Weakly nonlinear discrete multipoint boundary value problems

In this paper we study nonlinear, discrete, multipoint boundary value problems of the form x ( t + 1 ) = A ( t ) x ( t ) + ϵ f ( t , x ( t ) ) subject to B 0 x ( 0 ) + B 1 x ( 1 ) + ⋯ + B N x ( N ) = 0 . We provide sufficient conditions for the existence of solutions and we present a qualitative ana...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 329; no. 1; pp. 77 - 91
Main Authors Rodriguez, Jesús, Taylor, Padraic
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.05.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0022-247X
1096-0813
DOI10.1016/j.jmaa.2006.06.024

Cover

Loading…
Abstract In this paper we study nonlinear, discrete, multipoint boundary value problems of the form x ( t + 1 ) = A ( t ) x ( t ) + ϵ f ( t , x ( t ) ) subject to B 0 x ( 0 ) + B 1 x ( 1 ) + ⋯ + B N x ( N ) = 0 . We provide sufficient conditions for the existence of solutions and we present a qualitative analysis of the way the solutions depend on the parameter ϵ.
AbstractList In this paper we study nonlinear, discrete, multipoint boundary value problems of the form x ( t + 1 ) = A ( t ) x ( t ) + ϵ f ( t , x ( t ) ) subject to B 0 x ( 0 ) + B 1 x ( 1 ) + ⋯ + B N x ( N ) = 0 . We provide sufficient conditions for the existence of solutions and we present a qualitative analysis of the way the solutions depend on the parameter ϵ.
Author Rodriguez, Jesús
Taylor, Padraic
Author_xml – sequence: 1
  givenname: Jesús
  surname: Rodriguez
  fullname: Rodriguez, Jesús
  email: rodrigu@math.ncsu.edu
– sequence: 2
  givenname: Padraic
  surname: Taylor
  fullname: Taylor, Padraic
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18513096$$DView record in Pascal Francis
BookMark eNp9kEtrwzAQhEVJoUnaP9CTLz3aXUl-Qi4l9AWBXlram5DlNciVZSMpgfz72qT00ENgYC_zDTuzIgs7WCTklkJCgeb3XdL1UiYMIE9msfSCLClUeQwl5QuyBGAsZmnxdUVW3ncAlGYFXZLNJ8pvc4ymPKMtShc12iuHAaN-b4IeB21DVA9720h3jA7S7DEa3VAb7P01uWyl8Xjze9fk4-nxffsS796eX7cPu1hxDiHOZIuyLtOUV5gx4IzlEjCnPEOoa9qqolFpUVRKtRXPlKzrirUpqIqXVVNixtfk7pQ7Sq-kaZ20SnsxOt1PTwlaZpRPXSdfefIpN3jvsBVKBxn0YIOT2ggKYl5LdGJeS8xriVksnVD2D_1LPwdtThBO5Q8anfBKo1XYaIcqiGbQ5_AfKZuGZg
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_camwa_2010_10_041
crossref_primary_10_1080_10236198_2010_505237
crossref_primary_10_1016_j_jmaa_2011_08_079
crossref_primary_10_1080_10236198_2013_805216
crossref_primary_10_1080_10236198_2018_1458843
crossref_primary_10_1080_10236190903150161
crossref_primary_10_1080_10236198_2016_1158255
crossref_primary_10_1080_10236198_2018_1551378
crossref_primary_10_1016_j_jmaa_2011_06_028
Cites_doi 10.1016/j.jmaa.2005.01.032
10.1016/0022-0396(82)90088-2
10.1080/00036819608840473
10.1016/0022-0396(68)90047-8
10.1016/0022-0396(85)90017-8
10.1016/0022-0396(92)90086-3
10.1080/10236199808808133
10.1080/00036818508839551
10.1016/0022-247X(83)90058-6
10.1016/0022-247X(86)90092-2
10.1307/mmj/1028999194
10.1007/BF00281222
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2006.06.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 91
ExternalDocumentID 18513096
10_1016_j_jmaa_2006_06_024
S0022247X0600638X
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
ID FETCH-LOGICAL-c330t-5afeab84439e5203226a0e6135e0bb1fc7dc4779ccf935cabb92f40c9389d8e53
IEDL.DBID IXB
ISSN 0022-247X
IngestDate Wed Apr 02 07:23:35 EDT 2025
Tue Jul 01 02:40:52 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Fri Feb 23 02:27:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Projection
Boundary value problems
Implicit Function Theorem
Lyapunov–Schmidt
Existence condition
Sufficient condition
Boundary value problem
Mathematical analysis
Existence of solution
Implicit function theorem
Qualitative analysis
Lyapunov-Schmidt
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-5afeab84439e5203226a0e6135e0bb1fc7dc4779ccf935cabb92f40c9389d8e53
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022247X0600638X
PageCount 15
ParticipantIDs pascalfrancis_primary_18513096
crossref_citationtrail_10_1016_j_jmaa_2006_06_024
crossref_primary_10_1016_j_jmaa_2006_06_024
elsevier_sciencedirect_doi_10_1016_j_jmaa_2006_06_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Etheridge, Rodriguez (bib008) 1998; 4
Luenberger (bib013) 1978
Chow, Hale (bib006) 1982
Hale (bib010) 1980
Etheridge, Rodriguez (bib007) 1996; 62
Rouche, Mawhin (bib020) 1980
Halanay (bib009) 1963; 12
Rodriguez (bib018) 1992; 97
Rodriguez, Sweet (bib014) 1985; 58
Kelley, Peterson (bib011) 1991
Lang (bib012) 1983
Bancroft, Hale, Sweet (bib003) 1968; 4
Cesari (bib004) 1963; 1
Cesari (bib005) 1964; 11
Agarwal (bib002) 1992
Rodriguez (bib015) 1982; 43
Rodriguez (bib017) 1986; 114
Agarwal (bib001) 1983; 96
Rodriguez (bib016) 1985; 19
Rodriguez (bib019) 2005; 308
Cesari (10.1016/j.jmaa.2006.06.024_bib005) 1964; 11
Rodriguez (10.1016/j.jmaa.2006.06.024_bib017) 1986; 114
Agarwal (10.1016/j.jmaa.2006.06.024_bib002) 1992
Hale (10.1016/j.jmaa.2006.06.024_bib010) 1980
Agarwal (10.1016/j.jmaa.2006.06.024_bib001) 1983; 96
Bancroft (10.1016/j.jmaa.2006.06.024_bib003) 1968; 4
Rodriguez (10.1016/j.jmaa.2006.06.024_bib016) 1985; 19
Rodriguez (10.1016/j.jmaa.2006.06.024_bib018) 1992; 97
Halanay (10.1016/j.jmaa.2006.06.024_bib009) 1963; 12
Rodriguez (10.1016/j.jmaa.2006.06.024_bib019) 2005; 308
Lang (10.1016/j.jmaa.2006.06.024_bib012) 1983
Chow (10.1016/j.jmaa.2006.06.024_bib006) 1982
Rodriguez (10.1016/j.jmaa.2006.06.024_bib015) 1982; 43
Kelley (10.1016/j.jmaa.2006.06.024_bib011) 1991
Etheridge (10.1016/j.jmaa.2006.06.024_bib007) 1996; 62
Cesari (10.1016/j.jmaa.2006.06.024_bib004) 1963; 1
Luenberger (10.1016/j.jmaa.2006.06.024_bib013) 1978
Rodriguez (10.1016/j.jmaa.2006.06.024_bib014) 1985; 58
Etheridge (10.1016/j.jmaa.2006.06.024_bib008) 1998; 4
Rouche (10.1016/j.jmaa.2006.06.024_bib020) 1980
References_xml – volume: 97
  start-page: 112
  year: 1992
  end-page: 126
  ident: bib018
  article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions
  publication-title: J. Differential Equations
– volume: 1
  start-page: 149
  year: 1963
  end-page: 187
  ident: bib004
  article-title: Functional analysis and periodic solutions of nonlinear differential equations
  publication-title: Contr. Differential Equations
– year: 1983
  ident: bib012
  article-title: Real Analysis
– year: 1991
  ident: bib011
  article-title: Difference Equations
– volume: 11
  start-page: 385
  year: 1964
  end-page: 414
  ident: bib005
  article-title: Functional analysis and Galerkin's method
  publication-title: Michigan Math. J.
– year: 1992
  ident: bib002
  article-title: Difference Equations and Inequalities
– year: 1980
  ident: bib020
  article-title: Ordinary Differential Equations
– year: 1982
  ident: bib006
  article-title: Methods of Bifurcation Theory
– volume: 43
  start-page: 157
  year: 1982
  end-page: 167
  ident: bib015
  article-title: An alternative method for boundary value problems with large nonlinearities
  publication-title: J. Differential Equations
– volume: 19
  start-page: 265
  year: 1985
  end-page: 274
  ident: bib016
  article-title: On resonant discrete boundary value problems
  publication-title: Appl. Anal.
– year: 1980
  ident: bib010
  article-title: Ordinary Differential Equations
– volume: 308
  start-page: 380
  year: 2005
  end-page: 391
  ident: bib019
  article-title: Nonlinear discrete Sturm–Liouville problems
  publication-title: J. Math. Anal. Appl.
– volume: 4
  start-page: 40
  year: 1968
  end-page: 56
  ident: bib003
  article-title: Alternative problems for nonlinear functional equations
  publication-title: J. Differential Equations
– volume: 114
  start-page: 398
  year: 1986
  end-page: 408
  ident: bib017
  article-title: On nonlinear discrete boundary value problems
  publication-title: Math. Anal. Appl.
– volume: 96
  start-page: 520
  year: 1983
  end-page: 534
  ident: bib001
  article-title: On multipoint boundary value problems for discrete equations
  publication-title: J. Math. Anal. Appl.
– volume: 62
  start-page: 119
  year: 1996
  end-page: 137
  ident: bib007
  article-title: Periodic solutions of nonlinear discrete-time systems
  publication-title: Appl. Anal.
– volume: 12
  start-page: 134
  year: 1963
  end-page: 149
  ident: bib009
  article-title: Solutions périodiques et presque-périodiques des systèmes d'équations aux differences finies
  publication-title: Arch. Ration. Mech. Anal.
– year: 1978
  ident: bib013
  article-title: Introduction to Dynamic Systems
– volume: 4
  start-page: 127
  year: 1998
  end-page: 144
  ident: bib008
  article-title: Scalar discrete nonlinear two-point boundary value problems
  publication-title: J. Difference Equ. Appl.
– volume: 58
  start-page: 282
  year: 1985
  end-page: 293
  ident: bib014
  article-title: Projection methods for nonlinear boundary value problems
  publication-title: J. Differential Equations
– volume: 308
  start-page: 380
  year: 2005
  ident: 10.1016/j.jmaa.2006.06.024_bib019
  article-title: Nonlinear discrete Sturm–Liouville problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.01.032
– volume: 43
  start-page: 157
  year: 1982
  ident: 10.1016/j.jmaa.2006.06.024_bib015
  article-title: An alternative method for boundary value problems with large nonlinearities
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(82)90088-2
– volume: 62
  start-page: 119
  year: 1996
  ident: 10.1016/j.jmaa.2006.06.024_bib007
  article-title: Periodic solutions of nonlinear discrete-time systems
  publication-title: Appl. Anal.
  doi: 10.1080/00036819608840473
– year: 1980
  ident: 10.1016/j.jmaa.2006.06.024_bib020
– year: 1992
  ident: 10.1016/j.jmaa.2006.06.024_bib002
– year: 1980
  ident: 10.1016/j.jmaa.2006.06.024_bib010
– volume: 4
  start-page: 40
  year: 1968
  ident: 10.1016/j.jmaa.2006.06.024_bib003
  article-title: Alternative problems for nonlinear functional equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(68)90047-8
– volume: 1
  start-page: 149
  year: 1963
  ident: 10.1016/j.jmaa.2006.06.024_bib004
  article-title: Functional analysis and periodic solutions of nonlinear differential equations
  publication-title: Contr. Differential Equations
– volume: 58
  start-page: 282
  year: 1985
  ident: 10.1016/j.jmaa.2006.06.024_bib014
  article-title: Projection methods for nonlinear boundary value problems
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(85)90017-8
– year: 1991
  ident: 10.1016/j.jmaa.2006.06.024_bib011
– volume: 97
  start-page: 112
  year: 1992
  ident: 10.1016/j.jmaa.2006.06.024_bib018
  article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(92)90086-3
– volume: 4
  start-page: 127
  year: 1998
  ident: 10.1016/j.jmaa.2006.06.024_bib008
  article-title: Scalar discrete nonlinear two-point boundary value problems
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236199808808133
– volume: 19
  start-page: 265
  year: 1985
  ident: 10.1016/j.jmaa.2006.06.024_bib016
  article-title: On resonant discrete boundary value problems
  publication-title: Appl. Anal.
  doi: 10.1080/00036818508839551
– volume: 96
  start-page: 520
  year: 1983
  ident: 10.1016/j.jmaa.2006.06.024_bib001
  article-title: On multipoint boundary value problems for discrete equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(83)90058-6
– year: 1978
  ident: 10.1016/j.jmaa.2006.06.024_bib013
– volume: 114
  start-page: 398
  year: 1986
  ident: 10.1016/j.jmaa.2006.06.024_bib017
  article-title: On nonlinear discrete boundary value problems
  publication-title: Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90092-2
– year: 1983
  ident: 10.1016/j.jmaa.2006.06.024_bib012
– volume: 11
  start-page: 385
  year: 1964
  ident: 10.1016/j.jmaa.2006.06.024_bib005
  article-title: Functional analysis and Galerkin's method
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1028999194
– year: 1982
  ident: 10.1016/j.jmaa.2006.06.024_bib006
– volume: 12
  start-page: 134
  year: 1963
  ident: 10.1016/j.jmaa.2006.06.024_bib009
  article-title: Solutions périodiques et presque-périodiques des systèmes d'équations aux differences finies
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281222
SSID ssj0011571
Score 1.897572
Snippet In this paper we study nonlinear, discrete, multipoint boundary value problems of the form x ( t + 1 ) = A ( t ) x ( t ) + ϵ f ( t , x ( t ) ) subject to B 0 x...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 77
SubjectTerms Boundary value problems
Exact sciences and technology
Finite differences and functional equations
Implicit Function Theorem
Lyapunov–Schmidt
Mathematical analysis
Mathematics
Projection
Sciences and techniques of general use
Title Weakly nonlinear discrete multipoint boundary value problems
URI https://dx.doi.org/10.1016/j.jmaa.2006.06.024
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXhQRP3F-jB68SV0_kqYFL3M4psMdxLHeSpomsDnn6OphF_92X5p0uoM7CIVCSdrw0r7fS_Pe74fQdZhJiSXMAOaS29hloR0C7NoZ81wG-MAYL9k-B0FviJ9iEtdQp6qFUWmVxvdrn156a3OlZazZmo_HqsYXsA3T2AlK3I3BD_s4LIv44vvVToJLqFsxhqvWpnBG53hN3hkzGxJwePgvcNqbswWYTGqti18A1D1A-yZytNp6cIeoJmZHaPd5Rbu6OEZ3I8HepktrpvkvWG6potsc4mJLJw5-jGeFlZZKSvnSUkTfwjKSMosTNOw-vHZ6tpFHsLnvO4VNmBQsDTGEFIIoIXQvYI4AeCbCSVNXcppxTGnEuYx8wlmaRp7EDo8gRslCQfxTVIfxiDNkQZBEHUdiJjP4iDMKazDiCEJYGIqAUr-B3MouCTfc4UrCYppUSWKTRNlSiVoGiTo83EA3qz5zzZyxsTWpzJ2szX8Crn1jv-ba3Pw8CkJJH9Zn5_-88QXa0b9xVW7jJaoX-ae4gvijSJto6_bLbaLt9mO_N1Dn_suo3yxfu28uGNzl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQAhxFOUR8nAhqLmYceJxAIVqIW2UyuyRY5jSy2lVGkY-u85x06hAx2QMkV2Yp2d-z7Hd_chdBtmUmIJM4C55DZ2WWiHALt2xjyXAT4wxstqn4OgM8IvMYlrqF3lwqiwSuP7tU8vvbW50zLWbM3HY5XjC9iGaewEJe7GW2gb2ECglnY3flwdJbiEulXJcNXcZM7oIK_JB2PmRAIuD_-FTvtztgCbSS128QuBng_RgaGO1oMe3RGqidkx2uuv6q4uTtD9m2Dv06U10wUwWG6prNsciLGlIwc_x7PCSksppXxpqUrfwjKaMotTNHp-GrY7ttFHsLnvO4VNmBQsDTFwCkGUEroXMEcAPhPhpKkrOc04pjTiXEY-4SxNI09ih0dAUrJQEP8M1WE84hxZwJKo40jMZAZfcUZhE0YcQQgLQxFQ6jeQW9kl4aZ4uNKwmCZVlNgkUbZUqpZBoi4PN9Ddqs9cl87Y2JpU5k7WFkACvn1jv-ba3Py8CrikDxu0i38--AbtdIb9XtLrDl4v0a7-p6sCHa9Qvci_xDWQkSJtlovtG2Uy290
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+nonlinear+discrete+multipoint+boundary+value+problems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Rodriguez%2C+Jes%C3%BAs&rft.au=Taylor%2C+Padraic&rft.date=2007-05-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=329&rft.issue=1&rft.spage=77&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jmaa.2006.06.024&rft.externalDocID=S0022247X0600638X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon