Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications

Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hem...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 319; p. 102982
Main Authors Ouyang, Chenguang, Yu, Haojie, Wang, Li, Ni, Zhipeng, Liu, Xiaowei, Shen, Di, Yang, Jian, Shi, Kehang, Wang, Huanan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text
ISSN0001-8686
1873-3727
1873-3727
DOI10.1016/j.cis.2023.102982

Cover

Abstract Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications. [Display omitted] •General design principles for integrating strong interfacial linkages and tough dissipative hydrogel matrices.•Different strategies for enhancing the intrinsic interfacial toughness (Γ0inter) and the mechanical dissipation (ΓDinter).•Several biomedical applications of injectable hydrogel adhesives targeted to specific tissue adhesion needs.•The challenges and trends in producing next-generation multifunctional injectable hydrogel adhesives.
AbstractList Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications.Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications.
Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications. [Display omitted] •General design principles for integrating strong interfacial linkages and tough dissipative hydrogel matrices.•Different strategies for enhancing the intrinsic interfacial toughness (Γ0inter) and the mechanical dissipation (ΓDinter).•Several biomedical applications of injectable hydrogel adhesives targeted to specific tissue adhesion needs.•The challenges and trends in producing next-generation multifunctional injectable hydrogel adhesives.
ArticleNumber 102982
Author Liu, Xiaowei
Shi, Kehang
Ni, Zhipeng
Yu, Haojie
Shen, Di
Wang, Li
Ouyang, Chenguang
Yang, Jian
Wang, Huanan
Author_xml – sequence: 1
  givenname: Chenguang
  surname: Ouyang
  fullname: Ouyang, Chenguang
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 2
  givenname: Haojie
  surname: Yu
  fullname: Yu, Haojie
  email: hjyu@zju.edu.cn
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 4
  givenname: Zhipeng
  surname: Ni
  fullname: Ni, Zhipeng
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 5
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 6
  givenname: Di
  surname: Shen
  fullname: Shen, Di
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 7
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
– sequence: 8
  givenname: Kehang
  surname: Shi
  fullname: Shi, Kehang
  organization: Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
– sequence: 9
  givenname: Huanan
  surname: Wang
  fullname: Wang, Huanan
  organization: Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
BookMark eNp9kD1PwzAQhi1UJErhB7BlZEnxV-JETKjiS6rEUmbjOpfEUWoHO63Uf48hnRg62Xd6n9Pdc41m1llA6I7gJcEkf-iW2oQlxZTFmpYFvUBzUgiWMkHFDM0xxiQt8iK_QtchdLGkmcjm6Gvj9k2bqKqFYJxNwLbKamObJIxejdAYCEntfGJsB3pU2x6S9lh510B_og4xYWyyNW4HldEq9oehj58xDgw36LJWfYDb07tAny_Pm9Vbuv54fV89rVPNGB5TzrQgeaF4SXJdVUoQXpUEtMiA45zXgmi2FVlek5oKQTMAwZXiHJc1yYq8Ygt0P80dvPveQxjlzgQNfa8suH2QtMhYyTMiihgVU1R7F4KHWmoz_m0bTza9JFj-OpVd7EcwOpWT00iSf-TgzU7541nmcWIgXn8w4GXQBqyOrnw0KitnztA_m0iSIw
CitedBy_id crossref_primary_10_1021_acsami_4c00710
crossref_primary_10_1002_marc_202400835
crossref_primary_10_1016_j_actbio_2024_03_015
crossref_primary_10_1016_j_bioadv_2025_214287
crossref_primary_10_1016_j_ijbiomac_2024_134105
crossref_primary_10_1039_D4TB01049C
crossref_primary_10_1002_macp_202400471
crossref_primary_10_1186_s40001_023_01429_4
crossref_primary_10_1002_smll_202401152
crossref_primary_10_1016_j_cej_2024_153674
crossref_primary_10_1177_20417314241309183
crossref_primary_10_3390_gels11030179
crossref_primary_10_1016_j_ijbiomac_2024_138966
crossref_primary_10_1002_bmm2_12089
crossref_primary_10_1016_j_biomaterials_2024_123038
crossref_primary_10_1002_app_56017
crossref_primary_10_1039_D4LP00139G
crossref_primary_10_1002_adfm_202312374
crossref_primary_10_1002_adma_202407707
crossref_primary_10_1016_j_polymdegradstab_2024_110772
crossref_primary_10_1016_j_arabjc_2024_105968
crossref_primary_10_1016_j_bioactmat_2024_09_005
crossref_primary_10_1016_j_cis_2024_103232
crossref_primary_10_1016_j_colcom_2024_100809
crossref_primary_10_1016_j_bioactmat_2024_12_024
crossref_primary_10_1002_adfm_202420443
crossref_primary_10_1002_pol_20241135
crossref_primary_10_1016_j_ijbiomac_2024_135944
crossref_primary_10_1016_j_polymer_2024_127304
crossref_primary_10_3390_ijms25169100
crossref_primary_10_34133_bmr_0031
crossref_primary_10_1002_adhm_202400827
crossref_primary_10_1016_j_fmre_2025_01_008
crossref_primary_10_1021_acsami_4c09465
crossref_primary_10_1038_s41392_024_01852_x
crossref_primary_10_1016_j_ajps_2024_100911
crossref_primary_10_1016_j_jare_2024_10_032
crossref_primary_10_1002_adma_202413373
crossref_primary_10_1002_mabi_202400503
Cites_doi 10.1038/s41587-019-0079-1
10.1002/adma.201504152
10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
10.1021/acs.chemrev.1c00815
10.1039/C4TB01194E
10.1016/j.biomaterials.2016.09.020
10.1126/science.abn8699
10.1021/acs.chemrev.0c01088
10.1002/adma.202205567
10.1021/acs.chemrev.0c00798
10.1021/acsami.2c19662
10.1002/adfm.202005689
10.1039/C9BM01848D
10.1002/adma.200501612
10.1021/bm010008g
10.1002/adfm.202007457
10.1016/j.nantod.2022.101467
10.1002/polb.22256
10.1016/j.apmt.2018.08.005
10.1021/acsami.8b10735
10.1016/j.biomaterials.2021.121169
10.1002/tcr.202200155
10.1002/anie.201607276
10.1038/s41578-019-0171-7
10.1002/adma.201606100
10.1038/s41586-019-1710-5
10.1002/adhm.202201799
10.1002/adfm.202213008
10.1002/adfm.201901693
10.1515/secm-2017-0161
10.1016/j.actbio.2017.05.023
10.1038/s41551-021-00810-0
10.1038/nmat4463
10.1039/C9MH01255A
10.1002/adma.202004290
10.1002/adhm.202301086
10.1002/adhm.201901469
10.1016/j.actbio.2021.04.027
10.1021/acsbiomaterials.0c01677
10.1126/scirobotics.aax7329
10.1039/C9TB01126A
10.1146/annurev-matsci-062910-100429
10.1038/28998
10.1021/accountsmr.2c00026
10.1038/s41928-021-00545-5
10.1021/acsami.2c14103
10.1002/adhm.202201576
10.1021/ja017449s
10.1021/acs.chemmater.9b01239
10.1016/j.progpolymsci.2021.101388
10.1016/j.carbpol.2022.120180
10.1021/acs.chemrev.7b00305
10.1016/j.cej.2022.137272
10.1038/nature12806
10.1016/j.tibtech.2018.10.011
10.1016/j.biomaterials.2014.01.002
10.1016/S1359-6454(01)00354-8
10.1021/acsnano.1c11040
10.1002/adhm.202101421
10.1021/acsnano.2c11053
10.1002/adma.201800671
10.1016/j.nantod.2020.101049
10.3389/fchem.2018.00497
10.1021/acsami.9b00006
10.1016/j.biomaterials.2018.02.016
10.1002/adhm.202200516
10.1021/acs.biomac.7b00683
10.1038/300341a0
10.1002/adfm.201904156
10.1016/j.cej.2021.129520
10.1016/j.jmps.2016.04.011
10.1038/s41467-019-13171-9
10.1002/adma.200304907
10.1021/acsami.9b07522
10.1002/adma.201503724
10.1016/j.biomaterials.2021.120838
10.1016/j.cej.2021.129329
10.1021/ja00168a022
10.1002/adfm.201804925
10.1126/sciadv.aaw3963
10.1056/NEJMcibr1709967
10.1007/s40820-022-00928-z
10.1021/jp401874t
10.1016/j.actbio.2015.02.002
10.1016/j.mtchem.2018.12.001
10.1002/adfm.202109687
10.1021/acs.chemrev.1c00622
10.1016/j.jid.2016.08.009
10.1073/pnas.2006389117
10.1039/c3cs60044k
10.1016/j.colsurfb.2016.10.013
10.1038/nmat1890
10.1002/admt.202000676
10.1016/S0002-9610(01)00742-5
10.1002/adfm.202008010
10.1039/D1MH00533B
10.1038/natrevmats.2016.71
10.1002/anie.200200565
10.1038/s41587-019-0045-y
10.1002/adhm.201800225
10.1021/acsami.2c15686
10.1038/s41570-021-00323-z
10.1016/j.cej.2023.143987
10.1126/science.aah6362
10.1038/s41467-021-24022-x
10.1126/sciadv.aax9976
10.1002/smll.202207437
10.1002/adma.201704640
10.1002/adma.202001628
10.1038/ncomms2715
10.1016/j.carbpol.2020.116845
10.1016/j.jconrel.2021.01.011
10.1002/adhm.202201594
10.1002/admi.202101038
10.1038/s41578-022-00483-4
10.1002/anie.201801063
10.1021/acs.chemrev.2c00179
10.1039/C5SC01386K
10.1021/ar300265y
10.1016/j.nanoen.2020.105389
10.1002/adfm.202110066
10.1016/j.nanoen.2022.106991
10.1126/scitranslmed.3004838
10.1021/acsnano.2c00662
10.1074/jbc.M110.133157
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.cis.2023.102982
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1873-3727
ExternalDocumentID 10_1016_j_cis_2023_102982
S0001868623001495
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
ID FETCH-LOGICAL-c330t-43c7168a4916cdda714d91ec75e4064f71c3b756f1f27725ee74aa4409f1586d3
IEDL.DBID AIKHN
ISSN 0001-8686
1873-3727
IngestDate Fri Sep 05 09:32:14 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Jul 01 03:12:06 EDT 2025
Fri Feb 23 02:35:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Design
Interfacial toughness
Mechanical dissipation
Adhesion
Injectable hydrogel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-43c7168a4916cdda714d91ec75e4064f71c3b756f1f27725ee74aa4409f1586d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2853945178
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2853945178
crossref_citationtrail_10_1016_j_cis_2023_102982
crossref_primary_10_1016_j_cis_2023_102982
elsevier_sciencedirect_doi_10_1016_j_cis_2023_102982
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Advances in colloid and interface science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Bai, Chen, Suo (bb0035) 2020; 30
Steiner (bb0155) 2002; 41
Li, Feng, Welle, Levkin (bb0585) 2016; 55
Mascal, Armstrong, Bartberger (bb0230) 2002; 124
Liu, Kang, Dong, Li, Wang, Wu (bb0315) 2023; 470
Rose, Prevoteau, Elzière, Hourdet, Marcellan, Leibler (bb0045) 2014; 505
Hu, Pei, Duan, Zhu, Liu, Chen (bb0025) 2021; 12
Liang, Li, Yang, Qiao, Xu, Guo (bb0255) 2022; 16
Li, Mooney (bb0060) 2016; 1
Zhang, Liu, Ding, Meng, Su, Zhang (bb0290) 2021; 278
Taboada, Yang, Pereira, Liu, Hu, Karp (bb0015) 2020; 5
Winfree, Liu, Wenzler, Seeman (bb0140) 1998; 394
Wu, Guo, Wang, Xu, Wang, Yang (bb0655) 2022; 32
Yuk, Wu, Zhao (bb0110) 2022; 7
Hou, Li, Li, Li, Guo, Deng (bb0335) 2023; 17
Shi, Gao, Ullah, Li, Wang, Yang (bb0570) 2016; 111
Sun, Wang, Liu, Wang, Guo, Xue (bb0620) 2022; 44
Wang, Gao (bb0435) 2016; 94
Ohm, Pan, Ford, Huang, Liao, Majidi (bb0560) 2021; 4
Stewart, Ransom, Hlady (bb0330) 2011; 49
Lee, Chun, Son, Hu, Schneider, Sitti (bb0630) 2022; 34
Kim, Parada, Liu, Zhao (bb0540) 2019; 4
Bovone, Dudaryeva, Marco-Dufort, Tibbitt (bb0095) 2021; 7
Sanderson (bb0150) 2012; vol. 21
Bal-Ozturk, Cecen, Avci-Adali, Topkaya, Alarcin, Yasayan (bb0455) 2021; 36
Wu, Fu, Zhao, Gerhard, Li, Yang (bb0470) 2023; 20
Saiz-Poseu, Mancebo-Aracil, Nador, Busqué, Ruiz-Molina (bb0285) 2019; 58
Chen, Yuk, Wu, Nabzdyk, Zhao (bb0625) 2020; 117
Komatsu, Tago, Ando, Asoh, Kikuchi (bb0545) 2021; 331
Yang, Bai, Li, Yang, Yao, Liu (bb0365) 2019; 11
Liu, Yang, Niu, Lin, Zhao, Wang (bb0500) 2017; 62
Wu, Cheng, Cheng (bb0270) 2019; 37
Zou, Dong, Luo, Zhao, Xie (bb0240) 2017; 29
Braccini, Pérez (bb0160) 2001; 2
Su, Xie, Wang, Tian, Wang, Yuan (bb0295) 2021; 8
Chen, Yang, Wang, Zhang, Heng, Wang (bb0515) 2021; 6
Karami, Wyss, Khoushabi, Schmocker, Broome, Moser (bb0380) 2018; 10
Mondal, Chakraborty, Chatterjee (bb0080) 2022; 22
Hwang, Zeng, Masic, Harrington, Israelachvili, Waite (bb0320) 2010; 285
Hu, Yang, Zhai, Li, Zhu, He (bb0340) 2023; 19
Gao, Yang, Zhou, He, Lu, Xiao (bb0535) 2020; 32
Xie, Ding, Han, Jia, Yang, Liang (bb0660) 2020; 7
Wang, Varghese, Sharma, Strehin, Fermanian, Gorham (bb0360) 2007; 6
Guo, Dong, Liang, Li (bb0485) 2021; 5
Boerman, Roozen, Sánchez-Fernández, Keereweer, Félix Lanao, Bender (bb0490) 2017; 18
Ekerdt, Fuentes, Lei, Adil, Ramasubramanian, Segalman (bb0590) 2018; 7
Reece, Maxey, Kron (bb0040) 2001; 182
Cintron-Cruz, Freedman, Lee, Johnson, Ijaz, Mooney (bb0075) 2022; 34
Zhou, Pang (bb0195) 2018; 118
Liu, Yu, Wang, Huang, Haq, Teng (bb0300) 2022; 9
Yao, Zhao, Xu, Jin, Wang, Yu (bb0605) 2022; 11
Yuk, Zhang, Lin, Parada, Zhao (bb0125) 2016; 15
Chen, Wu, Chen, Tucker, Jagota, Yang (bb0635) 2022; 119
Lucas, Bauzá, Frontera, Quiñonero (bb0225) 2016; 7
Lei, Wang, Sun, Zheng, Wang (bb0615) 2021; 31
Park, Lee, Kim, Joo, Cha (bb0460) 2022; 446
Yuk, Varela, Nabzdyk, Mao, Padera, Roche (bb0130) 2019; 575
Zhou, Hong, Zhang, Yang, Li, Jiang (bb0510) 2018; 13
Ingavle, Gehrke, Detamore (bb0375) 2014; 35
Duan, Li, Zuo, Shen, Yu, Deng (bb0580) 2019; 7
Qi, Liu, Jin, Xu, Wang, Wang (bb0385) 2018; 163
Yuan, Shen, Fan (bb0395) 2021; 276
Zhao, Shi, Sun, Yu, Wang, Wang (bb0610) 2022; 11
Yang, Zhao, Zhang, Yang, Luo, Liu (bb0600) 2021; 419
Zhao, Song, Ren, Zhang, Lin, Zhao (bb0465) 2022; 122
Ni, Yu, Wang, Liu, Shen, Chen (bb0235) 2022; 11
Marco-Dufort, Tibbitt (bb0180) 2019; 12
Wang, Narain, Zeng (bb0405) 2018; 6
Yang, Bai, Suo (bb0070) 2018; 30
Wang, Zhang, Yang, Fu, Xu, Li (bb0420) 2020; 30
Chen, Wang, Wang, Liu, Chiu, Shariati (bb0190) 2020; 32
Bao, Guo, Sun, Sun (bb0220) 2019; 11
Hofman, van Hees, Yang, Kamperman (bb0325) 2018; 30
Lu, Zhang, Tang, Xiao, Zhang, Liu (bb0425) 2021; 417
Lin, Yuk, Zhang, Parada, Koo, Yu (bb0530) 2016; 28
Cui, Wu, Gao, Fan, Xu, Wang (bb0445) 2018; 28
Rafieian, Mirzadeh, Mahdavi, Masoumi (bb0430) 2019; 26
Houk, Leach, Kim, Zhang (bb0175) 2003; 42
Yang, Kang, Gao, Zhuang, Fan, Shen (bb0440) 2022
Blacklow, Li, Freedman, Zeidi, Chen, Mooney (bb0020) 2019; 5
Bertsch, Diba, Mooney, Leeuwenburgh (bb0085) 2023; 123
Gong, Katsuyama, Kurokawa, Osada (bb0410) 2003; 15
Cui, Wu, Chen, Liu, Li, Xu (bb0345) 2020; 30
Roosen-Runge, Heck, Zhang, Kohlbacher, Schreiber (bb0200) 2013; 117
Zhou, Dai, Fan, Jiang, Liu, Zhou (bb0250) 2021; 31
Kim, Campbell, de Ávila, Wang (bb0525) 2019; 37
Zhang, Wang, Jiang, Zhu, Sun, Gao (bb0565) 2022; 95
Wang, Zhang, Yang, Guo, Liu, Li (bb0495) 2023; 15
Deng, Luo, Mao, Lai, Gong, Zhong (bb0215) 2020; 6
Lee, Messersmith, Israelachvili, Waite (bb0050) 2011; 41
Ma, Bourquard, Gao, Jiang, De Iure-Grimmel, Huo (bb0370) 2022; 377
de Oliveira, Nakamura, Auzély-Velty (bb0260) 2020; 247
Freedman, Kuttler, Beckmann, Nam, Kent, Schuleit (bb0030) 2022; 6
Tian, Guan, Wen, Lu, Li, Fan (bb0450) 2022; 14
Sharma, Fermanian, Gibson, Unterman, Herzka, Cascio (bb0505) 2013; 5
Huang, Jing, Zeng, Xue, Zhang, Yu (bb0310) 2023
Liang, Xu, Li, Zhangji, Guo (bb0065) 2022; 14
Pandey, Soto-Garcia, Liao, Zimmern, Nguyen, Hong (bb0350) 2020; 8
Someya, Amagai (bb0520) 2019; 37
Chen, Wu, Liu, Yuan, Liu (bb0390) 2022; 32
Li, Suo, Vlassak (bb0400) 2014; 2
Nam, Mooney (bb0355) 2021; 121
Meng, Li, Faust, Konst, Lee (bb0575) 2015; 17
Wu, Wang, Wang, Chen, Huang, Chen (bb0595) 2017; 149
Jorgensen, Severance (bb0165) 1990; 112
Han, Chen, Cai, Zhu, Yi, Guan (bb0480) 2023
Yu, Yao, Li (bb0090) 2022; 139
Loesche, Gardner, Kalan, Horwinski, Zheng, Hodkinson (bb0275) 2017; 137
Li, Celiz, Yang, Yang, Wamala, Whyte (bb0010) 2017; 357
Borden, Gargava, Raghavan (bb0650) 2021; 12
Yang, O’Cearbhaill, Sisk, Park, Cho, Villiger (bb0135) 2013; 4
Chen, Peng, Thundat, Zeng (bb0555) 2019; 31
Volinsky, Moody, Gerberich (bb0120) 2002; 50
Jin, Yu, Denman, Zhang (bb0245) 2013; 42
Shuai, Guo, Zhang, Wan, Pu, Wang (bb0550) 2020; 78
Zhao, Chen, Yuk, Lin, Liu, Parada (bb0105) 2021; 121
Fan, Wang, Tao, Huang, Rao, Kurokawa (bb0205) 2019; 10
Wei, Shi, Zhao, Yang, Zheng, Zhong (bb0305) 2023; 12
Dougherty (bb0210) 2013; 46
Karp (bb0055) 2017; 377
Ni, Yu, Wang, Huang, Lu, Zhou (bb0280) 2022; 14
Kuang, Arıcan, Zhou, Zhao, Zhang (bb0115) 2023; 4
He, Luo, Wang, Chen, Feng, Cao (bb0265) 2023; 299
Cui, Liu (bb0100) 2021; 116
Mu, Chen, Yuan, Li, Huang, Wang (bb0415) 2020; 9
Swift, Haverkamp, Stabile, Hwang, Plaut, Turner (bb0640) 2020; 5
Israelachvili, Pashley (bb0170) 1982; 300
Athanassiadis, Ma, Moreno-Gomez, Melde, Choi, Goyal (bb0475) 2022; 122
Jiang, Zhang, Zhang, Wang, Yan, Wang (bb0645) 2022; 16
Hu, Jia, Wang, Ma, Huang, Ding (bb0185) 2023; 12
Peppas, Hilt, Khademhosseini, Langer (bb0005) 2006; 18
Hu, Vatankhah-Varnoosfaderani, Zhou, Li, Sheiko (bb0145) 2015; 27
Karami (10.1016/j.cis.2023.102982_bb0380) 2018; 10
Shuai (10.1016/j.cis.2023.102982_bb0550) 2020; 78
Liang (10.1016/j.cis.2023.102982_bb0255) 2022; 16
Karp (10.1016/j.cis.2023.102982_bb0055) 2017; 377
Han (10.1016/j.cis.2023.102982_bb0480) 2023
Bao (10.1016/j.cis.2023.102982_bb0220) 2019; 11
Ohm (10.1016/j.cis.2023.102982_bb0560) 2021; 4
Zhou (10.1016/j.cis.2023.102982_bb0510) 2018; 13
Pandey (10.1016/j.cis.2023.102982_bb0350) 2020; 8
Liu (10.1016/j.cis.2023.102982_bb0300) 2022; 9
Qi (10.1016/j.cis.2023.102982_bb0385) 2018; 163
Xie (10.1016/j.cis.2023.102982_bb0660) 2020; 7
Zhang (10.1016/j.cis.2023.102982_bb0565) 2022; 95
Sharma (10.1016/j.cis.2023.102982_bb0505) 2013; 5
Kim (10.1016/j.cis.2023.102982_bb0525) 2019; 37
Gao (10.1016/j.cis.2023.102982_bb0535) 2020; 32
Jin (10.1016/j.cis.2023.102982_bb0245) 2013; 42
Yu (10.1016/j.cis.2023.102982_bb0090) 2022; 139
Wu (10.1016/j.cis.2023.102982_bb0270) 2019; 37
Ma (10.1016/j.cis.2023.102982_bb0370) 2022; 377
Roosen-Runge (10.1016/j.cis.2023.102982_bb0200) 2013; 117
Braccini (10.1016/j.cis.2023.102982_bb0160) 2001; 2
Komatsu (10.1016/j.cis.2023.102982_bb0545) 2021; 331
Chen (10.1016/j.cis.2023.102982_bb0555) 2019; 31
Yang (10.1016/j.cis.2023.102982_bb0440) 2022
Yang (10.1016/j.cis.2023.102982_bb0365) 2019; 11
Swift (10.1016/j.cis.2023.102982_bb0640) 2020; 5
Wu (10.1016/j.cis.2023.102982_bb0595) 2017; 149
Cui (10.1016/j.cis.2023.102982_bb0445) 2018; 28
Kim (10.1016/j.cis.2023.102982_bb0540) 2019; 4
Tian (10.1016/j.cis.2023.102982_bb0450) 2022; 14
Su (10.1016/j.cis.2023.102982_bb0295) 2021; 8
Li (10.1016/j.cis.2023.102982_bb0585) 2016; 55
Jorgensen (10.1016/j.cis.2023.102982_bb0165) 1990; 112
Mascal (10.1016/j.cis.2023.102982_bb0230) 2002; 124
Cintron-Cruz (10.1016/j.cis.2023.102982_bb0075) 2022; 34
Hu (10.1016/j.cis.2023.102982_bb0340) 2023; 19
Shi (10.1016/j.cis.2023.102982_bb0570) 2016; 111
Liang (10.1016/j.cis.2023.102982_bb0065) 2022; 14
Athanassiadis (10.1016/j.cis.2023.102982_bb0475) 2022; 122
Hu (10.1016/j.cis.2023.102982_bb0145) 2015; 27
Zhao (10.1016/j.cis.2023.102982_bb0465) 2022; 122
Yang (10.1016/j.cis.2023.102982_bb0035) 2020; 30
He (10.1016/j.cis.2023.102982_bb0265) 2023; 299
Gong (10.1016/j.cis.2023.102982_bb0410) 2003; 15
Boerman (10.1016/j.cis.2023.102982_bb0490) 2017; 18
Park (10.1016/j.cis.2023.102982_bb0460) 2022; 446
Steiner (10.1016/j.cis.2023.102982_bb0155) 2002; 41
Li (10.1016/j.cis.2023.102982_bb0400) 2014; 2
Zhou (10.1016/j.cis.2023.102982_bb0195) 2018; 118
Hwang (10.1016/j.cis.2023.102982_bb0320) 2010; 285
Someya (10.1016/j.cis.2023.102982_bb0520) 2019; 37
Chen (10.1016/j.cis.2023.102982_bb0390) 2022; 32
Lin (10.1016/j.cis.2023.102982_bb0530) 2016; 28
Yang (10.1016/j.cis.2023.102982_bb0600) 2021; 419
Nam (10.1016/j.cis.2023.102982_bb0355) 2021; 121
Yang (10.1016/j.cis.2023.102982_bb0135) 2013; 4
Ekerdt (10.1016/j.cis.2023.102982_bb0590) 2018; 7
Yao (10.1016/j.cis.2023.102982_bb0605) 2022; 11
Zhao (10.1016/j.cis.2023.102982_bb0105) 2021; 121
Hu (10.1016/j.cis.2023.102982_bb0025) 2021; 12
Huang (10.1016/j.cis.2023.102982_bb0310) 2023
Zhang (10.1016/j.cis.2023.102982_bb0290) 2021; 278
Chen (10.1016/j.cis.2023.102982_bb0635) 2022; 119
Lee (10.1016/j.cis.2023.102982_bb0050) 2011; 41
Hofman (10.1016/j.cis.2023.102982_bb0325) 2018; 30
Rafieian (10.1016/j.cis.2023.102982_bb0430) 2019; 26
Chen (10.1016/j.cis.2023.102982_bb0190) 2020; 32
Wang (10.1016/j.cis.2023.102982_bb0405) 2018; 6
Volinsky (10.1016/j.cis.2023.102982_bb0120) 2002; 50
Blacklow (10.1016/j.cis.2023.102982_bb0020) 2019; 5
Yuk (10.1016/j.cis.2023.102982_bb0125) 2016; 15
Israelachvili (10.1016/j.cis.2023.102982_bb0170) 1982; 300
Ni (10.1016/j.cis.2023.102982_bb0280) 2022; 14
Borden (10.1016/j.cis.2023.102982_bb0650) 2021; 12
Yang (10.1016/j.cis.2023.102982_bb0070) 2018; 30
Loesche (10.1016/j.cis.2023.102982_bb0275) 2017; 137
Chen (10.1016/j.cis.2023.102982_bb0515) 2021; 6
Liu (10.1016/j.cis.2023.102982_bb0500) 2017; 62
Dougherty (10.1016/j.cis.2023.102982_bb0210) 2013; 46
Cui (10.1016/j.cis.2023.102982_bb0345) 2020; 30
Rose (10.1016/j.cis.2023.102982_bb0045) 2014; 505
Jiang (10.1016/j.cis.2023.102982_bb0645) 2022; 16
Guo (10.1016/j.cis.2023.102982_bb0485) 2021; 5
Zou (10.1016/j.cis.2023.102982_bb0240) 2017; 29
Lei (10.1016/j.cis.2023.102982_bb0615) 2021; 31
Bovone (10.1016/j.cis.2023.102982_bb0095) 2021; 7
Hou (10.1016/j.cis.2023.102982_bb0335) 2023; 17
Lee (10.1016/j.cis.2023.102982_bb0630) 2022; 34
Deng (10.1016/j.cis.2023.102982_bb0215) 2020; 6
Yuk (10.1016/j.cis.2023.102982_bb0110) 2022; 7
Ingavle (10.1016/j.cis.2023.102982_bb0375) 2014; 35
Lu (10.1016/j.cis.2023.102982_bb0425) 2021; 417
Bal-Ozturk (10.1016/j.cis.2023.102982_bb0455) 2021; 36
Mondal (10.1016/j.cis.2023.102982_bb0080) 2022; 22
Bertsch (10.1016/j.cis.2023.102982_bb0085) 2023; 123
Houk (10.1016/j.cis.2023.102982_bb0175) 2003; 42
Zhao (10.1016/j.cis.2023.102982_bb0610) 2022; 11
Meng (10.1016/j.cis.2023.102982_bb0575) 2015; 17
Wang (10.1016/j.cis.2023.102982_bb0495) 2023; 15
Freedman (10.1016/j.cis.2023.102982_bb0030) 2022; 6
Zhou (10.1016/j.cis.2023.102982_bb0250) 2021; 31
Marco-Dufort (10.1016/j.cis.2023.102982_bb0180) 2019; 12
Peppas (10.1016/j.cis.2023.102982_bb0005) 2006; 18
Wu (10.1016/j.cis.2023.102982_bb0470) 2023; 20
Taboada (10.1016/j.cis.2023.102982_bb0015) 2020; 5
Lucas (10.1016/j.cis.2023.102982_bb0225) 2016; 7
Liu (10.1016/j.cis.2023.102982_bb0315) 2023; 470
Wu (10.1016/j.cis.2023.102982_bb0655) 2022; 32
Winfree (10.1016/j.cis.2023.102982_bb0140) 1998; 394
Wang (10.1016/j.cis.2023.102982_bb0435) 2016; 94
Yuk (10.1016/j.cis.2023.102982_bb0130) 2019; 575
Wei (10.1016/j.cis.2023.102982_bb0305) 2023; 12
Wang (10.1016/j.cis.2023.102982_bb0420) 2020; 30
Mu (10.1016/j.cis.2023.102982_bb0415) 2020; 9
Li (10.1016/j.cis.2023.102982_bb0010) 2017; 357
Cui (10.1016/j.cis.2023.102982_bb0100) 2021; 116
Sanderson (10.1016/j.cis.2023.102982_bb0150) 2012; vol. 21
Chen (10.1016/j.cis.2023.102982_bb0625) 2020; 117
Ni (10.1016/j.cis.2023.102982_bb0235) 2022; 11
Kuang (10.1016/j.cis.2023.102982_bb0115) 2023; 4
de Oliveira (10.1016/j.cis.2023.102982_bb0260) 2020; 247
Li (10.1016/j.cis.2023.102982_bb0060) 2016; 1
Stewart (10.1016/j.cis.2023.102982_bb0330) 2011; 49
Fan (10.1016/j.cis.2023.102982_bb0205) 2019; 10
Wang (10.1016/j.cis.2023.102982_bb0360) 2007; 6
Sun (10.1016/j.cis.2023.102982_bb0620) 2022; 44
Saiz-Poseu (10.1016/j.cis.2023.102982_bb0285) 2019; 58
Duan (10.1016/j.cis.2023.102982_bb0580) 2019; 7
Reece (10.1016/j.cis.2023.102982_bb0040) 2001; 182
Hu (10.1016/j.cis.2023.102982_bb0185) 2023; 12
Yuan (10.1016/j.cis.2023.102982_bb0395) 2021; 276
References_xml – volume: 30
  start-page: 1704640
  year: 2018
  ident: bb0325
  article-title: Bioinspired underwater adhesives by using the supramolecular toolbox
  publication-title: Adv Mater
– volume: 44
  year: 2022
  ident: bb0620
  article-title: An enzyme cross-linked hydrogel as a minimally invasive arterial tissue sealing and anti-adhesion barrier
  publication-title: Nano Today
– volume: 31
  start-page: 2007457
  year: 2021
  ident: bb0250
  article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery
  publication-title: Adv Funct Mater
– volume: 42
  start-page: 6634
  year: 2013
  end-page: 6654
  ident: bb0245
  article-title: Recent advances in dynamic covalent chemistry
  publication-title: Chem Soc Rev
– volume: 31
  start-page: 4553
  year: 2019
  end-page: 4563
  ident: bb0555
  article-title: Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics
  publication-title: Chem Mater
– volume: 5
  start-page: 310
  year: 2020
  end-page: 329
  ident: bb0015
  article-title: Overcoming the translational barriers of tissue adhesives
  publication-title: Nat Rev Mater
– volume: 19
  start-page: 2207437
  year: 2023
  ident: bb0340
  article-title: An all-in-one “4A hydrogel”: through first-aid hemostatic, antibacterial, antioxidant, and angiogenic to promoting infected wound healing
  publication-title: Small
– volume: 15
  start-page: 190
  year: 2016
  end-page: 196
  ident: bb0125
  article-title: Tough bonding of hydrogels to diverse non-porous surfaces
  publication-title: Nat Mater
– volume: 2
  start-page: 1089
  year: 2001
  end-page: 1096
  ident: bb0160
  article-title: Molecular basis of Ca2+−induced gelation in alginates and pectins: the egg-box model revisited
  publication-title: Biomacromolecules
– volume: 470
  year: 2023
  ident: bb0315
  article-title: A simple yet effective hydrogel dressing for advanced microenvironmental management of diabetic wounds with intrinsic regulation
  publication-title: Chem Eng J
– volume: 505
  start-page: 382
  year: 2014
  end-page: 385
  ident: bb0045
  article-title: Nanoparticle solutions as adhesives for gels and biological tissues
  publication-title: Nature
– volume: 27
  start-page: 6899
  year: 2015
  end-page: 6905
  ident: bb0145
  article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
  publication-title: Adv Mater
– volume: 9
  start-page: 1901469
  year: 2020
  ident: bb0415
  article-title: Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis
  publication-title: Adv Healthc Mater
– volume: 117
  start-page: 15497
  year: 2020
  end-page: 15503
  ident: bb0625
  article-title: Instant tough bioadhesive with triggerable benign detachment
  publication-title: Proc Natl Acad Sci
– volume: 5
  start-page: 773
  year: 2021
  end-page: 791
  ident: bb0485
  article-title: Haemostatic materials for wound healing applications
  publication-title: Nat Rev Chem
– volume: 6
  start-page: 497
  year: 2018
  ident: bb0405
  article-title: Rational design of self-healing tough hydrogels: a mini review
  publication-title: Front Chem
– volume: 7
  start-page: 4048
  year: 2021
  end-page: 4076
  ident: bb0095
  article-title: Engineering hydrogel adhesion for biomedical applications via chemical design of the junction
  publication-title: ACS Biomater Sci Eng
– volume: 35
  start-page: 3558
  year: 2014
  end-page: 3570
  ident: bb0375
  article-title: The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan
  publication-title: Biomaterials
– volume: 278
  year: 2021
  ident: bb0290
  article-title: Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
  publication-title: Biomaterials
– volume: 4
  year: 2019
  ident: bb0540
  article-title: Ferromagnetic soft continuum robots
  publication-title: Sci Robot
– volume: 7
  start-page: 1800225
  year: 2018
  ident: bb0590
  article-title: Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture
  publication-title: Adv Healthc Mater
– volume: 111
  start-page: 40
  year: 2016
  end-page: 54
  ident: bb0570
  article-title: Electroconductive natural polymer-based hydrogels
  publication-title: Biomaterials
– volume: 11
  start-page: 2101421
  year: 2022
  ident: bb0235
  article-title: Polyphosphazene and non-catechol-based antibacterial injectable hydrogel for adhesion of wet tissues as wound dressing
  publication-title: Adv Healthc Mater
– volume: 14
  start-page: 52643
  year: 2022
  end-page: 52658
  ident: bb0280
  article-title: Multistage ROS-responsive and natural polyphenol-driven prodrug hydrogels for diabetic wound healing
  publication-title: ACS Appl Mater Interfaces
– volume: 37
  start-page: 389
  year: 2019
  end-page: 406
  ident: bb0525
  article-title: Wearable biosensors for healthcare monitoring
  publication-title: Nat Biotechnol
– volume: 117
  start-page: 5777
  year: 2013
  end-page: 5787
  ident: bb0200
  article-title: Interplay of pH and binding of multivalent metal ions: charge inversion and reentrant condensation in protein solutions
  publication-title: J Phys Chem B
– volume: 8
  start-page: 2199
  year: 2021
  end-page: 2207
  ident: bb0295
  article-title: Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules
  publication-title: Mater Horiz
– volume: 122
  start-page: 5604
  year: 2022
  end-page: 5640
  ident: bb0465
  article-title: Supramolecular adhesive hydrogels for tissue engineering applications
  publication-title: Chem Rev
– volume: 5
  year: 2019
  ident: bb0020
  article-title: Bioinspired mechanically active adhesive dressings to accelerate wound closure
  publication-title: Sci Adv
– volume: 119
  year: 2022
  ident: bb0635
  article-title: Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing
  publication-title: Proc Natl Acad Sci
– volume: 7
  start-page: 935
  year: 2022
  end-page: 952
  ident: bb0110
  article-title: Hydrogel interfaces for merging humans and machines
  publication-title: Nat Rev Mater
– volume: 5
  start-page: 2000676
  year: 2020
  ident: bb0640
  article-title: Active membranes on rigidity tunable foundations for programmable, rapidly switchable adhesion
  publication-title: Adv Mater Technol
– volume: 276
  year: 2021
  ident: bb0395
  article-title: A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion
  publication-title: Biomaterials
– volume: 42
  start-page: 4872
  year: 2003
  end-page: 4897
  ident: bb0175
  article-title: Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes
  publication-title: Angew Chem Int Ed
– volume: 121
  start-page: 11336
  year: 2021
  end-page: 11384
  ident: bb0355
  article-title: Polymeric tissue adhesives
  publication-title: Chem Rev
– volume: 11
  start-page: 2201576
  year: 2022
  ident: bb0610
  article-title: Natural dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects
  publication-title: Adv Healthc Mater
– volume: 16
  start-page: 8662
  year: 2022
  end-page: 8676
  ident: bb0645
  article-title: Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing
  publication-title: ACS Nano
– volume: 2
  start-page: 6708
  year: 2014
  end-page: 6713
  ident: bb0400
  article-title: Stiff, strong, and tough hydrogels with good chemical stability
  publication-title: J Mater Chem B
– volume: 182
  start-page: S40
  year: 2001
  end-page: S44
  ident: bb0040
  article-title: A prospectus on tissue adhesives
  publication-title: Am J Surg
– volume: 50
  start-page: 441
  year: 2002
  end-page: 466
  ident: bb0120
  article-title: Interfacial toughness measurements for thin films on substrates
  publication-title: Acta Mater
– volume: 575
  start-page: 169
  year: 2019
  end-page: 174
  ident: bb0130
  article-title: Dry double-sided tape for adhesion of wet tissues and devices
  publication-title: Nature
– volume: 8
  start-page: 1240
  year: 2020
  end-page: 1255
  ident: bb0350
  article-title: Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives
  publication-title: Biomater Sci
– volume: 18
  start-page: 2529
  year: 2017
  end-page: 2538
  ident: bb0490
  article-title: Next generation hemostatic materials based on NHS-ester functionalized poly(2-oxazoline)s
  publication-title: Biomacromolecules
– volume: 18
  start-page: 1345
  year: 2006
  end-page: 1360
  ident: bb0005
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv Mater
– volume: 149
  start-page: 97
  year: 2017
  end-page: 104
  ident: bb0595
  article-title: Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy
  publication-title: Colloids Surf B Biointerfaces
– volume: 14
  start-page: 185
  year: 2022
  ident: bb0065
  article-title: Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing
  publication-title: Nano-Micro Lett
– volume: 55
  start-page: 13765
  year: 2016
  end-page: 13769
  ident: bb0585
  article-title: UV-induced disulfide formation and reduction for dynamic photopatterning
  publication-title: Angew Chem Int Ed
– volume: 32
  start-page: 2109687
  year: 2022
  ident: bb0390
  article-title: Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment
  publication-title: Adv Funct Mater
– volume: 163
  start-page: 89
  year: 2018
  end-page: 104
  ident: bb0385
  article-title: Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage
  publication-title: Biomaterials
– volume: 10
  start-page: 38692
  year: 2018
  end-page: 38699
  ident: bb0380
  article-title: Composite double-network hydrogels to improve adhesion on biological surfaces
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: bb0205
  article-title: Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater
  publication-title: Nat Commun
– volume: 17
  start-page: 160
  year: 2015
  end-page: 169
  ident: bb0575
  article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety
  publication-title: Acta Biomater
– volume: 30
  start-page: 1901693
  year: 2020
  ident: bb0035
  article-title: Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 101
  year: 2023
  end-page: 114
  ident: bb0115
  article-title: Functional tough hydrogels: design, processing, and biomedical applications
  publication-title: Acc Mater Res
– volume: 12
  start-page: 4419
  year: 2021
  ident: bb0650
  article-title: Reversible electroadhesion of hydrogels to animal tissues for suture-less repair of cuts or tears
  publication-title: Nat Commun
– volume: 30
  start-page: 1800671
  year: 2018
  ident: bb0070
  article-title: Topological adhesion of wet materials
  publication-title: Adv Mater
– volume: 20
  start-page: 93
  year: 2023
  end-page: 110
  ident: bb0470
  article-title: Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing
  publication-title: Bioact Mater
– volume: 377
  start-page: 2092
  year: 2017
  end-page: 2094
  ident: bb0055
  article-title: A slick and stretchable surgical adhesive
  publication-title: N Engl J Med
– volume: 377
  start-page: 751
  year: 2022
  end-page: 755
  ident: bb0370
  article-title: Controlled tough bioadhesion mediated by ultrasound
  publication-title: Science
– volume: 11
  start-page: 9478
  year: 2019
  end-page: 9486
  ident: bb0220
  article-title: Nitrogen-coordinated boroxines enable the fabrication of mechanically robust supramolecular thermosets capable of healing and recycling under mild conditions
  publication-title: ACS Appl Mater Interfaces
– volume: 32
  start-page: 2110066
  year: 2022
  ident: bb0655
  article-title: An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery
  publication-title: Adv Funct Mater
– volume: 34
  year: 2022
  ident: bb0630
  article-title: A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot
  publication-title: Adv Mater
– volume: 37
  start-page: 505
  year: 2019
  end-page: 517
  ident: bb0270
  article-title: Biofilms in chronic wounds: pathogenesis and diagnosis
  publication-title: Trends Biotechnol
– volume: 124
  start-page: 6274
  year: 2002
  end-page: 6276
  ident: bb0230
  article-title: Anion−aromatic bonding: a case for anion recognition by π-acidic rings
  publication-title: J Am Chem Soc
– volume: 62
  start-page: 179
  year: 2017
  end-page: 187
  ident: bb0500
  article-title: An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair
  publication-title: Acta Biomater
– volume: 123
  start-page: 834
  year: 2023
  end-page: 873
  ident: bb0085
  article-title: Self-healing injectable hydrogels for tissue regeneration
  publication-title: Chem Rev
– volume: 26
  start-page: 154
  year: 2019
  end-page: 174
  ident: bb0430
  article-title: A review on nanocomposite hydrogels and their biomedical applications
  publication-title: Sci Eng Compos Mater
– volume: 13
  start-page: 32
  year: 2018
  end-page: 44
  ident: bb0510
  article-title: Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair
  publication-title: Appl Mater Today
– volume: 417
  year: 2021
  ident: bb0425
  article-title: Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing
  publication-title: Chem Eng J
– volume: 1
  start-page: 1
  year: 2016
  end-page: 17
  ident: bb0060
  article-title: Designing hydrogels for controlled drug delivery
  publication-title: Nat Rev Mater
– volume: 6
  start-page: 1167
  year: 2022
  end-page: 1179
  ident: bb0030
  article-title: Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity
  publication-title: Nat Biomed Eng
– volume: 29
  start-page: 1606100
  year: 2017
  ident: bb0240
  article-title: Dynamic covalent polymer networks: from old chemistry to modern day innovations
  publication-title: Adv Mater
– volume: 331
  start-page: 1
  year: 2021
  end-page: 6
  ident: bb0545
  article-title: Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release
  publication-title: J Control Release
– volume: 58
  start-page: 696
  year: 2019
  end-page: 714
  ident: bb0285
  article-title: The chemistry behind catechol-based adhesion
  publication-title: Angew Chem Int Ed
– volume: 116
  year: 2021
  ident: bb0100
  article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications
  publication-title: Prog Polym Sci
– volume: 37
  start-page: 382
  year: 2019
  end-page: 388
  ident: bb0520
  article-title: Toward a new generation of smart skins
  publication-title: Nat Biotechnol
– volume: 11
  start-page: 2200516
  year: 2022
  ident: bb0605
  article-title: Injectable dual-dynamic-bond cross-linked hydrogel for highly efficient infected diabetic wound healing
  publication-title: Adv Healthc Mater
– volume: 446
  year: 2022
  ident: bb0460
  article-title: Sutureless full-thickness skin grafting using a dual drug-in-bioadhesive coacervate
  publication-title: Chem Eng J
– volume: 36
  year: 2021
  ident: bb0455
  article-title: Tissue adhesives: from research to clinical translation
  publication-title: Nano Today
– volume: 357
  start-page: 378
  year: 2017
  end-page: 381
  ident: bb0010
  article-title: Tough adhesives for diverse wet surfaces
  publication-title: Science
– volume: 4
  start-page: 185
  year: 2021
  end-page: 192
  ident: bb0560
  article-title: An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics
  publication-title: Nat Electron
– volume: 122
  start-page: 5165
  year: 2022
  end-page: 5208
  ident: bb0475
  article-title: Ultrasound-responsive systems as components for smart materials
  publication-title: Chem Rev
– volume: 41
  start-page: 48
  year: 2002
  end-page: 76
  ident: bb0155
  article-title: The hydrogen bond in the solid state
  publication-title: Angew Chem Int Ed
– volume: 49
  start-page: 757
  year: 2011
  end-page: 771
  ident: bb0330
  article-title: Natural underwater adhesives
  publication-title: J Polym Sci B
– volume: 6
  start-page: 385
  year: 2007
  end-page: 392
  ident: bb0360
  article-title: Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration
  publication-title: Nat Mater
– start-page: 2301086
  year: 2023
  ident: bb0310
  article-title: Highly tough and biodegradable PEG-based bioadhesives for large-scaled liver injury hemostasis and tissue regeneration
  publication-title: Adv Healthc Mater
– volume: 95
  year: 2022
  ident: bb0565
  article-title: Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics
  publication-title: Nano Energy
– volume: 12
  start-page: 2201594
  year: 2023
  ident: bb0185
  article-title: An ECM-mimicking, injectable, viscoelastic hydrogel for treatment of brain lesions
  publication-title: Adv Healthc Mater
– volume: 7
  start-page: 1038
  year: 2016
  end-page: 1050
  ident: bb0225
  article-title: A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects
  publication-title: Chem Sci
– volume: 299
  year: 2023
  ident: bb0265
  article-title: Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation
  publication-title: Carbohydr Polym
– volume: 31
  start-page: 2008010
  year: 2021
  ident: bb0615
  article-title: Rapid-fabricated and recoverable dual-network hydrogel with inherently anti-bacterial abilities for potential adhesive dressings
  publication-title: Adv Funct Mater
– volume: 22
  year: 2022
  ident: bb0080
  article-title: Injectable adhesive hydrogels for soft tissue reconstruction: a materials chemistry perspective
  publication-title: Chem Rec
– volume: 6
  start-page: 1689
  year: 2021
  end-page: 1698
  ident: bb0515
  article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration
  publication-title: Bioact Mater
– volume: 12
  start-page: 2201799
  year: 2023
  ident: bb0305
  article-title: Superwetting injectable hydrogel with ultrastrong and fast tissue adhesion for minimally invasive hemostasis
  publication-title: Adv Healthc Mater
– volume: 285
  start-page: 25850
  year: 2010
  end-page: 25858
  ident: bb0320
  article-title: Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques*
  publication-title: J Biol Chem
– volume: 15
  start-page: 662
  year: 2023
  end-page: 676
  ident: bb0495
  article-title: An antibacterial and antiadhesion in situ forming hydrogel with sol–spray system for noncompressible hemostasis
  publication-title: ACS Appl Mater Interfaces
– volume: 32
  start-page: 2001628
  year: 2020
  ident: bb0190
  article-title: An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery
  publication-title: Adv Mater
– start-page: 2211340
  year: 2022
  ident: bb0440
  article-title: Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing
  publication-title: Adv Funct Mater
– volume: 46
  start-page: 885
  year: 2013
  end-page: 893
  ident: bb0210
  article-title: The cation−π interaction
  publication-title: Acc Chem Res
– volume: 30
  start-page: 2005689
  year: 2020
  ident: bb0345
  article-title: A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion
  publication-title: Adv Funct Mater
– volume: 41
  start-page: 99
  year: 2011
  end-page: 132
  ident: bb0050
  article-title: Mussel-inspired adhesives and coatings
  publication-title: Annu Rev Mat Res
– volume: 32
  start-page: 2004290
  year: 2020
  ident: bb0535
  article-title: Bioinspired self-healing human–machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates
  publication-title: Adv Mater
– volume: 394
  start-page: 539
  year: 1998
  end-page: 544
  ident: bb0140
  article-title: Design and self-assembly of two-dimensional DNA crystals
  publication-title: Nature
– volume: 30
  start-page: 1904156
  year: 2020
  ident: bb0420
  article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment
  publication-title: Adv Funct Mater
– volume: 17
  start-page: 2745
  year: 2023
  end-page: 2760
  ident: bb0335
  article-title: Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhesion
  publication-title: ACS Nano
– volume: 5
  year: 2013
  ident: bb0505
  article-title: Human cartilage repair with a photoreactive adhesive-hydrogel composite
  publication-title: Sci Transl Med
– volume: 12
  start-page: 1
  year: 2021
  end-page: 17
  ident: bb0025
  article-title: A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery
  publication-title: Nat Commun
– volume: 247
  year: 2020
  ident: bb0260
  article-title: Boronate-ester crosslinked hyaluronic acid hydrogels for dihydrocaffeic acid delivery and fibroblasts protection against UVB irradiation
  publication-title: Carbohydr Polym
– volume: 78
  year: 2020
  ident: bb0550
  article-title: Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles
  publication-title: Nano Energy
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  ident: bb0410
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv Mater
– volume: 300
  start-page: 341
  year: 1982
  end-page: 342
  ident: bb0170
  article-title: The hydrophobic interaction is long range, decaying exponentially with distance
  publication-title: Nature
– start-page: 2213008
  year: 2023
  ident: bb0480
  article-title: A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 605
  year: 2020
  end-page: 614
  ident: bb0660
  article-title: Wound dressing change facilitated by spraying zinc ions
  publication-title: Mater Horiz
– volume: 28
  start-page: 1804925
  year: 2018
  ident: bb0445
  article-title: An autolytic high strength instant adhesive hydrogel for emergency self-rescue
  publication-title: Adv Funct Mater
– volume: 121
  start-page: 4309
  year: 2021
  end-page: 4372
  ident: bb0105
  article-title: Soft materials by design: unconventional polymer networks give extreme properties
  publication-title: Chem Rev
– volume: 4
  start-page: 1702
  year: 2013
  ident: bb0135
  article-title: A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue
  publication-title: Nat Commun
– volume: 139
  start-page: 4
  year: 2022
  end-page: 21
  ident: bb0090
  article-title: Rational design of injectable conducting polymer-based hydrogels for tissue engineering
  publication-title: Acta Biomater
– volume: 12
  start-page: 16
  year: 2019
  end-page: 33
  ident: bb0180
  article-title: Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters
  publication-title: Mater Today Chem
– volume: 9
  start-page: 2101038
  year: 2022
  ident: bb0300
  article-title: Recent advances on designs and applications of hydrogel adhesives
  publication-title: Adv Mater Interfaces
– volume: vol. 21
  year: 2012
  ident: bb0150
  article-title: Chemical bonds and bonds energy
– volume: 6
  year: 2020
  ident: bb0215
  article-title: π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks
  publication-title: Sci Adv
– volume: 7
  start-page: 5478
  year: 2019
  end-page: 5489
  ident: bb0580
  article-title: Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages
  publication-title: J Mater Chem B
– volume: 16
  start-page: 3194
  year: 2022
  end-page: 3207
  ident: bb0255
  article-title: pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing
  publication-title: ACS Nano
– volume: 94
  start-page: 127
  year: 2016
  end-page: 147
  ident: bb0435
  article-title: A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers
  publication-title: J Mech Phys Solids
– volume: 28
  start-page: 4497
  year: 2016
  end-page: 4505
  ident: bb0530
  article-title: Stretchable hydrogel electronics and devices
  publication-title: Adv Mater
– volume: 34
  start-page: 2205567
  year: 2022
  ident: bb0075
  article-title: Rapid ultratough topological tissue adhesives
  publication-title: Adv Mater
– volume: 137
  start-page: 237
  year: 2017
  end-page: 244
  ident: bb0275
  article-title: Temporal stability in chronic wound microbiota is associated with poor healing
  publication-title: J Invest Dermatol
– volume: 118
  start-page: 1691
  year: 2018
  end-page: 1741
  ident: bb0195
  article-title: Electrostatic interactions in protein structure, folding, binding, and condensation
  publication-title: Chem Rev
– volume: 14
  start-page: 54488
  year: 2022
  end-page: 54499
  ident: bb0450
  article-title: Strong biopolymer-based nanocomposite hydrogel adhesives with removability and reusability for damaged tissue closure and healing
  publication-title: ACS Appl Mater Interfaces
– volume: 419
  year: 2021
  ident: bb0600
  article-title: Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects
  publication-title: Chem Eng J
– volume: 112
  start-page: 4768
  year: 1990
  end-page: 4774
  ident: bb0165
  article-title: Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene
  publication-title: J Am Chem Soc
– volume: 11
  start-page: 24802
  year: 2019
  end-page: 24811
  ident: bb0365
  article-title: Design molecular topology for wet–dry adhesion
  publication-title: ACS Appl Mater Interfaces
– volume: 37
  start-page: 382
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0520
  article-title: Toward a new generation of smart skins
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0079-1
– volume: 28
  start-page: 4497
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0530
  article-title: Stretchable hydrogel electronics and devices
  publication-title: Adv Mater
  doi: 10.1002/adma.201504152
– volume: 41
  start-page: 48
  year: 2002
  ident: 10.1016/j.cis.2023.102982_bb0155
  article-title: The hydrogen bond in the solid state
  publication-title: Angew Chem Int Ed
  doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
– volume: 122
  start-page: 5604
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0465
  article-title: Supramolecular adhesive hydrogels for tissue engineering applications
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00815
– volume: 2
  start-page: 6708
  year: 2014
  ident: 10.1016/j.cis.2023.102982_bb0400
  article-title: Stiff, strong, and tough hydrogels with good chemical stability
  publication-title: J Mater Chem B
  doi: 10.1039/C4TB01194E
– volume: 111
  start-page: 40
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0570
  article-title: Electroconductive natural polymer-based hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.020
– volume: 377
  start-page: 751
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0370
  article-title: Controlled tough bioadhesion mediated by ultrasound
  publication-title: Science
  doi: 10.1126/science.abn8699
– volume: 121
  start-page: 4309
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0105
  article-title: Soft materials by design: unconventional polymer networks give extreme properties
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01088
– volume: 34
  start-page: 2205567
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0075
  article-title: Rapid ultratough topological tissue adhesives
  publication-title: Adv Mater
  doi: 10.1002/adma.202205567
– volume: 121
  start-page: 11336
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0355
  article-title: Polymeric tissue adhesives
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00798
– volume: 15
  start-page: 662
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0495
  article-title: An antibacterial and antiadhesion in situ forming hydrogel with sol–spray system for noncompressible hemostasis
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c19662
– volume: 30
  start-page: 2005689
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0345
  article-title: A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202005689
– volume: 8
  start-page: 1240
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0350
  article-title: Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives
  publication-title: Biomater Sci
  doi: 10.1039/C9BM01848D
– volume: 18
  start-page: 1345
  year: 2006
  ident: 10.1016/j.cis.2023.102982_bb0005
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv Mater
  doi: 10.1002/adma.200501612
– volume: 2
  start-page: 1089
  year: 2001
  ident: 10.1016/j.cis.2023.102982_bb0160
  article-title: Molecular basis of Ca2+−induced gelation in alginates and pectins: the egg-box model revisited
  publication-title: Biomacromolecules
  doi: 10.1021/bm010008g
– volume: 31
  start-page: 2007457
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0250
  article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202007457
– volume: 44
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0620
  article-title: An enzyme cross-linked hydrogel as a minimally invasive arterial tissue sealing and anti-adhesion barrier
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101467
– volume: 49
  start-page: 757
  year: 2011
  ident: 10.1016/j.cis.2023.102982_bb0330
  article-title: Natural underwater adhesives
  publication-title: J Polym Sci B
  doi: 10.1002/polb.22256
– volume: 13
  start-page: 32
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0510
  article-title: Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2018.08.005
– volume: 10
  start-page: 38692
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0380
  article-title: Composite double-network hydrogels to improve adhesion on biological surfaces
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b10735
– volume: 278
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0290
  article-title: Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121169
– volume: 22
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0080
  article-title: Injectable adhesive hydrogels for soft tissue reconstruction: a materials chemistry perspective
  publication-title: Chem Rec
  doi: 10.1002/tcr.202200155
– volume: 55
  start-page: 13765
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0585
  article-title: UV-induced disulfide formation and reduction for dynamic photopatterning
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201607276
– volume: 5
  start-page: 310
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0015
  article-title: Overcoming the translational barriers of tissue adhesives
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-019-0171-7
– volume: 29
  start-page: 1606100
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0240
  article-title: Dynamic covalent polymer networks: from old chemistry to modern day innovations
  publication-title: Adv Mater
  doi: 10.1002/adma.201606100
– volume: 575
  start-page: 169
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0130
  article-title: Dry double-sided tape for adhesion of wet tissues and devices
  publication-title: Nature
  doi: 10.1038/s41586-019-1710-5
– volume: 12
  start-page: 2201799
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0305
  article-title: Superwetting injectable hydrogel with ultrastrong and fast tissue adhesion for minimally invasive hemostasis
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202201799
– start-page: 2213008
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0480
  article-title: A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202213008
– volume: 30
  start-page: 1901693
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0035
  article-title: Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201901693
– volume: 26
  start-page: 154
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0430
  article-title: A review on nanocomposite hydrogels and their biomedical applications
  publication-title: Sci Eng Compos Mater
  doi: 10.1515/secm-2017-0161
– volume: 62
  start-page: 179
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0500
  article-title: An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2017.05.023
– volume: 6
  start-page: 1167
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0030
  article-title: Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-021-00810-0
– volume: 15
  start-page: 190
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0125
  article-title: Tough bonding of hydrogels to diverse non-porous surfaces
  publication-title: Nat Mater
  doi: 10.1038/nmat4463
– volume: 7
  start-page: 605
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0660
  article-title: Wound dressing change facilitated by spraying zinc ions
  publication-title: Mater Horiz
  doi: 10.1039/C9MH01255A
– volume: 32
  start-page: 2004290
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0535
  article-title: Bioinspired self-healing human–machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates
  publication-title: Adv Mater
  doi: 10.1002/adma.202004290
– start-page: 2301086
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0310
  article-title: Highly tough and biodegradable PEG-based bioadhesives for large-scaled liver injury hemostasis and tissue regeneration
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202301086
– volume: 9
  start-page: 1901469
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0415
  article-title: Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201901469
– volume: 139
  start-page: 4
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0090
  article-title: Rational design of injectable conducting polymer-based hydrogels for tissue engineering
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2021.04.027
– volume: 7
  start-page: 4048
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0095
  article-title: Engineering hydrogel adhesion for biomedical applications via chemical design of the junction
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.0c01677
– volume: 4
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0540
  article-title: Ferromagnetic soft continuum robots
  publication-title: Sci Robot
  doi: 10.1126/scirobotics.aax7329
– volume: 7
  start-page: 5478
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0580
  article-title: Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages
  publication-title: J Mater Chem B
  doi: 10.1039/C9TB01126A
– volume: 41
  start-page: 99
  year: 2011
  ident: 10.1016/j.cis.2023.102982_bb0050
  article-title: Mussel-inspired adhesives and coatings
  publication-title: Annu Rev Mat Res
  doi: 10.1146/annurev-matsci-062910-100429
– volume: 394
  start-page: 539
  year: 1998
  ident: 10.1016/j.cis.2023.102982_bb0140
  article-title: Design and self-assembly of two-dimensional DNA crystals
  publication-title: Nature
  doi: 10.1038/28998
– volume: 4
  start-page: 101
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0115
  article-title: Functional tough hydrogels: design, processing, and biomedical applications
  publication-title: Acc Mater Res
  doi: 10.1021/accountsmr.2c00026
– volume: 4
  start-page: 185
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0560
  article-title: An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics
  publication-title: Nat Electron
  doi: 10.1038/s41928-021-00545-5
– volume: 14
  start-page: 54488
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0450
  article-title: Strong biopolymer-based nanocomposite hydrogel adhesives with removability and reusability for damaged tissue closure and healing
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c14103
– volume: 11
  start-page: 2201576
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0610
  article-title: Natural dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202201576
– volume: 124
  start-page: 6274
  year: 2002
  ident: 10.1016/j.cis.2023.102982_bb0230
  article-title: Anion−aromatic bonding: a case for anion recognition by π-acidic rings
  publication-title: J Am Chem Soc
  doi: 10.1021/ja017449s
– volume: 31
  start-page: 4553
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0555
  article-title: Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.9b01239
– volume: 116
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0100
  article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2021.101388
– volume: 299
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0265
  article-title: Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2022.120180
– volume: 118
  start-page: 1691
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0195
  article-title: Electrostatic interactions in protein structure, folding, binding, and condensation
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00305
– volume: 446
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0460
  article-title: Sutureless full-thickness skin grafting using a dual drug-in-bioadhesive coacervate
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137272
– volume: 505
  start-page: 382
  year: 2014
  ident: 10.1016/j.cis.2023.102982_bb0045
  article-title: Nanoparticle solutions as adhesives for gels and biological tissues
  publication-title: Nature
  doi: 10.1038/nature12806
– volume: 37
  start-page: 505
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0270
  article-title: Biofilms in chronic wounds: pathogenesis and diagnosis
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2018.10.011
– volume: 35
  start-page: 3558
  year: 2014
  ident: 10.1016/j.cis.2023.102982_bb0375
  article-title: The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.002
– volume: 50
  start-page: 441
  year: 2002
  ident: 10.1016/j.cis.2023.102982_bb0120
  article-title: Interfacial toughness measurements for thin films on substrates
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00354-8
– volume: 16
  start-page: 3194
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0255
  article-title: pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11040
– volume: 11
  start-page: 2101421
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0235
  article-title: Polyphosphazene and non-catechol-based antibacterial injectable hydrogel for adhesion of wet tissues as wound dressing
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202101421
– volume: 17
  start-page: 2745
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0335
  article-title: Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhesion
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11053
– volume: 30
  start-page: 1800671
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0070
  article-title: Topological adhesion of wet materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201800671
– volume: 20
  start-page: 93
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0470
  article-title: Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing
  publication-title: Bioact Mater
– volume: 36
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0455
  article-title: Tissue adhesives: from research to clinical translation
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.101049
– volume: 6
  start-page: 497
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0405
  article-title: Rational design of self-healing tough hydrogels: a mini review
  publication-title: Front Chem
  doi: 10.3389/fchem.2018.00497
– volume: 11
  start-page: 9478
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0220
  article-title: Nitrogen-coordinated boroxines enable the fabrication of mechanically robust supramolecular thermosets capable of healing and recycling under mild conditions
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b00006
– volume: 163
  start-page: 89
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0385
  article-title: Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.02.016
– volume: 11
  start-page: 2200516
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0605
  article-title: Injectable dual-dynamic-bond cross-linked hydrogel for highly efficient infected diabetic wound healing
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202200516
– volume: 18
  start-page: 2529
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0490
  article-title: Next generation hemostatic materials based on NHS-ester functionalized poly(2-oxazoline)s
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00683
– volume: 300
  start-page: 341
  year: 1982
  ident: 10.1016/j.cis.2023.102982_bb0170
  article-title: The hydrophobic interaction is long range, decaying exponentially with distance
  publication-title: Nature
  doi: 10.1038/300341a0
– volume: 30
  start-page: 1904156
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0420
  article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201904156
– volume: 419
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0600
  article-title: Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129520
– volume: 94
  start-page: 127
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0435
  article-title: A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2016.04.011
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0205
  article-title: Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13171-9
– volume: 15
  start-page: 1155
  year: 2003
  ident: 10.1016/j.cis.2023.102982_bb0410
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv Mater
  doi: 10.1002/adma.200304907
– volume: 11
  start-page: 24802
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0365
  article-title: Design molecular topology for wet–dry adhesion
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b07522
– volume: 27
  start-page: 6899
  year: 2015
  ident: 10.1016/j.cis.2023.102982_bb0145
  article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
  publication-title: Adv Mater
  doi: 10.1002/adma.201503724
– volume: 276
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0395
  article-title: A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120838
– volume: 417
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0425
  article-title: Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129329
– volume: vol. 21
  year: 2012
  ident: 10.1016/j.cis.2023.102982_bb0150
– volume: 112
  start-page: 4768
  year: 1990
  ident: 10.1016/j.cis.2023.102982_bb0165
  article-title: Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00168a022
– volume: 28
  start-page: 1804925
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0445
  article-title: An autolytic high strength instant adhesive hydrogel for emergency self-rescue
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201804925
– volume: 5
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0020
  article-title: Bioinspired mechanically active adhesive dressings to accelerate wound closure
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaw3963
– volume: 377
  start-page: 2092
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0055
  article-title: A slick and stretchable surgical adhesive
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcibr1709967
– volume: 14
  start-page: 185
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0065
  article-title: Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-022-00928-z
– volume: 117
  start-page: 5777
  year: 2013
  ident: 10.1016/j.cis.2023.102982_bb0200
  article-title: Interplay of pH and binding of multivalent metal ions: charge inversion and reentrant condensation in protein solutions
  publication-title: J Phys Chem B
  doi: 10.1021/jp401874t
– volume: 17
  start-page: 160
  year: 2015
  ident: 10.1016/j.cis.2023.102982_bb0575
  article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2015.02.002
– volume: 12
  start-page: 16
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0180
  article-title: Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters
  publication-title: Mater Today Chem
  doi: 10.1016/j.mtchem.2018.12.001
– volume: 32
  start-page: 2109687
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0390
  article-title: Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202109687
– volume: 122
  start-page: 5165
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0475
  article-title: Ultrasound-responsive systems as components for smart materials
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00622
– volume: 137
  start-page: 237
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0275
  article-title: Temporal stability in chronic wound microbiota is associated with poor healing
  publication-title: J Invest Dermatol
  doi: 10.1016/j.jid.2016.08.009
– volume: 117
  start-page: 15497
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0625
  article-title: Instant tough bioadhesive with triggerable benign detachment
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2006389117
– volume: 42
  start-page: 6634
  year: 2013
  ident: 10.1016/j.cis.2023.102982_bb0245
  article-title: Recent advances in dynamic covalent chemistry
  publication-title: Chem Soc Rev
  doi: 10.1039/c3cs60044k
– volume: 149
  start-page: 97
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0595
  article-title: Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.10.013
– volume: 6
  start-page: 385
  year: 2007
  ident: 10.1016/j.cis.2023.102982_bb0360
  article-title: Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration
  publication-title: Nat Mater
  doi: 10.1038/nmat1890
– volume: 5
  start-page: 2000676
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0640
  article-title: Active membranes on rigidity tunable foundations for programmable, rapidly switchable adhesion
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202000676
– volume: 182
  start-page: S40
  year: 2001
  ident: 10.1016/j.cis.2023.102982_bb0040
  article-title: A prospectus on tissue adhesives
  publication-title: Am J Surg
  doi: 10.1016/S0002-9610(01)00742-5
– volume: 31
  start-page: 2008010
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0615
  article-title: Rapid-fabricated and recoverable dual-network hydrogel with inherently anti-bacterial abilities for potential adhesive dressings
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202008010
– volume: 8
  start-page: 2199
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0295
  article-title: Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules
  publication-title: Mater Horiz
  doi: 10.1039/D1MH00533B
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0060
  article-title: Designing hydrogels for controlled drug delivery
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.71
– volume: 42
  start-page: 4872
  year: 2003
  ident: 10.1016/j.cis.2023.102982_bb0175
  article-title: Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200200565
– volume: 37
  start-page: 389
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0525
  article-title: Wearable biosensors for healthcare monitoring
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0045-y
– volume: 12
  start-page: 1
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0025
  article-title: A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery
  publication-title: Nat Commun
– volume: 7
  start-page: 1800225
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0590
  article-title: Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201800225
– volume: 14
  start-page: 52643
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0280
  article-title: Multistage ROS-responsive and natural polyphenol-driven prodrug hydrogels for diabetic wound healing
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c15686
– volume: 5
  start-page: 773
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0485
  article-title: Haemostatic materials for wound healing applications
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-021-00323-z
– volume: 470
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0315
  article-title: A simple yet effective hydrogel dressing for advanced microenvironmental management of diabetic wounds with intrinsic regulation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.143987
– volume: 357
  start-page: 378
  year: 2017
  ident: 10.1016/j.cis.2023.102982_bb0010
  article-title: Tough adhesives for diverse wet surfaces
  publication-title: Science
  doi: 10.1126/science.aah6362
– volume: 12
  start-page: 4419
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0650
  article-title: Reversible electroadhesion of hydrogels to animal tissues for suture-less repair of cuts or tears
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24022-x
– volume: 6
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0215
  article-title: π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax9976
– volume: 19
  start-page: 2207437
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0340
  article-title: An all-in-one “4A hydrogel”: through first-aid hemostatic, antibacterial, antioxidant, and angiogenic to promoting infected wound healing
  publication-title: Small
  doi: 10.1002/smll.202207437
– volume: 30
  start-page: 1704640
  year: 2018
  ident: 10.1016/j.cis.2023.102982_bb0325
  article-title: Bioinspired underwater adhesives by using the supramolecular toolbox
  publication-title: Adv Mater
  doi: 10.1002/adma.201704640
– volume: 32
  start-page: 2001628
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0190
  article-title: An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery
  publication-title: Adv Mater
  doi: 10.1002/adma.202001628
– volume: 4
  start-page: 1702
  year: 2013
  ident: 10.1016/j.cis.2023.102982_bb0135
  article-title: A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue
  publication-title: Nat Commun
  doi: 10.1038/ncomms2715
– volume: 247
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0260
  article-title: Boronate-ester crosslinked hyaluronic acid hydrogels for dihydrocaffeic acid delivery and fibroblasts protection against UVB irradiation
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.116845
– volume: 331
  start-page: 1
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0545
  article-title: Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2021.01.011
– volume: 12
  start-page: 2201594
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0185
  article-title: An ECM-mimicking, injectable, viscoelastic hydrogel for treatment of brain lesions
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202201594
– volume: 9
  start-page: 2101038
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0300
  article-title: Recent advances on designs and applications of hydrogel adhesives
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.202101038
– volume: 7
  start-page: 935
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0110
  article-title: Hydrogel interfaces for merging humans and machines
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-022-00483-4
– volume: 58
  start-page: 696
  year: 2019
  ident: 10.1016/j.cis.2023.102982_bb0285
  article-title: The chemistry behind catechol-based adhesion
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201801063
– volume: 123
  start-page: 834
  year: 2023
  ident: 10.1016/j.cis.2023.102982_bb0085
  article-title: Self-healing injectable hydrogels for tissue regeneration
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.2c00179
– volume: 7
  start-page: 1038
  year: 2016
  ident: 10.1016/j.cis.2023.102982_bb0225
  article-title: A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects
  publication-title: Chem Sci
  doi: 10.1039/C5SC01386K
– volume: 6
  start-page: 1689
  year: 2021
  ident: 10.1016/j.cis.2023.102982_bb0515
  article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration
  publication-title: Bioact Mater
– volume: 46
  start-page: 885
  year: 2013
  ident: 10.1016/j.cis.2023.102982_bb0210
  article-title: The cation−π interaction
  publication-title: Acc Chem Res
  doi: 10.1021/ar300265y
– volume: 78
  year: 2020
  ident: 10.1016/j.cis.2023.102982_bb0550
  article-title: Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105389
– volume: 34
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0630
  article-title: A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot
  publication-title: Adv Mater
– volume: 32
  start-page: 2110066
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0655
  article-title: An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202110066
– volume: 95
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0565
  article-title: Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106991
– start-page: 2211340
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0440
  article-title: Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing
  publication-title: Adv Funct Mater
– volume: 5
  year: 2013
  ident: 10.1016/j.cis.2023.102982_bb0505
  article-title: Human cartilage repair with a photoreactive adhesive-hydrogel composite
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3004838
– volume: 16
  start-page: 8662
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0645
  article-title: Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c00662
– volume: 285
  start-page: 25850
  year: 2010
  ident: 10.1016/j.cis.2023.102982_bb0320
  article-title: Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques*
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.133157
– volume: 119
  year: 2022
  ident: 10.1016/j.cis.2023.102982_bb0635
  article-title: Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing
  publication-title: Proc Natl Acad Sci
SSID ssj0002575
Score 2.5887697
SecondaryResourceType review_article
Snippet Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102982
SubjectTerms Adhesion
Design
Injectable hydrogel
Interfacial toughness
Mechanical dissipation
Title Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications
URI https://dx.doi.org/10.1016/j.cis.2023.102982
https://www.proquest.com/docview/2853945178
Volume 319
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90IvoiOhXnx4jgk1Bd27RpH8dQpkMfZMO91TRNXWV0Yx_CXvzbvVvaoYI--FR65Eq5u9z9klzuAC6kDnyOlmDp1E8t7sQ4pXzHRiAXBxgtqcgbbQ08PPrtHr_ve_01aJV3YSitsvD9xqcvvXVBuS6keT3OMrrj26Ba7xi_Dc5fhw3HDX2vAhvNu077ceWQ0SpNIwNcORNDebi5TPNSGRXtdlyqYRAGzm_h6YejXkaf213YKWAja5o_24M1nVdh0zSSXFRhq1X2bUPqMqlTTffhpUsteJhMBpr2xJjOB1RdI39l01lZIYIhaGVZTrsxdImKDRbJZPSqhwXXO47IcmYu6ZM-2dcT7wPo3d50W22r6KhgKddtzCzuKlwfBZIjKFRJIoXNk9DWSngaAztPha3cWHh-aqcOwm5Pa8Gl5LgGTG0v8BP3ECr5KNdHwEKepE4jFYgfYy48GQhH4-RXiauRJoMaNEpBRqooN05dL4ZRmVf2hvRpRLKPjOxrcLliGZtaG38N5qV2om8GE2Es-IvtvNRkhHqh0xGZ69EcByFwCblni-D4f58-gW16Mwlop1CZTeb6DBHLLK7D-tWHXS_skp6dp-fOJ8Et6iU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qIvUiWhXfruBJiDbJJpscpViqVk8t9BY3m00bKWlpq-DF3-5MNvEFevA6mQ1hZjLz7e48AM6kDnyOlmDp1E8t7sT4S_mOjUAuDjBaUpM3Ohq4f_A7fX478AY1aFW1MJRWWfp-49MLb11SLktpXk6zjGp8m9TrHeO3wflLsMI9V1Be38XbZ54H2qQZY4D7ZmKvrjaLJC-VUctux6UOBmHg_BacfrjpIva0N2C9BI3synzXJtR03oBVM0bytQH1VjW1DalFSqeab8FjjwbwMJmMNJ2IMZ2PqLdGPmTzRdUfgiFkZVlOZzFUQsVGr8lsMtTjctULcmQ5MyX6pE329b57G_rt616rY5XzFCzlus2FxV2Fu6NAcoSEKkmksHkS2loJT2NY56mwlRsLz0_t1EHQ7WktuJQcd4Cp7QV-4u7Acj7J9S6wkCep00wFoseYC08GwtH466vE1UiTwR40K0FGqmw2TjMvxlGVVfaE9HlEso-M7Pfg_GPJ1HTa-IuZV9qJvplLhJHgr2WnlSYj1AvdjchcT56RCWFLyD1bBPv_e_UJ1Du9-27UvXm4O4A1emJS0Q5heTF71keIXRbxcWGb72sT6U0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tough+adhesion+enhancing+strategies+for+injectable+hydrogel+adhesives+in+biomedical+applications&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Ouyang%2C+Chenguang&rft.au=Yu%2C+Haojie&rft.au=Wang%2C+Li&rft.au=Ni%2C+Zhipeng&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=0001-8686&rft.eissn=1873-3727&rft.volume=319&rft_id=info:doi/10.1016%2Fj.cis.2023.102982&rft.externalDocID=S0001868623001495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon