Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity

Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen an...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 6; no. 5; pp. 288 - 298
Main Authors Wang, Zhaoyang, Liao, Xiaobin, Zhou, Min, Huang, Fuzhi, Owusu, Kwadwo Asare, Li, Jiantao, Lin, Zifeng, Sun, Qi, Hong, Xufeng, Sun, Congli, Cheng, Yibing, Zhao, Yan, Mai, Liqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2023
Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China
The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China
Subjects
Online AccessGet full text
ISSN2575-0356
2575-0348
2575-0356
DOI10.1002/eem2.12409

Cover

Loading…
Abstract Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen and value‐added organic products generation, but they remain a great challenge. Herein, a bifunctional electrocatalyst is prepared by anchoring CuS/NiS 2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene (Cu 1 Ni 2 ‐S/G) for ORR and AOR. Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies, Cu 1 Ni 2 ‐S/G achieves dramatically enhanced ORR activity with long term stability. Meanwhile, when ethanol is utilized as an oxidant for AOR, an ultralow potential (1.37 V) at a current density of 10 mA cm −2 is achieved, simultaneously delivering a high Faradaic efficiency of 96% for ethyl acetate production. Cu 1 Ni 2 ‐S/G also exhibits catalytic activity for other alcohols electrooxidation process, indicating its multifunctionality. This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering, but also opens up new avenues for the construction of a self‐driven biomass electrocatalysis system for the generation of value‐added organic products and hydrogen under ambient conditions.
AbstractList Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen and value‐added organic products generation, but they remain a great challenge. Herein, a bifunctional electrocatalyst is prepared by anchoring CuS/NiS2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene (Cu1Ni2‐S/G) for ORR and AOR. Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies, Cu1Ni2‐S/G achieves dramatically enhanced ORR activity with long term stability. Meanwhile, when ethanol is utilized as an oxidant for AOR, an ultralow potential (1.37 V) at a current density of 10 mA cm−2 is achieved, simultaneously delivering a high Faradaic efficiency of 96% for ethyl acetate production. Cu1Ni2‐S/G also exhibits catalytic activity for other alcohols electrooxidation process, indicating its multifunctionality. This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering, but also opens up new avenues for the construction of a self‐driven biomass electrocatalysis system for the generation of value‐added organic products and hydrogen under ambient conditions.
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu1Ni2-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu1Ni2-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu1Ni2-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions.
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen and value‐added organic products generation, but they remain a great challenge. Herein, a bifunctional electrocatalyst is prepared by anchoring CuS/NiS 2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene (Cu 1 Ni 2 ‐S/G) for ORR and AOR. Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies, Cu 1 Ni 2 ‐S/G achieves dramatically enhanced ORR activity with long term stability. Meanwhile, when ethanol is utilized as an oxidant for AOR, an ultralow potential (1.37 V) at a current density of 10 mA cm −2 is achieved, simultaneously delivering a high Faradaic efficiency of 96% for ethyl acetate production. Cu 1 Ni 2 ‐S/G also exhibits catalytic activity for other alcohols electrooxidation process, indicating its multifunctionality. This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering, but also opens up new avenues for the construction of a self‐driven biomass electrocatalysis system for the generation of value‐added organic products and hydrogen under ambient conditions.
Author Wang, Zhaoyang
Huang, Fuzhi
Cheng, Yibing
Liao, Xiaobin
Owusu, Kwadwo Asare
Mai, Liqiang
Li, Jiantao
Hong, Xufeng
Zhou, Min
Sun, Qi
Zhao, Yan
Lin, Zifeng
Sun, Congli
AuthorAffiliation State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China;The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for M
AuthorAffiliation_xml – name: State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China;The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China
Author_xml – sequence: 1
  givenname: Zhaoyang
  orcidid: 0000-0003-3244-5306
  surname: Wang
  fullname: Wang, Zhaoyang
  organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China
– sequence: 2
  givenname: Xiaobin
  surname: Liao
  fullname: Liao, Xiaobin
  organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China
– sequence: 3
  givenname: Min
  surname: Zhou
  fullname: Zhou, Min
  organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China
– sequence: 4
  givenname: Fuzhi
  surname: Huang
  fullname: Huang, Fuzhi
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
– sequence: 5
  givenname: Kwadwo Asare
  surname: Owusu
  fullname: Owusu, Kwadwo Asare
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
– sequence: 6
  givenname: Jiantao
  surname: Li
  fullname: Li, Jiantao
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
– sequence: 7
  givenname: Zifeng
  surname: Lin
  fullname: Lin, Zifeng
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
– sequence: 8
  givenname: Qi
  surname: Sun
  fullname: Sun, Qi
  organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China
– sequence: 9
  givenname: Xufeng
  surname: Hong
  fullname: Hong, Xufeng
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
– sequence: 10
  givenname: Congli
  surname: Sun
  fullname: Sun, Congli
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
– sequence: 11
  givenname: Yibing
  surname: Cheng
  fullname: Cheng, Yibing
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China, Department of Materials Science and Engineering Monash University Clayton Victoria 3800 Australia, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu hydrogen Valley Foshan 528216 China
– sequence: 12
  givenname: Yan
  orcidid: 0000-0002-1234-4455
  surname: Zhao
  fullname: Zhao, Yan
  organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China, The Institute of Technological Sciences Wuhan University Wuhan 430072 China
– sequence: 13
  givenname: Liqiang
  orcidid: 0000-0003-4259-7725
  surname: Mai
  fullname: Mai, Liqiang
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu hydrogen Valley Foshan 528216 China
BookMark eNptkVtLAzEQhYNUsFZf_AUB34TWXHabzWMpVQtFwdvrkiaTNnWb1OxWXfDHG6ugiE8zzHxzDsw5RB0fPCB0QsmAEsLOAdZsQFlG5B7qslzkfcLzYedXf4CO63pFEkwoz6jsovepbyBapZ2qsPIGPyqtvHZQ44lfOA8QnV_gYPE4bDYQ8bXTT1Dhu21lnQFsQ0zgMp2AwTdv7QI8vgWz1Y0Lfic4qnRYhqpOW2fUbjxK2xfXtEdo36qqhuPv2kMPF5P78VV_dnM5HY9mfc05afqMSchlkUua5cVQGDMshqQwRhSsEFQCp1wCCC3nUguubKHn0uZsnulMSSEF76GzL91X5a3yi3IVttEnx9K37XKlqxIYYZzk6S8JPv2CNzE8b6FufmiW3AlngpMfSR1DXUew5Sa6tYptSUn5mUb5mUa5SyPB5A-sXbN7RROVq_47-QAoWI6M
CitedBy_id crossref_primary_10_1016_j_jechem_2024_06_045
crossref_primary_10_3390_en16135078
crossref_primary_10_1002_idm2_12228
crossref_primary_10_1016_j_surfin_2025_106007
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1002_aenm_202203568
crossref_primary_10_1002_adma_202404806
crossref_primary_10_1016_j_apcatb_2023_123459
crossref_primary_10_1016_j_est_2024_115016
crossref_primary_10_1002_adfm_202415058
crossref_primary_10_1002_adfm_202315326
crossref_primary_10_3390_en16134986
crossref_primary_10_1039_D3TA03513A
crossref_primary_10_1021_acscatal_3c01348
crossref_primary_10_1039_D4CC02949F
Cites_doi 10.1039/C2EE02552C
10.1002/aenm.201900390
10.1002/adma.201704681
10.1016/S0022-2860(96)09713-X
10.1126/science.aad4998
10.1002/adma.202000455
10.1021/acs.accounts.8b00266
10.1002/ange.201602237
10.1002/aenm.201801839
10.1016/j.apcatb.2021.120182
10.1021/acs.accounts.7b00616
10.1021/acsnano.7b05020
10.1002/aenm.201701642
10.1039/C4CS00484A
10.1021/acsnano.0c04309
10.1002/adma.201804453
10.1002/adma.201604685
10.1021/acscatal.7b01831
10.1002/advs.202000747
10.1002/adma.201900528
10.1039/c1cs15228a
10.1002/advs.201900628
10.1021/acscatal.8b00668
10.1002/ange.201607271
10.1002/adma.201705538
10.1002/adfm.201805298
10.1002/eem2.12081
10.1002/adma.202000607
10.1021/acs.chemrev.7b00335
10.1039/C6EE00054A
10.1002/ange.201907002
10.1002/adma.202002584
10.1039/D0TA03199B
10.1002/adfm.202005834
10.1002/ange.201204958
10.1021/acsenergylett.1c00037
10.1002/adfm.201806419
10.1002/chem.201904722
10.1021/acsnano.9b02315
10.1038/nmat4551
10.1002/adma.201900062
10.1007/s12274-021-3964-0
10.1002/adma.201506197
10.1016/j.jpowsour.2009.11.145
10.1002/ange.201804673
10.1002/adma.201808281
10.1038/s41467-020-18891-x
10.1002/adma.201906905
10.1002/adfm.202011151
10.1021/jp307871y
10.1002/eem2.12204
10.1021/acsnano.9b01583
10.1039/b900444k
10.1002/anie.201903879
10.1016/j.nanoen.2019.104318
10.1016/j.nanoen.2017.06.029
10.1039/C8NR07179A
10.1002/adfm.201807031
10.1021/acscatal.0c01541
10.1038/s41560-018-0292-z
10.1002/smll.201801070
10.1002/adma.202003649
10.1002/ange.202014362
10.1016/j.mattod.2019.05.021
10.1021/acscatal.9b01819
10.1039/c2ee21234j
10.1038/s41467-020-19277-9
10.1039/C5EE02903A
10.1002/ange.201104004
ContentType Journal Article
Copyright 2023 Zhengzhou University
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Zhengzhou University
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12409
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 298
ExternalDocumentID nyyhjcl_e202305020
10_1002_eem2_12409
GroupedDBID 0R~
1OC
24P
AAYXX
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
CITATION
EBS
EJD
OK1
WIN
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c330t-229e59859145867dd68608dd7828719e3139ee7c9b9c73af8cb9f52b4c4a97973
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 12:07:27 EDT 2025
Tue Jul 01 01:03:06 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords alcohols oxidation reaction
sulfur vacancies
heterointerface
metal sulfide
oxygen reduction reaction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-229e59859145867dd68608dd7828719e3139ee7c9b9c73af8cb9f52b4c4a97973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4259-7725
0000-0002-1234-4455
0000-0003-3244-5306
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12409
PQID 2867032730
PQPubID 5251211
PageCount 11
ParticipantIDs wanfang_journals_nyyhjcl_e202305020
proquest_journals_2867032730
crossref_primary_10_1002_eem2_12409
crossref_citationtrail_10_1002_eem2_12409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China
The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China
– name: The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
– name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China
– name: State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
– name: Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia
References e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Dai L. (e_1_2_6_11_1) 2016; 2
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Wu J. (e_1_2_6_7_1) 1848; 2013
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – ident: e_1_2_6_2_1
  doi: 10.1039/C2EE02552C
– ident: e_1_2_6_26_1
  doi: 10.1002/aenm.201900390
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201704681
– ident: e_1_2_6_53_1
  doi: 10.1016/S0022-2860(96)09713-X
– ident: e_1_2_6_1_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_6_48_1
  doi: 10.1002/adma.202000455
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.accounts.8b00266
– ident: e_1_2_6_31_1
  doi: 10.1002/ange.201602237
– ident: e_1_2_6_58_1
  doi: 10.1002/aenm.201801839
– ident: e_1_2_6_29_1
  doi: 10.1016/j.apcatb.2021.120182
– ident: e_1_2_6_23_1
  doi: 10.1021/acs.accounts.7b00616
– ident: e_1_2_6_46_1
  doi: 10.1021/acsnano.7b05020
– ident: e_1_2_6_55_1
  doi: 10.1002/aenm.201701642
– ident: e_1_2_6_5_1
  doi: 10.1039/C4CS00484A
– ident: e_1_2_6_22_1
  doi: 10.1021/acsnano.0c04309
– ident: e_1_2_6_51_1
  doi: 10.1002/adma.201804453
– volume: 2
  start-page: 538
  year: 2016
  ident: e_1_2_6_11_1
  publication-title: Sci.
– ident: e_1_2_6_62_1
  doi: 10.1002/adma.201604685
– ident: e_1_2_6_45_1
  doi: 10.1021/acscatal.7b01831
– ident: e_1_2_6_59_1
  doi: 10.1002/advs.202000747
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201900528
– ident: e_1_2_6_9_1
  doi: 10.1039/c1cs15228a
– ident: e_1_2_6_19_1
  doi: 10.1002/advs.201900628
– ident: e_1_2_6_32_1
  doi: 10.1021/acscatal.8b00668
– ident: e_1_2_6_54_1
  doi: 10.1002/ange.201607271
– ident: e_1_2_6_44_1
  doi: 10.1002/adma.201705538
– ident: e_1_2_6_33_1
  doi: 10.1002/adfm.201805298
– ident: e_1_2_6_20_1
  doi: 10.1002/eem2.12081
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.202000607
– ident: e_1_2_6_12_1
  doi: 10.1021/acs.chemrev.7b00335
– ident: e_1_2_6_57_1
  doi: 10.1039/C6EE00054A
– ident: e_1_2_6_61_1
  doi: 10.1002/ange.201907002
– ident: e_1_2_6_41_1
  doi: 10.1002/adma.202002584
– ident: e_1_2_6_8_1
  doi: 10.1039/D0TA03199B
– ident: e_1_2_6_16_1
  doi: 10.1002/adfm.202005834
– ident: e_1_2_6_50_1
  doi: 10.1002/ange.201204958
– ident: e_1_2_6_63_1
  doi: 10.1021/acsenergylett.1c00037
– ident: e_1_2_6_24_1
  doi: 10.1002/adfm.201806419
– ident: e_1_2_6_25_1
  doi: 10.1002/chem.201904722
– ident: e_1_2_6_17_1
  doi: 10.1021/acsnano.9b02315
– ident: e_1_2_6_69_1
  doi: 10.1038/nmat4551
– volume: 2013
  start-page: 46
  year: 1848
  ident: e_1_2_6_7_1
  publication-title: Acc. Chem. Res.
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.201900062
– ident: e_1_2_6_6_1
  doi: 10.1007/s12274-021-3964-0
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201506197
– ident: e_1_2_6_64_1
  doi: 10.1016/j.jpowsour.2009.11.145
– ident: e_1_2_6_34_1
  doi: 10.1002/ange.201804673
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201808281
– ident: e_1_2_6_67_1
  doi: 10.1038/s41467-020-18891-x
– ident: e_1_2_6_70_1
  doi: 10.1002/adma.201906905
– ident: e_1_2_6_4_1
  doi: 10.1002/adfm.202011151
– ident: e_1_2_6_39_1
  doi: 10.1021/jp307871y
– ident: e_1_2_6_28_1
  doi: 10.1002/eem2.12204
– ident: e_1_2_6_43_1
  doi: 10.1021/acsnano.9b01583
– ident: e_1_2_6_52_1
  doi: 10.1039/b900444k
– ident: e_1_2_6_36_1
  doi: 10.1002/anie.201903879
– ident: e_1_2_6_3_1
  doi: 10.1016/j.nanoen.2019.104318
– ident: e_1_2_6_66_1
  doi: 10.1016/j.nanoen.2017.06.029
– ident: e_1_2_6_18_1
  doi: 10.1039/C8NR07179A
– ident: e_1_2_6_47_1
  doi: 10.1002/adfm.201807031
– ident: e_1_2_6_49_1
  doi: 10.1021/acscatal.0c01541
– ident: e_1_2_6_60_1
  doi: 10.1038/s41560-018-0292-z
– ident: e_1_2_6_42_1
  doi: 10.1002/smll.201801070
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.202003649
– ident: e_1_2_6_68_1
  doi: 10.1002/ange.202014362
– ident: e_1_2_6_40_1
  doi: 10.1016/j.mattod.2019.05.021
– ident: e_1_2_6_35_1
  doi: 10.1021/acscatal.9b01819
– ident: e_1_2_6_65_1
  doi: 10.1039/c2ee21234j
– ident: e_1_2_6_71_1
  doi: 10.1038/s41467-020-19277-9
– ident: e_1_2_6_56_1
  doi: 10.1039/C5EE02903A
– ident: e_1_2_6_14_1
  doi: 10.1002/ange.201104004
SSID ssj0002013419
Score 2.3226595
Snippet Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are...
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely...
SourceID wanfang
proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 288
SubjectTerms Acetic acid
Alcohol
Alcohols
Catalytic activity
Copper sulfides
Electrocatalysts
Electrolysis
Electrolytic cells
Ethanol
Ethyl acetate
Fuel cells
Graphene
Metal air batteries
Nanoparticles
Nickel
Nickel sulfide
Oxidants
Oxidation
Oxidizing agents
Oxygen
Sulfur
Synergistic effect
Title Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity
URI https://www.proquest.com/docview/2867032730
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202305020
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_qHYIvh6Li6SkL-iKSut1kk-xjkZZynHcv7Vn6Eja7GxqtSbEtZw__Dv9eZ7Obj4Mipy9pScKEzu-X2dnpfCD0bhDqlMmYeZyk0gukoh7PMuFlMgoVlWQgqwq5z5fhZBacz9m81_vdyVrabdO-vD1YV_I_qMI5wNVUyf4Dso1QOAHfAV84AsJwvBfGVTgvE1XU2wTAr4Wshu1uum0Gq4SLcr021b05vLMrMBarLFe22_eoWNocgKufe3gOqFvt3PRwEDi0A3Q3cDW3w5c-DKWdN3EnpG8LCA2LOoVzpi5FbK0ejCM7KdPym3b1Xef9TgziiwtaL5ai3Au3lposoVxUkdw5fKZ5Q-PFstzZlP-iZaUTMd7dLvNuKIP6Ta7WfQ2mXbQq6wimhnnEt13Ja1MedhjLDi4QtuGs1t9pHzwbwttlsP7r__IqGc8uLpLpaD59gI4pbD_A4B8Pr2eLWRO9A7fJNMJr-t3Sj63Iux5Ou215eCOKDJTR8V-mj9GJ23jgoWXRE9TTxVP0q8MgDIDjhkG4wyBcZtgyCFsGYccgDAzCNYOwZRBuGFQJrBmEGwbhmkHP0Gw8mn6aeG4ehyd9n2w9Srlm3DQ8DFgcRkqFcUhipSIzNGHAtQ-7Ca0jyVMuI19ksUx5xmgayEDwiEf-c3RUlIV-gbDkVClwvaliIhCUpCFjERdKgqxBRoJT9L7WYSJds3ozM2WV2DbbNDH6Tip9n6K3zb1r26Ll4F1nNRSJe4U3CYWfQXzw4AkIcfC0V4v9fvlVrhJtuEoYgP7y70JeoUctrc_Q0fbHTr8Gn3WbvnEE-gPQpp-2
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+and+Vacancies+Engineering+of+Copper+Nickel+Sulfide+for+Enhanced+Oxygen+Reduction+and+Alcohols+Oxidation+Activity&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Wang%2C+Zhaoyang&rft.au=Liao%2C+Xiaobin&rft.au=Zhou%2C+Min&rft.au=Huang%2C+Fuzhi&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=6&rft.issue=5&rft_id=info:doi/10.1002%2Feem2.12409&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg