Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery
Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent th...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 9; no. 8; p. 790 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent the intrinsic structure of hyperspectral imagery (HSI) that possesses many homogenous areas. In this paper, we propose a new dimensionality reduction (DR) method, termed local geometric structure Fisher analysis (LGSFA), for HSI classification. Firstly, LGSFA uses the intraclass neighbor points of each point to compute its reconstruction point. Then, an intrinsic graph and a penalty graph are constructed to reveal the intraclass and interclass properties of hyperspectral data. Finally, the neighbor points and corresponding intraclass reconstruction points are used to enhance the intraclass-manifold compactness and the interclass-manifold separability. LGSFA can effectively reveal the intrinsic manifold structure and obtain the discriminating features of HSI data for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the proposed LGSFA algorithm achieves the best classification results than other state-of-the-art methods. |
---|---|
AbstractList | Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent the intrinsic structure of hyperspectral imagery (HSI) that possesses many homogenous areas. In this paper, we propose a new dimensionality reduction (DR) method, termed local geometric structure Fisher analysis (LGSFA), for HSI classification. Firstly, LGSFA uses the intraclass neighbor points of each point to compute its reconstruction point. Then, an intrinsic graph and a penalty graph are constructed to reveal the intraclass and interclass properties of hyperspectral data. Finally, the neighbor points and corresponding intraclass reconstruction points are used to enhance the intraclass-manifold compactness and the interclass-manifold separability. LGSFA can effectively reveal the intrinsic manifold structure and obtain the discriminating features of HSI data for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the proposed LGSFA algorithm achieves the best classification results than other state-of-the-art methods. |
Author | Luo, Fulin Duan, Yule Liao, Yinghua Liu, Jiamin Huang, Hong |
Author_xml | – sequence: 1 givenname: Fulin orcidid: 0000-0002-7696-0775 surname: Luo fullname: Luo, Fulin – sequence: 2 givenname: Hong orcidid: 0000-0002-7377-3077 surname: Huang fullname: Huang, Hong – sequence: 3 givenname: Yule surname: Duan fullname: Duan, Yule – sequence: 4 givenname: Jiamin surname: Liu fullname: Liu, Jiamin – sequence: 5 givenname: Yinghua surname: Liao fullname: Liao, Yinghua |
BookMark | eNplUMtOwzAQtFCRKKUH_iBXDqWOncT1ERX6kCoh8RBHa-OsK1dJXDnuIX-P2wJCsJfZWe2MdvaaDFrXIiG3Kb3nXNKp7ySdUSHpBRkyKtgkY5INfvVXZNx1OxqL81TSbEg-Nk5DnSzRNRi81clr8AcdDh6TBcIJjfPJo22w7axrobahT16wikuRJs4kq36PvtujDj46rRvYou9vyKWBusPxF47I--Lpbb6abJ6X6_nDZqI5p2HCNEJWCF2IImNYptRUpWY6zRkvKlZWhlU5zXOgIKNAG05nImemmGFW8TLyEVmffSsHO7X3tgHfKwdWnQbObxX4YHWNSnAqDWeCCq0zkCmg1GCkSHlWFYAsek3PXtq7rvNolLYBjjFjMlurlKrjm9XPm6Pi7o_i-4L_u58cioBZ |
CitedBy_id | crossref_primary_10_3390_e21010078 crossref_primary_10_1109_LGRS_2019_2896888 crossref_primary_10_1016_j_compbiomed_2022_106080 crossref_primary_10_1109_JSTARS_2024_3491335 crossref_primary_10_1109_JSTARS_2018_2869210 crossref_primary_10_3390_rs12030548 crossref_primary_10_1080_2150704X_2020_1746855 crossref_primary_10_1016_j_eswa_2021_115663 crossref_primary_10_1109_ACCESS_2021_3064687 crossref_primary_10_1016_j_neucom_2019_11_084 crossref_primary_10_1080_01431161_2022_2152756 crossref_primary_10_1109_TCYB_2018_2810806 crossref_primary_10_1109_TCSVT_2019_2960507 crossref_primary_10_1016_j_patcog_2020_107487 crossref_primary_10_1109_ACCESS_2020_2990160 crossref_primary_10_1109_JSTARS_2020_3003053 crossref_primary_10_1109_ACCESS_2020_3044497 crossref_primary_10_1109_TGRS_2023_3292292 crossref_primary_10_1109_TGRS_2020_2963848 crossref_primary_10_1109_ACCESS_2019_2892648 crossref_primary_10_1049_iet_ipr_2020_0728 crossref_primary_10_1109_ACCESS_2021_3067607 crossref_primary_10_1109_TGRS_2019_2945255 crossref_primary_10_1049_iet_ipr_2018_5063 crossref_primary_10_1109_ACCESS_2018_2799079 crossref_primary_10_1109_ACCESS_2021_3060096 crossref_primary_10_1109_TGRS_2019_2931801 crossref_primary_10_1016_j_eswa_2019_113089 crossref_primary_10_3390_rs14061484 crossref_primary_10_1016_j_future_2021_09_044 crossref_primary_10_1109_JSTARS_2019_2902430 crossref_primary_10_1080_01431161_2019_1607980 crossref_primary_10_1109_ACCESS_2020_3040448 crossref_primary_10_1049_iet_cvi_2019_0780 crossref_primary_10_1109_ACCESS_2017_2766242 crossref_primary_10_1109_TCSVT_2020_2977943 crossref_primary_10_1109_TCSVT_2020_3020717 crossref_primary_10_1109_ACCESS_2019_2902011 crossref_primary_10_1109_ACCESS_2020_3038314 crossref_primary_10_1109_ACCESS_2019_2950427 crossref_primary_10_1109_TCYB_2020_2977461 crossref_primary_10_1109_ACCESS_2021_3093829 crossref_primary_10_1016_j_engappai_2020_103831 crossref_primary_10_3390_rs11010029 crossref_primary_10_3390_rs13204143 crossref_primary_10_1109_ACCESS_2020_3024663 crossref_primary_10_1155_2019_7835797 crossref_primary_10_1109_LGRS_2019_2936652 crossref_primary_10_1109_ACCESS_2021_3050747 crossref_primary_10_1109_TCYB_2019_2905793 crossref_primary_10_1109_TIM_2020_3026804 crossref_primary_10_1109_ACCESS_2021_3051274 crossref_primary_10_1109_TCSVT_2024_3397086 crossref_primary_10_1109_TCYB_2021_3104100 crossref_primary_10_1109_TMI_2018_2878226 crossref_primary_10_1016_j_asoc_2019_03_024 crossref_primary_10_1117_1_JRS_17_036506 crossref_primary_10_1109_ACCESS_2020_3013027 crossref_primary_10_1109_TGRS_2023_3270667 crossref_primary_10_1109_JSTARS_2018_2789401 crossref_primary_10_1109_ACCESS_2020_2972966 crossref_primary_10_3390_rs11091039 crossref_primary_10_1109_TGRS_2021_3128764 crossref_primary_10_1016_j_neunet_2020_05_022 crossref_primary_10_3390_rs11020109 crossref_primary_10_1109_TGRS_2022_3205178 crossref_primary_10_1109_ACCESS_2021_3051685 crossref_primary_10_1109_ACCESS_2020_2977454 crossref_primary_10_1109_TAI_2022_3204734 crossref_primary_10_1109_ACCESS_2020_3034653 crossref_primary_10_1016_j_isprsjprs_2019_06_018 crossref_primary_10_1080_10095020_2020_1720529 crossref_primary_10_1109_LGRS_2020_3009144 crossref_primary_10_1109_JSEN_2024_3357809 crossref_primary_10_1109_ACCESS_2020_3027839 crossref_primary_10_3390_rs10101565 crossref_primary_10_3390_rs12071179 crossref_primary_10_1109_ACCESS_2019_2909752 crossref_primary_10_1109_TGRS_2021_3110855 crossref_primary_10_1109_ACCESS_2020_3029216 crossref_primary_10_1109_JSTARS_2020_3011431 crossref_primary_10_1088_1361_6501_acdaeb crossref_primary_10_1109_TGRS_2019_2952383 crossref_primary_10_1109_LGRS_2019_2944970 crossref_primary_10_1109_ACCESS_2021_3052149 crossref_primary_10_3390_rs12233879 crossref_primary_10_1016_j_neunet_2022_05_015 crossref_primary_10_1109_ACCESS_2021_3073249 crossref_primary_10_1109_TGRS_2018_2849981 crossref_primary_10_1109_JSTARS_2020_2994210 crossref_primary_10_1109_LGRS_2020_3042999 crossref_primary_10_1109_ACCESS_2021_3053085 crossref_primary_10_1109_LGRS_2021_3067733 crossref_primary_10_1109_ACCESS_2021_3065984 crossref_primary_10_1007_s11042_022_12494_y crossref_primary_10_1038_s41598_021_83150_y crossref_primary_10_1049_iet_ipr_2018_5423 crossref_primary_10_1109_TGRS_2019_2951160 crossref_primary_10_1109_TGRS_2023_3258977 crossref_primary_10_1109_ACCESS_2020_3045532 crossref_primary_10_1016_j_patrec_2018_09_013 crossref_primary_10_1109_ACCESS_2020_3018730 crossref_primary_10_1109_ACCESS_2020_3032346 crossref_primary_10_1109_TCYB_2020_2994875 crossref_primary_10_3390_rs11172057 crossref_primary_10_1109_TGRS_2021_3123651 crossref_primary_10_1109_TGRS_2021_3057701 crossref_primary_10_1109_TGRS_2020_2995709 crossref_primary_10_1109_LGRS_2019_2927256 crossref_primary_10_3390_rs11202414 crossref_primary_10_1088_1361_6560_ab51db crossref_primary_10_1109_ACCESS_2021_3051196 crossref_primary_10_1109_ACCESS_2018_2873713 crossref_primary_10_1007_s00607_021_01019_4 crossref_primary_10_1109_ACCESS_2020_2964051 crossref_primary_10_1109_TGRS_2021_3083776 crossref_primary_10_1109_ACCESS_2021_3051637 crossref_primary_10_1109_ACCESS_2021_3066041 crossref_primary_10_3390_app13169180 crossref_primary_10_1109_TGRS_2020_2977248 crossref_primary_10_1080_07038992_2022_2114440 crossref_primary_10_1109_ACCESS_2020_3014307 crossref_primary_10_3390_rs11060651 crossref_primary_10_1109_TAI_2021_3094774 crossref_primary_10_1016_j_asoc_2019_04_029 crossref_primary_10_3390_rs15051206 crossref_primary_10_1109_ACCESS_2021_3049448 crossref_primary_10_1109_TIP_2021_3055613 crossref_primary_10_1109_ACCESS_2020_3016171 crossref_primary_10_1109_ACCESS_2020_3010519 crossref_primary_10_1109_ACCESS_2018_2884027 crossref_primary_10_1109_ACCESS_2018_2812999 crossref_primary_10_3390_rs10030472 |
Cites_doi | 10.3390/rs9040323 10.13031/2013.16565 10.1016/j.isprsjprs.2015.04.015 10.1109/LGRS.2014.2327224 10.1109/JSTARS.2015.2471176 10.1109/LGRS.2005.857031 10.1109/TGRS.2012.2230445 10.1016/j.neucom.2014.06.052 10.1109/JSTARS.2015.2388577 10.1109/TPAMI.2007.250598 10.1162/089976603321780317 10.1016/j.isprsjprs.2016.04.008 10.1109/ICCV.2007.4408856 10.1016/j.patcog.2015.04.013 10.1109/JSTARS.2015.2472460 10.1109/TGRS.2013.2273798 10.1109/TGRS.2014.2315209 10.1109/GeoInformatics.2011.5980790 10.1109/TNN.2005.860852 10.1109/TGRS.2015.2418203 10.1109/TGRS.2016.2583219 10.1109/LGRS.2016.2536658 10.1109/TGRS.2004.842292 10.1109/TGRS.2014.2333539 10.1109/JSTARS.2013.2267204 10.1126/science.290.5500.2323 10.1016/j.patcog.2014.12.016 10.3390/rs8020099 10.1109/JSTARS.2015.2424683 10.1109/JSTARS.2015.2449738 10.1109/TGRS.2007.905311 10.1126/science.290.5500.2319 10.1016/j.isprsjprs.2013.12.003 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs9080790 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7309f32707cc4a91ae9caf97134d6ae2 10_3390_rs9080790 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS PQGLB PUEGO |
ID | FETCH-LOGICAL-c330t-2cea467c67642eb10fdbc2c15236d2bdf2d5055a0a9c33cf308752f68e4d3bcf3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:53 EDT 2025 Tue Jul 01 04:14:24 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-2cea467c67642eb10fdbc2c15236d2bdf2d5055a0a9c33cf308752f68e4d3bcf3 |
ORCID | 0000-0002-7696-0775 0000-0002-7377-3077 |
OpenAccessLink | https://doaj.org/article/7309f32707cc4a91ae9caf97134d6ae2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7309f32707cc4a91ae9caf97134d6ae2 crossref_citationtrail_10_3390_rs9080790 crossref_primary_10_3390_rs9080790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_14) 2014; 52 He (ref_2) 2016; 13 Huang (ref_9) 2015; 106 Roweis (ref_29) 2000; 290 Tenenbaum (ref_27) 2000; 290 ref_31 ref_30 Yan (ref_32) 2007; 29 Tong (ref_8) 2014; 7 ref_18 (ref_36) 2006; 3 Zhou (ref_4) 2015; 53 ref_37 Guan (ref_17) 2015; 48 Tang (ref_25) 2014; 52 Zhang (ref_15) 2015; 147 Yang (ref_23) 2016; 9 Sugiyama (ref_20) 2007; 8 Bachmann (ref_22) 2005; 43 Zhang (ref_26) 2015; 48 Li (ref_19) 2006; 17 Luo (ref_35) 2016; 54 Shi (ref_12) 2013; 51 Huang (ref_13) 2015; 53 Cheng (ref_16) 2004; 47 ref_1 Shao (ref_21) 2014; 31 Ma (ref_24) 2016; 9 Rathore (ref_7) 2015; 8 Feng (ref_34) 2015; 12 Zhong (ref_3) 2016; 119 Cheng (ref_11) 2016; 9 Belkin (ref_28) 2003; 15 Sun (ref_6) 2014; 89 ref_5 Chen (ref_33) 2015; 8 Zhang (ref_10) 2007; 45 |
References_xml | – ident: ref_5 doi: 10.3390/rs9040323 – volume: 47 start-page: 1313 year: 2004 ident: ref_16 article-title: A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection publication-title: Trans. ASAE doi: 10.13031/2013.16565 – volume: 106 start-page: 42 year: 2015 ident: ref_9 article-title: Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.015 – volume: 12 start-page: 224 year: 2015 ident: ref_34 article-title: Discriminative spectral-spatial margin-based semisupervised dimensionality reduction of hyperspectral data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2327224 – volume: 9 start-page: 595 year: 2016 ident: ref_11 article-title: Semisupervised hyperspectral image classification via discriminant analysis and robust regression publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2471176 – volume: 3 start-page: 93 year: 2006 ident: ref_36 article-title: Composite kernels for hyperspectral image classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857031 – volume: 51 start-page: 4800 year: 2013 ident: ref_12 article-title: Semisupervised discriminative locally enhanced alignment for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2230445 – volume: 147 start-page: 358 year: 2015 ident: ref_15 article-title: Compression of hyperspectral remote sensing images by tensor approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.052 – volume: 31 start-page: 122 year: 2014 ident: ref_21 article-title: Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant analysis publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 8 start-page: 2381 year: 2015 ident: ref_33 article-title: Spectral-spatial classification of hyperspectral data based on deep belief network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2388577 – ident: ref_37 – volume: 29 start-page: 40 year: 2007 ident: ref_32 article-title: Graph embedding and extensions: A general framework for dimensionality reduction publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.250598 – volume: 15 start-page: 1373 year: 2003 ident: ref_28 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. doi: 10.1162/089976603321780317 – volume: 119 start-page: 49 year: 2016 ident: ref_3 article-title: Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.04.008 – ident: ref_18 doi: 10.1109/ICCV.2007.4408856 – volume: 48 start-page: 3216 year: 2015 ident: ref_17 article-title: Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.013 – volume: 9 start-page: 609 year: 2016 ident: ref_24 article-title: Spatial regularized local manifold learning for classification of hyperspectral images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2472460 – volume: 52 start-page: 3587 year: 2014 ident: ref_14 article-title: Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2273798 – volume: 8 start-page: 1027 year: 2007 ident: ref_20 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 7606 year: 2014 ident: ref_25 article-title: Manifold-Based Sparse Representation for Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2315209 – ident: ref_30 doi: 10.1109/GeoInformatics.2011.5980790 – ident: ref_31 – volume: 17 start-page: 157 year: 2006 ident: ref_19 article-title: Efficient and robust feature extraction by maximum margin criterion publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.860852 – volume: 53 start-page: 5160 year: 2015 ident: ref_13 article-title: Dimensionality reduction of hyperspectral images with sparse discriminant embedding publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2418203 – volume: 54 start-page: 6197 year: 2016 ident: ref_35 article-title: Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2583219 – volume: 13 start-page: 686 year: 2016 ident: ref_2 article-title: Weighted sparse graph based dimensionality reduction for hyperspectral images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2536658 – volume: 43 start-page: 441 year: 2005 ident: ref_22 article-title: Exploiting manifold geometry in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.842292 – volume: 53 start-page: 1082 year: 2015 ident: ref_4 article-title: Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2333539 – volume: 7 start-page: 70 year: 2014 ident: ref_8 article-title: progress in hyperspectral remote sensing science and technology in China over the past three decades publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2267204 – volume: 290 start-page: 2323 year: 2000 ident: ref_29 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 48 start-page: 3102 year: 2015 ident: ref_26 article-title: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.12.016 – ident: ref_1 doi: 10.3390/rs8020099 – volume: 8 start-page: 4610 year: 2015 ident: ref_7 article-title: Real-time big data analytical architecture for remote sensing application publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2424683 – volume: 9 start-page: 543 year: 2016 ident: ref_23 article-title: Domain adaptation with preservation of manifold geometry for hyperspectral image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2449738 – volume: 45 start-page: 4172 year: 2007 ident: ref_10 article-title: Dimensionality reduction based on clonal selection for hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.905311 – volume: 290 start-page: 2319 year: 2000 ident: ref_27 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 89 start-page: 25 year: 2014 ident: ref_6 article-title: Ulisomap based nonlinear dimensionality reduction for hyperspectral imagery classification publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.12.003 |
SSID | ssj0000331904 |
Score | 2.5139124 |
Snippet | Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 790 |
SubjectTerms | dimensionality reduction hyperspectral imagery local geometric structure manifold learning marginal Fisher analysis |
Title | Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery |
URI | https://doaj.org/article/7309f32707cc4a91ae9caf97134d6ae2 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA2iB72In1g_ShAPXpamm-xHjtVaqlQP1mJvSzJJ8GBbqfXQf-_M7lp6ELx4WjZkw_ImzLwHyRvGrjKdi8QGwOyH9E0JcFEecoi8NVIFC7mw5Snfp7Q_Ug_jZLzW6ovOhFX2wBVwLdyBOsg4ExmAMrptvAYTNF2BdKnxZfbFmrcmpsocLHFrCVVZCUnU9a35p0ZylFHuXStAaz79ZUHp7bHdmgnyTvUH-2zDTw_Ydt2U_G15yF4HVGc4jkyo7RXwYen1-jX3nIgbPZFx8i7581feGsio-TN5sRLafBZ4H1VmdZlyjivdT8iwYnnERr27l9t-VPdBiEBKsYhi8AbzGaQZigXMrSI4CzFg5ZWpi60LsUMekxhhNH4AgUz-kjikuVdOWnw_ZpvT2dSfMC4TlH_GJzpXbQWpymMPwaG6ztpJQIAa7PoHnAJqk3DqVfFeoFggHIsVjg12uZr6UTlj_DbphhBeTSAz63IAQ1zUIS7-CvHpfyxyxnZiqsjl2b1ztokR8xfIJxa2ybY63cfBsFluoW-hgcwM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Geometric+Structure+Feature+for+Dimensionality+Reduction+of+Hyperspectral+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Fulin&rft.au=Huang%2C+Hong&rft.au=Duan%2C+Yule&rft.au=Liu%2C+Jiamin&rft.date=2017-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=9&rft.issue=8&rft.spage=790&rft_id=info:doi/10.3390%2Frs9080790&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs9080790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |