Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery

Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent th...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 9; no. 8; p. 790
Main Authors Luo, Fulin, Huang, Hong, Duan, Yule, Liu, Jiamin, Liao, Yinghua
Format Journal Article
LanguageEnglish
Published MDPI AG 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent the intrinsic structure of hyperspectral imagery (HSI) that possesses many homogenous areas. In this paper, we propose a new dimensionality reduction (DR) method, termed local geometric structure Fisher analysis (LGSFA), for HSI classification. Firstly, LGSFA uses the intraclass neighbor points of each point to compute its reconstruction point. Then, an intrinsic graph and a penalty graph are constructed to reveal the intraclass and interclass properties of hyperspectral data. Finally, the neighbor points and corresponding intraclass reconstruction points are used to enhance the intraclass-manifold compactness and the interclass-manifold separability. LGSFA can effectively reveal the intrinsic manifold structure and obtain the discriminating features of HSI data for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the proposed LGSFA algorithm achieves the best classification results than other state-of-the-art methods.
AbstractList Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent the intrinsic structure of hyperspectral imagery (HSI) that possesses many homogenous areas. In this paper, we propose a new dimensionality reduction (DR) method, termed local geometric structure Fisher analysis (LGSFA), for HSI classification. Firstly, LGSFA uses the intraclass neighbor points of each point to compute its reconstruction point. Then, an intrinsic graph and a penalty graph are constructed to reveal the intraclass and interclass properties of hyperspectral data. Finally, the neighbor points and corresponding intraclass reconstruction points are used to enhance the intraclass-manifold compactness and the interclass-manifold separability. LGSFA can effectively reveal the intrinsic manifold structure and obtain the discriminating features of HSI data for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the proposed LGSFA algorithm achieves the best classification results than other state-of-the-art methods.
Author Luo, Fulin
Duan, Yule
Liao, Yinghua
Liu, Jiamin
Huang, Hong
Author_xml – sequence: 1
  givenname: Fulin
  orcidid: 0000-0002-7696-0775
  surname: Luo
  fullname: Luo, Fulin
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-7377-3077
  surname: Huang
  fullname: Huang, Hong
– sequence: 3
  givenname: Yule
  surname: Duan
  fullname: Duan, Yule
– sequence: 4
  givenname: Jiamin
  surname: Liu
  fullname: Liu, Jiamin
– sequence: 5
  givenname: Yinghua
  surname: Liao
  fullname: Liao, Yinghua
BookMark eNplUMtOwzAQtFCRKKUH_iBXDqWOncT1ERX6kCoh8RBHa-OsK1dJXDnuIX-P2wJCsJfZWe2MdvaaDFrXIiG3Kb3nXNKp7ySdUSHpBRkyKtgkY5INfvVXZNx1OxqL81TSbEg-Nk5DnSzRNRi81clr8AcdDh6TBcIJjfPJo22w7axrobahT16wikuRJs4kq36PvtujDj46rRvYou9vyKWBusPxF47I--Lpbb6abJ6X6_nDZqI5p2HCNEJWCF2IImNYptRUpWY6zRkvKlZWhlU5zXOgIKNAG05nImemmGFW8TLyEVmffSsHO7X3tgHfKwdWnQbObxX4YHWNSnAqDWeCCq0zkCmg1GCkSHlWFYAsek3PXtq7rvNolLYBjjFjMlurlKrjm9XPm6Pi7o_i-4L_u58cioBZ
CitedBy_id crossref_primary_10_3390_e21010078
crossref_primary_10_1109_LGRS_2019_2896888
crossref_primary_10_1016_j_compbiomed_2022_106080
crossref_primary_10_1109_JSTARS_2024_3491335
crossref_primary_10_1109_JSTARS_2018_2869210
crossref_primary_10_3390_rs12030548
crossref_primary_10_1080_2150704X_2020_1746855
crossref_primary_10_1016_j_eswa_2021_115663
crossref_primary_10_1109_ACCESS_2021_3064687
crossref_primary_10_1016_j_neucom_2019_11_084
crossref_primary_10_1080_01431161_2022_2152756
crossref_primary_10_1109_TCYB_2018_2810806
crossref_primary_10_1109_TCSVT_2019_2960507
crossref_primary_10_1016_j_patcog_2020_107487
crossref_primary_10_1109_ACCESS_2020_2990160
crossref_primary_10_1109_JSTARS_2020_3003053
crossref_primary_10_1109_ACCESS_2020_3044497
crossref_primary_10_1109_TGRS_2023_3292292
crossref_primary_10_1109_TGRS_2020_2963848
crossref_primary_10_1109_ACCESS_2019_2892648
crossref_primary_10_1049_iet_ipr_2020_0728
crossref_primary_10_1109_ACCESS_2021_3067607
crossref_primary_10_1109_TGRS_2019_2945255
crossref_primary_10_1049_iet_ipr_2018_5063
crossref_primary_10_1109_ACCESS_2018_2799079
crossref_primary_10_1109_ACCESS_2021_3060096
crossref_primary_10_1109_TGRS_2019_2931801
crossref_primary_10_1016_j_eswa_2019_113089
crossref_primary_10_3390_rs14061484
crossref_primary_10_1016_j_future_2021_09_044
crossref_primary_10_1109_JSTARS_2019_2902430
crossref_primary_10_1080_01431161_2019_1607980
crossref_primary_10_1109_ACCESS_2020_3040448
crossref_primary_10_1049_iet_cvi_2019_0780
crossref_primary_10_1109_ACCESS_2017_2766242
crossref_primary_10_1109_TCSVT_2020_2977943
crossref_primary_10_1109_TCSVT_2020_3020717
crossref_primary_10_1109_ACCESS_2019_2902011
crossref_primary_10_1109_ACCESS_2020_3038314
crossref_primary_10_1109_ACCESS_2019_2950427
crossref_primary_10_1109_TCYB_2020_2977461
crossref_primary_10_1109_ACCESS_2021_3093829
crossref_primary_10_1016_j_engappai_2020_103831
crossref_primary_10_3390_rs11010029
crossref_primary_10_3390_rs13204143
crossref_primary_10_1109_ACCESS_2020_3024663
crossref_primary_10_1155_2019_7835797
crossref_primary_10_1109_LGRS_2019_2936652
crossref_primary_10_1109_ACCESS_2021_3050747
crossref_primary_10_1109_TCYB_2019_2905793
crossref_primary_10_1109_TIM_2020_3026804
crossref_primary_10_1109_ACCESS_2021_3051274
crossref_primary_10_1109_TCSVT_2024_3397086
crossref_primary_10_1109_TCYB_2021_3104100
crossref_primary_10_1109_TMI_2018_2878226
crossref_primary_10_1016_j_asoc_2019_03_024
crossref_primary_10_1117_1_JRS_17_036506
crossref_primary_10_1109_ACCESS_2020_3013027
crossref_primary_10_1109_TGRS_2023_3270667
crossref_primary_10_1109_JSTARS_2018_2789401
crossref_primary_10_1109_ACCESS_2020_2972966
crossref_primary_10_3390_rs11091039
crossref_primary_10_1109_TGRS_2021_3128764
crossref_primary_10_1016_j_neunet_2020_05_022
crossref_primary_10_3390_rs11020109
crossref_primary_10_1109_TGRS_2022_3205178
crossref_primary_10_1109_ACCESS_2021_3051685
crossref_primary_10_1109_ACCESS_2020_2977454
crossref_primary_10_1109_TAI_2022_3204734
crossref_primary_10_1109_ACCESS_2020_3034653
crossref_primary_10_1016_j_isprsjprs_2019_06_018
crossref_primary_10_1080_10095020_2020_1720529
crossref_primary_10_1109_LGRS_2020_3009144
crossref_primary_10_1109_JSEN_2024_3357809
crossref_primary_10_1109_ACCESS_2020_3027839
crossref_primary_10_3390_rs10101565
crossref_primary_10_3390_rs12071179
crossref_primary_10_1109_ACCESS_2019_2909752
crossref_primary_10_1109_TGRS_2021_3110855
crossref_primary_10_1109_ACCESS_2020_3029216
crossref_primary_10_1109_JSTARS_2020_3011431
crossref_primary_10_1088_1361_6501_acdaeb
crossref_primary_10_1109_TGRS_2019_2952383
crossref_primary_10_1109_LGRS_2019_2944970
crossref_primary_10_1109_ACCESS_2021_3052149
crossref_primary_10_3390_rs12233879
crossref_primary_10_1016_j_neunet_2022_05_015
crossref_primary_10_1109_ACCESS_2021_3073249
crossref_primary_10_1109_TGRS_2018_2849981
crossref_primary_10_1109_JSTARS_2020_2994210
crossref_primary_10_1109_LGRS_2020_3042999
crossref_primary_10_1109_ACCESS_2021_3053085
crossref_primary_10_1109_LGRS_2021_3067733
crossref_primary_10_1109_ACCESS_2021_3065984
crossref_primary_10_1007_s11042_022_12494_y
crossref_primary_10_1038_s41598_021_83150_y
crossref_primary_10_1049_iet_ipr_2018_5423
crossref_primary_10_1109_TGRS_2019_2951160
crossref_primary_10_1109_TGRS_2023_3258977
crossref_primary_10_1109_ACCESS_2020_3045532
crossref_primary_10_1016_j_patrec_2018_09_013
crossref_primary_10_1109_ACCESS_2020_3018730
crossref_primary_10_1109_ACCESS_2020_3032346
crossref_primary_10_1109_TCYB_2020_2994875
crossref_primary_10_3390_rs11172057
crossref_primary_10_1109_TGRS_2021_3123651
crossref_primary_10_1109_TGRS_2021_3057701
crossref_primary_10_1109_TGRS_2020_2995709
crossref_primary_10_1109_LGRS_2019_2927256
crossref_primary_10_3390_rs11202414
crossref_primary_10_1088_1361_6560_ab51db
crossref_primary_10_1109_ACCESS_2021_3051196
crossref_primary_10_1109_ACCESS_2018_2873713
crossref_primary_10_1007_s00607_021_01019_4
crossref_primary_10_1109_ACCESS_2020_2964051
crossref_primary_10_1109_TGRS_2021_3083776
crossref_primary_10_1109_ACCESS_2021_3051637
crossref_primary_10_1109_ACCESS_2021_3066041
crossref_primary_10_3390_app13169180
crossref_primary_10_1109_TGRS_2020_2977248
crossref_primary_10_1080_07038992_2022_2114440
crossref_primary_10_1109_ACCESS_2020_3014307
crossref_primary_10_3390_rs11060651
crossref_primary_10_1109_TAI_2021_3094774
crossref_primary_10_1016_j_asoc_2019_04_029
crossref_primary_10_3390_rs15051206
crossref_primary_10_1109_ACCESS_2021_3049448
crossref_primary_10_1109_TIP_2021_3055613
crossref_primary_10_1109_ACCESS_2020_3016171
crossref_primary_10_1109_ACCESS_2020_3010519
crossref_primary_10_1109_ACCESS_2018_2884027
crossref_primary_10_1109_ACCESS_2018_2812999
crossref_primary_10_3390_rs10030472
Cites_doi 10.3390/rs9040323
10.13031/2013.16565
10.1016/j.isprsjprs.2015.04.015
10.1109/LGRS.2014.2327224
10.1109/JSTARS.2015.2471176
10.1109/LGRS.2005.857031
10.1109/TGRS.2012.2230445
10.1016/j.neucom.2014.06.052
10.1109/JSTARS.2015.2388577
10.1109/TPAMI.2007.250598
10.1162/089976603321780317
10.1016/j.isprsjprs.2016.04.008
10.1109/ICCV.2007.4408856
10.1016/j.patcog.2015.04.013
10.1109/JSTARS.2015.2472460
10.1109/TGRS.2013.2273798
10.1109/TGRS.2014.2315209
10.1109/GeoInformatics.2011.5980790
10.1109/TNN.2005.860852
10.1109/TGRS.2015.2418203
10.1109/TGRS.2016.2583219
10.1109/LGRS.2016.2536658
10.1109/TGRS.2004.842292
10.1109/TGRS.2014.2333539
10.1109/JSTARS.2013.2267204
10.1126/science.290.5500.2323
10.1016/j.patcog.2014.12.016
10.3390/rs8020099
10.1109/JSTARS.2015.2424683
10.1109/JSTARS.2015.2449738
10.1109/TGRS.2007.905311
10.1126/science.290.5500.2319
10.1016/j.isprsjprs.2013.12.003
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs9080790
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7309f32707cc4a91ae9caf97134d6ae2
10_3390_rs9080790
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-c330t-2cea467c67642eb10fdbc2c15236d2bdf2d5055a0a9c33cf308752f68e4d3bcf3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:28:53 EDT 2025
Tue Jul 01 04:14:24 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-2cea467c67642eb10fdbc2c15236d2bdf2d5055a0a9c33cf308752f68e4d3bcf3
ORCID 0000-0002-7696-0775
0000-0002-7377-3077
OpenAccessLink https://doaj.org/article/7309f32707cc4a91ae9caf97134d6ae2
ParticipantIDs doaj_primary_oai_doaj_org_article_7309f32707cc4a91ae9caf97134d6ae2
crossref_citationtrail_10_3390_rs9080790
crossref_primary_10_3390_rs9080790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_14) 2014; 52
He (ref_2) 2016; 13
Huang (ref_9) 2015; 106
Roweis (ref_29) 2000; 290
Tenenbaum (ref_27) 2000; 290
ref_31
ref_30
Yan (ref_32) 2007; 29
Tong (ref_8) 2014; 7
ref_18
(ref_36) 2006; 3
Zhou (ref_4) 2015; 53
ref_37
Guan (ref_17) 2015; 48
Tang (ref_25) 2014; 52
Zhang (ref_15) 2015; 147
Yang (ref_23) 2016; 9
Sugiyama (ref_20) 2007; 8
Bachmann (ref_22) 2005; 43
Zhang (ref_26) 2015; 48
Li (ref_19) 2006; 17
Luo (ref_35) 2016; 54
Shi (ref_12) 2013; 51
Huang (ref_13) 2015; 53
Cheng (ref_16) 2004; 47
ref_1
Shao (ref_21) 2014; 31
Ma (ref_24) 2016; 9
Rathore (ref_7) 2015; 8
Feng (ref_34) 2015; 12
Zhong (ref_3) 2016; 119
Cheng (ref_11) 2016; 9
Belkin (ref_28) 2003; 15
Sun (ref_6) 2014; 89
ref_5
Chen (ref_33) 2015; 8
Zhang (ref_10) 2007; 45
References_xml – ident: ref_5
  doi: 10.3390/rs9040323
– volume: 47
  start-page: 1313
  year: 2004
  ident: ref_16
  article-title: A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection
  publication-title: Trans. ASAE
  doi: 10.13031/2013.16565
– volume: 106
  start-page: 42
  year: 2015
  ident: ref_9
  article-title: Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.015
– volume: 12
  start-page: 224
  year: 2015
  ident: ref_34
  article-title: Discriminative spectral-spatial margin-based semisupervised dimensionality reduction of hyperspectral data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2327224
– volume: 9
  start-page: 595
  year: 2016
  ident: ref_11
  article-title: Semisupervised hyperspectral image classification via discriminant analysis and robust regression
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2471176
– volume: 3
  start-page: 93
  year: 2006
  ident: ref_36
  article-title: Composite kernels for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857031
– volume: 51
  start-page: 4800
  year: 2013
  ident: ref_12
  article-title: Semisupervised discriminative locally enhanced alignment for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2230445
– volume: 147
  start-page: 358
  year: 2015
  ident: ref_15
  article-title: Compression of hyperspectral remote sensing images by tensor approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.052
– volume: 31
  start-page: 122
  year: 2014
  ident: ref_21
  article-title: Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant analysis
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 8
  start-page: 2381
  year: 2015
  ident: ref_33
  article-title: Spectral-spatial classification of hyperspectral data based on deep belief network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref_37
– volume: 29
  start-page: 40
  year: 2007
  ident: ref_32
  article-title: Graph embedding and extensions: A general framework for dimensionality reduction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.250598
– volume: 15
  start-page: 1373
  year: 2003
  ident: ref_28
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– volume: 119
  start-page: 49
  year: 2016
  ident: ref_3
  article-title: Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.04.008
– ident: ref_18
  doi: 10.1109/ICCV.2007.4408856
– volume: 48
  start-page: 3216
  year: 2015
  ident: ref_17
  article-title: Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.013
– volume: 9
  start-page: 609
  year: 2016
  ident: ref_24
  article-title: Spatial regularized local manifold learning for classification of hyperspectral images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2472460
– volume: 52
  start-page: 3587
  year: 2014
  ident: ref_14
  article-title: Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2273798
– volume: 8
  start-page: 1027
  year: 2007
  ident: ref_20
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 7606
  year: 2014
  ident: ref_25
  article-title: Manifold-Based Sparse Representation for Hyperspectral Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2315209
– ident: ref_30
  doi: 10.1109/GeoInformatics.2011.5980790
– ident: ref_31
– volume: 17
  start-page: 157
  year: 2006
  ident: ref_19
  article-title: Efficient and robust feature extraction by maximum margin criterion
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.860852
– volume: 53
  start-page: 5160
  year: 2015
  ident: ref_13
  article-title: Dimensionality reduction of hyperspectral images with sparse discriminant embedding
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2418203
– volume: 54
  start-page: 6197
  year: 2016
  ident: ref_35
  article-title: Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2583219
– volume: 13
  start-page: 686
  year: 2016
  ident: ref_2
  article-title: Weighted sparse graph based dimensionality reduction for hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2536658
– volume: 43
  start-page: 441
  year: 2005
  ident: ref_22
  article-title: Exploiting manifold geometry in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842292
– volume: 53
  start-page: 1082
  year: 2015
  ident: ref_4
  article-title: Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2333539
– volume: 7
  start-page: 70
  year: 2014
  ident: ref_8
  article-title: progress in hyperspectral remote sensing science and technology in China over the past three decades
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2267204
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref_29
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 48
  start-page: 3102
  year: 2015
  ident: ref_26
  article-title: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.12.016
– ident: ref_1
  doi: 10.3390/rs8020099
– volume: 8
  start-page: 4610
  year: 2015
  ident: ref_7
  article-title: Real-time big data analytical architecture for remote sensing application
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2424683
– volume: 9
  start-page: 543
  year: 2016
  ident: ref_23
  article-title: Domain adaptation with preservation of manifold geometry for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2449738
– volume: 45
  start-page: 4172
  year: 2007
  ident: ref_10
  article-title: Dimensionality reduction based on clonal selection for hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.905311
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref_27
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 89
  start-page: 25
  year: 2014
  ident: ref_6
  article-title: Ulisomap based nonlinear dimensionality reduction for hyperspectral imagery classification
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.12.003
SSID ssj0000331904
Score 2.5139124
Snippet Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 790
SubjectTerms dimensionality reduction
hyperspectral imagery
local geometric structure
manifold learning
marginal Fisher analysis
Title Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery
URI https://doaj.org/article/7309f32707cc4a91ae9caf97134d6ae2
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA2iB72In1g_ShAPXpamm-xHjtVaqlQP1mJvSzJJ8GBbqfXQf-_M7lp6ELx4WjZkw_ImzLwHyRvGrjKdi8QGwOyH9E0JcFEecoi8NVIFC7mw5Snfp7Q_Ug_jZLzW6ovOhFX2wBVwLdyBOsg4ExmAMrptvAYTNF2BdKnxZfbFmrcmpsocLHFrCVVZCUnU9a35p0ZylFHuXStAaz79ZUHp7bHdmgnyTvUH-2zDTw_Ydt2U_G15yF4HVGc4jkyo7RXwYen1-jX3nIgbPZFx8i7581feGsio-TN5sRLafBZ4H1VmdZlyjivdT8iwYnnERr27l9t-VPdBiEBKsYhi8AbzGaQZigXMrSI4CzFg5ZWpi60LsUMekxhhNH4AgUz-kjikuVdOWnw_ZpvT2dSfMC4TlH_GJzpXbQWpymMPwaG6ztpJQIAa7PoHnAJqk3DqVfFeoFggHIsVjg12uZr6UTlj_DbphhBeTSAz63IAQ1zUIS7-CvHpfyxyxnZiqsjl2b1ztokR8xfIJxa2ybY63cfBsFluoW-hgcwM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Geometric+Structure+Feature+for+Dimensionality+Reduction+of+Hyperspectral+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Fulin&rft.au=Huang%2C+Hong&rft.au=Duan%2C+Yule&rft.au=Liu%2C+Jiamin&rft.date=2017-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=9&rft.issue=8&rft.spage=790&rft_id=info:doi/10.3390%2Frs9080790&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs9080790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon