Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen an...
Saved in:
Cover
Loading…
Abstract | Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen and value‐added organic products generation, but they remain a great challenge. Herein, a bifunctional electrocatalyst is prepared by anchoring CuS/NiS
2
nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene (Cu
1
Ni
2
‐S/G) for ORR and AOR. Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies, Cu
1
Ni
2
‐S/G achieves dramatically enhanced ORR activity with long term stability. Meanwhile, when ethanol is utilized as an oxidant for AOR, an ultralow potential (1.37 V) at a current density of 10 mA cm
−2
is achieved, simultaneously delivering a high Faradaic efficiency of 96% for ethyl acetate production. Cu
1
Ni
2
‐S/G also exhibits catalytic activity for other alcohols electrooxidation process, indicating its multifunctionality. This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering, but also opens up new avenues for the construction of a self‐driven biomass electrocatalysis system for the generation of value‐added organic products and hydrogen under ambient conditions. |
---|---|
AbstractList | Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen and value‐added organic products generation, but they remain a great challenge. Herein, a bifunctional electrocatalyst is prepared by anchoring CuS/NiS2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene (Cu1Ni2‐S/G) for ORR and AOR. Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies, Cu1Ni2‐S/G achieves dramatically enhanced ORR activity with long term stability. Meanwhile, when ethanol is utilized as an oxidant for AOR, an ultralow potential (1.37 V) at a current density of 10 mA cm−2 is achieved, simultaneously delivering a high Faradaic efficiency of 96% for ethyl acetate production. Cu1Ni2‐S/G also exhibits catalytic activity for other alcohols electrooxidation process, indicating its multifunctionality. This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering, but also opens up new avenues for the construction of a self‐driven biomass electrocatalysis system for the generation of value‐added organic products and hydrogen under ambient conditions. Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu1Ni2-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu1Ni2-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu1Ni2-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions. Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are extremely vital for the development of direct oxidation alkaline fuel cells, metal‐air batteries, and water electrolysis system involving hydrogen and value‐added organic products generation, but they remain a great challenge. Herein, a bifunctional electrocatalyst is prepared by anchoring CuS/NiS 2 nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene (Cu 1 Ni 2 ‐S/G) for ORR and AOR. Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies, Cu 1 Ni 2 ‐S/G achieves dramatically enhanced ORR activity with long term stability. Meanwhile, when ethanol is utilized as an oxidant for AOR, an ultralow potential (1.37 V) at a current density of 10 mA cm −2 is achieved, simultaneously delivering a high Faradaic efficiency of 96% for ethyl acetate production. Cu 1 Ni 2 ‐S/G also exhibits catalytic activity for other alcohols electrooxidation process, indicating its multifunctionality. This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering, but also opens up new avenues for the construction of a self‐driven biomass electrocatalysis system for the generation of value‐added organic products and hydrogen under ambient conditions. |
Author | Wang, Zhaoyang Huang, Fuzhi Cheng, Yibing Liao, Xiaobin Owusu, Kwadwo Asare Mai, Liqiang Li, Jiantao Hong, Xufeng Zhou, Min Sun, Qi Zhao, Yan Lin, Zifeng Sun, Congli |
AuthorAffiliation | State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China;The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for M |
AuthorAffiliation_xml | – name: State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China;The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China |
Author_xml | – sequence: 1 givenname: Zhaoyang orcidid: 0000-0003-3244-5306 surname: Wang fullname: Wang, Zhaoyang organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China – sequence: 2 givenname: Xiaobin surname: Liao fullname: Liao, Xiaobin organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China – sequence: 3 givenname: Min surname: Zhou fullname: Zhou, Min organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China – sequence: 4 givenname: Fuzhi surname: Huang fullname: Huang, Fuzhi organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China – sequence: 5 givenname: Kwadwo Asare surname: Owusu fullname: Owusu, Kwadwo Asare organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China – sequence: 6 givenname: Jiantao surname: Li fullname: Li, Jiantao organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China – sequence: 7 givenname: Zifeng surname: Lin fullname: Lin, Zifeng organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China – sequence: 8 givenname: Qi surname: Sun fullname: Sun, Qi organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China – sequence: 9 givenname: Xufeng surname: Hong fullname: Hong, Xufeng organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China – sequence: 10 givenname: Congli surname: Sun fullname: Sun, Congli organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China – sequence: 11 givenname: Yibing surname: Cheng fullname: Cheng, Yibing organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China, Department of Materials Science and Engineering Monash University Clayton Victoria 3800 Australia, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu hydrogen Valley Foshan 528216 China – sequence: 12 givenname: Yan orcidid: 0000-0002-1234-4455 surname: Zhao fullname: Zhao, Yan organization: State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering Wuhan University of Technology No. 122 Luoshi Road Wuhan 430070 China, The Institute of Technological Sciences Wuhan University Wuhan 430072 China – sequence: 13 givenname: Liqiang orcidid: 0000-0003-4259-7725 surname: Mai fullname: Mai, Liqiang organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu hydrogen Valley Foshan 528216 China |
BookMark | eNptkVtLAzEQhYNUsFZf_AUB34TWXHabzWMpVQtFwdvrkiaTNnWb1OxWXfDHG6ugiE8zzHxzDsw5RB0fPCB0QsmAEsLOAdZsQFlG5B7qslzkfcLzYedXf4CO63pFEkwoz6jsovepbyBapZ2qsPIGPyqtvHZQ44lfOA8QnV_gYPE4bDYQ8bXTT1Dhu21lnQFsQ0zgMp2AwTdv7QI8vgWz1Y0Lfic4qnRYhqpOW2fUbjxK2xfXtEdo36qqhuPv2kMPF5P78VV_dnM5HY9mfc05afqMSchlkUua5cVQGDMshqQwRhSsEFQCp1wCCC3nUguubKHn0uZsnulMSSEF76GzL91X5a3yi3IVttEnx9K37XKlqxIYYZzk6S8JPv2CNzE8b6FufmiW3AlngpMfSR1DXUew5Sa6tYptSUn5mUb5mUa5SyPB5A-sXbN7RROVq_47-QAoWI6M |
CitedBy_id | crossref_primary_10_1016_j_jechem_2024_06_045 crossref_primary_10_3390_en16135078 crossref_primary_10_1002_idm2_12228 crossref_primary_10_1016_j_surfin_2025_106007 crossref_primary_10_1039_D3EE02467A crossref_primary_10_1002_aenm_202203568 crossref_primary_10_1002_adma_202404806 crossref_primary_10_1016_j_apcatb_2023_123459 crossref_primary_10_1016_j_est_2024_115016 crossref_primary_10_1002_adfm_202415058 crossref_primary_10_1002_adfm_202315326 crossref_primary_10_3390_en16134986 crossref_primary_10_1039_D3TA03513A crossref_primary_10_1021_acscatal_3c01348 crossref_primary_10_1039_D4CC02949F |
Cites_doi | 10.1039/C2EE02552C 10.1002/aenm.201900390 10.1002/adma.201704681 10.1016/S0022-2860(96)09713-X 10.1126/science.aad4998 10.1002/adma.202000455 10.1021/acs.accounts.8b00266 10.1002/ange.201602237 10.1002/aenm.201801839 10.1016/j.apcatb.2021.120182 10.1021/acs.accounts.7b00616 10.1021/acsnano.7b05020 10.1002/aenm.201701642 10.1039/C4CS00484A 10.1021/acsnano.0c04309 10.1002/adma.201804453 10.1002/adma.201604685 10.1021/acscatal.7b01831 10.1002/advs.202000747 10.1002/adma.201900528 10.1039/c1cs15228a 10.1002/advs.201900628 10.1021/acscatal.8b00668 10.1002/ange.201607271 10.1002/adma.201705538 10.1002/adfm.201805298 10.1002/eem2.12081 10.1002/adma.202000607 10.1021/acs.chemrev.7b00335 10.1039/C6EE00054A 10.1002/ange.201907002 10.1002/adma.202002584 10.1039/D0TA03199B 10.1002/adfm.202005834 10.1002/ange.201204958 10.1021/acsenergylett.1c00037 10.1002/adfm.201806419 10.1002/chem.201904722 10.1021/acsnano.9b02315 10.1038/nmat4551 10.1002/adma.201900062 10.1007/s12274-021-3964-0 10.1002/adma.201506197 10.1016/j.jpowsour.2009.11.145 10.1002/ange.201804673 10.1002/adma.201808281 10.1038/s41467-020-18891-x 10.1002/adma.201906905 10.1002/adfm.202011151 10.1021/jp307871y 10.1002/eem2.12204 10.1021/acsnano.9b01583 10.1039/b900444k 10.1002/anie.201903879 10.1016/j.nanoen.2019.104318 10.1016/j.nanoen.2017.06.029 10.1039/C8NR07179A 10.1002/adfm.201807031 10.1021/acscatal.0c01541 10.1038/s41560-018-0292-z 10.1002/smll.201801070 10.1002/adma.202003649 10.1002/ange.202014362 10.1016/j.mattod.2019.05.021 10.1021/acscatal.9b01819 10.1039/c2ee21234j 10.1038/s41467-020-19277-9 10.1039/C5EE02903A 10.1002/ange.201104004 |
ContentType | Journal Article |
Copyright | 2023 Zhengzhou University Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Zhengzhou University – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12409 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 298 |
ExternalDocumentID | nyyhjcl_e202305020 10_1002_eem2_12409 |
GroupedDBID | 0R~ 1OC 24P AAYXX ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU CITATION EBS EJD OK1 WIN 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c330t-229e59859145867dd68608dd7828719e3139ee7c9b9c73af8cb9f52b4c4a97973 |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 12:07:27 EDT 2025 Tue Jul 01 01:03:06 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | alcohols oxidation reaction sulfur vacancies heterointerface metal sulfide oxygen reduction reaction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-229e59859145867dd68608dd7828719e3139ee7c9b9c73af8cb9f52b4c4a97973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4259-7725 0000-0002-1234-4455 0000-0003-3244-5306 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12409 |
PQID | 2867032730 |
PQPubID | 5251211 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202305020 proquest_journals_2867032730 crossref_primary_10_1002_eem2_12409 crossref_citationtrail_10_1002_eem2_12409 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China – name: The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China – name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu hydrogen Valley,Foshan 528216,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China – name: State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering Wuhan University of Technology,No.122 Luoshi Road,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China – name: Department of Materials Science and Engineering,Monash University,Clayton Victoria 3800,Australia |
References | e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Dai L. (e_1_2_6_11_1) 2016; 2 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Wu J. (e_1_2_6_7_1) 1848; 2013 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – ident: e_1_2_6_2_1 doi: 10.1039/C2EE02552C – ident: e_1_2_6_26_1 doi: 10.1002/aenm.201900390 – ident: e_1_2_6_30_1 doi: 10.1002/adma.201704681 – ident: e_1_2_6_53_1 doi: 10.1016/S0022-2860(96)09713-X – ident: e_1_2_6_1_1 doi: 10.1126/science.aad4998 – ident: e_1_2_6_48_1 doi: 10.1002/adma.202000455 – ident: e_1_2_6_27_1 doi: 10.1021/acs.accounts.8b00266 – ident: e_1_2_6_31_1 doi: 10.1002/ange.201602237 – ident: e_1_2_6_58_1 doi: 10.1002/aenm.201801839 – ident: e_1_2_6_29_1 doi: 10.1016/j.apcatb.2021.120182 – ident: e_1_2_6_23_1 doi: 10.1021/acs.accounts.7b00616 – ident: e_1_2_6_46_1 doi: 10.1021/acsnano.7b05020 – ident: e_1_2_6_55_1 doi: 10.1002/aenm.201701642 – ident: e_1_2_6_5_1 doi: 10.1039/C4CS00484A – ident: e_1_2_6_22_1 doi: 10.1021/acsnano.0c04309 – ident: e_1_2_6_51_1 doi: 10.1002/adma.201804453 – volume: 2 start-page: 538 year: 2016 ident: e_1_2_6_11_1 publication-title: Sci. – ident: e_1_2_6_62_1 doi: 10.1002/adma.201604685 – ident: e_1_2_6_45_1 doi: 10.1021/acscatal.7b01831 – ident: e_1_2_6_59_1 doi: 10.1002/advs.202000747 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201900528 – ident: e_1_2_6_9_1 doi: 10.1039/c1cs15228a – ident: e_1_2_6_19_1 doi: 10.1002/advs.201900628 – ident: e_1_2_6_32_1 doi: 10.1021/acscatal.8b00668 – ident: e_1_2_6_54_1 doi: 10.1002/ange.201607271 – ident: e_1_2_6_44_1 doi: 10.1002/adma.201705538 – ident: e_1_2_6_33_1 doi: 10.1002/adfm.201805298 – ident: e_1_2_6_20_1 doi: 10.1002/eem2.12081 – ident: e_1_2_6_37_1 doi: 10.1002/adma.202000607 – ident: e_1_2_6_12_1 doi: 10.1021/acs.chemrev.7b00335 – ident: e_1_2_6_57_1 doi: 10.1039/C6EE00054A – ident: e_1_2_6_61_1 doi: 10.1002/ange.201907002 – ident: e_1_2_6_41_1 doi: 10.1002/adma.202002584 – ident: e_1_2_6_8_1 doi: 10.1039/D0TA03199B – ident: e_1_2_6_16_1 doi: 10.1002/adfm.202005834 – ident: e_1_2_6_50_1 doi: 10.1002/ange.201204958 – ident: e_1_2_6_63_1 doi: 10.1021/acsenergylett.1c00037 – ident: e_1_2_6_24_1 doi: 10.1002/adfm.201806419 – ident: e_1_2_6_25_1 doi: 10.1002/chem.201904722 – ident: e_1_2_6_17_1 doi: 10.1021/acsnano.9b02315 – ident: e_1_2_6_69_1 doi: 10.1038/nmat4551 – volume: 2013 start-page: 46 year: 1848 ident: e_1_2_6_7_1 publication-title: Acc. Chem. Res. – ident: e_1_2_6_38_1 doi: 10.1002/adma.201900062 – ident: e_1_2_6_6_1 doi: 10.1007/s12274-021-3964-0 – ident: e_1_2_6_13_1 doi: 10.1002/adma.201506197 – ident: e_1_2_6_64_1 doi: 10.1016/j.jpowsour.2009.11.145 – ident: e_1_2_6_34_1 doi: 10.1002/ange.201804673 – ident: e_1_2_6_21_1 doi: 10.1002/adma.201808281 – ident: e_1_2_6_67_1 doi: 10.1038/s41467-020-18891-x – ident: e_1_2_6_70_1 doi: 10.1002/adma.201906905 – ident: e_1_2_6_4_1 doi: 10.1002/adfm.202011151 – ident: e_1_2_6_39_1 doi: 10.1021/jp307871y – ident: e_1_2_6_28_1 doi: 10.1002/eem2.12204 – ident: e_1_2_6_43_1 doi: 10.1021/acsnano.9b01583 – ident: e_1_2_6_52_1 doi: 10.1039/b900444k – ident: e_1_2_6_36_1 doi: 10.1002/anie.201903879 – ident: e_1_2_6_3_1 doi: 10.1016/j.nanoen.2019.104318 – ident: e_1_2_6_66_1 doi: 10.1016/j.nanoen.2017.06.029 – ident: e_1_2_6_18_1 doi: 10.1039/C8NR07179A – ident: e_1_2_6_47_1 doi: 10.1002/adfm.201807031 – ident: e_1_2_6_49_1 doi: 10.1021/acscatal.0c01541 – ident: e_1_2_6_60_1 doi: 10.1038/s41560-018-0292-z – ident: e_1_2_6_42_1 doi: 10.1002/smll.201801070 – ident: e_1_2_6_15_1 doi: 10.1002/adma.202003649 – ident: e_1_2_6_68_1 doi: 10.1002/ange.202014362 – ident: e_1_2_6_40_1 doi: 10.1016/j.mattod.2019.05.021 – ident: e_1_2_6_35_1 doi: 10.1021/acscatal.9b01819 – ident: e_1_2_6_65_1 doi: 10.1039/c2ee21234j – ident: e_1_2_6_71_1 doi: 10.1038/s41467-020-19277-9 – ident: e_1_2_6_56_1 doi: 10.1039/C5EE02903A – ident: e_1_2_6_14_1 doi: 10.1002/ange.201104004 |
SSID | ssj0002013419 |
Score | 2.3226595 |
Snippet | Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions (ORR, AOR) are... Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely... |
SourceID | wanfang proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 288 |
SubjectTerms | Acetic acid Alcohol Alcohols Catalytic activity Copper sulfides Electrocatalysts Electrolysis Electrolytic cells Ethanol Ethyl acetate Fuel cells Graphene Metal air batteries Nanoparticles Nickel Nickel sulfide Oxidants Oxidation Oxidizing agents Oxygen Sulfur Synergistic effect |
Title | Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity |
URI | https://www.proquest.com/docview/2867032730 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202305020 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_qHYIvh6Li6SkL-iKSut1kk-xjkZZynHcv7Vn6Eja7GxqtSbEtZw__Dv9eZ7Obj4Mipy9pScKEzu-X2dnpfCD0bhDqlMmYeZyk0gukoh7PMuFlMgoVlWQgqwq5z5fhZBacz9m81_vdyVrabdO-vD1YV_I_qMI5wNVUyf4Dso1QOAHfAV84AsJwvBfGVTgvE1XU2wTAr4Wshu1uum0Gq4SLcr021b05vLMrMBarLFe22_eoWNocgKufe3gOqFvt3PRwEDi0A3Q3cDW3w5c-DKWdN3EnpG8LCA2LOoVzpi5FbK0ejCM7KdPym3b1Xef9TgziiwtaL5ai3Au3lposoVxUkdw5fKZ5Q-PFstzZlP-iZaUTMd7dLvNuKIP6Ta7WfQ2mXbQq6wimhnnEt13Ja1MedhjLDi4QtuGs1t9pHzwbwttlsP7r__IqGc8uLpLpaD59gI4pbD_A4B8Pr2eLWRO9A7fJNMJr-t3Sj63Iux5Ou215eCOKDJTR8V-mj9GJ23jgoWXRE9TTxVP0q8MgDIDjhkG4wyBcZtgyCFsGYccgDAzCNYOwZRBuGFQJrBmEGwbhmkHP0Gw8mn6aeG4ehyd9n2w9Srlm3DQ8DFgcRkqFcUhipSIzNGHAtQ-7Ca0jyVMuI19ksUx5xmgayEDwiEf-c3RUlIV-gbDkVClwvaliIhCUpCFjERdKgqxBRoJT9L7WYSJds3ozM2WV2DbbNDH6Tip9n6K3zb1r26Ll4F1nNRSJe4U3CYWfQXzw4AkIcfC0V4v9fvlVrhJtuEoYgP7y70JeoUctrc_Q0fbHTr8Gn3WbvnEE-gPQpp-2 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+and+Vacancies+Engineering+of+Copper+Nickel+Sulfide+for+Enhanced+Oxygen+Reduction+and+Alcohols+Oxidation+Activity&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Wang%2C+Zhaoyang&rft.au=Liao%2C+Xiaobin&rft.au=Zhou%2C+Min&rft.au=Huang%2C+Fuzhi&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=6&rft.issue=5&rft_id=info:doi/10.1002%2Feem2.12409&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |