Optimization algorithm-based approach for modeling large deflection of cantilever beam subject to tip load
•Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of uniform and non-uniform beams with high accuracy.•This method provides a new insight into the derivation of large deflection of cantilever b...
Saved in:
Published in | Mechanism and machine theory Vol. 167; p. 104522 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of uniform and non-uniform beams with high accuracy.•This method provides a new insight into the derivation of large deflection of cantilever beam.•This method can solve the deformation of compliant parallel-guiding mechanism.
The modeling of beam mechanisms, especially non-uniform beams, becomes complicated due to the geometric nonlinearity that is proved to be significant with large deflection. A new method, called optimization algorithm-based approach (OABA), is proposed to predict the large deflection of uniform and non-uniform cantilever beams, in which an optimization algorithm is exploited to find the locus of the beam tip. The Euler-Bernoulli beam theory is employed here. With the derived locus of the beam tip, the deflection curve of the cantilever beam can be calculated. The optimization algorithm in this paper is embodied in a particle swarm optimization (PSO) algorithm. Experimental results show that the proposed method can precisely predict the deflection of the uniform and non-uniform cantilever beams. The maximum error is limited to 4.35% when the normalized maximum transverse deflection reaches 0.75. To demonstrate the effectiveness of this method in analyzing compliant mechanisms, we also exploited this method to predict the deformation of a compliant parallel-guiding mechanism. |
---|---|
AbstractList | •Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of uniform and non-uniform beams with high accuracy.•This method provides a new insight into the derivation of large deflection of cantilever beam.•This method can solve the deformation of compliant parallel-guiding mechanism.
The modeling of beam mechanisms, especially non-uniform beams, becomes complicated due to the geometric nonlinearity that is proved to be significant with large deflection. A new method, called optimization algorithm-based approach (OABA), is proposed to predict the large deflection of uniform and non-uniform cantilever beams, in which an optimization algorithm is exploited to find the locus of the beam tip. The Euler-Bernoulli beam theory is employed here. With the derived locus of the beam tip, the deflection curve of the cantilever beam can be calculated. The optimization algorithm in this paper is embodied in a particle swarm optimization (PSO) algorithm. Experimental results show that the proposed method can precisely predict the deflection of the uniform and non-uniform cantilever beams. The maximum error is limited to 4.35% when the normalized maximum transverse deflection reaches 0.75. To demonstrate the effectiveness of this method in analyzing compliant mechanisms, we also exploited this method to predict the deformation of a compliant parallel-guiding mechanism. |
ArticleNumber | 104522 |
Author | Liao, Wei-Hsin Liu, Gaoyu Gao, Fei Wu, Xinyu |
Author_xml | – sequence: 1 givenname: Fei surname: Gao fullname: Gao, Fei organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China – sequence: 2 givenname: Gaoyu surname: Liu fullname: Liu, Gaoyu organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China – sequence: 3 givenname: Xinyu surname: Wu fullname: Wu, Xinyu organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China – sequence: 4 givenname: Wei-Hsin surname: Liao fullname: Liao, Wei-Hsin email: whliao@cuhk.edu.hk organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China |
BookMark | eNqNkLFOwzAURT0UibbwDx5YU2zHTqjEAhUFpEpdQGKzXpyXxlESR7apBF9P2rLA1OkN990j3TMjk971SMgNZwvOeHbbLDo0dQemjjU6_7UQTPAxkkqICZkytpQJ5_LjksxCaBhjuZLplDTbIdrOfkO0rqfQ7py3se6SAgKWFIbBuxFJK-dp50psbb-jLfgd0hKrFs2x5ipqoI-2xT16WiB0NHwWzZjS6Gi0A20dlFfkooI24PXvnZP39dPb6iXZbJ9fVw-bxKQpi4nKVLosMy5SI5YIvOBVXkjE6o7noEwmJahUSiYzyJXCZQbIFIoiLwvgQpp0Th5PXONdCB4rbWw87osebKs50wdjutF_jemDMX0yNkLu_0EGbzsYv86sr091HIfuLXodjMXeYGn9qEWXzp4H-gFSGZhm |
CitedBy_id | crossref_primary_10_1155_2023_2138819 crossref_primary_10_1016_j_measen_2023_100764 crossref_primary_10_1016_j_oceaneng_2024_117434 crossref_primary_10_1016_j_jmapro_2024_02_066 crossref_primary_10_1016_j_mechmachtheory_2022_104879 crossref_primary_10_1038_s41598_024_78589_8 crossref_primary_10_1109_TMECH_2021_3098719 crossref_primary_10_1016_j_euromechsol_2024_105420 crossref_primary_10_1016_j_ijmecsci_2024_109340 |
Cites_doi | 10.1016/j.jmbbm.2017.10.005 10.1016/j.precisioneng.2014.10.002 10.1016/j.mechmachtheory.2020.103811 10.1016/j.mechmachtheory.2017.09.023 10.1063/1.5098962 10.1115/1.4029556 10.1109/TMECH.2017.2712820 10.1109/TMECH.2020.2995533 10.1115/1.4001091 10.1115/1.4032632 10.1088/1748-3190/aa575a 10.1115/1.3046148 10.1115/1.4037186 10.1016/j.mechmachtheory.2019.103770 10.1109/TRO.2012.2193232 10.1016/j.mechmachtheory.2015.10.007 10.1016/j.mechmachtheory.2018.02.011 10.1088/1748-3190/11/5/056005 10.1115/1.2826101 10.1016/j.mechmachtheory.2019.03.006 10.1088/1361-665X/aa5494 10.1016/j.mechmachtheory.2020.104214 10.1016/j.mechmachtheory.2018.04.005 10.1115/DETC2002/MECH-34203 10.1016/j.precisioneng.2016.12.004 10.1115/1.4044539 10.1016/j.precisioneng.2011.02.006 10.1016/j.fss.2012.07.005 10.1016/j.mechmachtheory.2013.08.001 10.1016/j.jsc.2013.10.006 10.1115/1.4032862 10.1016/j.mechmachtheory.2012.04.005 10.1115/1.4035986 10.1016/j.ijnonlinmec.2009.12.004 10.1115/1.4023558 10.1016/j.mechmachtheory.2018.10.006 10.1090/qam/13360 10.1088/0964-1726/23/8/085002 10.1016/j.mechmachtheory.2019.103588 10.1115/1.1455031 10.1016/j.mechmachtheory.2014.06.005 10.1115/1.4007941 10.1115/1.4031028 10.1016/j.mechmachtheory.2017.06.016 10.1088/0964-1726/25/8/085029 10.1016/j.mechmachtheory.2016.08.011 10.1115/1.4034111 10.1007/s00024-014-0802-2 10.1115/1.4039773 10.1115/1.4045679 10.1115/1.4006080 10.1016/j.mechmachtheory.2020.104168 10.1080/00207179.2013.794920 10.1016/j.mechmachtheory.2020.103950 10.1016/j.enconman.2018.01.076 10.1016/j.ijnonlinmec.2016.05.008 10.1115/1.4040628 10.1016/S0020-7462(01)00019-1 10.1016/j.mechmachtheory.2019.01.010 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mechmachtheory.2021.104522 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_mechmachtheory_2021_104522 S0094114X21002743 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPCBC SST SSZ T5K T9H TN5 TWZ WUQ XPP ZMT ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BJAXD CITATION SPC SSH |
ID | FETCH-LOGICAL-c330t-56539d6123c29ea1b1f7b4eef817a5c644a5344046a755e96ae05e2b7dba124c3 |
IEDL.DBID | .~1 |
ISSN | 0094-114X |
IngestDate | Tue Jul 01 01:48:37 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Sun Apr 06 06:54:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Compliant mechanism Compliant parallel-guiding mechanism Particle swarm optimization (PSO) Cantilever beam model Non-uniform beam |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-56539d6123c29ea1b1f7b4eef817a5c644a5344046a755e96ae05e2b7dba124c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mechmachtheory_2021_104522 crossref_primary_10_1016_j_mechmachtheory_2021_104522 elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2021_104522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Mechanism and machine theory |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Malaeke, Moeenfard (bib0006) 2017; 48 Venkiteswaran, Su (bib0067) 2016; 106 Wu, Wang, Chen, Wang, Liu (bib0030) 2020; 25 Venkiteswaran, Su (bib0045) 2015; 40 Howell, Midha (bib0041) 1995; 117 Yu, Feng, Xu (bib0042) 2012; 15 Shepherd, Rouse (bib0029) 2017; 25 Ren, Zhu, Fan (bib0064) 2016; 85 Li, Su, Zhang (bib0072) 2017; 9 Mohamad, Tokhi, Toha, Latiff (bib0051) 2009 Kennedy, Eberhart (bib0053) 1995; 4 Venkiteswaran, Su (bib0065) 2016; 138 Zhang, Chen (bib0035) 2013; 5 Verotti (bib0015) 2016; 97 Hanoon, Jaafar, Hejazi, Abdul Aziz (bib0060) 2016 Shahabi, Kuo (bib0050) 2019 Vedant, Allison (bib0049) 2020; 142 Saffar, Diwan, Ansari, Alkhatat (bib0052) 2020; 43 Wu, Hao (bib0004) 2020; 152 Kuresangsai, Cole (bib0018) 2019; 132 Valentini, Cirelli, Pennestrì (bib0016) 2019; 136 Jung, Choi, Cho (bib0020) 2017; 12 Chen (bib0036) 2010; 45 Ganguly, Sahoo, Das (bib0055) 2013; 213 Demario, Zhao (bib0022) 2018; 10 Xie, Qiu, Yang (bib0014) 2018; 120 Gao, Liu, Chung, Chan, Liao (bib0026) 2019; 115 Ling, Howell, Cao, Chen (bib0031) 2020; 72 Guo, Lee (bib0011) 2013; 70 Zhong, Li, Du (bib0023) 2017; 22 Howell (bib0001) 2001 Su (bib0043) 2009; 1 Zhu, Yu (bib0047) 2017; 9 Lee (bib0066) 2002; 37 Gao, Liu, Liao (bib0062) 2017; 26 Das, Shirinzadeh, Al-Jodah, Ghafarian, Pinskier (bib0005) 2021; 155 Cai, Yang (bib0057) 2013; 86 Fang, Zhou, Li, Xu, Liang, Li, Zhang (bib0019) 2016; 11 Odhner, Dollar (bib0013) 2012; 28 Huo, Yu, Zhao, Wu, Zhang (bib0009) 2021; 156 Patel, McWilliam, P.OPOV (bib0027) 2014; 23 Yu, Zhang (bib0071) 2019; 134 Venkiteswaran, Su (bib0017) 2016; 8 Verotti (bib0048) 2020; 149 Kuang, Yang, Zhu (bib0028) 2016; 25 Chen, Bai (bib0039) 2016; 8 Ma, Chen (bib0040) 2016; 8 Wu, Shao, Su, Fu (bib0007) 2019; 142 Izadgoshasb, Lim, Lake, Tang, Padilla, Kashiwao (bib0025) 2018; 161 Ma, Chen (bib0008) 2020; 147 Loja (bib0059) 2014; 61–62 Xu, Liu, Yue, Xiao, Ding, Wang (bib0010) 2021; 157 Wei, Simaan (bib0021) 2012; 134 S.M. Lyon and L.L. Howell, A simplified pseudo-rigid-body model for fixed-fixed flexible segments, ASME Paper No. DETC2002/MECH (2002) 34203. Luo, Liu (bib0063) 2014; 80 Bisshopp, Drucker (bib0032) 1945; 3 Peksen, Yas, Kıyak (bib0056) 2014; 171 Kimball, Tsai (bib0034) 2002; 124 Yu, Zhu (bib0046) 2017; 116 Šalini´c, Nikoli´c (bib0012) 2018; 124 Awtar, Sen (bib0038) 2010; 132 Ashwin, Ghosal (bib0024) 2019; 11 Hao, Li (bib0003) 2015; 7 Chen, Du (bib0002) 2013; 5 Zhang, Wang, Ji (bib0054) 2015 Wang, Yu (bib0069) 2010; 2 Askari, Flores, Silva (bib0061) 2018; 77 Venkiteswaran, Su (bib0068) 2018; 140 She, Meng, Su, Song, Wang (bib0070) 2018; 126 Chen, Xiong, Huang (bib0044) 2011; 35 Awtar, Sen (bib0037) 2010; 132 M.ahmoodabadi, Taherkhorsandi, Bagheri (bib0058) 2014; 124 Ling (10.1016/j.mechmachtheory.2021.104522_bib0031) 2020; 72 Yu (10.1016/j.mechmachtheory.2021.104522_bib0042) 2012; 15 Xie (10.1016/j.mechmachtheory.2021.104522_bib0014) 2018; 120 Ashwin (10.1016/j.mechmachtheory.2021.104522_bib0024) 2019; 11 Awtar (10.1016/j.mechmachtheory.2021.104522_bib0038) 2010; 132 Chen (10.1016/j.mechmachtheory.2021.104522_bib0036) 2010; 45 Demario (10.1016/j.mechmachtheory.2021.104522_bib0022) 2018; 10 Verotti (10.1016/j.mechmachtheory.2021.104522_bib0048) 2020; 149 Huo (10.1016/j.mechmachtheory.2021.104522_bib0009) 2021; 156 Wang (10.1016/j.mechmachtheory.2021.104522_bib0069) 2010; 2 Yu (10.1016/j.mechmachtheory.2021.104522_bib0071) 2019; 134 Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0045) 2015; 40 10.1016/j.mechmachtheory.2021.104522_bib0033 Zhang (10.1016/j.mechmachtheory.2021.104522_bib0035) 2013; 5 Zhang (10.1016/j.mechmachtheory.2021.104522_bib0054) 2015 She (10.1016/j.mechmachtheory.2021.104522_bib0070) 2018; 126 Fang (10.1016/j.mechmachtheory.2021.104522_bib0019) 2016; 11 Chen (10.1016/j.mechmachtheory.2021.104522_bib0039) 2016; 8 Lee (10.1016/j.mechmachtheory.2021.104522_bib0066) 2002; 37 Verotti (10.1016/j.mechmachtheory.2021.104522_bib0015) 2016; 97 Patel (10.1016/j.mechmachtheory.2021.104522_bib0027) 2014; 23 Howell (10.1016/j.mechmachtheory.2021.104522_bib0041) 1995; 117 Chen (10.1016/j.mechmachtheory.2021.104522_bib0002) 2013; 5 Zhong (10.1016/j.mechmachtheory.2021.104522_bib0023) 2017; 22 Valentini (10.1016/j.mechmachtheory.2021.104522_bib0016) 2019; 136 Mohamad (10.1016/j.mechmachtheory.2021.104522_bib0051) 2009 Peksen (10.1016/j.mechmachtheory.2021.104522_bib0056) 2014; 171 Askari (10.1016/j.mechmachtheory.2021.104522_bib0061) 2018; 77 Malaeke (10.1016/j.mechmachtheory.2021.104522_bib0006) 2017; 48 Gao (10.1016/j.mechmachtheory.2021.104522_bib0026) 2019; 115 Yu (10.1016/j.mechmachtheory.2021.104522_bib0046) 2017; 116 Li (10.1016/j.mechmachtheory.2021.104522_bib0072) 2017; 9 Jung (10.1016/j.mechmachtheory.2021.104522_bib0020) 2017; 12 Ren (10.1016/j.mechmachtheory.2021.104522_bib0064) 2016; 85 M.ahmoodabadi (10.1016/j.mechmachtheory.2021.104522_bib0058) 2014; 124 Kimball (10.1016/j.mechmachtheory.2021.104522_bib0034) 2002; 124 Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0065) 2016; 138 Saffar (10.1016/j.mechmachtheory.2021.104522_bib0052) 2020; 43 Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0068) 2018; 140 Ma (10.1016/j.mechmachtheory.2021.104522_bib0040) 2016; 8 Das (10.1016/j.mechmachtheory.2021.104522_bib0005) 2021; 155 Guo (10.1016/j.mechmachtheory.2021.104522_bib0011) 2013; 70 Chen (10.1016/j.mechmachtheory.2021.104522_bib0044) 2011; 35 Bisshopp (10.1016/j.mechmachtheory.2021.104522_bib0032) 1945; 3 Zhu (10.1016/j.mechmachtheory.2021.104522_bib0047) 2017; 9 Wu (10.1016/j.mechmachtheory.2021.104522_bib0007) 2019; 142 Izadgoshasb (10.1016/j.mechmachtheory.2021.104522_bib0025) 2018; 161 Gao (10.1016/j.mechmachtheory.2021.104522_bib0062) 2017; 26 Kennedy (10.1016/j.mechmachtheory.2021.104522_bib0053) 1995; 4 Wei (10.1016/j.mechmachtheory.2021.104522_bib0021) 2012; 134 Odhner (10.1016/j.mechmachtheory.2021.104522_bib0013) 2012; 28 Loja (10.1016/j.mechmachtheory.2021.104522_bib0059) 2014; 61–62 Kuang (10.1016/j.mechmachtheory.2021.104522_bib0028) 2016; 25 Wu (10.1016/j.mechmachtheory.2021.104522_bib0030) 2020; 25 Su (10.1016/j.mechmachtheory.2021.104522_bib0043) 2009; 1 Howell (10.1016/j.mechmachtheory.2021.104522_bib0001) 2001 Cai (10.1016/j.mechmachtheory.2021.104522_bib0057) 2013; 86 Shepherd (10.1016/j.mechmachtheory.2021.104522_bib0029) 2017; 25 Ganguly (10.1016/j.mechmachtheory.2021.104522_bib0055) 2013; 213 Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0017) 2016; 8 Vedant (10.1016/j.mechmachtheory.2021.104522_bib0049) 2020; 142 Ma (10.1016/j.mechmachtheory.2021.104522_bib0008) 2020; 147 Awtar (10.1016/j.mechmachtheory.2021.104522_bib0037) 2010; 132 Xu (10.1016/j.mechmachtheory.2021.104522_bib0010) 2021; 157 Luo (10.1016/j.mechmachtheory.2021.104522_bib0063) 2014; 80 Šalini´c (10.1016/j.mechmachtheory.2021.104522_bib0012) 2018; 124 Hanoon (10.1016/j.mechmachtheory.2021.104522_bib0060) 2016 Hao (10.1016/j.mechmachtheory.2021.104522_bib0003) 2015; 7 Shahabi (10.1016/j.mechmachtheory.2021.104522_bib0050) 2019 Venkiteswaran (10.1016/j.mechmachtheory.2021.104522_bib0067) 2016; 106 Wu (10.1016/j.mechmachtheory.2021.104522_bib0004) 2020; 152 Kuresangsai (10.1016/j.mechmachtheory.2021.104522_bib0018) 2019; 132 |
References_xml | – volume: 97 start-page: 29 year: 2016 end-page: 50 ident: bib0015 article-title: Analysis of the center of rotation in primitive flexures: uniform cantilever beams with constant curvature publication-title: Mech. Mach. Theory – volume: 37 start-page: 439 year: 2002 end-page: 443 ident: bib0066 article-title: Large deflections of cantilever beams of non-linear elastic material under a combined loading publication-title: Int. J. Non Linear Mech. – start-page: 31 year: 2009 end-page: 36 ident: bib0051 article-title: Particle swarm modelling of a flexible beam structure publication-title: Proc. 3rd UK Sim European Symposium Computer Modeling and Simulation – volume: 25 start-page: 2375 year: 2017 end-page: 2386 ident: bib0029 article-title: The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness publication-title: IEEE Trans. Rehabil. Eng. – volume: 157 year: 2021 ident: bib0010 article-title: Kinematic modeling and optimal design of a partially compliant four-bar linkage using elliptic integral solution publication-title: Mech. Mach. Theory – year: 2001 ident: bib0001 article-title: Compliant Mechanisms – volume: 10 year: 2018 ident: bib0022 article-title: Development and analysis of a three-dimensional printed miniature walking robot with soft joints and links publication-title: ASME J. Mech. Rob. – volume: 85 start-page: 126 year: 2016 end-page: 142 ident: bib0064 article-title: A nonlinear planar beam formulation with stretch and shear deformations under end forces and moments publication-title: Int. J. Non-Linear Mech. – volume: 5 year: 2013 ident: bib0002 article-title: Double-young tristable mechanism publication-title: ASME J. Mech. Rob. – volume: 124 start-page: 194 year: 2014 end-page: 209 ident: bib0058 article-title: Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO publication-title: Neuro Comput. – volume: 8 year: 2016 ident: bib0017 article-title: A three-spring pseudorigidbody model for soft joints with significant elongation effects publication-title: ASME J. Mech. Rob. – start-page: 1 year: 2016 end-page: 19 ident: bib0060 article-title: Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique publication-title: Eng. Opt. – volume: 8 year: 2016 ident: bib0039 article-title: Modeling large spatial deflections of slender bisymmetric beams in compliant mechanisms using chained spatial-beam constraint model publication-title: ASME J. Mech. Rob. – volume: 23 year: 2014 ident: bib0027 article-title: Optimization of piezoelectric cantilever energy harvesters including non-linear effects publication-title: Smart Mater. Struct – volume: 8 year: 2016 ident: bib0040 article-title: Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model publication-title: ASME J. Mech. Rob. – volume: 86 start-page: 1720 year: 2013 end-page: 1732 ident: bib0057 article-title: An improved PSO-based approach with dynamic parameter tuning for cooperative multi-robot target searching in complex unknown environments publication-title: Int. J. Control – volume: 11 year: 2016 ident: bib0019 article-title: Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion publication-title: Bioinspir. Biomim. – volume: 3 start-page: 272 year: 1945 end-page: 275 ident: bib0032 article-title: Large deflection of cantilever beams publication-title: Q. Appl. Math. – volume: 35 start-page: 505 year: 2011 end-page: 511 ident: bib0044 article-title: Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer publication-title: Precis. Eng. – volume: 147 year: 2020 ident: bib0008 article-title: Kinetostatic modeling and characterization of compliant mechanisms containing flexible beams of variable effective length publication-title: Mech. Mach. Theory – volume: 155 year: 2021 ident: bib0005 article-title: A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation publication-title: Mech. Mach. Theory – volume: 72 year: 2020 ident: bib0031 article-title: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey publication-title: Appl. Mech. Rev. – volume: 9 year: 2017 ident: bib0072 article-title: Accuracy assessment of pseudo-rigid-body model for dynamic analysis of compliant mechanisms publication-title: ASME J. Mech. Rob. – volume: 28 start-page: 761 year: 2012 end-page: 772 ident: bib0013 article-title: The smooth curvature model: an efficient representation of Euler–Bernoulli flexures as robot joints publication-title: IEEE Trans. Robotics – volume: 142 year: 2020 ident: bib0049 article-title: Pseudo-rigid-body dynamic models for design of compliant members publication-title: ASME J. Mech. Des. – volume: 26 year: 2017 ident: bib0062 article-title: Optimal design of a magnetorheological damper used in smart prosthetic knees publication-title: Smart Mater. Struct. – volume: 142 year: 2019 ident: bib0007 article-title: An energy-based approach for kinetostatic modeling of general compliant mechanisms publication-title: Mech. Mach. Theory – volume: 120 start-page: 166 year: 2018 end-page: 177 ident: bib0014 article-title: Design and analysis of a variable stiffness inside-deployed lamina emergent joint publication-title: Mech. Mach. Theory – volume: 43 start-page: 299 year: 2020 end-page: 309 ident: bib0052 article-title: Experimental and artificial neural network modeling of natural frequency of stepped cantilever shaft publication-title: J. Mech. Eng. Res. Dev. – volume: 9 year: 2017 ident: bib0047 article-title: Pseudo-rigid-body model for the flexural beam with an inflection point in compliant mechanisms publication-title: ASME J. Mech. Rob. – volume: 132 start-page: 80 year: 2019 end-page: 97 ident: bib0018 article-title: Kinematic modeling and design optimization of flexture-jointed planar mechanisms using polynomial bases for flexure curvature publication-title: Mech. Mach. Theory – volume: 132 year: 2010 ident: bib0038 article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear strain energy formulation publication-title: ASME J. Mech. Des. – volume: 61–62 start-page: 12 year: 2014 end-page: 30 ident: bib0059 article-title: On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures publication-title: J. Symb. Comput. – volume: 2 year: 2010 ident: bib0069 article-title: New approach to the dynamic modeling of compliant mechanisms publication-title: ASME J. Mech. Rob. – volume: 138 year: 2016 ident: bib0065 article-title: Extension effects in compliant joints and pseudo-rigid-body models publication-title: ASME J. Mech. Des. – volume: 134 start-page: 455 year: 2019 end-page: 475 ident: bib0071 article-title: Dynamic modeling and performance of compliant mechanisms with inflection teams publication-title: Mech. Mach. Theory – volume: 7 year: 2015 ident: bib0003 article-title: Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms publication-title: ASME J. Mech. Rob. – volume: 25 start-page: 2045 year: 2020 end-page: 2053 ident: bib0030 article-title: Design and validation of a novel leaf spring based variable stiffness joint with reconfigurability publication-title: IEEE/ASME Trans. Mechatron. – reference: S.M. Lyon and L.L. Howell, A simplified pseudo-rigid-body model for fixed-fixed flexible segments, ASME Paper No. DETC2002/MECH (2002) 34203. – volume: 25 year: 2016 ident: bib0028 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater. Struct. – start-page: 355 year: 2019 end-page: 361 ident: bib0050 article-title: Solving inverse kinematics of a planar dualbackbone continuum robot using neural network publication-title: Proc. Eur. Conf. Mechanism Sci – volume: 117 start-page: 156 year: 1995 end-page: 165 ident: bib0041 article-title: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms publication-title: ASME J. Mech. Des. – volume: 152 year: 2020 ident: bib0004 article-title: Design and nonlinear modeling of a novel planar compliant parallelogram mechanism with general tensural-compresural beams publication-title: Mech. Mach. Theory – volume: 106 start-page: 80 year: 2016 end-page: 93 ident: bib0067 article-title: Pseudo-rigid-body models for circular beam under combined tip loads publication-title: Mech. Mach. Theory – volume: 1 year: 2009 ident: bib0043 article-title: A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads publication-title: ASME J. Mech. Rob. – volume: 11 year: 2019 ident: bib0024 article-title: A soft-robotic end-effector for independently actuating endoscopic catheters publication-title: ASME J. Mech. Rob. – volume: 22 start-page: 1633 year: 2017 end-page: 1643 ident: bib0023 article-title: A novel robot fish with wire-driven active body and compliant tail publication-title: IEEE/ASME Trans. Mechatron. – volume: 5 year: 2013 ident: bib0035 article-title: A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms publication-title: ASME J. Mech. Rob. – volume: 149 year: 2020 ident: bib0048 article-title: A pseudo-rigid-body model based on finite displacements and strain energy publication-title: Mech. Mach. Theory – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0053 article-title: Particle swarm optimization publication-title: Proc. IEEE International Conference on Neural Networks – volume: 45 start-page: 301 year: 2010 end-page: 305 ident: bib0036 article-title: An integral approach for large deflection cantilever beams publication-title: Int. J. Non Linear Mech. – start-page: 1 year: 2015 end-page: 38 ident: bib0054 article-title: A comprehensive survey on particle swarm optimization: algorithm and its applications publication-title: Math. Probl. Eng. 2015 – volume: 70 start-page: 338 year: 2013 end-page: 353 ident: bib0011 article-title: Compliant joint design and flexure finger dynamic analysis using an equivalent pin model publication-title: Mech. Mach. Theory – volume: 161 start-page: 66 year: 2018 end-page: 73 ident: bib0025 article-title: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking publication-title: Energy Convers. Manage. – volume: 115 year: 2019 ident: bib0026 article-title: Macro fiber composite-based energy harvester for human knee publication-title: Appl. Phys. Lett. – volume: 134 year: 2012 ident: bib0021 article-title: Modeling, force sensing, and control of flexible cannulas for microstent delivery publication-title: ASME J. Dyn. Syst. Meas. Control – volume: 213 start-page: 47 year: 2013 end-page: 73 ident: bib0055 article-title: Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation publication-title: Fuzzy Set. Syst. – volume: 126 start-page: 273 year: 2018 end-page: 294 ident: bib0070 article-title: Introducing mass parameters to pseudo-rigid-body models for precisely predicting dynamics of compliant mechanisms publication-title: Mech. Mach. Theory – volume: 136 start-page: 178 year: 2019 end-page: 189 ident: bib0016 article-title: Secend-order approximation pseudo-rigid model of flexure hinge with parabolic variable thickness publication-title: Mech. Mach. Theory – volume: 132 year: 2010 ident: bib0037 article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear load-displacement formulation publication-title: ASME J. Mech. Des. – volume: 12 year: 2017 ident: bib0020 article-title: The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism publication-title: Bioinspir. Biomim. – volume: 77 start-page: 461 year: 2018 end-page: 469 ident: bib0061 article-title: A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics publication-title: J. Mech. Behav. Biomed. Mater. – volume: 124 start-page: 223 year: 2002 end-page: 235 ident: bib0034 article-title: Modeling of flexural beams subjected to arbitrary end loads publication-title: ASME J. Mech. Des. – volume: 15 start-page: 18 year: 2012 end-page: 33 ident: bib0042 article-title: A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms publication-title: Mech. Mach. Theory – volume: 48 start-page: 216 year: 2017 end-page: 233 ident: bib0006 article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms publication-title: Precis. Eng. – volume: 171 start-page: 2371 year: 2014 end-page: 2389 ident: bib0056 article-title: 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization publication-title: Pure Appl. Geophys. – volume: 80 start-page: 151 year: 2014 end-page: 165 ident: bib0063 article-title: Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate publication-title: Mech. Mach. Theory – volume: 156 year: 2021 ident: bib0009 article-title: A family of novel RCM rotational compliant mechanisms based on parasitic motion compensation publication-title: Mech. Mach. Theory – volume: 124 start-page: 150 year: 2018 end-page: 161 ident: bib0012 article-title: A new pseudo-rigid-body model approach for modeling the quasi-static responses of planar flexure-hinge mechanisms publication-title: Mech. Mach. Theory – volume: 140 year: 2018 ident: bib0068 article-title: A versatile 3R pseudo-rigid-body model for initially curved and straight compliant beams of uniform cross section publication-title: ASME J. Mech. Des. – volume: 40 start-page: 46 year: 2015 end-page: 54 ident: bib0045 article-title: A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams publication-title: Precis. Eng. – volume: 116 start-page: 501 year: 2017 end-page: 512 ident: bib0046 article-title: 5R pseudo-rigid-body model for inflection beams in complaint mechanisms publication-title: Mech. Mach. Theory – volume: 77 start-page: 461 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0061 article-title: A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.10.005 – volume: 40 start-page: 46 year: 2015 ident: 10.1016/j.mechmachtheory.2021.104522_bib0045 article-title: A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2014.10.002 – volume: 149 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0048 article-title: A pseudo-rigid-body model based on finite displacements and strain energy publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103811 – volume: 120 start-page: 166 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0014 article-title: Design and analysis of a variable stiffness inside-deployed lamina emergent joint publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.09.023 – volume: 132 year: 2010 ident: 10.1016/j.mechmachtheory.2021.104522_bib0038 article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear strain energy formulation publication-title: ASME J. Mech. Des. – volume: 115 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0026 article-title: Macro fiber composite-based energy harvester for human knee publication-title: Appl. Phys. Lett. doi: 10.1063/1.5098962 – volume: 124 start-page: 194 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104522_bib0058 article-title: Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO publication-title: Neuro Comput. – volume: 7 year: 2015 ident: 10.1016/j.mechmachtheory.2021.104522_bib0003 article-title: Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4029556 – volume: 22 start-page: 1633 issue: 4 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0023 article-title: A novel robot fish with wire-driven active body and compliant tail publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2712820 – volume: 25 start-page: 2045 issue: 4 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0030 article-title: Design and validation of a novel leaf spring based variable stiffness joint with reconfigurability publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.2995533 – volume: 2 year: 2010 ident: 10.1016/j.mechmachtheory.2021.104522_bib0069 article-title: New approach to the dynamic modeling of compliant mechanisms publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4001091 – volume: 8 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0039 article-title: Modeling large spatial deflections of slender bisymmetric beams in compliant mechanisms using chained spatial-beam constraint model publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4032632 – volume: 12 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0020 article-title: The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/aa575a – volume: 1 year: 2009 ident: 10.1016/j.mechmachtheory.2021.104522_bib0043 article-title: A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads publication-title: ASME J. Mech. Rob. doi: 10.1115/1.3046148 – volume: 9 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0072 article-title: Accuracy assessment of pseudo-rigid-body model for dynamic analysis of compliant mechanisms publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4037186 – volume: 147 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0008 article-title: Kinetostatic modeling and characterization of compliant mechanisms containing flexible beams of variable effective length publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.103770 – volume: 28 start-page: 761 issue: 4 year: 2012 ident: 10.1016/j.mechmachtheory.2021.104522_bib0013 article-title: The smooth curvature model: an efficient representation of Euler–Bernoulli flexures as robot joints publication-title: IEEE Trans. Robotics doi: 10.1109/TRO.2012.2193232 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.mechmachtheory.2021.104522_bib0053 article-title: Particle swarm optimization – volume: 97 start-page: 29 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0015 article-title: Analysis of the center of rotation in primitive flexures: uniform cantilever beams with constant curvature publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2015.10.007 – volume: 124 start-page: 150 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0012 article-title: A new pseudo-rigid-body model approach for modeling the quasi-static responses of planar flexure-hinge mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.02.011 – volume: 11 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0019 article-title: Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/11/5/056005 – volume: 117 start-page: 156 issue: 1 year: 1995 ident: 10.1016/j.mechmachtheory.2021.104522_bib0041 article-title: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms publication-title: ASME J. Mech. Des. doi: 10.1115/1.2826101 – volume: 43 start-page: 299 issue: 4 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0052 article-title: Experimental and artificial neural network modeling of natural frequency of stepped cantilever shaft publication-title: J. Mech. Eng. Res. Dev. – volume: 136 start-page: 178 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0016 article-title: Secend-order approximation pseudo-rigid model of flexure hinge with parabolic variable thickness publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.03.006 – volume: 26 issue: 3 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0062 article-title: Optimal design of a magnetorheological damper used in smart prosthetic knees publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa5494 – volume: 25 start-page: 2375 issue: 12 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0029 article-title: The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness publication-title: IEEE Trans. Rehabil. Eng. – volume: 157 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104522_bib0010 article-title: Kinematic modeling and optimal design of a partially compliant four-bar linkage using elliptic integral solution publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.104214 – volume: 126 start-page: 273 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0070 article-title: Introducing mass parameters to pseudo-rigid-body models for precisely predicting dynamics of compliant mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.04.005 – ident: 10.1016/j.mechmachtheory.2021.104522_bib0033 doi: 10.1115/DETC2002/MECH-34203 – volume: 48 start-page: 216 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0006 article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2016.12.004 – volume: 11 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0024 article-title: A soft-robotic end-effector for independently actuating endoscopic catheters publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4044539 – volume: 35 start-page: 505 year: 2011 ident: 10.1016/j.mechmachtheory.2021.104522_bib0044 article-title: Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.02.006 – volume: 213 start-page: 47 year: 2013 ident: 10.1016/j.mechmachtheory.2021.104522_bib0055 article-title: Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation publication-title: Fuzzy Set. Syst. doi: 10.1016/j.fss.2012.07.005 – volume: 70 start-page: 338 year: 2013 ident: 10.1016/j.mechmachtheory.2021.104522_bib0011 article-title: Compliant joint design and flexure finger dynamic analysis using an equivalent pin model publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2013.08.001 – year: 2001 ident: 10.1016/j.mechmachtheory.2021.104522_bib0001 – volume: 61–62 start-page: 12 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104522_bib0059 article-title: On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2013.10.006 – volume: 8 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0017 article-title: A three-spring pseudorigidbody model for soft joints with significant elongation effects publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4032862 – volume: 15 start-page: 18 year: 2012 ident: 10.1016/j.mechmachtheory.2021.104522_bib0042 article-title: A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2012.04.005 – volume: 9 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0047 article-title: Pseudo-rigid-body model for the flexural beam with an inflection point in compliant mechanisms publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4035986 – volume: 45 start-page: 301 issue: 3 year: 2010 ident: 10.1016/j.mechmachtheory.2021.104522_bib0036 article-title: An integral approach for large deflection cantilever beams publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2009.12.004 – volume: 5 issue: 2 year: 2013 ident: 10.1016/j.mechmachtheory.2021.104522_bib0035 article-title: A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4023558 – volume: 132 start-page: 80 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0018 article-title: Kinematic modeling and design optimization of flexture-jointed planar mechanisms using polynomial bases for flexure curvature publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.10.006 – volume: 3 start-page: 272 issue: 3 year: 1945 ident: 10.1016/j.mechmachtheory.2021.104522_bib0032 article-title: Large deflection of cantilever beams publication-title: Q. Appl. Math. doi: 10.1090/qam/13360 – start-page: 1 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0060 article-title: Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique publication-title: Eng. Opt. – volume: 23 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104522_bib0027 article-title: Optimization of piezoelectric cantilever energy harvesters including non-linear effects publication-title: Smart Mater. Struct doi: 10.1088/0964-1726/23/8/085002 – volume: 142 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0007 article-title: An energy-based approach for kinetostatic modeling of general compliant mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.103588 – volume: 124 start-page: 223 year: 2002 ident: 10.1016/j.mechmachtheory.2021.104522_bib0034 article-title: Modeling of flexural beams subjected to arbitrary end loads publication-title: ASME J. Mech. Des. doi: 10.1115/1.1455031 – volume: 80 start-page: 151 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104522_bib0063 article-title: Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.06.005 – volume: 5 year: 2013 ident: 10.1016/j.mechmachtheory.2021.104522_bib0002 article-title: Double-young tristable mechanism publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4007941 – volume: 8 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0040 article-title: Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4031028 – volume: 116 start-page: 501 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104522_bib0046 article-title: 5R pseudo-rigid-body model for inflection beams in complaint mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.06.016 – start-page: 1 year: 2015 ident: 10.1016/j.mechmachtheory.2021.104522_bib0054 article-title: A comprehensive survey on particle swarm optimization: algorithm and its applications publication-title: Math. Probl. Eng. 2015 – volume: 25 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0028 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085029 – volume: 106 start-page: 80 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0067 article-title: Pseudo-rigid-body models for circular beam under combined tip loads publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2016.08.011 – volume: 132 year: 2010 ident: 10.1016/j.mechmachtheory.2021.104522_bib0037 article-title: A generalized constraint model for two-dimensional beam flexures: nonlinear load-displacement formulation publication-title: ASME J. Mech. Des. – start-page: 355 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0050 article-title: Solving inverse kinematics of a planar dualbackbone continuum robot using neural network – volume: 138 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0065 article-title: Extension effects in compliant joints and pseudo-rigid-body models publication-title: ASME J. Mech. Des. doi: 10.1115/1.4034111 – volume: 171 start-page: 2371 issue: 9 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104522_bib0056 article-title: 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-014-0802-2 – volume: 10 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0022 article-title: Development and analysis of a three-dimensional printed miniature walking robot with soft joints and links publication-title: ASME J. Mech. Rob. doi: 10.1115/1.4039773 – volume: 72 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0031 article-title: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey publication-title: Appl. Mech. Rev. doi: 10.1115/1.4045679 – volume: 155 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104522_bib0005 article-title: A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation publication-title: Mech. Mach. Theory – volume: 142 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0049 article-title: Pseudo-rigid-body dynamic models for design of compliant members publication-title: ASME J. Mech. Des. – volume: 134 year: 2012 ident: 10.1016/j.mechmachtheory.2021.104522_bib0021 article-title: Modeling, force sensing, and control of flexible cannulas for microstent delivery publication-title: ASME J. Dyn. Syst. Meas. Control doi: 10.1115/1.4006080 – volume: 156 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104522_bib0009 article-title: A family of novel RCM rotational compliant mechanisms based on parasitic motion compensation publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.104168 – volume: 86 start-page: 1720 issue: 10 year: 2013 ident: 10.1016/j.mechmachtheory.2021.104522_bib0057 article-title: An improved PSO-based approach with dynamic parameter tuning for cooperative multi-robot target searching in complex unknown environments publication-title: Int. J. Control doi: 10.1080/00207179.2013.794920 – volume: 152 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104522_bib0004 article-title: Design and nonlinear modeling of a novel planar compliant parallelogram mechanism with general tensural-compresural beams publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103950 – volume: 161 start-page: 66 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0025 article-title: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.01.076 – start-page: 31 year: 2009 ident: 10.1016/j.mechmachtheory.2021.104522_bib0051 article-title: Particle swarm modelling of a flexible beam structure – volume: 85 start-page: 126 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104522_bib0064 article-title: A nonlinear planar beam formulation with stretch and shear deformations under end forces and moments publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2016.05.008 – volume: 140 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104522_bib0068 article-title: A versatile 3R pseudo-rigid-body model for initially curved and straight compliant beams of uniform cross section publication-title: ASME J. Mech. Des. doi: 10.1115/1.4040628 – volume: 37 start-page: 439 issue: 3 year: 2002 ident: 10.1016/j.mechmachtheory.2021.104522_bib0066 article-title: Large deflections of cantilever beams of non-linear elastic material under a combined loading publication-title: Int. J. Non Linear Mech. doi: 10.1016/S0020-7462(01)00019-1 – volume: 134 start-page: 455 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104522_bib0071 article-title: Dynamic modeling and performance of compliant mechanisms with inflection teams publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.01.010 |
SSID | ssj0007543 |
Score | 2.3759472 |
Snippet | •Optimization algorithm-based approach (OABA) is proposed to predict the large deflection of cantilever beams.•This method can predict the large deformation of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104522 |
SubjectTerms | Cantilever beam model Compliant mechanism Compliant parallel-guiding mechanism Non-uniform beam Particle swarm optimization (PSO) |
Title | Optimization algorithm-based approach for modeling large deflection of cantilever beam subject to tip load |
URI | https://dx.doi.org/10.1016/j.mechmachtheory.2021.104522 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EQfQgPrG-2IPX1SbZTRo8SClKVawXC72F2UdsJY-i6cGLv92ddGMteBC8hsyyTGbnsfnmG0LOFXQCZTzJoM0V4xCGTEZCMaRqtwFaq8Bg7_DjIOwP-f1IjFZIr-mFQVil8_1zn157a_fk0mnzcjqZYI9vzG02P_K9urZCxk_OI7Tyi88FzCMSDjkXc4Zvr5PzBcYrN2qcgxrXTYMftlr0PfzpKXz_9zD1I_TcbpMtlzPS7nxbO2TFFLtk8weT4B55fbJHP3c9lRSyl9IW_eOcYZDStCEOpzZDpfXsGytEMwSBU23SrIZjFbRMKSra-glr31QayOn7TOJFDa1KWk2mNCtB75Ph7c1zr8_cGAWmgqBdMYHssxppVpQfG_Ckl0aSG5N2vAiEsgkRiABpAkOIhDBxCKYtjC8jLcFGfxUckNWiLMwhwS2FsfWRsRKcm9QD0B6oUCuwZYmJdItcNVpLlOMYx1EXWdKAyV6TZZ0nqPNkrvMWEd_S0znXxh_lrpsPlCzZTmLDwp9WOPr3Csdkw8fGiPpy5oSsVm8zc2rTlUqe1fZ4Rta6dw_9wRcEgu-g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oBZeDuOLuHLwONsskBg8iRWld6kWht_BmiW1JmqLx4L93XjpxAQ-C18AbhpfJWybf9z2AE4VngTKe5NgOFQ8xiriMheIk1W4TtFaBIe7wfT_qPoU3AzGYg07DhSFYpYv9s5heR2v35NR583Q6GhHHNwltNT_wvbq3CuZhgdSpRAsWLnu33f5nQI6FA88lISeDRTj5gnkVRg0LVMOaN_huG0bfo_-ewvd_z1Tfss_1Gqy6spFdzna2DnNmsgEr38QEN2H8YL_-wtEqGebPpe37hwWnPKVZox3ObJHK6vE31ojlhANn2mR5jciasDJj5GsbKuwRZ9JgwV7fJN3VsKpk1WjK8hL1FjxdXz12utxNUuAqCNoVFyRAq0lpRfmJQU96WSxDY7IzL0ahbE2EIiClwAhjIUwSoWkL48tYS7QFgAq2oTUpJ2YHaEtRYsNkokQYmsxD1B6qSCu0nYmJ9S6cN15LlZMZp2kXedrgycbpT5-n5PN05vNdEJ_W05ncxh_tLpoXlP44PqnNDH9aYe_fKxzDUvfx_i696_Vv92HZJ55EfVdzAK3q5c0c2uqlkkfudH4AMTLyUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+algorithm-based+approach+for+modeling+large+deflection+of+cantilever+beam+subject+to+tip+load&rft.jtitle=Mechanism+and+machine+theory&rft.au=Gao%2C+Fei&rft.au=Liu%2C+Gaoyu&rft.au=Wu%2C+Xinyu&rft.au=Liao%2C+Wei-Hsin&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0094-114X&rft.volume=167&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2021.104522&rft.externalDocID=S0094114X21002743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon |