Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications
Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hem...
Saved in:
Published in | Advances in colloid and interface science Vol. 319; p. 102982 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8686 1873-3727 1873-3727 |
DOI | 10.1016/j.cis.2023.102982 |
Cover
Abstract | Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications.
[Display omitted]
•General design principles for integrating strong interfacial linkages and tough dissipative hydrogel matrices.•Different strategies for enhancing the intrinsic interfacial toughness (Γ0inter) and the mechanical dissipation (ΓDinter).•Several biomedical applications of injectable hydrogel adhesives targeted to specific tissue adhesion needs.•The challenges and trends in producing next-generation multifunctional injectable hydrogel adhesives. |
---|---|
AbstractList | Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications.Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications. Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications. [Display omitted] •General design principles for integrating strong interfacial linkages and tough dissipative hydrogel matrices.•Different strategies for enhancing the intrinsic interfacial toughness (Γ0inter) and the mechanical dissipation (ΓDinter).•Several biomedical applications of injectable hydrogel adhesives targeted to specific tissue adhesion needs.•The challenges and trends in producing next-generation multifunctional injectable hydrogel adhesives. |
ArticleNumber | 102982 |
Author | Liu, Xiaowei Shi, Kehang Ni, Zhipeng Yu, Haojie Shen, Di Wang, Li Ouyang, Chenguang Yang, Jian Wang, Huanan |
Author_xml | – sequence: 1 givenname: Chenguang surname: Ouyang fullname: Ouyang, Chenguang organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 2 givenname: Haojie surname: Yu fullname: Yu, Haojie email: hjyu@zju.edu.cn organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 4 givenname: Zhipeng surname: Ni fullname: Ni, Zhipeng organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 5 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 6 givenname: Di surname: Shen fullname: Shen, Di organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 7 givenname: Jian surname: Yang fullname: Yang, Jian organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China – sequence: 8 givenname: Kehang surname: Shi fullname: Shi, Kehang organization: Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China – sequence: 9 givenname: Huanan surname: Wang fullname: Wang, Huanan organization: Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China |
BookMark | eNp9kD1PwzAQhi1UJErhB7BlZEnxV-JETKjiS6rEUmbjOpfEUWoHO63Uf48hnRg62Xd6n9Pdc41m1llA6I7gJcEkf-iW2oQlxZTFmpYFvUBzUgiWMkHFDM0xxiQt8iK_QtchdLGkmcjm6Gvj9k2bqKqFYJxNwLbKamObJIxejdAYCEntfGJsB3pU2x6S9lh510B_og4xYWyyNW4HldEq9oehj58xDgw36LJWfYDb07tAny_Pm9Vbuv54fV89rVPNGB5TzrQgeaF4SXJdVUoQXpUEtMiA45zXgmi2FVlek5oKQTMAwZXiHJc1yYq8Ygt0P80dvPveQxjlzgQNfa8suH2QtMhYyTMiihgVU1R7F4KHWmoz_m0bTza9JFj-OpVd7EcwOpWT00iSf-TgzU7541nmcWIgXn8w4GXQBqyOrnw0KitnztA_m0iSIw |
CitedBy_id | crossref_primary_10_1021_acsami_4c00710 crossref_primary_10_1002_marc_202400835 crossref_primary_10_1016_j_actbio_2024_03_015 crossref_primary_10_1016_j_bioadv_2025_214287 crossref_primary_10_1016_j_ijbiomac_2024_134105 crossref_primary_10_1039_D4TB01049C crossref_primary_10_1002_macp_202400471 crossref_primary_10_1186_s40001_023_01429_4 crossref_primary_10_1002_smll_202401152 crossref_primary_10_1016_j_cej_2024_153674 crossref_primary_10_1177_20417314241309183 crossref_primary_10_3390_gels11030179 crossref_primary_10_1016_j_ijbiomac_2024_138966 crossref_primary_10_1002_bmm2_12089 crossref_primary_10_1016_j_biomaterials_2024_123038 crossref_primary_10_1002_app_56017 crossref_primary_10_1039_D4LP00139G crossref_primary_10_1002_adfm_202312374 crossref_primary_10_1002_adma_202407707 crossref_primary_10_1016_j_polymdegradstab_2024_110772 crossref_primary_10_1016_j_arabjc_2024_105968 crossref_primary_10_1016_j_bioactmat_2024_09_005 crossref_primary_10_1016_j_cis_2024_103232 crossref_primary_10_1016_j_colcom_2024_100809 crossref_primary_10_1016_j_bioactmat_2024_12_024 crossref_primary_10_1002_adfm_202420443 crossref_primary_10_1002_pol_20241135 crossref_primary_10_1016_j_ijbiomac_2024_135944 crossref_primary_10_1016_j_polymer_2024_127304 crossref_primary_10_3390_ijms25169100 crossref_primary_10_34133_bmr_0031 crossref_primary_10_1002_adhm_202400827 crossref_primary_10_1016_j_fmre_2025_01_008 crossref_primary_10_1021_acsami_4c09465 crossref_primary_10_1038_s41392_024_01852_x crossref_primary_10_1016_j_ajps_2024_100911 crossref_primary_10_1016_j_jare_2024_10_032 crossref_primary_10_1002_adma_202413373 crossref_primary_10_1002_mabi_202400503 |
Cites_doi | 10.1038/s41587-019-0079-1 10.1002/adma.201504152 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U 10.1021/acs.chemrev.1c00815 10.1039/C4TB01194E 10.1016/j.biomaterials.2016.09.020 10.1126/science.abn8699 10.1021/acs.chemrev.0c01088 10.1002/adma.202205567 10.1021/acs.chemrev.0c00798 10.1021/acsami.2c19662 10.1002/adfm.202005689 10.1039/C9BM01848D 10.1002/adma.200501612 10.1021/bm010008g 10.1002/adfm.202007457 10.1016/j.nantod.2022.101467 10.1002/polb.22256 10.1016/j.apmt.2018.08.005 10.1021/acsami.8b10735 10.1016/j.biomaterials.2021.121169 10.1002/tcr.202200155 10.1002/anie.201607276 10.1038/s41578-019-0171-7 10.1002/adma.201606100 10.1038/s41586-019-1710-5 10.1002/adhm.202201799 10.1002/adfm.202213008 10.1002/adfm.201901693 10.1515/secm-2017-0161 10.1016/j.actbio.2017.05.023 10.1038/s41551-021-00810-0 10.1038/nmat4463 10.1039/C9MH01255A 10.1002/adma.202004290 10.1002/adhm.202301086 10.1002/adhm.201901469 10.1016/j.actbio.2021.04.027 10.1021/acsbiomaterials.0c01677 10.1126/scirobotics.aax7329 10.1039/C9TB01126A 10.1146/annurev-matsci-062910-100429 10.1038/28998 10.1021/accountsmr.2c00026 10.1038/s41928-021-00545-5 10.1021/acsami.2c14103 10.1002/adhm.202201576 10.1021/ja017449s 10.1021/acs.chemmater.9b01239 10.1016/j.progpolymsci.2021.101388 10.1016/j.carbpol.2022.120180 10.1021/acs.chemrev.7b00305 10.1016/j.cej.2022.137272 10.1038/nature12806 10.1016/j.tibtech.2018.10.011 10.1016/j.biomaterials.2014.01.002 10.1016/S1359-6454(01)00354-8 10.1021/acsnano.1c11040 10.1002/adhm.202101421 10.1021/acsnano.2c11053 10.1002/adma.201800671 10.1016/j.nantod.2020.101049 10.3389/fchem.2018.00497 10.1021/acsami.9b00006 10.1016/j.biomaterials.2018.02.016 10.1002/adhm.202200516 10.1021/acs.biomac.7b00683 10.1038/300341a0 10.1002/adfm.201904156 10.1016/j.cej.2021.129520 10.1016/j.jmps.2016.04.011 10.1038/s41467-019-13171-9 10.1002/adma.200304907 10.1021/acsami.9b07522 10.1002/adma.201503724 10.1016/j.biomaterials.2021.120838 10.1016/j.cej.2021.129329 10.1021/ja00168a022 10.1002/adfm.201804925 10.1126/sciadv.aaw3963 10.1056/NEJMcibr1709967 10.1007/s40820-022-00928-z 10.1021/jp401874t 10.1016/j.actbio.2015.02.002 10.1016/j.mtchem.2018.12.001 10.1002/adfm.202109687 10.1021/acs.chemrev.1c00622 10.1016/j.jid.2016.08.009 10.1073/pnas.2006389117 10.1039/c3cs60044k 10.1016/j.colsurfb.2016.10.013 10.1038/nmat1890 10.1002/admt.202000676 10.1016/S0002-9610(01)00742-5 10.1002/adfm.202008010 10.1039/D1MH00533B 10.1038/natrevmats.2016.71 10.1002/anie.200200565 10.1038/s41587-019-0045-y 10.1002/adhm.201800225 10.1021/acsami.2c15686 10.1038/s41570-021-00323-z 10.1016/j.cej.2023.143987 10.1126/science.aah6362 10.1038/s41467-021-24022-x 10.1126/sciadv.aax9976 10.1002/smll.202207437 10.1002/adma.201704640 10.1002/adma.202001628 10.1038/ncomms2715 10.1016/j.carbpol.2020.116845 10.1016/j.jconrel.2021.01.011 10.1002/adhm.202201594 10.1002/admi.202101038 10.1038/s41578-022-00483-4 10.1002/anie.201801063 10.1021/acs.chemrev.2c00179 10.1039/C5SC01386K 10.1021/ar300265y 10.1016/j.nanoen.2020.105389 10.1002/adfm.202110066 10.1016/j.nanoen.2022.106991 10.1126/scitranslmed.3004838 10.1021/acsnano.2c00662 10.1074/jbc.M110.133157 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.cis.2023.102982 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1873-3727 |
ExternalDocumentID | 10_1016_j_cis_2023_102982 S0001868623001495 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K WUQ XPP ZGI ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS |
ID | FETCH-LOGICAL-c330t-43c7168a4916cdda714d91ec75e4064f71c3b756f1f27725ee74aa4409f1586d3 |
IEDL.DBID | AIKHN |
ISSN | 0001-8686 1873-3727 |
IngestDate | Fri Sep 05 09:32:14 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Jul 01 03:12:06 EDT 2025 Fri Feb 23 02:35:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Design Interfacial toughness Mechanical dissipation Adhesion Injectable hydrogel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-43c7168a4916cdda714d91ec75e4064f71c3b756f1f27725ee74aa4409f1586d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2853945178 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2853945178 crossref_citationtrail_10_1016_j_cis_2023_102982 crossref_primary_10_1016_j_cis_2023_102982 elsevier_sciencedirect_doi_10_1016_j_cis_2023_102982 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Advances in colloid and interface science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Bai, Chen, Suo (bb0035) 2020; 30 Steiner (bb0155) 2002; 41 Li, Feng, Welle, Levkin (bb0585) 2016; 55 Mascal, Armstrong, Bartberger (bb0230) 2002; 124 Liu, Kang, Dong, Li, Wang, Wu (bb0315) 2023; 470 Rose, Prevoteau, Elzière, Hourdet, Marcellan, Leibler (bb0045) 2014; 505 Hu, Pei, Duan, Zhu, Liu, Chen (bb0025) 2021; 12 Liang, Li, Yang, Qiao, Xu, Guo (bb0255) 2022; 16 Li, Mooney (bb0060) 2016; 1 Zhang, Liu, Ding, Meng, Su, Zhang (bb0290) 2021; 278 Taboada, Yang, Pereira, Liu, Hu, Karp (bb0015) 2020; 5 Winfree, Liu, Wenzler, Seeman (bb0140) 1998; 394 Wu, Guo, Wang, Xu, Wang, Yang (bb0655) 2022; 32 Yuk, Wu, Zhao (bb0110) 2022; 7 Hou, Li, Li, Li, Guo, Deng (bb0335) 2023; 17 Shi, Gao, Ullah, Li, Wang, Yang (bb0570) 2016; 111 Sun, Wang, Liu, Wang, Guo, Xue (bb0620) 2022; 44 Wang, Gao (bb0435) 2016; 94 Ohm, Pan, Ford, Huang, Liao, Majidi (bb0560) 2021; 4 Stewart, Ransom, Hlady (bb0330) 2011; 49 Lee, Chun, Son, Hu, Schneider, Sitti (bb0630) 2022; 34 Kim, Parada, Liu, Zhao (bb0540) 2019; 4 Bovone, Dudaryeva, Marco-Dufort, Tibbitt (bb0095) 2021; 7 Sanderson (bb0150) 2012; vol. 21 Bal-Ozturk, Cecen, Avci-Adali, Topkaya, Alarcin, Yasayan (bb0455) 2021; 36 Wu, Fu, Zhao, Gerhard, Li, Yang (bb0470) 2023; 20 Saiz-Poseu, Mancebo-Aracil, Nador, Busqué, Ruiz-Molina (bb0285) 2019; 58 Chen, Yuk, Wu, Nabzdyk, Zhao (bb0625) 2020; 117 Komatsu, Tago, Ando, Asoh, Kikuchi (bb0545) 2021; 331 Yang, Bai, Li, Yang, Yao, Liu (bb0365) 2019; 11 Liu, Yang, Niu, Lin, Zhao, Wang (bb0500) 2017; 62 Wu, Cheng, Cheng (bb0270) 2019; 37 Zou, Dong, Luo, Zhao, Xie (bb0240) 2017; 29 Braccini, Pérez (bb0160) 2001; 2 Su, Xie, Wang, Tian, Wang, Yuan (bb0295) 2021; 8 Chen, Yang, Wang, Zhang, Heng, Wang (bb0515) 2021; 6 Karami, Wyss, Khoushabi, Schmocker, Broome, Moser (bb0380) 2018; 10 Mondal, Chakraborty, Chatterjee (bb0080) 2022; 22 Hwang, Zeng, Masic, Harrington, Israelachvili, Waite (bb0320) 2010; 285 Hu, Yang, Zhai, Li, Zhu, He (bb0340) 2023; 19 Gao, Yang, Zhou, He, Lu, Xiao (bb0535) 2020; 32 Xie, Ding, Han, Jia, Yang, Liang (bb0660) 2020; 7 Wang, Varghese, Sharma, Strehin, Fermanian, Gorham (bb0360) 2007; 6 Guo, Dong, Liang, Li (bb0485) 2021; 5 Boerman, Roozen, Sánchez-Fernández, Keereweer, Félix Lanao, Bender (bb0490) 2017; 18 Ekerdt, Fuentes, Lei, Adil, Ramasubramanian, Segalman (bb0590) 2018; 7 Reece, Maxey, Kron (bb0040) 2001; 182 Cintron-Cruz, Freedman, Lee, Johnson, Ijaz, Mooney (bb0075) 2022; 34 Zhou, Pang (bb0195) 2018; 118 Liu, Yu, Wang, Huang, Haq, Teng (bb0300) 2022; 9 Yao, Zhao, Xu, Jin, Wang, Yu (bb0605) 2022; 11 Yuk, Zhang, Lin, Parada, Zhao (bb0125) 2016; 15 Chen, Wu, Chen, Tucker, Jagota, Yang (bb0635) 2022; 119 Lucas, Bauzá, Frontera, Quiñonero (bb0225) 2016; 7 Lei, Wang, Sun, Zheng, Wang (bb0615) 2021; 31 Park, Lee, Kim, Joo, Cha (bb0460) 2022; 446 Yuk, Varela, Nabzdyk, Mao, Padera, Roche (bb0130) 2019; 575 Zhou, Hong, Zhang, Yang, Li, Jiang (bb0510) 2018; 13 Ingavle, Gehrke, Detamore (bb0375) 2014; 35 Duan, Li, Zuo, Shen, Yu, Deng (bb0580) 2019; 7 Qi, Liu, Jin, Xu, Wang, Wang (bb0385) 2018; 163 Yuan, Shen, Fan (bb0395) 2021; 276 Zhao, Shi, Sun, Yu, Wang, Wang (bb0610) 2022; 11 Yang, Zhao, Zhang, Yang, Luo, Liu (bb0600) 2021; 419 Zhao, Song, Ren, Zhang, Lin, Zhao (bb0465) 2022; 122 Ni, Yu, Wang, Liu, Shen, Chen (bb0235) 2022; 11 Marco-Dufort, Tibbitt (bb0180) 2019; 12 Wang, Narain, Zeng (bb0405) 2018; 6 Yang, Bai, Suo (bb0070) 2018; 30 Wang, Zhang, Yang, Fu, Xu, Li (bb0420) 2020; 30 Chen, Wang, Wang, Liu, Chiu, Shariati (bb0190) 2020; 32 Bao, Guo, Sun, Sun (bb0220) 2019; 11 Hofman, van Hees, Yang, Kamperman (bb0325) 2018; 30 Lu, Zhang, Tang, Xiao, Zhang, Liu (bb0425) 2021; 417 Lin, Yuk, Zhang, Parada, Koo, Yu (bb0530) 2016; 28 Cui, Wu, Gao, Fan, Xu, Wang (bb0445) 2018; 28 Rafieian, Mirzadeh, Mahdavi, Masoumi (bb0430) 2019; 26 Houk, Leach, Kim, Zhang (bb0175) 2003; 42 Yang, Kang, Gao, Zhuang, Fan, Shen (bb0440) 2022 Blacklow, Li, Freedman, Zeidi, Chen, Mooney (bb0020) 2019; 5 Bertsch, Diba, Mooney, Leeuwenburgh (bb0085) 2023; 123 Gong, Katsuyama, Kurokawa, Osada (bb0410) 2003; 15 Cui, Wu, Chen, Liu, Li, Xu (bb0345) 2020; 30 Roosen-Runge, Heck, Zhang, Kohlbacher, Schreiber (bb0200) 2013; 117 Zhou, Dai, Fan, Jiang, Liu, Zhou (bb0250) 2021; 31 Kim, Campbell, de Ávila, Wang (bb0525) 2019; 37 Zhang, Wang, Jiang, Zhu, Sun, Gao (bb0565) 2022; 95 Wang, Zhang, Yang, Guo, Liu, Li (bb0495) 2023; 15 Deng, Luo, Mao, Lai, Gong, Zhong (bb0215) 2020; 6 Lee, Messersmith, Israelachvili, Waite (bb0050) 2011; 41 Ma, Bourquard, Gao, Jiang, De Iure-Grimmel, Huo (bb0370) 2022; 377 de Oliveira, Nakamura, Auzély-Velty (bb0260) 2020; 247 Freedman, Kuttler, Beckmann, Nam, Kent, Schuleit (bb0030) 2022; 6 Tian, Guan, Wen, Lu, Li, Fan (bb0450) 2022; 14 Sharma, Fermanian, Gibson, Unterman, Herzka, Cascio (bb0505) 2013; 5 Huang, Jing, Zeng, Xue, Zhang, Yu (bb0310) 2023 Liang, Xu, Li, Zhangji, Guo (bb0065) 2022; 14 Pandey, Soto-Garcia, Liao, Zimmern, Nguyen, Hong (bb0350) 2020; 8 Someya, Amagai (bb0520) 2019; 37 Chen, Wu, Liu, Yuan, Liu (bb0390) 2022; 32 Li, Suo, Vlassak (bb0400) 2014; 2 Nam, Mooney (bb0355) 2021; 121 Meng, Li, Faust, Konst, Lee (bb0575) 2015; 17 Wu, Wang, Wang, Chen, Huang, Chen (bb0595) 2017; 149 Jorgensen, Severance (bb0165) 1990; 112 Han, Chen, Cai, Zhu, Yi, Guan (bb0480) 2023 Yu, Yao, Li (bb0090) 2022; 139 Loesche, Gardner, Kalan, Horwinski, Zheng, Hodkinson (bb0275) 2017; 137 Li, Celiz, Yang, Yang, Wamala, Whyte (bb0010) 2017; 357 Borden, Gargava, Raghavan (bb0650) 2021; 12 Yang, O’Cearbhaill, Sisk, Park, Cho, Villiger (bb0135) 2013; 4 Chen, Peng, Thundat, Zeng (bb0555) 2019; 31 Volinsky, Moody, Gerberich (bb0120) 2002; 50 Jin, Yu, Denman, Zhang (bb0245) 2013; 42 Shuai, Guo, Zhang, Wan, Pu, Wang (bb0550) 2020; 78 Zhao, Chen, Yuk, Lin, Liu, Parada (bb0105) 2021; 121 Fan, Wang, Tao, Huang, Rao, Kurokawa (bb0205) 2019; 10 Wei, Shi, Zhao, Yang, Zheng, Zhong (bb0305) 2023; 12 Dougherty (bb0210) 2013; 46 Karp (bb0055) 2017; 377 Ni, Yu, Wang, Huang, Lu, Zhou (bb0280) 2022; 14 Kuang, Arıcan, Zhou, Zhao, Zhang (bb0115) 2023; 4 He, Luo, Wang, Chen, Feng, Cao (bb0265) 2023; 299 Cui, Liu (bb0100) 2021; 116 Mu, Chen, Yuan, Li, Huang, Wang (bb0415) 2020; 9 Swift, Haverkamp, Stabile, Hwang, Plaut, Turner (bb0640) 2020; 5 Israelachvili, Pashley (bb0170) 1982; 300 Athanassiadis, Ma, Moreno-Gomez, Melde, Choi, Goyal (bb0475) 2022; 122 Jiang, Zhang, Zhang, Wang, Yan, Wang (bb0645) 2022; 16 Hu, Jia, Wang, Ma, Huang, Ding (bb0185) 2023; 12 Peppas, Hilt, Khademhosseini, Langer (bb0005) 2006; 18 Hu, Vatankhah-Varnoosfaderani, Zhou, Li, Sheiko (bb0145) 2015; 27 Karami (10.1016/j.cis.2023.102982_bb0380) 2018; 10 Shuai (10.1016/j.cis.2023.102982_bb0550) 2020; 78 Liang (10.1016/j.cis.2023.102982_bb0255) 2022; 16 Karp (10.1016/j.cis.2023.102982_bb0055) 2017; 377 Han (10.1016/j.cis.2023.102982_bb0480) 2023 Bao (10.1016/j.cis.2023.102982_bb0220) 2019; 11 Ohm (10.1016/j.cis.2023.102982_bb0560) 2021; 4 Zhou (10.1016/j.cis.2023.102982_bb0510) 2018; 13 Pandey (10.1016/j.cis.2023.102982_bb0350) 2020; 8 Liu (10.1016/j.cis.2023.102982_bb0300) 2022; 9 Qi (10.1016/j.cis.2023.102982_bb0385) 2018; 163 Xie (10.1016/j.cis.2023.102982_bb0660) 2020; 7 Zhang (10.1016/j.cis.2023.102982_bb0565) 2022; 95 Sharma (10.1016/j.cis.2023.102982_bb0505) 2013; 5 Kim (10.1016/j.cis.2023.102982_bb0525) 2019; 37 Gao (10.1016/j.cis.2023.102982_bb0535) 2020; 32 Jin (10.1016/j.cis.2023.102982_bb0245) 2013; 42 Yu (10.1016/j.cis.2023.102982_bb0090) 2022; 139 Wu (10.1016/j.cis.2023.102982_bb0270) 2019; 37 Ma (10.1016/j.cis.2023.102982_bb0370) 2022; 377 Roosen-Runge (10.1016/j.cis.2023.102982_bb0200) 2013; 117 Braccini (10.1016/j.cis.2023.102982_bb0160) 2001; 2 Komatsu (10.1016/j.cis.2023.102982_bb0545) 2021; 331 Chen (10.1016/j.cis.2023.102982_bb0555) 2019; 31 Yang (10.1016/j.cis.2023.102982_bb0440) 2022 Yang (10.1016/j.cis.2023.102982_bb0365) 2019; 11 Swift (10.1016/j.cis.2023.102982_bb0640) 2020; 5 Wu (10.1016/j.cis.2023.102982_bb0595) 2017; 149 Cui (10.1016/j.cis.2023.102982_bb0445) 2018; 28 Kim (10.1016/j.cis.2023.102982_bb0540) 2019; 4 Tian (10.1016/j.cis.2023.102982_bb0450) 2022; 14 Su (10.1016/j.cis.2023.102982_bb0295) 2021; 8 Li (10.1016/j.cis.2023.102982_bb0585) 2016; 55 Jorgensen (10.1016/j.cis.2023.102982_bb0165) 1990; 112 Mascal (10.1016/j.cis.2023.102982_bb0230) 2002; 124 Cintron-Cruz (10.1016/j.cis.2023.102982_bb0075) 2022; 34 Hu (10.1016/j.cis.2023.102982_bb0340) 2023; 19 Shi (10.1016/j.cis.2023.102982_bb0570) 2016; 111 Liang (10.1016/j.cis.2023.102982_bb0065) 2022; 14 Athanassiadis (10.1016/j.cis.2023.102982_bb0475) 2022; 122 Hu (10.1016/j.cis.2023.102982_bb0145) 2015; 27 Zhao (10.1016/j.cis.2023.102982_bb0465) 2022; 122 Yang (10.1016/j.cis.2023.102982_bb0035) 2020; 30 He (10.1016/j.cis.2023.102982_bb0265) 2023; 299 Gong (10.1016/j.cis.2023.102982_bb0410) 2003; 15 Boerman (10.1016/j.cis.2023.102982_bb0490) 2017; 18 Park (10.1016/j.cis.2023.102982_bb0460) 2022; 446 Steiner (10.1016/j.cis.2023.102982_bb0155) 2002; 41 Li (10.1016/j.cis.2023.102982_bb0400) 2014; 2 Zhou (10.1016/j.cis.2023.102982_bb0195) 2018; 118 Hwang (10.1016/j.cis.2023.102982_bb0320) 2010; 285 Someya (10.1016/j.cis.2023.102982_bb0520) 2019; 37 Chen (10.1016/j.cis.2023.102982_bb0390) 2022; 32 Lin (10.1016/j.cis.2023.102982_bb0530) 2016; 28 Yang (10.1016/j.cis.2023.102982_bb0600) 2021; 419 Nam (10.1016/j.cis.2023.102982_bb0355) 2021; 121 Yang (10.1016/j.cis.2023.102982_bb0135) 2013; 4 Ekerdt (10.1016/j.cis.2023.102982_bb0590) 2018; 7 Yao (10.1016/j.cis.2023.102982_bb0605) 2022; 11 Zhao (10.1016/j.cis.2023.102982_bb0105) 2021; 121 Hu (10.1016/j.cis.2023.102982_bb0025) 2021; 12 Huang (10.1016/j.cis.2023.102982_bb0310) 2023 Zhang (10.1016/j.cis.2023.102982_bb0290) 2021; 278 Chen (10.1016/j.cis.2023.102982_bb0635) 2022; 119 Lee (10.1016/j.cis.2023.102982_bb0050) 2011; 41 Hofman (10.1016/j.cis.2023.102982_bb0325) 2018; 30 Rafieian (10.1016/j.cis.2023.102982_bb0430) 2019; 26 Chen (10.1016/j.cis.2023.102982_bb0190) 2020; 32 Wang (10.1016/j.cis.2023.102982_bb0405) 2018; 6 Volinsky (10.1016/j.cis.2023.102982_bb0120) 2002; 50 Blacklow (10.1016/j.cis.2023.102982_bb0020) 2019; 5 Yuk (10.1016/j.cis.2023.102982_bb0125) 2016; 15 Israelachvili (10.1016/j.cis.2023.102982_bb0170) 1982; 300 Ni (10.1016/j.cis.2023.102982_bb0280) 2022; 14 Borden (10.1016/j.cis.2023.102982_bb0650) 2021; 12 Yang (10.1016/j.cis.2023.102982_bb0070) 2018; 30 Loesche (10.1016/j.cis.2023.102982_bb0275) 2017; 137 Chen (10.1016/j.cis.2023.102982_bb0515) 2021; 6 Liu (10.1016/j.cis.2023.102982_bb0500) 2017; 62 Dougherty (10.1016/j.cis.2023.102982_bb0210) 2013; 46 Cui (10.1016/j.cis.2023.102982_bb0345) 2020; 30 Rose (10.1016/j.cis.2023.102982_bb0045) 2014; 505 Jiang (10.1016/j.cis.2023.102982_bb0645) 2022; 16 Guo (10.1016/j.cis.2023.102982_bb0485) 2021; 5 Zou (10.1016/j.cis.2023.102982_bb0240) 2017; 29 Lei (10.1016/j.cis.2023.102982_bb0615) 2021; 31 Bovone (10.1016/j.cis.2023.102982_bb0095) 2021; 7 Hou (10.1016/j.cis.2023.102982_bb0335) 2023; 17 Lee (10.1016/j.cis.2023.102982_bb0630) 2022; 34 Deng (10.1016/j.cis.2023.102982_bb0215) 2020; 6 Yuk (10.1016/j.cis.2023.102982_bb0110) 2022; 7 Ingavle (10.1016/j.cis.2023.102982_bb0375) 2014; 35 Lu (10.1016/j.cis.2023.102982_bb0425) 2021; 417 Bal-Ozturk (10.1016/j.cis.2023.102982_bb0455) 2021; 36 Mondal (10.1016/j.cis.2023.102982_bb0080) 2022; 22 Bertsch (10.1016/j.cis.2023.102982_bb0085) 2023; 123 Houk (10.1016/j.cis.2023.102982_bb0175) 2003; 42 Zhao (10.1016/j.cis.2023.102982_bb0610) 2022; 11 Meng (10.1016/j.cis.2023.102982_bb0575) 2015; 17 Wang (10.1016/j.cis.2023.102982_bb0495) 2023; 15 Freedman (10.1016/j.cis.2023.102982_bb0030) 2022; 6 Zhou (10.1016/j.cis.2023.102982_bb0250) 2021; 31 Marco-Dufort (10.1016/j.cis.2023.102982_bb0180) 2019; 12 Peppas (10.1016/j.cis.2023.102982_bb0005) 2006; 18 Wu (10.1016/j.cis.2023.102982_bb0470) 2023; 20 Taboada (10.1016/j.cis.2023.102982_bb0015) 2020; 5 Lucas (10.1016/j.cis.2023.102982_bb0225) 2016; 7 Liu (10.1016/j.cis.2023.102982_bb0315) 2023; 470 Wu (10.1016/j.cis.2023.102982_bb0655) 2022; 32 Winfree (10.1016/j.cis.2023.102982_bb0140) 1998; 394 Wang (10.1016/j.cis.2023.102982_bb0435) 2016; 94 Yuk (10.1016/j.cis.2023.102982_bb0130) 2019; 575 Wei (10.1016/j.cis.2023.102982_bb0305) 2023; 12 Wang (10.1016/j.cis.2023.102982_bb0420) 2020; 30 Mu (10.1016/j.cis.2023.102982_bb0415) 2020; 9 Li (10.1016/j.cis.2023.102982_bb0010) 2017; 357 Cui (10.1016/j.cis.2023.102982_bb0100) 2021; 116 Sanderson (10.1016/j.cis.2023.102982_bb0150) 2012; vol. 21 Chen (10.1016/j.cis.2023.102982_bb0625) 2020; 117 Ni (10.1016/j.cis.2023.102982_bb0235) 2022; 11 Kuang (10.1016/j.cis.2023.102982_bb0115) 2023; 4 de Oliveira (10.1016/j.cis.2023.102982_bb0260) 2020; 247 Li (10.1016/j.cis.2023.102982_bb0060) 2016; 1 Stewart (10.1016/j.cis.2023.102982_bb0330) 2011; 49 Fan (10.1016/j.cis.2023.102982_bb0205) 2019; 10 Wang (10.1016/j.cis.2023.102982_bb0360) 2007; 6 Sun (10.1016/j.cis.2023.102982_bb0620) 2022; 44 Saiz-Poseu (10.1016/j.cis.2023.102982_bb0285) 2019; 58 Duan (10.1016/j.cis.2023.102982_bb0580) 2019; 7 Reece (10.1016/j.cis.2023.102982_bb0040) 2001; 182 Hu (10.1016/j.cis.2023.102982_bb0185) 2023; 12 Yuan (10.1016/j.cis.2023.102982_bb0395) 2021; 276 |
References_xml | – volume: 30 start-page: 1704640 year: 2018 ident: bb0325 article-title: Bioinspired underwater adhesives by using the supramolecular toolbox publication-title: Adv Mater – volume: 44 year: 2022 ident: bb0620 article-title: An enzyme cross-linked hydrogel as a minimally invasive arterial tissue sealing and anti-adhesion barrier publication-title: Nano Today – volume: 31 start-page: 2007457 year: 2021 ident: bb0250 article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery publication-title: Adv Funct Mater – volume: 42 start-page: 6634 year: 2013 end-page: 6654 ident: bb0245 article-title: Recent advances in dynamic covalent chemistry publication-title: Chem Soc Rev – volume: 31 start-page: 4553 year: 2019 end-page: 4563 ident: bb0555 article-title: Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics publication-title: Chem Mater – volume: 5 start-page: 310 year: 2020 end-page: 329 ident: bb0015 article-title: Overcoming the translational barriers of tissue adhesives publication-title: Nat Rev Mater – volume: 19 start-page: 2207437 year: 2023 ident: bb0340 article-title: An all-in-one “4A hydrogel”: through first-aid hemostatic, antibacterial, antioxidant, and angiogenic to promoting infected wound healing publication-title: Small – volume: 15 start-page: 190 year: 2016 end-page: 196 ident: bb0125 article-title: Tough bonding of hydrogels to diverse non-porous surfaces publication-title: Nat Mater – volume: 2 start-page: 1089 year: 2001 end-page: 1096 ident: bb0160 article-title: Molecular basis of Ca2+−induced gelation in alginates and pectins: the egg-box model revisited publication-title: Biomacromolecules – volume: 470 year: 2023 ident: bb0315 article-title: A simple yet effective hydrogel dressing for advanced microenvironmental management of diabetic wounds with intrinsic regulation publication-title: Chem Eng J – volume: 505 start-page: 382 year: 2014 end-page: 385 ident: bb0045 article-title: Nanoparticle solutions as adhesives for gels and biological tissues publication-title: Nature – volume: 27 start-page: 6899 year: 2015 end-page: 6905 ident: bb0145 article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels publication-title: Adv Mater – volume: 9 start-page: 1901469 year: 2020 ident: bb0415 article-title: Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis publication-title: Adv Healthc Mater – volume: 117 start-page: 15497 year: 2020 end-page: 15503 ident: bb0625 article-title: Instant tough bioadhesive with triggerable benign detachment publication-title: Proc Natl Acad Sci – volume: 5 start-page: 773 year: 2021 end-page: 791 ident: bb0485 article-title: Haemostatic materials for wound healing applications publication-title: Nat Rev Chem – volume: 6 start-page: 497 year: 2018 ident: bb0405 article-title: Rational design of self-healing tough hydrogels: a mini review publication-title: Front Chem – volume: 7 start-page: 4048 year: 2021 end-page: 4076 ident: bb0095 article-title: Engineering hydrogel adhesion for biomedical applications via chemical design of the junction publication-title: ACS Biomater Sci Eng – volume: 35 start-page: 3558 year: 2014 end-page: 3570 ident: bb0375 article-title: The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan publication-title: Biomaterials – volume: 278 year: 2021 ident: bb0290 article-title: Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration publication-title: Biomaterials – volume: 4 year: 2019 ident: bb0540 article-title: Ferromagnetic soft continuum robots publication-title: Sci Robot – volume: 7 start-page: 1800225 year: 2018 ident: bb0590 article-title: Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture publication-title: Adv Healthc Mater – volume: 111 start-page: 40 year: 2016 end-page: 54 ident: bb0570 article-title: Electroconductive natural polymer-based hydrogels publication-title: Biomaterials – volume: 11 start-page: 2101421 year: 2022 ident: bb0235 article-title: Polyphosphazene and non-catechol-based antibacterial injectable hydrogel for adhesion of wet tissues as wound dressing publication-title: Adv Healthc Mater – volume: 14 start-page: 52643 year: 2022 end-page: 52658 ident: bb0280 article-title: Multistage ROS-responsive and natural polyphenol-driven prodrug hydrogels for diabetic wound healing publication-title: ACS Appl Mater Interfaces – volume: 37 start-page: 389 year: 2019 end-page: 406 ident: bb0525 article-title: Wearable biosensors for healthcare monitoring publication-title: Nat Biotechnol – volume: 117 start-page: 5777 year: 2013 end-page: 5787 ident: bb0200 article-title: Interplay of pH and binding of multivalent metal ions: charge inversion and reentrant condensation in protein solutions publication-title: J Phys Chem B – volume: 8 start-page: 2199 year: 2021 end-page: 2207 ident: bb0295 article-title: Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules publication-title: Mater Horiz – volume: 122 start-page: 5604 year: 2022 end-page: 5640 ident: bb0465 article-title: Supramolecular adhesive hydrogels for tissue engineering applications publication-title: Chem Rev – volume: 5 year: 2019 ident: bb0020 article-title: Bioinspired mechanically active adhesive dressings to accelerate wound closure publication-title: Sci Adv – volume: 119 year: 2022 ident: bb0635 article-title: Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing publication-title: Proc Natl Acad Sci – volume: 7 start-page: 935 year: 2022 end-page: 952 ident: bb0110 article-title: Hydrogel interfaces for merging humans and machines publication-title: Nat Rev Mater – volume: 5 start-page: 2000676 year: 2020 ident: bb0640 article-title: Active membranes on rigidity tunable foundations for programmable, rapidly switchable adhesion publication-title: Adv Mater Technol – volume: 276 year: 2021 ident: bb0395 article-title: A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion publication-title: Biomaterials – volume: 42 start-page: 4872 year: 2003 end-page: 4897 ident: bb0175 article-title: Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes publication-title: Angew Chem Int Ed – volume: 121 start-page: 11336 year: 2021 end-page: 11384 ident: bb0355 article-title: Polymeric tissue adhesives publication-title: Chem Rev – volume: 11 start-page: 2201576 year: 2022 ident: bb0610 article-title: Natural dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects publication-title: Adv Healthc Mater – volume: 16 start-page: 8662 year: 2022 end-page: 8676 ident: bb0645 article-title: Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing publication-title: ACS Nano – volume: 2 start-page: 6708 year: 2014 end-page: 6713 ident: bb0400 article-title: Stiff, strong, and tough hydrogels with good chemical stability publication-title: J Mater Chem B – volume: 182 start-page: S40 year: 2001 end-page: S44 ident: bb0040 article-title: A prospectus on tissue adhesives publication-title: Am J Surg – volume: 50 start-page: 441 year: 2002 end-page: 466 ident: bb0120 article-title: Interfacial toughness measurements for thin films on substrates publication-title: Acta Mater – volume: 575 start-page: 169 year: 2019 end-page: 174 ident: bb0130 article-title: Dry double-sided tape for adhesion of wet tissues and devices publication-title: Nature – volume: 8 start-page: 1240 year: 2020 end-page: 1255 ident: bb0350 article-title: Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives publication-title: Biomater Sci – volume: 18 start-page: 2529 year: 2017 end-page: 2538 ident: bb0490 article-title: Next generation hemostatic materials based on NHS-ester functionalized poly(2-oxazoline)s publication-title: Biomacromolecules – volume: 18 start-page: 1345 year: 2006 end-page: 1360 ident: bb0005 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv Mater – volume: 149 start-page: 97 year: 2017 end-page: 104 ident: bb0595 article-title: Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy publication-title: Colloids Surf B Biointerfaces – volume: 14 start-page: 185 year: 2022 ident: bb0065 article-title: Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing publication-title: Nano-Micro Lett – volume: 55 start-page: 13765 year: 2016 end-page: 13769 ident: bb0585 article-title: UV-induced disulfide formation and reduction for dynamic photopatterning publication-title: Angew Chem Int Ed – volume: 32 start-page: 2109687 year: 2022 ident: bb0390 article-title: Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment publication-title: Adv Funct Mater – volume: 163 start-page: 89 year: 2018 end-page: 104 ident: bb0385 article-title: Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage publication-title: Biomaterials – volume: 10 start-page: 38692 year: 2018 end-page: 38699 ident: bb0380 article-title: Composite double-network hydrogels to improve adhesion on biological surfaces publication-title: ACS Appl Mater Interfaces – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: bb0205 article-title: Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater publication-title: Nat Commun – volume: 17 start-page: 160 year: 2015 end-page: 169 ident: bb0575 article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety publication-title: Acta Biomater – volume: 30 start-page: 1901693 year: 2020 ident: bb0035 article-title: Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics publication-title: Adv Funct Mater – volume: 4 start-page: 101 year: 2023 end-page: 114 ident: bb0115 article-title: Functional tough hydrogels: design, processing, and biomedical applications publication-title: Acc Mater Res – volume: 12 start-page: 4419 year: 2021 ident: bb0650 article-title: Reversible electroadhesion of hydrogels to animal tissues for suture-less repair of cuts or tears publication-title: Nat Commun – volume: 30 start-page: 1800671 year: 2018 ident: bb0070 article-title: Topological adhesion of wet materials publication-title: Adv Mater – volume: 20 start-page: 93 year: 2023 end-page: 110 ident: bb0470 article-title: Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing publication-title: Bioact Mater – volume: 377 start-page: 2092 year: 2017 end-page: 2094 ident: bb0055 article-title: A slick and stretchable surgical adhesive publication-title: N Engl J Med – volume: 377 start-page: 751 year: 2022 end-page: 755 ident: bb0370 article-title: Controlled tough bioadhesion mediated by ultrasound publication-title: Science – volume: 11 start-page: 9478 year: 2019 end-page: 9486 ident: bb0220 article-title: Nitrogen-coordinated boroxines enable the fabrication of mechanically robust supramolecular thermosets capable of healing and recycling under mild conditions publication-title: ACS Appl Mater Interfaces – volume: 32 start-page: 2110066 year: 2022 ident: bb0655 article-title: An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery publication-title: Adv Funct Mater – volume: 34 year: 2022 ident: bb0630 article-title: A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot publication-title: Adv Mater – volume: 37 start-page: 505 year: 2019 end-page: 517 ident: bb0270 article-title: Biofilms in chronic wounds: pathogenesis and diagnosis publication-title: Trends Biotechnol – volume: 124 start-page: 6274 year: 2002 end-page: 6276 ident: bb0230 article-title: Anion−aromatic bonding: a case for anion recognition by π-acidic rings publication-title: J Am Chem Soc – volume: 62 start-page: 179 year: 2017 end-page: 187 ident: bb0500 article-title: An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair publication-title: Acta Biomater – volume: 123 start-page: 834 year: 2023 end-page: 873 ident: bb0085 article-title: Self-healing injectable hydrogels for tissue regeneration publication-title: Chem Rev – volume: 26 start-page: 154 year: 2019 end-page: 174 ident: bb0430 article-title: A review on nanocomposite hydrogels and their biomedical applications publication-title: Sci Eng Compos Mater – volume: 13 start-page: 32 year: 2018 end-page: 44 ident: bb0510 article-title: Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair publication-title: Appl Mater Today – volume: 417 year: 2021 ident: bb0425 article-title: Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing publication-title: Chem Eng J – volume: 1 start-page: 1 year: 2016 end-page: 17 ident: bb0060 article-title: Designing hydrogels for controlled drug delivery publication-title: Nat Rev Mater – volume: 6 start-page: 1167 year: 2022 end-page: 1179 ident: bb0030 article-title: Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity publication-title: Nat Biomed Eng – volume: 29 start-page: 1606100 year: 2017 ident: bb0240 article-title: Dynamic covalent polymer networks: from old chemistry to modern day innovations publication-title: Adv Mater – volume: 331 start-page: 1 year: 2021 end-page: 6 ident: bb0545 article-title: Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release publication-title: J Control Release – volume: 58 start-page: 696 year: 2019 end-page: 714 ident: bb0285 article-title: The chemistry behind catechol-based adhesion publication-title: Angew Chem Int Ed – volume: 116 year: 2021 ident: bb0100 article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications publication-title: Prog Polym Sci – volume: 37 start-page: 382 year: 2019 end-page: 388 ident: bb0520 article-title: Toward a new generation of smart skins publication-title: Nat Biotechnol – volume: 11 start-page: 2200516 year: 2022 ident: bb0605 article-title: Injectable dual-dynamic-bond cross-linked hydrogel for highly efficient infected diabetic wound healing publication-title: Adv Healthc Mater – volume: 446 year: 2022 ident: bb0460 article-title: Sutureless full-thickness skin grafting using a dual drug-in-bioadhesive coacervate publication-title: Chem Eng J – volume: 36 year: 2021 ident: bb0455 article-title: Tissue adhesives: from research to clinical translation publication-title: Nano Today – volume: 357 start-page: 378 year: 2017 end-page: 381 ident: bb0010 article-title: Tough adhesives for diverse wet surfaces publication-title: Science – volume: 4 start-page: 185 year: 2021 end-page: 192 ident: bb0560 article-title: An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics publication-title: Nat Electron – volume: 122 start-page: 5165 year: 2022 end-page: 5208 ident: bb0475 article-title: Ultrasound-responsive systems as components for smart materials publication-title: Chem Rev – volume: 41 start-page: 48 year: 2002 end-page: 76 ident: bb0155 article-title: The hydrogen bond in the solid state publication-title: Angew Chem Int Ed – volume: 49 start-page: 757 year: 2011 end-page: 771 ident: bb0330 article-title: Natural underwater adhesives publication-title: J Polym Sci B – volume: 6 start-page: 385 year: 2007 end-page: 392 ident: bb0360 article-title: Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration publication-title: Nat Mater – start-page: 2301086 year: 2023 ident: bb0310 article-title: Highly tough and biodegradable PEG-based bioadhesives for large-scaled liver injury hemostasis and tissue regeneration publication-title: Adv Healthc Mater – volume: 95 year: 2022 ident: bb0565 article-title: Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics publication-title: Nano Energy – volume: 12 start-page: 2201594 year: 2023 ident: bb0185 article-title: An ECM-mimicking, injectable, viscoelastic hydrogel for treatment of brain lesions publication-title: Adv Healthc Mater – volume: 7 start-page: 1038 year: 2016 end-page: 1050 ident: bb0225 article-title: A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects publication-title: Chem Sci – volume: 299 year: 2023 ident: bb0265 article-title: Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation publication-title: Carbohydr Polym – volume: 31 start-page: 2008010 year: 2021 ident: bb0615 article-title: Rapid-fabricated and recoverable dual-network hydrogel with inherently anti-bacterial abilities for potential adhesive dressings publication-title: Adv Funct Mater – volume: 22 year: 2022 ident: bb0080 article-title: Injectable adhesive hydrogels for soft tissue reconstruction: a materials chemistry perspective publication-title: Chem Rec – volume: 6 start-page: 1689 year: 2021 end-page: 1698 ident: bb0515 article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration publication-title: Bioact Mater – volume: 12 start-page: 2201799 year: 2023 ident: bb0305 article-title: Superwetting injectable hydrogel with ultrastrong and fast tissue adhesion for minimally invasive hemostasis publication-title: Adv Healthc Mater – volume: 285 start-page: 25850 year: 2010 end-page: 25858 ident: bb0320 article-title: Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques* publication-title: J Biol Chem – volume: 15 start-page: 662 year: 2023 end-page: 676 ident: bb0495 article-title: An antibacterial and antiadhesion in situ forming hydrogel with sol–spray system for noncompressible hemostasis publication-title: ACS Appl Mater Interfaces – volume: 32 start-page: 2001628 year: 2020 ident: bb0190 article-title: An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery publication-title: Adv Mater – start-page: 2211340 year: 2022 ident: bb0440 article-title: Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing publication-title: Adv Funct Mater – volume: 46 start-page: 885 year: 2013 end-page: 893 ident: bb0210 article-title: The cation−π interaction publication-title: Acc Chem Res – volume: 30 start-page: 2005689 year: 2020 ident: bb0345 article-title: A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion publication-title: Adv Funct Mater – volume: 41 start-page: 99 year: 2011 end-page: 132 ident: bb0050 article-title: Mussel-inspired adhesives and coatings publication-title: Annu Rev Mat Res – volume: 32 start-page: 2004290 year: 2020 ident: bb0535 article-title: Bioinspired self-healing human–machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates publication-title: Adv Mater – volume: 394 start-page: 539 year: 1998 end-page: 544 ident: bb0140 article-title: Design and self-assembly of two-dimensional DNA crystals publication-title: Nature – volume: 30 start-page: 1904156 year: 2020 ident: bb0420 article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment publication-title: Adv Funct Mater – volume: 17 start-page: 2745 year: 2023 end-page: 2760 ident: bb0335 article-title: Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhesion publication-title: ACS Nano – volume: 5 year: 2013 ident: bb0505 article-title: Human cartilage repair with a photoreactive adhesive-hydrogel composite publication-title: Sci Transl Med – volume: 12 start-page: 1 year: 2021 end-page: 17 ident: bb0025 article-title: A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery publication-title: Nat Commun – volume: 247 year: 2020 ident: bb0260 article-title: Boronate-ester crosslinked hyaluronic acid hydrogels for dihydrocaffeic acid delivery and fibroblasts protection against UVB irradiation publication-title: Carbohydr Polym – volume: 78 year: 2020 ident: bb0550 article-title: Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles publication-title: Nano Energy – volume: 15 start-page: 1155 year: 2003 end-page: 1158 ident: bb0410 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv Mater – volume: 300 start-page: 341 year: 1982 end-page: 342 ident: bb0170 article-title: The hydrophobic interaction is long range, decaying exponentially with distance publication-title: Nature – start-page: 2213008 year: 2023 ident: bb0480 article-title: A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing publication-title: Adv Funct Mater – volume: 7 start-page: 605 year: 2020 end-page: 614 ident: bb0660 article-title: Wound dressing change facilitated by spraying zinc ions publication-title: Mater Horiz – volume: 28 start-page: 1804925 year: 2018 ident: bb0445 article-title: An autolytic high strength instant adhesive hydrogel for emergency self-rescue publication-title: Adv Funct Mater – volume: 121 start-page: 4309 year: 2021 end-page: 4372 ident: bb0105 article-title: Soft materials by design: unconventional polymer networks give extreme properties publication-title: Chem Rev – volume: 4 start-page: 1702 year: 2013 ident: bb0135 article-title: A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue publication-title: Nat Commun – volume: 139 start-page: 4 year: 2022 end-page: 21 ident: bb0090 article-title: Rational design of injectable conducting polymer-based hydrogels for tissue engineering publication-title: Acta Biomater – volume: 12 start-page: 16 year: 2019 end-page: 33 ident: bb0180 article-title: Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters publication-title: Mater Today Chem – volume: 9 start-page: 2101038 year: 2022 ident: bb0300 article-title: Recent advances on designs and applications of hydrogel adhesives publication-title: Adv Mater Interfaces – volume: vol. 21 year: 2012 ident: bb0150 article-title: Chemical bonds and bonds energy – volume: 6 year: 2020 ident: bb0215 article-title: π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks publication-title: Sci Adv – volume: 7 start-page: 5478 year: 2019 end-page: 5489 ident: bb0580 article-title: Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages publication-title: J Mater Chem B – volume: 16 start-page: 3194 year: 2022 end-page: 3207 ident: bb0255 article-title: pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing publication-title: ACS Nano – volume: 94 start-page: 127 year: 2016 end-page: 147 ident: bb0435 article-title: A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers publication-title: J Mech Phys Solids – volume: 28 start-page: 4497 year: 2016 end-page: 4505 ident: bb0530 article-title: Stretchable hydrogel electronics and devices publication-title: Adv Mater – volume: 34 start-page: 2205567 year: 2022 ident: bb0075 article-title: Rapid ultratough topological tissue adhesives publication-title: Adv Mater – volume: 137 start-page: 237 year: 2017 end-page: 244 ident: bb0275 article-title: Temporal stability in chronic wound microbiota is associated with poor healing publication-title: J Invest Dermatol – volume: 118 start-page: 1691 year: 2018 end-page: 1741 ident: bb0195 article-title: Electrostatic interactions in protein structure, folding, binding, and condensation publication-title: Chem Rev – volume: 14 start-page: 54488 year: 2022 end-page: 54499 ident: bb0450 article-title: Strong biopolymer-based nanocomposite hydrogel adhesives with removability and reusability for damaged tissue closure and healing publication-title: ACS Appl Mater Interfaces – volume: 419 year: 2021 ident: bb0600 article-title: Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects publication-title: Chem Eng J – volume: 112 start-page: 4768 year: 1990 end-page: 4774 ident: bb0165 article-title: Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene publication-title: J Am Chem Soc – volume: 11 start-page: 24802 year: 2019 end-page: 24811 ident: bb0365 article-title: Design molecular topology for wet–dry adhesion publication-title: ACS Appl Mater Interfaces – volume: 37 start-page: 382 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0520 article-title: Toward a new generation of smart skins publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0079-1 – volume: 28 start-page: 4497 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0530 article-title: Stretchable hydrogel electronics and devices publication-title: Adv Mater doi: 10.1002/adma.201504152 – volume: 41 start-page: 48 year: 2002 ident: 10.1016/j.cis.2023.102982_bb0155 article-title: The hydrogen bond in the solid state publication-title: Angew Chem Int Ed doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U – volume: 122 start-page: 5604 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0465 article-title: Supramolecular adhesive hydrogels for tissue engineering applications publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00815 – volume: 2 start-page: 6708 year: 2014 ident: 10.1016/j.cis.2023.102982_bb0400 article-title: Stiff, strong, and tough hydrogels with good chemical stability publication-title: J Mater Chem B doi: 10.1039/C4TB01194E – volume: 111 start-page: 40 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0570 article-title: Electroconductive natural polymer-based hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.020 – volume: 377 start-page: 751 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0370 article-title: Controlled tough bioadhesion mediated by ultrasound publication-title: Science doi: 10.1126/science.abn8699 – volume: 121 start-page: 4309 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0105 article-title: Soft materials by design: unconventional polymer networks give extreme properties publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01088 – volume: 34 start-page: 2205567 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0075 article-title: Rapid ultratough topological tissue adhesives publication-title: Adv Mater doi: 10.1002/adma.202205567 – volume: 121 start-page: 11336 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0355 article-title: Polymeric tissue adhesives publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00798 – volume: 15 start-page: 662 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0495 article-title: An antibacterial and antiadhesion in situ forming hydrogel with sol–spray system for noncompressible hemostasis publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c19662 – volume: 30 start-page: 2005689 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0345 article-title: A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion publication-title: Adv Funct Mater doi: 10.1002/adfm.202005689 – volume: 8 start-page: 1240 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0350 article-title: Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives publication-title: Biomater Sci doi: 10.1039/C9BM01848D – volume: 18 start-page: 1345 year: 2006 ident: 10.1016/j.cis.2023.102982_bb0005 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv Mater doi: 10.1002/adma.200501612 – volume: 2 start-page: 1089 year: 2001 ident: 10.1016/j.cis.2023.102982_bb0160 article-title: Molecular basis of Ca2+−induced gelation in alginates and pectins: the egg-box model revisited publication-title: Biomacromolecules doi: 10.1021/bm010008g – volume: 31 start-page: 2007457 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0250 article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery publication-title: Adv Funct Mater doi: 10.1002/adfm.202007457 – volume: 44 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0620 article-title: An enzyme cross-linked hydrogel as a minimally invasive arterial tissue sealing and anti-adhesion barrier publication-title: Nano Today doi: 10.1016/j.nantod.2022.101467 – volume: 49 start-page: 757 year: 2011 ident: 10.1016/j.cis.2023.102982_bb0330 article-title: Natural underwater adhesives publication-title: J Polym Sci B doi: 10.1002/polb.22256 – volume: 13 start-page: 32 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0510 article-title: Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair publication-title: Appl Mater Today doi: 10.1016/j.apmt.2018.08.005 – volume: 10 start-page: 38692 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0380 article-title: Composite double-network hydrogels to improve adhesion on biological surfaces publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b10735 – volume: 278 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0290 article-title: Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121169 – volume: 22 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0080 article-title: Injectable adhesive hydrogels for soft tissue reconstruction: a materials chemistry perspective publication-title: Chem Rec doi: 10.1002/tcr.202200155 – volume: 55 start-page: 13765 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0585 article-title: UV-induced disulfide formation and reduction for dynamic photopatterning publication-title: Angew Chem Int Ed doi: 10.1002/anie.201607276 – volume: 5 start-page: 310 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0015 article-title: Overcoming the translational barriers of tissue adhesives publication-title: Nat Rev Mater doi: 10.1038/s41578-019-0171-7 – volume: 29 start-page: 1606100 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0240 article-title: Dynamic covalent polymer networks: from old chemistry to modern day innovations publication-title: Adv Mater doi: 10.1002/adma.201606100 – volume: 575 start-page: 169 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0130 article-title: Dry double-sided tape for adhesion of wet tissues and devices publication-title: Nature doi: 10.1038/s41586-019-1710-5 – volume: 12 start-page: 2201799 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0305 article-title: Superwetting injectable hydrogel with ultrastrong and fast tissue adhesion for minimally invasive hemostasis publication-title: Adv Healthc Mater doi: 10.1002/adhm.202201799 – start-page: 2213008 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0480 article-title: A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing publication-title: Adv Funct Mater doi: 10.1002/adfm.202213008 – volume: 30 start-page: 1901693 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0035 article-title: Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics publication-title: Adv Funct Mater doi: 10.1002/adfm.201901693 – volume: 26 start-page: 154 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0430 article-title: A review on nanocomposite hydrogels and their biomedical applications publication-title: Sci Eng Compos Mater doi: 10.1515/secm-2017-0161 – volume: 62 start-page: 179 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0500 article-title: An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair publication-title: Acta Biomater doi: 10.1016/j.actbio.2017.05.023 – volume: 6 start-page: 1167 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0030 article-title: Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity publication-title: Nat Biomed Eng doi: 10.1038/s41551-021-00810-0 – volume: 15 start-page: 190 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0125 article-title: Tough bonding of hydrogels to diverse non-porous surfaces publication-title: Nat Mater doi: 10.1038/nmat4463 – volume: 7 start-page: 605 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0660 article-title: Wound dressing change facilitated by spraying zinc ions publication-title: Mater Horiz doi: 10.1039/C9MH01255A – volume: 32 start-page: 2004290 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0535 article-title: Bioinspired self-healing human–machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates publication-title: Adv Mater doi: 10.1002/adma.202004290 – start-page: 2301086 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0310 article-title: Highly tough and biodegradable PEG-based bioadhesives for large-scaled liver injury hemostasis and tissue regeneration publication-title: Adv Healthc Mater doi: 10.1002/adhm.202301086 – volume: 9 start-page: 1901469 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0415 article-title: Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis publication-title: Adv Healthc Mater doi: 10.1002/adhm.201901469 – volume: 139 start-page: 4 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0090 article-title: Rational design of injectable conducting polymer-based hydrogels for tissue engineering publication-title: Acta Biomater doi: 10.1016/j.actbio.2021.04.027 – volume: 7 start-page: 4048 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0095 article-title: Engineering hydrogel adhesion for biomedical applications via chemical design of the junction publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.0c01677 – volume: 4 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0540 article-title: Ferromagnetic soft continuum robots publication-title: Sci Robot doi: 10.1126/scirobotics.aax7329 – volume: 7 start-page: 5478 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0580 article-title: Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages publication-title: J Mater Chem B doi: 10.1039/C9TB01126A – volume: 41 start-page: 99 year: 2011 ident: 10.1016/j.cis.2023.102982_bb0050 article-title: Mussel-inspired adhesives and coatings publication-title: Annu Rev Mat Res doi: 10.1146/annurev-matsci-062910-100429 – volume: 394 start-page: 539 year: 1998 ident: 10.1016/j.cis.2023.102982_bb0140 article-title: Design and self-assembly of two-dimensional DNA crystals publication-title: Nature doi: 10.1038/28998 – volume: 4 start-page: 101 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0115 article-title: Functional tough hydrogels: design, processing, and biomedical applications publication-title: Acc Mater Res doi: 10.1021/accountsmr.2c00026 – volume: 4 start-page: 185 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0560 article-title: An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics publication-title: Nat Electron doi: 10.1038/s41928-021-00545-5 – volume: 14 start-page: 54488 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0450 article-title: Strong biopolymer-based nanocomposite hydrogel adhesives with removability and reusability for damaged tissue closure and healing publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c14103 – volume: 11 start-page: 2201576 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0610 article-title: Natural dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects publication-title: Adv Healthc Mater doi: 10.1002/adhm.202201576 – volume: 124 start-page: 6274 year: 2002 ident: 10.1016/j.cis.2023.102982_bb0230 article-title: Anion−aromatic bonding: a case for anion recognition by π-acidic rings publication-title: J Am Chem Soc doi: 10.1021/ja017449s – volume: 31 start-page: 4553 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0555 article-title: Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics publication-title: Chem Mater doi: 10.1021/acs.chemmater.9b01239 – volume: 116 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0100 article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2021.101388 – volume: 299 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0265 article-title: Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2022.120180 – volume: 118 start-page: 1691 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0195 article-title: Electrostatic interactions in protein structure, folding, binding, and condensation publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00305 – volume: 446 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0460 article-title: Sutureless full-thickness skin grafting using a dual drug-in-bioadhesive coacervate publication-title: Chem Eng J doi: 10.1016/j.cej.2022.137272 – volume: 505 start-page: 382 year: 2014 ident: 10.1016/j.cis.2023.102982_bb0045 article-title: Nanoparticle solutions as adhesives for gels and biological tissues publication-title: Nature doi: 10.1038/nature12806 – volume: 37 start-page: 505 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0270 article-title: Biofilms in chronic wounds: pathogenesis and diagnosis publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2018.10.011 – volume: 35 start-page: 3558 year: 2014 ident: 10.1016/j.cis.2023.102982_bb0375 article-title: The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.002 – volume: 50 start-page: 441 year: 2002 ident: 10.1016/j.cis.2023.102982_bb0120 article-title: Interfacial toughness measurements for thin films on substrates publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00354-8 – volume: 16 start-page: 3194 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0255 article-title: pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing publication-title: ACS Nano doi: 10.1021/acsnano.1c11040 – volume: 11 start-page: 2101421 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0235 article-title: Polyphosphazene and non-catechol-based antibacterial injectable hydrogel for adhesion of wet tissues as wound dressing publication-title: Adv Healthc Mater doi: 10.1002/adhm.202101421 – volume: 17 start-page: 2745 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0335 article-title: Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhesion publication-title: ACS Nano doi: 10.1021/acsnano.2c11053 – volume: 30 start-page: 1800671 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0070 article-title: Topological adhesion of wet materials publication-title: Adv Mater doi: 10.1002/adma.201800671 – volume: 20 start-page: 93 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0470 article-title: Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing publication-title: Bioact Mater – volume: 36 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0455 article-title: Tissue adhesives: from research to clinical translation publication-title: Nano Today doi: 10.1016/j.nantod.2020.101049 – volume: 6 start-page: 497 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0405 article-title: Rational design of self-healing tough hydrogels: a mini review publication-title: Front Chem doi: 10.3389/fchem.2018.00497 – volume: 11 start-page: 9478 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0220 article-title: Nitrogen-coordinated boroxines enable the fabrication of mechanically robust supramolecular thermosets capable of healing and recycling under mild conditions publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b00006 – volume: 163 start-page: 89 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0385 article-title: Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.02.016 – volume: 11 start-page: 2200516 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0605 article-title: Injectable dual-dynamic-bond cross-linked hydrogel for highly efficient infected diabetic wound healing publication-title: Adv Healthc Mater doi: 10.1002/adhm.202200516 – volume: 18 start-page: 2529 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0490 article-title: Next generation hemostatic materials based on NHS-ester functionalized poly(2-oxazoline)s publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00683 – volume: 300 start-page: 341 year: 1982 ident: 10.1016/j.cis.2023.102982_bb0170 article-title: The hydrophobic interaction is long range, decaying exponentially with distance publication-title: Nature doi: 10.1038/300341a0 – volume: 30 start-page: 1904156 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0420 article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment publication-title: Adv Funct Mater doi: 10.1002/adfm.201904156 – volume: 419 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0600 article-title: Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129520 – volume: 94 start-page: 127 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0435 article-title: A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2016.04.011 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0205 article-title: Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater publication-title: Nat Commun doi: 10.1038/s41467-019-13171-9 – volume: 15 start-page: 1155 year: 2003 ident: 10.1016/j.cis.2023.102982_bb0410 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv Mater doi: 10.1002/adma.200304907 – volume: 11 start-page: 24802 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0365 article-title: Design molecular topology for wet–dry adhesion publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b07522 – volume: 27 start-page: 6899 year: 2015 ident: 10.1016/j.cis.2023.102982_bb0145 article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels publication-title: Adv Mater doi: 10.1002/adma.201503724 – volume: 276 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0395 article-title: A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120838 – volume: 417 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0425 article-title: Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129329 – volume: vol. 21 year: 2012 ident: 10.1016/j.cis.2023.102982_bb0150 – volume: 112 start-page: 4768 year: 1990 ident: 10.1016/j.cis.2023.102982_bb0165 article-title: Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene publication-title: J Am Chem Soc doi: 10.1021/ja00168a022 – volume: 28 start-page: 1804925 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0445 article-title: An autolytic high strength instant adhesive hydrogel for emergency self-rescue publication-title: Adv Funct Mater doi: 10.1002/adfm.201804925 – volume: 5 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0020 article-title: Bioinspired mechanically active adhesive dressings to accelerate wound closure publication-title: Sci Adv doi: 10.1126/sciadv.aaw3963 – volume: 377 start-page: 2092 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0055 article-title: A slick and stretchable surgical adhesive publication-title: N Engl J Med doi: 10.1056/NEJMcibr1709967 – volume: 14 start-page: 185 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0065 article-title: Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing publication-title: Nano-Micro Lett doi: 10.1007/s40820-022-00928-z – volume: 117 start-page: 5777 year: 2013 ident: 10.1016/j.cis.2023.102982_bb0200 article-title: Interplay of pH and binding of multivalent metal ions: charge inversion and reentrant condensation in protein solutions publication-title: J Phys Chem B doi: 10.1021/jp401874t – volume: 17 start-page: 160 year: 2015 ident: 10.1016/j.cis.2023.102982_bb0575 article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety publication-title: Acta Biomater doi: 10.1016/j.actbio.2015.02.002 – volume: 12 start-page: 16 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0180 article-title: Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters publication-title: Mater Today Chem doi: 10.1016/j.mtchem.2018.12.001 – volume: 32 start-page: 2109687 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0390 article-title: Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment publication-title: Adv Funct Mater doi: 10.1002/adfm.202109687 – volume: 122 start-page: 5165 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0475 article-title: Ultrasound-responsive systems as components for smart materials publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00622 – volume: 137 start-page: 237 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0275 article-title: Temporal stability in chronic wound microbiota is associated with poor healing publication-title: J Invest Dermatol doi: 10.1016/j.jid.2016.08.009 – volume: 117 start-page: 15497 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0625 article-title: Instant tough bioadhesive with triggerable benign detachment publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2006389117 – volume: 42 start-page: 6634 year: 2013 ident: 10.1016/j.cis.2023.102982_bb0245 article-title: Recent advances in dynamic covalent chemistry publication-title: Chem Soc Rev doi: 10.1039/c3cs60044k – volume: 149 start-page: 97 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0595 article-title: Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2016.10.013 – volume: 6 start-page: 385 year: 2007 ident: 10.1016/j.cis.2023.102982_bb0360 article-title: Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration publication-title: Nat Mater doi: 10.1038/nmat1890 – volume: 5 start-page: 2000676 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0640 article-title: Active membranes on rigidity tunable foundations for programmable, rapidly switchable adhesion publication-title: Adv Mater Technol doi: 10.1002/admt.202000676 – volume: 182 start-page: S40 year: 2001 ident: 10.1016/j.cis.2023.102982_bb0040 article-title: A prospectus on tissue adhesives publication-title: Am J Surg doi: 10.1016/S0002-9610(01)00742-5 – volume: 31 start-page: 2008010 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0615 article-title: Rapid-fabricated and recoverable dual-network hydrogel with inherently anti-bacterial abilities for potential adhesive dressings publication-title: Adv Funct Mater doi: 10.1002/adfm.202008010 – volume: 8 start-page: 2199 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0295 article-title: Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules publication-title: Mater Horiz doi: 10.1039/D1MH00533B – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0060 article-title: Designing hydrogels for controlled drug delivery publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.71 – volume: 42 start-page: 4872 year: 2003 ident: 10.1016/j.cis.2023.102982_bb0175 article-title: Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes publication-title: Angew Chem Int Ed doi: 10.1002/anie.200200565 – volume: 37 start-page: 389 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0525 article-title: Wearable biosensors for healthcare monitoring publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0045-y – volume: 12 start-page: 1 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0025 article-title: A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery publication-title: Nat Commun – volume: 7 start-page: 1800225 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0590 article-title: Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture publication-title: Adv Healthc Mater doi: 10.1002/adhm.201800225 – volume: 14 start-page: 52643 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0280 article-title: Multistage ROS-responsive and natural polyphenol-driven prodrug hydrogels for diabetic wound healing publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c15686 – volume: 5 start-page: 773 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0485 article-title: Haemostatic materials for wound healing applications publication-title: Nat Rev Chem doi: 10.1038/s41570-021-00323-z – volume: 470 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0315 article-title: A simple yet effective hydrogel dressing for advanced microenvironmental management of diabetic wounds with intrinsic regulation publication-title: Chem Eng J doi: 10.1016/j.cej.2023.143987 – volume: 357 start-page: 378 year: 2017 ident: 10.1016/j.cis.2023.102982_bb0010 article-title: Tough adhesives for diverse wet surfaces publication-title: Science doi: 10.1126/science.aah6362 – volume: 12 start-page: 4419 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0650 article-title: Reversible electroadhesion of hydrogels to animal tissues for suture-less repair of cuts or tears publication-title: Nat Commun doi: 10.1038/s41467-021-24022-x – volume: 6 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0215 article-title: π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks publication-title: Sci Adv doi: 10.1126/sciadv.aax9976 – volume: 19 start-page: 2207437 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0340 article-title: An all-in-one “4A hydrogel”: through first-aid hemostatic, antibacterial, antioxidant, and angiogenic to promoting infected wound healing publication-title: Small doi: 10.1002/smll.202207437 – volume: 30 start-page: 1704640 year: 2018 ident: 10.1016/j.cis.2023.102982_bb0325 article-title: Bioinspired underwater adhesives by using the supramolecular toolbox publication-title: Adv Mater doi: 10.1002/adma.201704640 – volume: 32 start-page: 2001628 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0190 article-title: An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery publication-title: Adv Mater doi: 10.1002/adma.202001628 – volume: 4 start-page: 1702 year: 2013 ident: 10.1016/j.cis.2023.102982_bb0135 article-title: A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue publication-title: Nat Commun doi: 10.1038/ncomms2715 – volume: 247 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0260 article-title: Boronate-ester crosslinked hyaluronic acid hydrogels for dihydrocaffeic acid delivery and fibroblasts protection against UVB irradiation publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.116845 – volume: 331 start-page: 1 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0545 article-title: Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release publication-title: J Control Release doi: 10.1016/j.jconrel.2021.01.011 – volume: 12 start-page: 2201594 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0185 article-title: An ECM-mimicking, injectable, viscoelastic hydrogel for treatment of brain lesions publication-title: Adv Healthc Mater doi: 10.1002/adhm.202201594 – volume: 9 start-page: 2101038 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0300 article-title: Recent advances on designs and applications of hydrogel adhesives publication-title: Adv Mater Interfaces doi: 10.1002/admi.202101038 – volume: 7 start-page: 935 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0110 article-title: Hydrogel interfaces for merging humans and machines publication-title: Nat Rev Mater doi: 10.1038/s41578-022-00483-4 – volume: 58 start-page: 696 year: 2019 ident: 10.1016/j.cis.2023.102982_bb0285 article-title: The chemistry behind catechol-based adhesion publication-title: Angew Chem Int Ed doi: 10.1002/anie.201801063 – volume: 123 start-page: 834 year: 2023 ident: 10.1016/j.cis.2023.102982_bb0085 article-title: Self-healing injectable hydrogels for tissue regeneration publication-title: Chem Rev doi: 10.1021/acs.chemrev.2c00179 – volume: 7 start-page: 1038 year: 2016 ident: 10.1016/j.cis.2023.102982_bb0225 article-title: A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects publication-title: Chem Sci doi: 10.1039/C5SC01386K – volume: 6 start-page: 1689 year: 2021 ident: 10.1016/j.cis.2023.102982_bb0515 article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration publication-title: Bioact Mater – volume: 46 start-page: 885 year: 2013 ident: 10.1016/j.cis.2023.102982_bb0210 article-title: The cation−π interaction publication-title: Acc Chem Res doi: 10.1021/ar300265y – volume: 78 year: 2020 ident: 10.1016/j.cis.2023.102982_bb0550 article-title: Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105389 – volume: 34 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0630 article-title: A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot publication-title: Adv Mater – volume: 32 start-page: 2110066 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0655 article-title: An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery publication-title: Adv Funct Mater doi: 10.1002/adfm.202110066 – volume: 95 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0565 article-title: Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106991 – start-page: 2211340 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0440 article-title: Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing publication-title: Adv Funct Mater – volume: 5 year: 2013 ident: 10.1016/j.cis.2023.102982_bb0505 article-title: Human cartilage repair with a photoreactive adhesive-hydrogel composite publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004838 – volume: 16 start-page: 8662 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0645 article-title: Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing publication-title: ACS Nano doi: 10.1021/acsnano.2c00662 – volume: 285 start-page: 25850 year: 2010 ident: 10.1016/j.cis.2023.102982_bb0320 article-title: Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques* publication-title: J Biol Chem doi: 10.1074/jbc.M110.133157 – volume: 119 year: 2022 ident: 10.1016/j.cis.2023.102982_bb0635 article-title: Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing publication-title: Proc Natl Acad Sci |
SSID | ssj0002575 |
Score | 2.5887697 |
SecondaryResourceType | review_article |
Snippet | Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102982 |
SubjectTerms | Adhesion Design Injectable hydrogel Interfacial toughness Mechanical dissipation |
Title | Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications |
URI | https://dx.doi.org/10.1016/j.cis.2023.102982 https://www.proquest.com/docview/2853945178 |
Volume | 319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90IvoiOhXnx4jgk1Bd27RpH8dQpkMfZMO91TRNXWV0Yx_CXvzbvVvaoYI--FR65Eq5u9z9klzuAC6kDnyOlmDp1E8t7sQ4pXzHRiAXBxgtqcgbbQ08PPrtHr_ve_01aJV3YSitsvD9xqcvvXVBuS6keT3OMrrj26Ba7xi_Dc5fhw3HDX2vAhvNu077ceWQ0SpNIwNcORNDebi5TPNSGRXtdlyqYRAGzm_h6YejXkaf213YKWAja5o_24M1nVdh0zSSXFRhq1X2bUPqMqlTTffhpUsteJhMBpr2xJjOB1RdI39l01lZIYIhaGVZTrsxdImKDRbJZPSqhwXXO47IcmYu6ZM-2dcT7wPo3d50W22r6KhgKddtzCzuKlwfBZIjKFRJIoXNk9DWSngaAztPha3cWHh-aqcOwm5Pa8Gl5LgGTG0v8BP3ECr5KNdHwEKepE4jFYgfYy48GQhH4-RXiauRJoMaNEpBRqooN05dL4ZRmVf2hvRpRLKPjOxrcLliGZtaG38N5qV2om8GE2Es-IvtvNRkhHqh0xGZ69EcByFwCblni-D4f58-gW16Mwlop1CZTeb6DBHLLK7D-tWHXS_skp6dp-fOJ8Et6iU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qIvUiWhXfruBJiDbJJpscpViqVk8t9BY3m00bKWlpq-DF3-5MNvEFevA6mQ1hZjLz7e48AM6kDnyOlmDp1E8t7sT4S_mOjUAuDjBaUpM3Ohq4f_A7fX478AY1aFW1MJRWWfp-49MLb11SLktpXk6zjGp8m9TrHeO3wflLsMI9V1Be38XbZ54H2qQZY4D7ZmKvrjaLJC-VUctux6UOBmHg_BacfrjpIva0N2C9BI3synzXJtR03oBVM0bytQH1VjW1DalFSqeab8FjjwbwMJmMNJ2IMZ2PqLdGPmTzRdUfgiFkZVlOZzFUQsVGr8lsMtTjctULcmQ5MyX6pE329b57G_rt616rY5XzFCzlus2FxV2Fu6NAcoSEKkmksHkS2loJT2NY56mwlRsLz0_t1EHQ7WktuJQcd4Cp7QV-4u7Acj7J9S6wkCep00wFoseYC08GwtH466vE1UiTwR40K0FGqmw2TjMvxlGVVfaE9HlEso-M7Pfg_GPJ1HTa-IuZV9qJvplLhJHgr2WnlSYj1AvdjchcT56RCWFLyD1bBPv_e_UJ1Du9-27UvXm4O4A1emJS0Q5heTF71keIXRbxcWGb72sT6U0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tough+adhesion+enhancing+strategies+for+injectable+hydrogel+adhesives+in+biomedical+applications&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Ouyang%2C+Chenguang&rft.au=Yu%2C+Haojie&rft.au=Wang%2C+Li&rft.au=Ni%2C+Zhipeng&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=0001-8686&rft.eissn=1873-3727&rft.volume=319&rft_id=info:doi/10.1016%2Fj.cis.2023.102982&rft.externalDocID=S0001868623001495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon |