Optimization algorithm-based approach for modeling large deflection of cantilever beam subject to tip load

•Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of uniform and non-uniform beams with high accuracy.•This method provides a new insight into the derivation of large deflection of cantilever b...

Full description

Saved in:
Bibliographic Details
Published inMechanism and machine theory Vol. 167; p. 104522
Main Authors Gao, Fei, Liu, Gaoyu, Wu, Xinyu, Liao, Wei-Hsin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of uniform and non-uniform beams with high accuracy.•This method provides a new insight into the derivation of large deflection of cantilever beam.•This method can solve the deformation of compliant parallel-guiding mechanism. The modeling of beam mechanisms, especially non-uniform beams, becomes complicated due to the geometric nonlinearity that is proved to be significant with large deflection. A new method, called optimization algorithm-based approach (OABA), is proposed to predict the large deflection of uniform and non-uniform cantilever beams, in which an optimization algorithm is exploited to find the locus of the beam tip. The Euler-Bernoulli beam theory is employed here. With the derived locus of the beam tip, the deflection curve of the cantilever beam can be calculated. The optimization algorithm in this paper is embodied in a particle swarm optimization (PSO) algorithm. Experimental results show that the proposed method can precisely predict the deflection of the uniform and non-uniform cantilever beams. The maximum error is limited to 4.35% when the normalized maximum transverse deflection reaches 0.75. To demonstrate the effectiveness of this method in analyzing compliant mechanisms, we also exploited this method to predict the deformation of a compliant parallel-guiding mechanism.
AbstractList •Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of uniform and non-uniform beams with high accuracy.•This method provides a new insight into the derivation of large deflection of cantilever beam.•This method can solve the deformation of compliant parallel-guiding mechanism. The modeling of beam mechanisms, especially non-uniform beams, becomes complicated due to the geometric nonlinearity that is proved to be significant with large deflection. A new method, called optimization algorithm-based approach (OABA), is proposed to predict the large deflection of uniform and non-uniform cantilever beams, in which an optimization algorithm is exploited to find the locus of the beam tip. The Euler-Bernoulli beam theory is employed here. With the derived locus of the beam tip, the deflection curve of the cantilever beam can be calculated. The optimization algorithm in this paper is embodied in a particle swarm optimization (PSO) algorithm. Experimental results show that the proposed method can precisely predict the deflection of the uniform and non-uniform cantilever beams. The maximum error is limited to 4.35% when the normalized maximum transverse deflection reaches 0.75. To demonstrate the effectiveness of this method in analyzing compliant mechanisms, we also exploited this method to predict the deformation of a compliant parallel-guiding mechanism.
ArticleNumber 104522
Author Liao, Wei-Hsin
Liu, Gaoyu
Gao, Fei
Wu, Xinyu
Author_xml – sequence: 1
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
– sequence: 2
  givenname: Gaoyu
  surname: Liu
  fullname: Liu, Gaoyu
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
– sequence: 3
  givenname: Xinyu
  surname: Wu
  fullname: Wu, Xinyu
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 4
  givenname: Wei-Hsin
  surname: Liao
  fullname: Liao, Wei-Hsin
  email: whliao@cuhk.edu.hk
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
BookMark eNqNkLFOwzAURT0UibbwDx5YU2zHTqjEAhUFpEpdQGKzXpyXxlESR7apBF9P2rLA1OkN990j3TMjk971SMgNZwvOeHbbLDo0dQemjjU6_7UQTPAxkkqICZkytpQJ5_LjksxCaBhjuZLplDTbIdrOfkO0rqfQ7py3se6SAgKWFIbBuxFJK-dp50psbb-jLfgd0hKrFs2x5ipqoI-2xT16WiB0NHwWzZjS6Gi0A20dlFfkooI24PXvnZP39dPb6iXZbJ9fVw-bxKQpi4nKVLosMy5SI5YIvOBVXkjE6o7noEwmJahUSiYzyJXCZQbIFIoiLwvgQpp0Th5PXONdCB4rbWw87osebKs50wdjutF_jemDMX0yNkLu_0EGbzsYv86sr091HIfuLXodjMXeYGn9qEWXzp4H-gFSGZhm
CitedBy_id crossref_primary_10_1155_2023_2138819
crossref_primary_10_1016_j_measen_2023_100764
crossref_primary_10_1016_j_oceaneng_2024_117434
crossref_primary_10_1016_j_jmapro_2024_02_066
crossref_primary_10_1016_j_mechmachtheory_2022_104879
crossref_primary_10_1038_s41598_024_78589_8
crossref_primary_10_1109_TMECH_2021_3098719
crossref_primary_10_1016_j_euromechsol_2024_105420
crossref_primary_10_1016_j_ijmecsci_2024_109340
Cites_doi 10.1016/j.jmbbm.2017.10.005
10.1016/j.precisioneng.2014.10.002
10.1016/j.mechmachtheory.2020.103811
10.1016/j.mechmachtheory.2017.09.023
10.1063/1.5098962
10.1115/1.4029556
10.1109/TMECH.2017.2712820
10.1109/TMECH.2020.2995533
10.1115/1.4001091
10.1115/1.4032632
10.1088/1748-3190/aa575a
10.1115/1.3046148
10.1115/1.4037186
10.1016/j.mechmachtheory.2019.103770
10.1109/TRO.2012.2193232
10.1016/j.mechmachtheory.2015.10.007
10.1016/j.mechmachtheory.2018.02.011
10.1088/1748-3190/11/5/056005
10.1115/1.2826101
10.1016/j.mechmachtheory.2019.03.006
10.1088/1361-665X/aa5494
10.1016/j.mechmachtheory.2020.104214
10.1016/j.mechmachtheory.2018.04.005
10.1115/DETC2002/MECH-34203
10.1016/j.precisioneng.2016.12.004
10.1115/1.4044539
10.1016/j.precisioneng.2011.02.006
10.1016/j.fss.2012.07.005
10.1016/j.mechmachtheory.2013.08.001
10.1016/j.jsc.2013.10.006
10.1115/1.4032862
10.1016/j.mechmachtheory.2012.04.005
10.1115/1.4035986
10.1016/j.ijnonlinmec.2009.12.004
10.1115/1.4023558
10.1016/j.mechmachtheory.2018.10.006
10.1090/qam/13360
10.1088/0964-1726/23/8/085002
10.1016/j.mechmachtheory.2019.103588
10.1115/1.1455031
10.1016/j.mechmachtheory.2014.06.005
10.1115/1.4007941
10.1115/1.4031028
10.1016/j.mechmachtheory.2017.06.016
10.1088/0964-1726/25/8/085029
10.1016/j.mechmachtheory.2016.08.011
10.1115/1.4034111
10.1007/s00024-014-0802-2
10.1115/1.4039773
10.1115/1.4045679
10.1115/1.4006080
10.1016/j.mechmachtheory.2020.104168
10.1080/00207179.2013.794920
10.1016/j.mechmachtheory.2020.103950
10.1016/j.enconman.2018.01.076
10.1016/j.ijnonlinmec.2016.05.008
10.1115/1.4040628
10.1016/S0020-7462(01)00019-1
10.1016/j.mechmachtheory.2019.01.010
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechmachtheory.2021.104522
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_mechmachtheory_2021_104522
S0094114X21002743
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BJAXD
CITATION
SPC
SSH
ID FETCH-LOGICAL-c330t-56539d6123c29ea1b1f7b4eef817a5c644a5344046a755e96ae05e2b7dba124c3
IEDL.DBID .~1
ISSN 0094-114X
IngestDate Tue Jul 01 01:48:37 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Sun Apr 06 06:54:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Compliant mechanism
Compliant parallel-guiding mechanism
Particle swarm optimization (PSO)
Cantilever beam model
Non-uniform beam
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-56539d6123c29ea1b1f7b4eef817a5c644a5344046a755e96ae05e2b7dba124c3
ParticipantIDs crossref_citationtrail_10_1016_j_mechmachtheory_2021_104522
crossref_primary_10_1016_j_mechmachtheory_2021_104522
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2021_104522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Mechanism and machine theory
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Malaeke, Moeenfard (bib0006) 2017; 48
Venkiteswaran, Su (bib0067) 2016; 106
Wu, Wang, Chen, Wang, Liu (bib0030) 2020; 25
Venkiteswaran, Su (bib0045) 2015; 40
Howell, Midha (bib0041) 1995; 117
Yu, Feng, Xu (bib0042) 2012; 15
Shepherd, Rouse (bib0029) 2017; 25
Ren, Zhu, Fan (bib0064) 2016; 85
Li, Su, Zhang (bib0072) 2017; 9
Mohamad, Tokhi, Toha, Latiff (bib0051) 2009
Kennedy, Eberhart (bib0053) 1995; 4
Venkiteswaran, Su (bib0065) 2016; 138
Zhang, Chen (bib0035) 2013; 5
Verotti (bib0015) 2016; 97
Hanoon, Jaafar, Hejazi, Abdul Aziz (bib0060) 2016
Shahabi, Kuo (bib0050) 2019
Vedant, Allison (bib0049) 2020; 142
Saffar, Diwan, Ansari, Alkhatat (bib0052) 2020; 43
Wu, Hao (bib0004) 2020; 152
Kuresangsai, Cole (bib0018) 2019; 132
Valentini, Cirelli, Pennestrì (bib0016) 2019; 136
Jung, Choi, Cho (bib0020) 2017; 12
Chen (bib0036) 2010; 45
Ganguly, Sahoo, Das (bib0055) 2013; 213
Demario, Zhao (bib0022) 2018; 10
Xie, Qiu, Yang (bib0014) 2018; 120
Gao, Liu, Chung, Chan, Liao (bib0026) 2019; 115
Ling, Howell, Cao, Chen (bib0031) 2020; 72
Guo, Lee (bib0011) 2013; 70
Zhong, Li, Du (bib0023) 2017; 22
Howell (bib0001) 2001
Su (bib0043) 2009; 1
Zhu, Yu (bib0047) 2017; 9
Lee (bib0066) 2002; 37
Gao, Liu, Liao (bib0062) 2017; 26
Das, Shirinzadeh, Al-Jodah, Ghafarian, Pinskier (bib0005) 2021; 155
Cai, Yang (bib0057) 2013; 86
Fang, Zhou, Li, Xu, Liang, Li, Zhang (bib0019) 2016; 11
Odhner, Dollar (bib0013) 2012; 28
Huo, Yu, Zhao, Wu, Zhang (bib0009) 2021; 156
Patel, McWilliam, P.OPOV (bib0027) 2014; 23
Yu, Zhang (bib0071) 2019; 134
Venkiteswaran, Su (bib0017) 2016; 8
Verotti (bib0048) 2020; 149
Kuang, Yang, Zhu (bib0028) 2016; 25
Chen, Bai (bib0039) 2016; 8
Ma, Chen (bib0040) 2016; 8
Wu, Shao, Su, Fu (bib0007) 2019; 142
Izadgoshasb, Lim, Lake, Tang, Padilla, Kashiwao (bib0025) 2018; 161
Ma, Chen (bib0008) 2020; 147
Loja (bib0059) 2014; 61–62
Xu, Liu, Yue, Xiao, Ding, Wang (bib0010) 2021; 157
Wei, Simaan (bib0021) 2012; 134
S.M. Lyon and L.L. Howell, A simplified pseudo-rigid-body model for fixed-fixed flexible segments, ASME Paper No. DETC2002/MECH (2002) 34203.
Luo, Liu (bib0063) 2014; 80
Bisshopp, Drucker (bib0032) 1945; 3
Peksen, Yas, Kıyak (bib0056) 2014; 171
Kimball, Tsai (bib0034) 2002; 124
Yu, Zhu (bib0046) 2017; 116
Šalini´c, Nikoli´c (bib0012) 2018; 124
Awtar, Sen (bib0038) 2010; 132
Ashwin, Ghosal (bib0024) 2019; 11
Hao, Li (bib0003) 2015; 7
Chen, Du (bib0002) 2013; 5
Zhang, Wang, Ji (bib0054) 2015
Wang, Yu (bib0069) 2010; 2
Askari, Flores, Silva (bib0061) 2018; 77
Venkiteswaran, Su (bib0068) 2018; 140
She, Meng, Su, Song, Wang (bib0070) 2018; 126
Chen, Xiong, Huang (bib0044) 2011; 35
Awtar, Sen (bib0037) 2010; 132
M.ahmoodabadi, Taherkhorsandi, Bagheri (bib0058) 2014; 124
Ling (10.1016/j.mechmachtheory.2021.104522_bib0031) 2020; 72
Yu (10.1016/j.mechmachtheory.2021.104522_bib0042) 2012; 15
Xie (10.1016/j.mechmachtheory.2021.104522_bib0014) 2018; 120
Ashwin (10.1016/j.mechmachtheory.2021.104522_bib0024) 2019; 11
Awtar (10.1016/j.mechmachtheory.2021.104522_bib0038) 2010; 132
Chen (10.1016/j.mechmachtheory.2021.104522_bib0036) 2010; 45
Demario (10.1016/j.mechmachtheory.2021.104522_bib0022) 2018; 10
Verotti (10.1016/j.mechmachtheory.2021.104522_bib0048) 2020; 149
Huo (10.1016/j.mechmachtheory.2021.104522_bib0009) 2021; 156
Wang (10.1016/j.mechmachtheory.2021.104522_bib0069) 2010; 2
Yu (10.1016/j.mechmachtheory.2021.104522_bib0071) 2019; 134
Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0045) 2015; 40
10.1016/j.mechmachtheory.2021.104522_bib0033
Zhang (10.1016/j.mechmachtheory.2021.104522_bib0035) 2013; 5
Zhang (10.1016/j.mechmachtheory.2021.104522_bib0054) 2015
She (10.1016/j.mechmachtheory.2021.104522_bib0070) 2018; 126
Fang (10.1016/j.mechmachtheory.2021.104522_bib0019) 2016; 11
Chen (10.1016/j.mechmachtheory.2021.104522_bib0039) 2016; 8
Lee (10.1016/j.mechmachtheory.2021.104522_bib0066) 2002; 37
Verotti (10.1016/j.mechmachtheory.2021.104522_bib0015) 2016; 97
Patel (10.1016/j.mechmachtheory.2021.104522_bib0027) 2014; 23
Howell (10.1016/j.mechmachtheory.2021.104522_bib0041) 1995; 117
Chen (10.1016/j.mechmachtheory.2021.104522_bib0002) 2013; 5
Zhong (10.1016/j.mechmachtheory.2021.104522_bib0023) 2017; 22
Valentini (10.1016/j.mechmachtheory.2021.104522_bib0016) 2019; 136
Mohamad (10.1016/j.mechmachtheory.2021.104522_bib0051) 2009
Peksen (10.1016/j.mechmachtheory.2021.104522_bib0056) 2014; 171
Askari (10.1016/j.mechmachtheory.2021.104522_bib0061) 2018; 77
Malaeke (10.1016/j.mechmachtheory.2021.104522_bib0006) 2017; 48
Gao (10.1016/j.mechmachtheory.2021.104522_bib0026) 2019; 115
Yu (10.1016/j.mechmachtheory.2021.104522_bib0046) 2017; 116
Li (10.1016/j.mechmachtheory.2021.104522_bib0072) 2017; 9
Jung (10.1016/j.mechmachtheory.2021.104522_bib0020) 2017; 12
Ren (10.1016/j.mechmachtheory.2021.104522_bib0064) 2016; 85
M.ahmoodabadi (10.1016/j.mechmachtheory.2021.104522_bib0058) 2014; 124
Kimball (10.1016/j.mechmachtheory.2021.104522_bib0034) 2002; 124
Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0065) 2016; 138
Saffar (10.1016/j.mechmachtheory.2021.104522_bib0052) 2020; 43
Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0068) 2018; 140
Ma (10.1016/j.mechmachtheory.2021.104522_bib0040) 2016; 8
Das (10.1016/j.mechmachtheory.2021.104522_bib0005) 2021; 155
Guo (10.1016/j.mechmachtheory.2021.104522_bib0011) 2013; 70
Chen (10.1016/j.mechmachtheory.2021.104522_bib0044) 2011; 35
Bisshopp (10.1016/j.mechmachtheory.2021.104522_bib0032) 1945; 3
Zhu (10.1016/j.mechmachtheory.2021.104522_bib0047) 2017; 9
Wu (10.1016/j.mechmachtheory.2021.104522_bib0007) 2019; 142
Izadgoshasb (10.1016/j.mechmachtheory.2021.104522_bib0025) 2018; 161
Gao (10.1016/j.mechmachtheory.2021.104522_bib0062) 2017; 26
Kennedy (10.1016/j.mechmachtheory.2021.104522_bib0053) 1995; 4
Wei (10.1016/j.mechmachtheory.2021.104522_bib0021) 2012; 134
Odhner (10.1016/j.mechmachtheory.2021.104522_bib0013) 2012; 28
Loja (10.1016/j.mechmachtheory.2021.104522_bib0059) 2014; 61–62
Kuang (10.1016/j.mechmachtheory.2021.104522_bib0028) 2016; 25
Wu (10.1016/j.mechmachtheory.2021.104522_bib0030) 2020; 25
Su (10.1016/j.mechmachtheory.2021.104522_bib0043) 2009; 1
Howell (10.1016/j.mechmachtheory.2021.104522_bib0001) 2001
Cai (10.1016/j.mechmachtheory.2021.104522_bib0057) 2013; 86
Shepherd (10.1016/j.mechmachtheory.2021.104522_bib0029) 2017; 25
Ganguly (10.1016/j.mechmachtheory.2021.104522_bib0055) 2013; 213
Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0017) 2016; 8
Vedant (10.1016/j.mechmachtheory.2021.104522_bib0049) 2020; 142
Ma (10.1016/j.mechmachtheory.2021.104522_bib0008) 2020; 147
Awtar (10.1016/j.mechmachtheory.2021.104522_bib0037) 2010; 132
Xu (10.1016/j.mechmachtheory.2021.104522_bib0010) 2021; 157
Luo (10.1016/j.mechmachtheory.2021.104522_bib0063) 2014; 80
Šalini´c (10.1016/j.mechmachtheory.2021.104522_bib0012) 2018; 124
Hanoon (10.1016/j.mechmachtheory.2021.104522_bib0060) 2016
Hao (10.1016/j.mechmachtheory.2021.104522_bib0003) 2015; 7
Shahabi (10.1016/j.mechmachtheory.2021.104522_bib0050) 2019
Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0067) 2016; 106
Wu (10.1016/j.mechmachtheory.2021.104522_bib0004) 2020; 152
Kuresangsai (10.1016/j.mechmachtheory.2021.104522_bib0018) 2019; 132
References_xml – volume: 97
  start-page: 29
  year: 2016
  end-page: 50
  ident: bib0015
  article-title: Analysis of the center of rotation in primitive flexures: uniform cantilever beams with constant curvature
  publication-title: Mech. Mach. Theory
– volume: 37
  start-page: 439
  year: 2002
  end-page: 443
  ident: bib0066
  article-title: Large deflections of cantilever beams of non-linear elastic material under a combined loading
  publication-title: Int. J. Non Linear Mech.
– start-page: 31
  year: 2009
  end-page: 36
  ident: bib0051
  article-title: Particle swarm modelling of a flexible beam structure
  publication-title: Proc. 3rd UK Sim European Symposium Computer Modeling and Simulation
– volume: 25
  start-page: 2375
  year: 2017
  end-page: 2386
  ident: bib0029
  article-title: The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 157
  year: 2021
  ident: bib0010
  article-title: Kinematic modeling and optimal design of a partially compliant four-bar linkage using elliptic integral solution
  publication-title: Mech. Mach. Theory
– year: 2001
  ident: bib0001
  article-title: Compliant Mechanisms
– volume: 10
  year: 2018
  ident: bib0022
  article-title: Development and analysis of a three-dimensional printed miniature walking robot with soft joints and links
  publication-title: ASME J. Mech. Rob.
– volume: 85
  start-page: 126
  year: 2016
  end-page: 142
  ident: bib0064
  article-title: A nonlinear planar beam formulation with stretch and shear deformations under end forces and moments
  publication-title: Int. J. Non-Linear Mech.
– volume: 5
  year: 2013
  ident: bib0002
  article-title: Double-young tristable mechanism
  publication-title: ASME J. Mech. Rob.
– volume: 124
  start-page: 194
  year: 2014
  end-page: 209
  ident: bib0058
  article-title: Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO
  publication-title: Neuro Comput.
– volume: 8
  year: 2016
  ident: bib0017
  article-title: A three-spring pseudorigidbody model for soft joints with significant elongation effects
  publication-title: ASME J. Mech. Rob.
– start-page: 1
  year: 2016
  end-page: 19
  ident: bib0060
  article-title: Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique
  publication-title: Eng. Opt.
– volume: 8
  year: 2016
  ident: bib0039
  article-title: Modeling large spatial deflections of slender bisymmetric beams in compliant mechanisms using chained spatial-beam constraint model
  publication-title: ASME J. Mech. Rob.
– volume: 23
  year: 2014
  ident: bib0027
  article-title: Optimization of piezoelectric cantilever energy harvesters including non-linear effects
  publication-title: Smart Mater. Struct
– volume: 8
  year: 2016
  ident: bib0040
  article-title: Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model
  publication-title: ASME J. Mech. Rob.
– volume: 86
  start-page: 1720
  year: 2013
  end-page: 1732
  ident: bib0057
  article-title: An improved PSO-based approach with dynamic parameter tuning for cooperative multi-robot target searching in complex unknown environments
  publication-title: Int. J. Control
– volume: 11
  year: 2016
  ident: bib0019
  article-title: Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion
  publication-title: Bioinspir. Biomim.
– volume: 3
  start-page: 272
  year: 1945
  end-page: 275
  ident: bib0032
  article-title: Large deflection of cantilever beams
  publication-title: Q. Appl. Math.
– volume: 35
  start-page: 505
  year: 2011
  end-page: 511
  ident: bib0044
  article-title: Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer
  publication-title: Precis. Eng.
– volume: 147
  year: 2020
  ident: bib0008
  article-title: Kinetostatic modeling and characterization of compliant mechanisms containing flexible beams of variable effective length
  publication-title: Mech. Mach. Theory
– volume: 155
  year: 2021
  ident: bib0005
  article-title: A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation
  publication-title: Mech. Mach. Theory
– volume: 72
  year: 2020
  ident: bib0031
  article-title: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey
  publication-title: Appl. Mech. Rev.
– volume: 9
  year: 2017
  ident: bib0072
  article-title: Accuracy assessment of pseudo-rigid-body model for dynamic analysis of compliant mechanisms
  publication-title: ASME J. Mech. Rob.
– volume: 28
  start-page: 761
  year: 2012
  end-page: 772
  ident: bib0013
  article-title: The smooth curvature model: an efficient representation of Euler–Bernoulli flexures as robot joints
  publication-title: IEEE Trans. Robotics
– volume: 142
  year: 2020
  ident: bib0049
  article-title: Pseudo-rigid-body dynamic models for design of compliant members
  publication-title: ASME J. Mech. Des.
– volume: 26
  year: 2017
  ident: bib0062
  article-title: Optimal design of a magnetorheological damper used in smart prosthetic knees
  publication-title: Smart Mater. Struct.
– volume: 142
  year: 2019
  ident: bib0007
  article-title: An energy-based approach for kinetostatic modeling of general compliant mechanisms
  publication-title: Mech. Mach. Theory
– volume: 120
  start-page: 166
  year: 2018
  end-page: 177
  ident: bib0014
  article-title: Design and analysis of a variable stiffness inside-deployed lamina emergent joint
  publication-title: Mech. Mach. Theory
– volume: 43
  start-page: 299
  year: 2020
  end-page: 309
  ident: bib0052
  article-title: Experimental and artificial neural network modeling of natural frequency of stepped cantilever shaft
  publication-title: J. Mech. Eng. Res. Dev.
– volume: 9
  year: 2017
  ident: bib0047
  article-title: Pseudo-rigid-body model for the flexural beam with an inflection point in compliant mechanisms
  publication-title: ASME J. Mech. Rob.
– volume: 132
  start-page: 80
  year: 2019
  end-page: 97
  ident: bib0018
  article-title: Kinematic modeling and design optimization of flexture-jointed planar mechanisms using polynomial bases for flexure curvature
  publication-title: Mech. Mach. Theory
– volume: 132
  year: 2010
  ident: bib0038
  article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear strain energy formulation
  publication-title: ASME J. Mech. Des.
– volume: 61–62
  start-page: 12
  year: 2014
  end-page: 30
  ident: bib0059
  article-title: On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures
  publication-title: J. Symb. Comput.
– volume: 2
  year: 2010
  ident: bib0069
  article-title: New approach to the dynamic modeling of compliant mechanisms
  publication-title: ASME J. Mech. Rob.
– volume: 138
  year: 2016
  ident: bib0065
  article-title: Extension effects in compliant joints and pseudo-rigid-body models
  publication-title: ASME J. Mech. Des.
– volume: 134
  start-page: 455
  year: 2019
  end-page: 475
  ident: bib0071
  article-title: Dynamic modeling and performance of compliant mechanisms with inflection teams
  publication-title: Mech. Mach. Theory
– volume: 7
  year: 2015
  ident: bib0003
  article-title: Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms
  publication-title: ASME J. Mech. Rob.
– volume: 25
  start-page: 2045
  year: 2020
  end-page: 2053
  ident: bib0030
  article-title: Design and validation of a novel leaf spring based variable stiffness joint with reconfigurability
  publication-title: IEEE/ASME Trans. Mechatron.
– reference: S.M. Lyon and L.L. Howell, A simplified pseudo-rigid-body model for fixed-fixed flexible segments, ASME Paper No. DETC2002/MECH (2002) 34203.
– volume: 25
  year: 2016
  ident: bib0028
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater. Struct.
– start-page: 355
  year: 2019
  end-page: 361
  ident: bib0050
  article-title: Solving inverse kinematics of a planar dualbackbone continuum robot using neural network
  publication-title: Proc. Eur. Conf. Mechanism Sci
– volume: 117
  start-page: 156
  year: 1995
  end-page: 165
  ident: bib0041
  article-title: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms
  publication-title: ASME J. Mech. Des.
– volume: 152
  year: 2020
  ident: bib0004
  article-title: Design and nonlinear modeling of a novel planar compliant parallelogram mechanism with general tensural-compresural beams
  publication-title: Mech. Mach. Theory
– volume: 106
  start-page: 80
  year: 2016
  end-page: 93
  ident: bib0067
  article-title: Pseudo-rigid-body models for circular beam under combined tip loads
  publication-title: Mech. Mach. Theory
– volume: 1
  year: 2009
  ident: bib0043
  article-title: A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads
  publication-title: ASME J. Mech. Rob.
– volume: 11
  year: 2019
  ident: bib0024
  article-title: A soft-robotic end-effector for independently actuating endoscopic catheters
  publication-title: ASME J. Mech. Rob.
– volume: 22
  start-page: 1633
  year: 2017
  end-page: 1643
  ident: bib0023
  article-title: A novel robot fish with wire-driven active body and compliant tail
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 5
  year: 2013
  ident: bib0035
  article-title: A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms
  publication-title: ASME J. Mech. Rob.
– volume: 149
  year: 2020
  ident: bib0048
  article-title: A pseudo-rigid-body model based on finite displacements and strain energy
  publication-title: Mech. Mach. Theory
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0053
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE International Conference on Neural Networks
– volume: 45
  start-page: 301
  year: 2010
  end-page: 305
  ident: bib0036
  article-title: An integral approach for large deflection cantilever beams
  publication-title: Int. J. Non Linear Mech.
– start-page: 1
  year: 2015
  end-page: 38
  ident: bib0054
  article-title: A comprehensive survey on particle swarm optimization: algorithm and its applications
  publication-title: Math. Probl. Eng. 2015
– volume: 70
  start-page: 338
  year: 2013
  end-page: 353
  ident: bib0011
  article-title: Compliant joint design and flexure finger dynamic analysis using an equivalent pin model
  publication-title: Mech. Mach. Theory
– volume: 161
  start-page: 66
  year: 2018
  end-page: 73
  ident: bib0025
  article-title: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking
  publication-title: Energy Convers. Manage.
– volume: 115
  year: 2019
  ident: bib0026
  article-title: Macro fiber composite-based energy harvester for human knee
  publication-title: Appl. Phys. Lett.
– volume: 134
  year: 2012
  ident: bib0021
  article-title: Modeling, force sensing, and control of flexible cannulas for microstent delivery
  publication-title: ASME J. Dyn. Syst. Meas. Control
– volume: 213
  start-page: 47
  year: 2013
  end-page: 73
  ident: bib0055
  article-title: Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation
  publication-title: Fuzzy Set. Syst.
– volume: 126
  start-page: 273
  year: 2018
  end-page: 294
  ident: bib0070
  article-title: Introducing mass parameters to pseudo-rigid-body models for precisely predicting dynamics of compliant mechanisms
  publication-title: Mech. Mach. Theory
– volume: 136
  start-page: 178
  year: 2019
  end-page: 189
  ident: bib0016
  article-title: Secend-order approximation pseudo-rigid model of flexure hinge with parabolic variable thickness
  publication-title: Mech. Mach. Theory
– volume: 132
  year: 2010
  ident: bib0037
  article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear load-displacement formulation
  publication-title: ASME J. Mech. Des.
– volume: 12
  year: 2017
  ident: bib0020
  article-title: The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism
  publication-title: Bioinspir. Biomim.
– volume: 77
  start-page: 461
  year: 2018
  end-page: 469
  ident: bib0061
  article-title: A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 124
  start-page: 223
  year: 2002
  end-page: 235
  ident: bib0034
  article-title: Modeling of flexural beams subjected to arbitrary end loads
  publication-title: ASME J. Mech. Des.
– volume: 15
  start-page: 18
  year: 2012
  end-page: 33
  ident: bib0042
  article-title: A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms
  publication-title: Mech. Mach. Theory
– volume: 48
  start-page: 216
  year: 2017
  end-page: 233
  ident: bib0006
  article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms
  publication-title: Precis. Eng.
– volume: 171
  start-page: 2371
  year: 2014
  end-page: 2389
  ident: bib0056
  article-title: 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization
  publication-title: Pure Appl. Geophys.
– volume: 80
  start-page: 151
  year: 2014
  end-page: 165
  ident: bib0063
  article-title: Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate
  publication-title: Mech. Mach. Theory
– volume: 156
  year: 2021
  ident: bib0009
  article-title: A family of novel RCM rotational compliant mechanisms based on parasitic motion compensation
  publication-title: Mech. Mach. Theory
– volume: 124
  start-page: 150
  year: 2018
  end-page: 161
  ident: bib0012
  article-title: A new pseudo-rigid-body model approach for modeling the quasi-static responses of planar flexure-hinge mechanisms
  publication-title: Mech. Mach. Theory
– volume: 140
  year: 2018
  ident: bib0068
  article-title: A versatile 3R pseudo-rigid-body model for initially curved and straight compliant beams of uniform cross section
  publication-title: ASME J. Mech. Des.
– volume: 40
  start-page: 46
  year: 2015
  end-page: 54
  ident: bib0045
  article-title: A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams
  publication-title: Precis. Eng.
– volume: 116
  start-page: 501
  year: 2017
  end-page: 512
  ident: bib0046
  article-title: 5R pseudo-rigid-body model for inflection beams in complaint mechanisms
  publication-title: Mech. Mach. Theory
– volume: 77
  start-page: 461
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0061
  article-title: A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.10.005
– volume: 40
  start-page: 46
  year: 2015
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0045
  article-title: A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2014.10.002
– volume: 149
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0048
  article-title: A pseudo-rigid-body model based on finite displacements and strain energy
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103811
– volume: 120
  start-page: 166
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0014
  article-title: Design and analysis of a variable stiffness inside-deployed lamina emergent joint
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.09.023
– volume: 132
  year: 2010
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0038
  article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear strain energy formulation
  publication-title: ASME J. Mech. Des.
– volume: 115
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0026
  article-title: Macro fiber composite-based energy harvester for human knee
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5098962
– volume: 124
  start-page: 194
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0058
  article-title: Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO
  publication-title: Neuro Comput.
– volume: 7
  year: 2015
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0003
  article-title: Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4029556
– volume: 22
  start-page: 1633
  issue: 4
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0023
  article-title: A novel robot fish with wire-driven active body and compliant tail
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2712820
– volume: 25
  start-page: 2045
  issue: 4
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0030
  article-title: Design and validation of a novel leaf spring based variable stiffness joint with reconfigurability
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.2995533
– volume: 2
  year: 2010
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0069
  article-title: New approach to the dynamic modeling of compliant mechanisms
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4001091
– volume: 8
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0039
  article-title: Modeling large spatial deflections of slender bisymmetric beams in compliant mechanisms using chained spatial-beam constraint model
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4032632
– volume: 12
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0020
  article-title: The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/aa575a
– volume: 1
  year: 2009
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0043
  article-title: A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.3046148
– volume: 9
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0072
  article-title: Accuracy assessment of pseudo-rigid-body model for dynamic analysis of compliant mechanisms
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4037186
– volume: 147
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0008
  article-title: Kinetostatic modeling and characterization of compliant mechanisms containing flexible beams of variable effective length
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.103770
– volume: 28
  start-page: 761
  issue: 4
  year: 2012
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0013
  article-title: The smooth curvature model: an efficient representation of Euler–Bernoulli flexures as robot joints
  publication-title: IEEE Trans. Robotics
  doi: 10.1109/TRO.2012.2193232
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0053
  article-title: Particle swarm optimization
– volume: 97
  start-page: 29
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0015
  article-title: Analysis of the center of rotation in primitive flexures: uniform cantilever beams with constant curvature
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2015.10.007
– volume: 124
  start-page: 150
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0012
  article-title: A new pseudo-rigid-body model approach for modeling the quasi-static responses of planar flexure-hinge mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.02.011
– volume: 11
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0019
  article-title: Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/11/5/056005
– volume: 117
  start-page: 156
  issue: 1
  year: 1995
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0041
  article-title: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms
  publication-title: ASME J. Mech. Des.
  doi: 10.1115/1.2826101
– volume: 43
  start-page: 299
  issue: 4
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0052
  article-title: Experimental and artificial neural network modeling of natural frequency of stepped cantilever shaft
  publication-title: J. Mech. Eng. Res. Dev.
– volume: 136
  start-page: 178
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0016
  article-title: Secend-order approximation pseudo-rigid model of flexure hinge with parabolic variable thickness
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.03.006
– volume: 26
  issue: 3
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0062
  article-title: Optimal design of a magnetorheological damper used in smart prosthetic knees
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa5494
– volume: 25
  start-page: 2375
  issue: 12
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0029
  article-title: The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 157
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0010
  article-title: Kinematic modeling and optimal design of a partially compliant four-bar linkage using elliptic integral solution
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104214
– volume: 126
  start-page: 273
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0070
  article-title: Introducing mass parameters to pseudo-rigid-body models for precisely predicting dynamics of compliant mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.04.005
– ident: 10.1016/j.mechmachtheory.2021.104522_bib0033
  doi: 10.1115/DETC2002/MECH-34203
– volume: 48
  start-page: 216
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0006
  article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.12.004
– volume: 11
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0024
  article-title: A soft-robotic end-effector for independently actuating endoscopic catheters
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4044539
– volume: 35
  start-page: 505
  year: 2011
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0044
  article-title: Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.02.006
– volume: 213
  start-page: 47
  year: 2013
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0055
  article-title: Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/j.fss.2012.07.005
– volume: 70
  start-page: 338
  year: 2013
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0011
  article-title: Compliant joint design and flexure finger dynamic analysis using an equivalent pin model
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2013.08.001
– year: 2001
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0001
– volume: 61–62
  start-page: 12
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0059
  article-title: On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2013.10.006
– volume: 8
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0017
  article-title: A three-spring pseudorigidbody model for soft joints with significant elongation effects
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4032862
– volume: 15
  start-page: 18
  year: 2012
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0042
  article-title: A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.04.005
– volume: 9
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0047
  article-title: Pseudo-rigid-body model for the flexural beam with an inflection point in compliant mechanisms
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4035986
– volume: 45
  start-page: 301
  issue: 3
  year: 2010
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0036
  article-title: An integral approach for large deflection cantilever beams
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2009.12.004
– volume: 5
  issue: 2
  year: 2013
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0035
  article-title: A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4023558
– volume: 132
  start-page: 80
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0018
  article-title: Kinematic modeling and design optimization of flexture-jointed planar mechanisms using polynomial bases for flexure curvature
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.10.006
– volume: 3
  start-page: 272
  issue: 3
  year: 1945
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0032
  article-title: Large deflection of cantilever beams
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/13360
– start-page: 1
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0060
  article-title: Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique
  publication-title: Eng. Opt.
– volume: 23
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0027
  article-title: Optimization of piezoelectric cantilever energy harvesters including non-linear effects
  publication-title: Smart Mater. Struct
  doi: 10.1088/0964-1726/23/8/085002
– volume: 142
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0007
  article-title: An energy-based approach for kinetostatic modeling of general compliant mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.103588
– volume: 124
  start-page: 223
  year: 2002
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0034
  article-title: Modeling of flexural beams subjected to arbitrary end loads
  publication-title: ASME J. Mech. Des.
  doi: 10.1115/1.1455031
– volume: 80
  start-page: 151
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0063
  article-title: Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2014.06.005
– volume: 5
  year: 2013
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0002
  article-title: Double-young tristable mechanism
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4007941
– volume: 8
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0040
  article-title: Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4031028
– volume: 116
  start-page: 501
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0046
  article-title: 5R pseudo-rigid-body model for inflection beams in complaint mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.06.016
– start-page: 1
  year: 2015
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0054
  article-title: A comprehensive survey on particle swarm optimization: algorithm and its applications
  publication-title: Math. Probl. Eng. 2015
– volume: 25
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0028
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/8/085029
– volume: 106
  start-page: 80
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0067
  article-title: Pseudo-rigid-body models for circular beam under combined tip loads
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2016.08.011
– volume: 132
  year: 2010
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0037
  article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear load-displacement formulation
  publication-title: ASME J. Mech. Des.
– start-page: 355
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0050
  article-title: Solving inverse kinematics of a planar dualbackbone continuum robot using neural network
– volume: 138
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0065
  article-title: Extension effects in compliant joints and pseudo-rigid-body models
  publication-title: ASME J. Mech. Des.
  doi: 10.1115/1.4034111
– volume: 171
  start-page: 2371
  issue: 9
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0056
  article-title: 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-014-0802-2
– volume: 10
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0022
  article-title: Development and analysis of a three-dimensional printed miniature walking robot with soft joints and links
  publication-title: ASME J. Mech. Rob.
  doi: 10.1115/1.4039773
– volume: 72
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0031
  article-title: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4045679
– volume: 155
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0005
  article-title: A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation
  publication-title: Mech. Mach. Theory
– volume: 142
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0049
  article-title: Pseudo-rigid-body dynamic models for design of compliant members
  publication-title: ASME J. Mech. Des.
– volume: 134
  year: 2012
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0021
  article-title: Modeling, force sensing, and control of flexible cannulas for microstent delivery
  publication-title: ASME J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.4006080
– volume: 156
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0009
  article-title: A family of novel RCM rotational compliant mechanisms based on parasitic motion compensation
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104168
– volume: 86
  start-page: 1720
  issue: 10
  year: 2013
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0057
  article-title: An improved PSO-based approach with dynamic parameter tuning for cooperative multi-robot target searching in complex unknown environments
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2013.794920
– volume: 152
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0004
  article-title: Design and nonlinear modeling of a novel planar compliant parallelogram mechanism with general tensural-compresural beams
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103950
– volume: 161
  start-page: 66
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0025
  article-title: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.01.076
– start-page: 31
  year: 2009
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0051
  article-title: Particle swarm modelling of a flexible beam structure
– volume: 85
  start-page: 126
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0064
  article-title: A nonlinear planar beam formulation with stretch and shear deformations under end forces and moments
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.05.008
– volume: 140
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0068
  article-title: A versatile 3R pseudo-rigid-body model for initially curved and straight compliant beams of uniform cross section
  publication-title: ASME J. Mech. Des.
  doi: 10.1115/1.4040628
– volume: 37
  start-page: 439
  issue: 3
  year: 2002
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0066
  article-title: Large deflections of cantilever beams of non-linear elastic material under a combined loading
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/S0020-7462(01)00019-1
– volume: 134
  start-page: 455
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104522_bib0071
  article-title: Dynamic modeling and performance of compliant mechanisms with inflection teams
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.01.010
SSID ssj0007543
Score 2.3759472
Snippet •Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104522
SubjectTerms Cantilever beam model
Compliant mechanism
Compliant parallel-guiding mechanism
Non-uniform beam
Particle swarm optimization (PSO)
Title Optimization algorithm-based approach for modeling large deflection of cantilever beam subject to tip load
URI https://dx.doi.org/10.1016/j.mechmachtheory.2021.104522
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EQfQgPrG-2IPX1SbZTRo8SClKVawXC72F2UdsJY-i6cGLv92ddGMteBC8hsyyTGbnsfnmG0LOFXQCZTzJoM0V4xCGTEZCMaRqtwFaq8Bg7_DjIOwP-f1IjFZIr-mFQVil8_1zn157a_fk0mnzcjqZYI9vzG02P_K9urZCxk_OI7Tyi88FzCMSDjkXc4Zvr5PzBcYrN2qcgxrXTYMftlr0PfzpKXz_9zD1I_TcbpMtlzPS7nxbO2TFFLtk8weT4B55fbJHP3c9lRSyl9IW_eOcYZDStCEOpzZDpfXsGytEMwSBU23SrIZjFbRMKSra-glr31QayOn7TOJFDa1KWk2mNCtB75Ph7c1zr8_cGAWmgqBdMYHssxppVpQfG_Ckl0aSG5N2vAiEsgkRiABpAkOIhDBxCKYtjC8jLcFGfxUckNWiLMwhwS2FsfWRsRKcm9QD0B6oUCuwZYmJdItcNVpLlOMYx1EXWdKAyV6TZZ0nqPNkrvMWEd_S0znXxh_lrpsPlCzZTmLDwp9WOPr3Csdkw8fGiPpy5oSsVm8zc2rTlUqe1fZ4Rta6dw_9wRcEgu-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oBZeDuOLuHLwONsskBg8iRWld6kWht_BmiW1JmqLx4L93XjpxAQ-C18AbhpfJWybf9z2AE4VngTKe5NgOFQ8xiriMheIk1W4TtFaBIe7wfT_qPoU3AzGYg07DhSFYpYv9s5heR2v35NR583Q6GhHHNwltNT_wvbq3CuZhgdSpRAsWLnu33f5nQI6FA88lISeDRTj5gnkVRg0LVMOaN_huG0bfo_-ewvd_z1Tfss_1Gqy6spFdzna2DnNmsgEr38QEN2H8YL_-wtEqGebPpe37hwWnPKVZox3ObJHK6vE31ojlhANn2mR5jciasDJj5GsbKuwRZ9JgwV7fJN3VsKpk1WjK8hL1FjxdXz12utxNUuAqCNoVFyRAq0lpRfmJQU96WSxDY7IzL0ahbE2EIiClwAhjIUwSoWkL48tYS7QFgAq2oTUpJ2YHaEtRYsNkokQYmsxD1B6qSCu0nYmJ9S6cN15LlZMZp2kXedrgycbpT5-n5PN05vNdEJ_W05ncxh_tLpoXlP44PqnNDH9aYe_fKxzDUvfx_i696_Vv92HZJ55EfVdzAK3q5c0c2uqlkkfudH4AMTLyUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+algorithm-based+approach+for+modeling+large+deflection+of+cantilever+beam+subject+to+tip+load&rft.jtitle=Mechanism+and+machine+theory&rft.au=Gao%2C+Fei&rft.au=Liu%2C+Gaoyu&rft.au=Wu%2C+Xinyu&rft.au=Liao%2C+Wei-Hsin&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0094-114X&rft.volume=167&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2021.104522&rft.externalDocID=S0094114X21002743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon