Independent domination in triangle-free graphs

Let G be a simple graph of order n and minimum degree δ . The independent domination number i ( G ) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish upper bounds, as functions of n and δ ⩽ n / 2 , for the independent domination number of tria...

Full description

Saved in:
Bibliographic Details
Published inDiscrete mathematics Vol. 308; no. 16; pp. 3545 - 3550
Main Author Haviland, Julie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 28.08.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let G be a simple graph of order n and minimum degree δ . The independent domination number i ( G ) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish upper bounds, as functions of n and δ ⩽ n / 2 , for the independent domination number of triangle-free graphs, and over part of the range achieve best possible results.
AbstractList Let G be a simple graph of order n and minimum degree δ . The independent domination number i ( G ) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish upper bounds, as functions of n and δ ⩽ n / 2 , for the independent domination number of triangle-free graphs, and over part of the range achieve best possible results.
Author Haviland, Julie
Author_xml – sequence: 1
  givenname: Julie
  surname: Haviland
  fullname: Haviland, Julie
  email: juliehaviland@exe-coll.ac.uk
  organization: Exeter College, Hele Road, Exeter EX4 4JS, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20392508$$DView record in Pascal Francis
BookMark eNp9j81LAzEQxYNUsK3-A5724nHXmWQ3ScGLFD8KBS8KvYU0HzVLm12SRfC_d5eKR-Exw8B78_gtyCx20RFyi1AhIL9vKxuyqSiAqCYhXJA5SkFLLnE3I3MApCXjze6KLHJuYbw5k3NSbaJ1vRtHHArbnULUQ-hiEWIxpKDj4ehKn5wrDkn3n_maXHp9zO7mdy_Jx_PT-_q13L69bNaP29IwBkPJpDYUG0458xxFU1uQNed7SfVeMLvikhtuwDJNtRDGN4YLip7WGmuBDWVLQs9_TepyTs6rPoWTTt8KQU3EqlUTsZqI1SSEMXR3DvU6G330SUcT8l-SAlvRBuToezj73EjwFVxS2QQXjbMhOTMo24X_an4AQQpsXw
CODEN DSMHA4
CitedBy_id crossref_primary_10_1016_j_disc_2012_11_031
crossref_primary_10_1051_ro_2013034
crossref_primary_10_1016_j_disopt_2010_02_004
crossref_primary_10_1007_s10878_010_9336_4
crossref_primary_10_1007_s00453_022_00979_z
Cites_doi 10.1016/0012-365X(88)90076-3
10.1016/0012-365X(94)00022-B
10.1006/jctb.1999.1907
10.1016/S0012-365X(98)00350-1
10.1016/j.disc.2007.01.001
10.1016/0012-365X(91)90318-V
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
IQODW
AAYXX
CITATION
DOI 10.1016/j.disc.2007.07.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 3550
ExternalDocumentID 10_1016_j_disc_2007_07_010
20392508
S0012365X07004992
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
AAPBV
ABPIF
ABPTK
IQODW
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c330t-38ac2156263f61754d08466b82ab73d9686c6c0d3a2a77cf5c6721f24a1471523
IEDL.DBID IXB
ISSN 0012-365X
IngestDate Thu Sep 26 17:34:37 EDT 2024
Sun Oct 22 16:02:10 EDT 2023
Fri Feb 23 02:29:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Independent domination
Triangle-free graphs
Upper bound
Domination number
Discrete mathematics
Independent set
Combinatorics
N order
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-38ac2156263f61754d08466b82ab73d9686c6c0d3a2a77cf5c6721f24a1471523
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0012365X07004992
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_disc_2007_07_010
pascalfrancis_primary_20392508
elsevier_sciencedirect_doi_10_1016_j_disc_2007_07_010
PublicationCentury 2000
PublicationDate 2008-08-28
PublicationDateYYYYMMDD 2008-08-28
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-28
  day: 28
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Discrete mathematics
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Haynes, Hedetniemi, Slater (bib5) 1998
Lam, Shiu, Sun (bib6) 1999; 202
Sun, Wang (bib7) 1999; 76
Favaron (bib1) 1988; 70
Haviland (bib2) 1991; 94
J. Haviland, Upper bounds for independent domination in regular graphs, Discrete Math. (2007), to appear, doi
.
Haviland (bib3) 1995; 143
Sun (10.1016/j.disc.2007.07.010_bib7) 1999; 76
Lam (10.1016/j.disc.2007.07.010_bib6) 1999; 202
Haviland (10.1016/j.disc.2007.07.010_bib3) 1995; 143
Haynes (10.1016/j.disc.2007.07.010_bib5) 1998
10.1016/j.disc.2007.07.010_bib4
Favaron (10.1016/j.disc.2007.07.010_bib1) 1988; 70
Haviland (10.1016/j.disc.2007.07.010_bib2) 1991; 94
References_xml – year: 1998
  ident: bib5
  article-title: Fundamentals of Domination in Graphs
  contributor:
    fullname: Slater
– volume: 202
  start-page: 135
  year: 1999
  end-page: 144
  ident: bib6
  article-title: On independent domination number of regular graphs
  publication-title: Discrete Math.
  contributor:
    fullname: Sun
– volume: 76
  start-page: 240
  year: 1999
  end-page: 246
  ident: bib7
  article-title: An upper bound for the independent domination number
  publication-title: J. Combin. Theory Ser. B
  contributor:
    fullname: Wang
– volume: 70
  start-page: 17
  year: 1988
  end-page: 20
  ident: bib1
  article-title: Two relations between the parameters of independence and irredundance
  publication-title: Discrete Math.
  contributor:
    fullname: Favaron
– volume: 94
  start-page: 95
  year: 1991
  end-page: 101
  ident: bib2
  article-title: On minimum maximal independent sets of a graph
  publication-title: Discrete Math.
  contributor:
    fullname: Haviland
– volume: 143
  start-page: 275
  year: 1995
  end-page: 280
  ident: bib3
  article-title: Independent domination in regular graphs
  publication-title: Discrete Math.
  contributor:
    fullname: Haviland
– volume: 70
  start-page: 17
  year: 1988
  ident: 10.1016/j.disc.2007.07.010_bib1
  article-title: Two relations between the parameters of independence and irredundance
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(88)90076-3
  contributor:
    fullname: Favaron
– volume: 143
  start-page: 275
  year: 1995
  ident: 10.1016/j.disc.2007.07.010_bib3
  article-title: Independent domination in regular graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(94)00022-B
  contributor:
    fullname: Haviland
– volume: 76
  start-page: 240
  year: 1999
  ident: 10.1016/j.disc.2007.07.010_bib7
  article-title: An upper bound for the independent domination number
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.1999.1907
  contributor:
    fullname: Sun
– volume: 202
  start-page: 135
  year: 1999
  ident: 10.1016/j.disc.2007.07.010_bib6
  article-title: On independent domination number of regular graphs
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(98)00350-1
  contributor:
    fullname: Lam
– ident: 10.1016/j.disc.2007.07.010_bib4
  doi: 10.1016/j.disc.2007.01.001
– volume: 94
  start-page: 95
  year: 1991
  ident: 10.1016/j.disc.2007.07.010_bib2
  article-title: On minimum maximal independent sets of a graph
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(91)90318-V
  contributor:
    fullname: Haviland
– year: 1998
  ident: 10.1016/j.disc.2007.07.010_bib5
  contributor:
    fullname: Haynes
SSID ssj0001638
Score 1.9479376
Snippet Let G be a simple graph of order n and minimum degree δ . The independent domination number i ( G ) is defined to be the minimum cardinality among all maximal...
SourceID crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 3545
SubjectTerms Algebra
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Independent domination
Mathematics
Sciences and techniques of general use
Triangle-free graphs
Title Independent domination in triangle-free graphs
URI https://dx.doi.org/10.1016/j.disc.2007.07.010
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvSgiPrE-Qg7eZNs02c2mx7ZYWmt7spJb2Gx2pSJpaePV3-5MXlgQD8JCIOSxfAnffAMz3xByz4zwHc0E5ZxLyjRjVMZKUzfWAZOql8QSE8XZ3B8v2FPIwwYZVr0wWFZZcn_B6Tlbl2c6JZqd9XKJPb7oHMJDR-S6HXnYg-iMTXzhoGZj1BsFG7sUry4bZ4oaL-x8LW0MYWEX7e_B6WgttwCZKWZd_AhAoxNyXCpHu19s7pQ0dHpGDme17er2nLQn9VDbzE5WWOWCuNvL1MbpHOnbh6Zmo7Wd21RvL8hi9PgyHNNyIAJVnudk1AukghCNBjIGlAdniQPywY8DV8bCS3p-4CtfOYknXSmEMlz5kOAZl8kuxCBIOS9JM12l-orYBpQdiDPQHwJypEAGnjaxZph-oQWcaZGHColoXfheRFVB2HuEuOEASxHh6jotwiuwop2vFwEx_3mftYNs_SrXAd0G2vH6nw--IQdFYQfQQHBLmtnmU9-Beshii-y1v7oW2e8PXqfPeJxMx3Mr_2m-AarWxF4
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEF1ED20ppZ_UftgceitbY7KbjUcrFa0fJy3ewmazW5QSRdP_3xmzCRVKD4U9LWyyvIQ3b2DmDSGPzIjA1UxQzrmkTDNGZaw09WIdMqnaSSwxURxPgv6Mvc35vEK6RS8MllVa7s85fcfWdqdp0WyuFwvs8UXnED53xU63Aw_XQA0IyMBqnZf34agkZJQcOSF7FA_Y3pm8zAubX62TISxspP09Ph2v5RZQM_m4ix8xqHdKTqx4dDr5_c5IRafn5GhcOq9uL8jzoJxrmznJCgtdEHpnkTo4oCP9-NTUbLR2dk7V20sy671Ou31qZyJQ5ftuRv1QKojS6CFjQHxwlrigIII49GQs_KQdhIEKlJv40pNCKMNVADme8ZhsQRiCrPOKVNNVqq-JY0DcgT4DCSIgTQpl6GsTa4YZGLrAmTp5KpCI1rn1RVTUhC0jxA1nWIoIV8utE16AFe19wAi4-c9zjT1ky1d5Lkg3kI83_3zwAznoT8ejaDSYDG_JYV7nAawQ3pFqtvnS9yAmsrhhf5Zv2GfEhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+domination+in+triangle-free+graphs&rft.jtitle=Discrete+mathematics&rft.au=HAVILAND%2C+Julie&rft.date=2008-08-28&rft.pub=Elsevier&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=308&rft.issue=16&rft.spage=3545&rft.epage=3550&rft_id=info:doi/10.1016%2Fj.disc.2007.07.010&rft.externalDBID=n%2Fa&rft.externalDocID=20392508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon