006_06_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-05-01 |
PublicationDateYYYYMMDD | 2007-05-01 |
PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | San Diego, CA |
PublicationPlace_xml | – name: San Diego, CA |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2007 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Etheridge, Rodriguez (bib008) 1998; 4 Luenberger (bib013) 1978 Chow, Hale (bib006) 1982 Hale (bib010) 1980 Etheridge, Rodriguez (bib007) 1996; 62 Rouche, Mawhin (bib020) 1980 Halanay (bib009) 1963; 12 Rodriguez (bib018) 1992; 97 Rodriguez, Sweet (bib014) 1985; 58 Kelley, Peterson (bib011) 1991 Lang (bib012) 1983 Bancroft, Hale, Sweet (bib003) 1968; 4 Cesari (bib004) 1963; 1 Cesari (bib005) 1964; 11 Agarwal (bib002) 1992 Rodriguez (bib015) 1982; 43 Rodriguez (bib017) 1986; 114 Agarwal (bib001) 1983; 96 Rodriguez (bib016) 1985; 19 Rodriguez (bib019) 2005; 308 Cesari (10.1016/j.jmaa.2006.06.024_bib005) 1964; 11 Rodriguez (10.1016/j.jmaa.2006.06.024_bib017) 1986; 114 Agarwal (10.1016/j.jmaa.2006.06.024_bib002) 1992 Hale (10.1016/j.jmaa.2006.06.024_bib010) 1980 Agarwal (10.1016/j.jmaa.2006.06.024_bib001) 1983; 96 Bancroft (10.1016/j.jmaa.2006.06.024_bib003) 1968; 4 Rodriguez (10.1016/j.jmaa.2006.06.024_bib016) 1985; 19 Rodriguez (10.1016/j.jmaa.2006.06.024_bib018) 1992; 97 Halanay (10.1016/j.jmaa.2006.06.024_bib009) 1963; 12 Rodriguez (10.1016/j.jmaa.2006.06.024_bib019) 2005; 308 Lang (10.1016/j.jmaa.2006.06.024_bib012) 1983 Chow (10.1016/j.jmaa.2006.06.024_bib006) 1982 Rodriguez (10.1016/j.jmaa.2006.06.024_bib015) 1982; 43 Kelley (10.1016/j.jmaa.2006.06.024_bib011) 1991 Etheridge (10.1016/j.jmaa.2006.06.024_bib007) 1996; 62 Cesari (10.1016/j.jmaa.2006.06.024_bib004) 1963; 1 Luenberger (10.1016/j.jmaa.2006.06.024_bib013) 1978 Rodriguez (10.1016/j.jmaa.2006.06.024_bib014) 1985; 58 Etheridge (10.1016/j.jmaa.2006.06.024_bib008) 1998; 4 Rouche (10.1016/j.jmaa.2006.06.024_bib020) 1980 |
References_xml | – volume: 97 start-page: 112 year: 1992 end-page: 126 ident: bib018 article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions publication-title: J. Differential Equations – volume: 1 start-page: 149 year: 1963 end-page: 187 ident: bib004 article-title: Functional analysis and periodic solutions of nonlinear differential equations publication-title: Contr. Differential Equations – year: 1983 ident: bib012 article-title: Real Analysis – year: 1991 ident: bib011 article-title: Difference Equations – volume: 11 start-page: 385 year: 1964 end-page: 414 ident: bib005 article-title: Functional analysis and Galerkin's method publication-title: Michigan Math. J. – year: 1992 ident: bib002 article-title: Difference Equations and Inequalities – year: 1980 ident: bib020 article-title: Ordinary Differential Equations – year: 1982 ident: bib006 article-title: Methods of Bifurcation Theory – volume: 43 start-page: 157 year: 1982 end-page: 167 ident: bib015 article-title: An alternative method for boundary value problems with large nonlinearities publication-title: J. Differential Equations – volume: 19 start-page: 265 year: 1985 end-page: 274 ident: bib016 article-title: On resonant discrete boundary value problems publication-title: Appl. Anal. – year: 1980 ident: bib010 article-title: Ordinary Differential Equations – volume: 308 start-page: 380 year: 2005 end-page: 391 ident: bib019 article-title: Nonlinear discrete Sturm–Liouville problems publication-title: J. Math. Anal. Appl. – volume: 4 start-page: 40 year: 1968 end-page: 56 ident: bib003 article-title: Alternative problems for nonlinear functional equations publication-title: J. Differential Equations – volume: 114 start-page: 398 year: 1986 end-page: 408 ident: bib017 article-title: On nonlinear discrete boundary value problems publication-title: Math. Anal. Appl. – volume: 96 start-page: 520 year: 1983 end-page: 534 ident: bib001 article-title: On multipoint boundary value problems for discrete equations publication-title: J. Math. Anal. Appl. – volume: 62 start-page: 119 year: 1996 end-page: 137 ident: bib007 article-title: Periodic solutions of nonlinear discrete-time systems publication-title: Appl. Anal. – volume: 12 start-page: 134 year: 1963 end-page: 149 ident: bib009 article-title: Solutions périodiques et presque-périodiques des systèmes d'équations aux differences finies publication-title: Arch. Ration. Mech. Anal. – year: 1978 ident: bib013 article-title: Introduction to Dynamic Systems – volume: 4 start-page: 127 year: 1998 end-page: 144 ident: bib008 article-title: Scalar discrete nonlinear two-point boundary value problems publication-title: J. Difference Equ. Appl. – volume: 58 start-page: 282 year: 1985 end-page: 293 ident: bib014 article-title: Projection methods for nonlinear boundary value problems publication-title: J. Differential Equations – volume: 308 start-page: 380 year: 2005 ident: 10.1016/j.jmaa.2006.06.024_bib019 article-title: Nonlinear discrete Sturm–Liouville problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.01.032 – volume: 43 start-page: 157 year: 1982 ident: 10.1016/j.jmaa.2006.06.024_bib015 article-title: An alternative method for boundary value problems with large nonlinearities publication-title: J. Differential Equations doi: 10.1016/0022-0396(82)90088-2 – volume: 62 start-page: 119 year: 1996 ident: 10.1016/j.jmaa.2006.06.024_bib007 article-title: Periodic solutions of nonlinear discrete-time systems publication-title: Appl. Anal. doi: 10.1080/00036819608840473 – year: 1980 ident: 10.1016/j.jmaa.2006.06.024_bib020 – year: 1992 ident: 10.1016/j.jmaa.2006.06.024_bib002 – year: 1980 ident: 10.1016/j.jmaa.2006.06.024_bib010 – volume: 4 start-page: 40 year: 1968 ident: 10.1016/j.jmaa.2006.06.024_bib003 article-title: Alternative problems for nonlinear functional equations publication-title: J. Differential Equations doi: 10.1016/0022-0396(68)90047-8 – volume: 1 start-page: 149 year: 1963 ident: 10.1016/j.jmaa.2006.06.024_bib004 article-title: Functional analysis and periodic solutions of nonlinear differential equations publication-title: Contr. Differential Equations – volume: 58 start-page: 282 year: 1985 ident: 10.1016/j.jmaa.2006.06.024_bib014 article-title: Projection methods for nonlinear boundary value problems publication-title: J. Differential Equations doi: 10.1016/0022-0396(85)90017-8 – year: 1991 ident: 10.1016/j.jmaa.2006.06.024_bib011 – volume: 97 start-page: 112 year: 1992 ident: 10.1016/j.jmaa.2006.06.024_bib018 article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions publication-title: J. Differential Equations doi: 10.1016/0022-0396(92)90086-3 – volume: 4 start-page: 127 year: 1998 ident: 10.1016/j.jmaa.2006.06.024_bib008 article-title: Scalar discrete nonlinear two-point boundary value problems publication-title: J. Difference Equ. Appl. doi: 10.1080/10236199808808133 – volume: 19 start-page: 265 year: 1985 ident: 10.1016/j.jmaa.2006.06.024_bib016 article-title: On resonant discrete boundary value problems publication-title: Appl. Anal. doi: 10.1080/00036818508839551 – volume: 96 start-page: 520 year: 1983 ident: 10.1016/j.jmaa.2006.06.024_bib001 article-title: On multipoint boundary value problems for discrete equations publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(83)90058-6 – year: 1978 ident: 10.1016/j.jmaa.2006.06.024_bib013 – volume: 114 start-page: 398 year: 1986 ident: 10.1016/j.jmaa.2006.06.024_bib017 article-title: On nonlinear discrete boundary value problems publication-title: Math. Anal. Appl. doi: 10.1016/0022-247X(86)90092-2 – year: 1983 ident: 10.1016/j.jmaa.2006.06.024_bib012 – volume: 11 start-page: 385 year: 1964 ident: 10.1016/j.jmaa.2006.06.024_bib005 article-title: Functional analysis and Galerkin's method publication-title: Michigan Math. J. doi: 10.1307/mmj/1028999194 – year: 1982 ident: 10.1016/j.jmaa.2006.06.024_bib006 – volume: 12 start-page: 134 year: 1963 ident: 10.1016/j.jmaa.2006.06.024_bib009 article-title: Solutions périodiques et presque-périodiques des systèmes d'équations aux differences finies publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00281222 |
SSID | ssj0011571 |
Score | 1.897572 |
Snippet | In this paper we study nonlinear, discrete, multipoint boundary value problems of the form
x
(
t
+
1
)
=
A
(
t
)
x
(
t
)
+
ϵ
f
(
t
,
x
(
t
)
)
subject to
B
0
x... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 77 |
SubjectTerms | Boundary value problems Exact sciences and technology Finite differences and functional equations Implicit Function Theorem Lyapunov–Schmidt Mathematical analysis Mathematics Projection Sciences and techniques of general use |
Title | Weakly nonlinear discrete multipoint boundary value problems |
URI | https://dx.doi.org/10.1016/j.jmaa.2006.06.024 |
Volume | 329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXhQRP3F-jB68SV0_kqYFL3M4psMdxLHeSpomsDnn6OphF_92X5p0uoM7CIVCSdrw0r7fS_Pe74fQdZhJiSXMAOaS29hloR0C7NoZ81wG-MAYL9k-B0FviJ9iEtdQp6qFUWmVxvdrn156a3OlZazZmo_HqsYXsA3T2AlK3I3BD_s4LIv44vvVToJLqFsxhqvWpnBG53hN3hkzGxJwePgvcNqbswWYTGqti18A1D1A-yZytNp6cIeoJmZHaPd5Rbu6OEZ3I8HepktrpvkvWG6potsc4mJLJw5-jGeFlZZKSvnSUkTfwjKSMosTNOw-vHZ6tpFHsLnvO4VNmBQsDTGEFIIoIXQvYI4AeCbCSVNXcppxTGnEuYx8wlmaRp7EDo8gRslCQfxTVIfxiDNkQZBEHUdiJjP4iDMKazDiCEJYGIqAUr-B3MouCTfc4UrCYppUSWKTRNlSiVoGiTo83EA3qz5zzZyxsTWpzJ2szX8Crn1jv-ba3Pw8CkJJH9Zn5_-88QXa0b9xVW7jJaoX-ae4gvijSJto6_bLbaLt9mO_N1Dn_suo3yxfu28uGNzl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQAhxFOUR8nAhqLmYceJxAIVqIW2UyuyRY5jSy2lVGkY-u85x06hAx2QMkV2Yp2d-z7Hd_chdBtmUmIJM4C55DZ2WWiHALt2xjyXAT4wxstqn4OgM8IvMYlrqF3lwqiwSuP7tU8vvbW50zLWbM3HY5XjC9iGaewEJe7GW2gb2ECglnY3flwdJbiEulXJcNXcZM7oIK_JB2PmRAIuD_-FTvtztgCbSS128QuBng_RgaGO1oMe3RGqidkx2uuv6q4uTtD9m2Dv06U10wUwWG6prNsciLGlIwc_x7PCSksppXxpqUrfwjKaMotTNHp-GrY7ttFHsLnvO4VNmBQsDTFwCkGUEroXMEcAPhPhpKkrOc04pjTiXEY-4SxNI09ih0dAUrJQEP8M1WE84hxZwJKo40jMZAZfcUZhE0YcQQgLQxFQ6jeQW9kl4aZ4uNKwmCZVlNgkUbZUqpZBoi4PN9Ddqs9cl87Y2JpU5k7WFkACvn1jv-ba3Py8CrikDxu0i38--AbtdIb9XtLrDl4v0a7-p6sCHa9Qvci_xDWQkSJtlovtG2Uy290 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+nonlinear+discrete+multipoint+boundary+value+problems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Rodriguez%2C+Jes%C3%BAs&rft.au=Taylor%2C+Padraic&rft.date=2007-05-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=329&rft.issue=1&rft.spage=77&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jmaa.2006.06.024&rft.externalDocID=S0022247X0600638X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |