Independent domination in triangle-free graphs
Let G be a simple graph of order n and minimum degree δ . The independent domination number i ( G ) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish upper bounds, as functions of n and δ ⩽ n / 2 , for the independent domination number of tria...
Saved in:
Published in | Discrete mathematics Vol. 308; no. 16; pp. 3545 - 3550 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
28.08.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
G be a simple graph of order
n and minimum degree
δ
. The
independent domination number
i
(
G
)
is defined to be the minimum cardinality among all maximal independent sets of vertices of
G. We establish upper bounds, as functions of
n and
δ
⩽
n
/
2
, for the independent domination number of triangle-free graphs, and over part of the range achieve best possible results. |
---|---|
AbstractList | Let
G be a simple graph of order
n and minimum degree
δ
. The
independent domination number
i
(
G
)
is defined to be the minimum cardinality among all maximal independent sets of vertices of
G. We establish upper bounds, as functions of
n and
δ
⩽
n
/
2
, for the independent domination number of triangle-free graphs, and over part of the range achieve best possible results. |
Author | Haviland, Julie |
Author_xml | – sequence: 1 givenname: Julie surname: Haviland fullname: Haviland, Julie email: juliehaviland@exe-coll.ac.uk organization: Exeter College, Hele Road, Exeter EX4 4JS, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20392508$$DView record in Pascal Francis |
BookMark | eNp9j81LAzEQxYNUsK3-A5724nHXmWQ3ScGLFD8KBS8KvYU0HzVLm12SRfC_d5eKR-Exw8B78_gtyCx20RFyi1AhIL9vKxuyqSiAqCYhXJA5SkFLLnE3I3MApCXjze6KLHJuYbw5k3NSbaJ1vRtHHArbnULUQ-hiEWIxpKDj4ehKn5wrDkn3n_maXHp9zO7mdy_Jx_PT-_q13L69bNaP29IwBkPJpDYUG0458xxFU1uQNed7SfVeMLvikhtuwDJNtRDGN4YLip7WGmuBDWVLQs9_TepyTs6rPoWTTt8KQU3EqlUTsZqI1SSEMXR3DvU6G330SUcT8l-SAlvRBuToezj73EjwFVxS2QQXjbMhOTMo24X_an4AQQpsXw |
CODEN | DSMHA4 |
CitedBy_id | crossref_primary_10_1016_j_disc_2012_11_031 crossref_primary_10_1051_ro_2013034 crossref_primary_10_1016_j_disopt_2010_02_004 crossref_primary_10_1007_s10878_010_9336_4 crossref_primary_10_1007_s00453_022_00979_z |
Cites_doi | 10.1016/0012-365X(88)90076-3 10.1016/0012-365X(94)00022-B 10.1006/jctb.1999.1907 10.1016/S0012-365X(98)00350-1 10.1016/j.disc.2007.01.001 10.1016/0012-365X(91)90318-V |
ContentType | Journal Article |
Copyright | 2007 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | 6I. AAFTH IQODW AAYXX CITATION |
DOI | 10.1016/j.disc.2007.07.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-681X |
EndPage | 3550 |
ExternalDocumentID | 10_1016_j_disc_2007_07_010 20392508 S0012365X07004992 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6I. 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AAPBV ABPIF ABPTK IQODW 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c330t-38ac2156263f61754d08466b82ab73d9686c6c0d3a2a77cf5c6721f24a1471523 |
IEDL.DBID | IXB |
ISSN | 0012-365X |
IngestDate | Thu Sep 26 17:34:37 EDT 2024 Sun Oct 22 16:02:10 EDT 2023 Fri Feb 23 02:29:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Independent domination Triangle-free graphs Upper bound Domination number Discrete mathematics Independent set Combinatorics N order |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-38ac2156263f61754d08466b82ab73d9686c6c0d3a2a77cf5c6721f24a1471523 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0012365X07004992 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_disc_2007_07_010 pascalfrancis_primary_20392508 elsevier_sciencedirect_doi_10_1016_j_disc_2007_07_010 |
PublicationCentury | 2000 |
PublicationDate | 2008-08-28 |
PublicationDateYYYYMMDD | 2008-08-28 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Discrete mathematics |
PublicationYear | 2008 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Haynes, Hedetniemi, Slater (bib5) 1998 Lam, Shiu, Sun (bib6) 1999; 202 Sun, Wang (bib7) 1999; 76 Favaron (bib1) 1988; 70 Haviland (bib2) 1991; 94 J. Haviland, Upper bounds for independent domination in regular graphs, Discrete Math. (2007), to appear, doi . Haviland (bib3) 1995; 143 Sun (10.1016/j.disc.2007.07.010_bib7) 1999; 76 Lam (10.1016/j.disc.2007.07.010_bib6) 1999; 202 Haviland (10.1016/j.disc.2007.07.010_bib3) 1995; 143 Haynes (10.1016/j.disc.2007.07.010_bib5) 1998 10.1016/j.disc.2007.07.010_bib4 Favaron (10.1016/j.disc.2007.07.010_bib1) 1988; 70 Haviland (10.1016/j.disc.2007.07.010_bib2) 1991; 94 |
References_xml | – year: 1998 ident: bib5 article-title: Fundamentals of Domination in Graphs contributor: fullname: Slater – volume: 202 start-page: 135 year: 1999 end-page: 144 ident: bib6 article-title: On independent domination number of regular graphs publication-title: Discrete Math. contributor: fullname: Sun – volume: 76 start-page: 240 year: 1999 end-page: 246 ident: bib7 article-title: An upper bound for the independent domination number publication-title: J. Combin. Theory Ser. B contributor: fullname: Wang – volume: 70 start-page: 17 year: 1988 end-page: 20 ident: bib1 article-title: Two relations between the parameters of independence and irredundance publication-title: Discrete Math. contributor: fullname: Favaron – volume: 94 start-page: 95 year: 1991 end-page: 101 ident: bib2 article-title: On minimum maximal independent sets of a graph publication-title: Discrete Math. contributor: fullname: Haviland – volume: 143 start-page: 275 year: 1995 end-page: 280 ident: bib3 article-title: Independent domination in regular graphs publication-title: Discrete Math. contributor: fullname: Haviland – volume: 70 start-page: 17 year: 1988 ident: 10.1016/j.disc.2007.07.010_bib1 article-title: Two relations between the parameters of independence and irredundance publication-title: Discrete Math. doi: 10.1016/0012-365X(88)90076-3 contributor: fullname: Favaron – volume: 143 start-page: 275 year: 1995 ident: 10.1016/j.disc.2007.07.010_bib3 article-title: Independent domination in regular graphs publication-title: Discrete Math. doi: 10.1016/0012-365X(94)00022-B contributor: fullname: Haviland – volume: 76 start-page: 240 year: 1999 ident: 10.1016/j.disc.2007.07.010_bib7 article-title: An upper bound for the independent domination number publication-title: J. Combin. Theory Ser. B doi: 10.1006/jctb.1999.1907 contributor: fullname: Sun – volume: 202 start-page: 135 year: 1999 ident: 10.1016/j.disc.2007.07.010_bib6 article-title: On independent domination number of regular graphs publication-title: Discrete Math. doi: 10.1016/S0012-365X(98)00350-1 contributor: fullname: Lam – ident: 10.1016/j.disc.2007.07.010_bib4 doi: 10.1016/j.disc.2007.01.001 – volume: 94 start-page: 95 year: 1991 ident: 10.1016/j.disc.2007.07.010_bib2 article-title: On minimum maximal independent sets of a graph publication-title: Discrete Math. doi: 10.1016/0012-365X(91)90318-V contributor: fullname: Haviland – year: 1998 ident: 10.1016/j.disc.2007.07.010_bib5 contributor: fullname: Haynes |
SSID | ssj0001638 |
Score | 1.9479376 |
Snippet | Let
G be a simple graph of order
n and minimum degree
δ
. The
independent domination number
i
(
G
)
is defined to be the minimum cardinality among all maximal... |
SourceID | crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3545 |
SubjectTerms | Algebra Combinatorics Combinatorics. Ordered structures Exact sciences and technology Independent domination Mathematics Sciences and techniques of general use Triangle-free graphs |
Title | Independent domination in triangle-free graphs |
URI | https://dx.doi.org/10.1016/j.disc.2007.07.010 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvSgiPrE-Qg7eZNs02c2mx7ZYWmt7spJb2Gx2pSJpaePV3-5MXlgQD8JCIOSxfAnffAMz3xByz4zwHc0E5ZxLyjRjVMZKUzfWAZOql8QSE8XZ3B8v2FPIwwYZVr0wWFZZcn_B6Tlbl2c6JZqd9XKJPb7oHMJDR-S6HXnYg-iMTXzhoGZj1BsFG7sUry4bZ4oaL-x8LW0MYWEX7e_B6WgttwCZKWZd_AhAoxNyXCpHu19s7pQ0dHpGDme17er2nLQn9VDbzE5WWOWCuNvL1MbpHOnbh6Zmo7Wd21RvL8hi9PgyHNNyIAJVnudk1AukghCNBjIGlAdniQPywY8DV8bCS3p-4CtfOYknXSmEMlz5kOAZl8kuxCBIOS9JM12l-orYBpQdiDPQHwJypEAGnjaxZph-oQWcaZGHColoXfheRFVB2HuEuOEASxHh6jotwiuwop2vFwEx_3mftYNs_SrXAd0G2vH6nw--IQdFYQfQQHBLmtnmU9-Beshii-y1v7oW2e8PXqfPeJxMx3Mr_2m-AarWxF4 |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEF1ED20ppZ_UftgceitbY7KbjUcrFa0fJy3ewmazW5QSRdP_3xmzCRVKD4U9LWyyvIQ3b2DmDSGPzIjA1UxQzrmkTDNGZaw09WIdMqnaSSwxURxPgv6Mvc35vEK6RS8MllVa7s85fcfWdqdp0WyuFwvs8UXnED53xU63Aw_XQA0IyMBqnZf34agkZJQcOSF7FA_Y3pm8zAubX62TISxspP09Ph2v5RZQM_m4ix8xqHdKTqx4dDr5_c5IRafn5GhcOq9uL8jzoJxrmznJCgtdEHpnkTo4oCP9-NTUbLR2dk7V20sy671Ou31qZyJQ5ftuRv1QKojS6CFjQHxwlrigIII49GQs_KQdhIEKlJv40pNCKMNVADme8ZhsQRiCrPOKVNNVqq-JY0DcgT4DCSIgTQpl6GsTa4YZGLrAmTp5KpCI1rn1RVTUhC0jxA1nWIoIV8utE16AFe19wAi4-c9zjT1ky1d5Lkg3kI83_3zwAznoT8ejaDSYDG_JYV7nAawQ3pFqtvnS9yAmsrhhf5Zv2GfEhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+domination+in+triangle-free+graphs&rft.jtitle=Discrete+mathematics&rft.au=HAVILAND%2C+Julie&rft.date=2008-08-28&rft.pub=Elsevier&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=308&rft.issue=16&rft.spage=3545&rft.epage=3550&rft_id=info:doi/10.1016%2Fj.disc.2007.07.010&rft.externalDBID=n%2Fa&rft.externalDocID=20392508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |