Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer
Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) t...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 33; pp. 17499 - 17505 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) to investigate the structure, stability and PCE of CH 3 NH 3 PbI 3−x Cl x perovskite solar cells. It is found that adsorption of the CdSe/PCBM composite reduces the roughness of the perovskite, leading to a high-quality film with a compact morphology. Density functional theory (DFT) based first-principles calculations show that CdSe enhances the chemical stability of CH 3 NH 3 PbI 3−x Cl x involving strong atomic orbital hybridization. Interestingly, an inorganic-terminated perovskite surface has much stronger interaction with CdSe compared to the surface with organic CH 3 NH 3 termination, with noticeable interfacial charge redistribution. Experiments on solar cells incorporating the CdSe/PCBM composite as the ETL show enhanced photocurrent and fill factor, which is related to the in-built electric field between CH 3 NH 3 PbI 3−x Cl x and CdSe that greatly facilitates the separation of electron and hole pairs. We show an improved PCE of 13.7% with enhanced device stability in a highly humid atmosphere. These joint theoretical–experimental results may provide a new aspect for improving the structural stability and operating performance of optoelectronic devices based on perovskite structures. |
---|---|
AbstractList | Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) to investigate the structure, stability and PCE of CH 3 NH 3 PbI 3−x Cl x perovskite solar cells. It is found that adsorption of the CdSe/PCBM composite reduces the roughness of the perovskite, leading to a high-quality film with a compact morphology. Density functional theory (DFT) based first-principles calculations show that CdSe enhances the chemical stability of CH 3 NH 3 PbI 3−x Cl x involving strong atomic orbital hybridization. Interestingly, an inorganic-terminated perovskite surface has much stronger interaction with CdSe compared to the surface with organic CH 3 NH 3 termination, with noticeable interfacial charge redistribution. Experiments on solar cells incorporating the CdSe/PCBM composite as the ETL show enhanced photocurrent and fill factor, which is related to the in-built electric field between CH 3 NH 3 PbI 3−x Cl x and CdSe that greatly facilitates the separation of electron and hole pairs. We show an improved PCE of 13.7% with enhanced device stability in a highly humid atmosphere. These joint theoretical–experimental results may provide a new aspect for improving the structural stability and operating performance of optoelectronic devices based on perovskite structures. Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) to investigate the structure, stability and PCE of CH₃NH₃PbI₃₋ₓClₓ perovskite solar cells. It is found that adsorption of the CdSe/PCBM composite reduces the roughness of the perovskite, leading to a high-quality film with a compact morphology. Density functional theory (DFT) based first-principles calculations show that CdSe enhances the chemical stability of CH₃NH₃PbI₃₋ₓClₓ involving strong atomic orbital hybridization. Interestingly, an inorganic-terminated perovskite surface has much stronger interaction with CdSe compared to the surface with organic CH₃NH₃ termination, with noticeable interfacial charge redistribution. Experiments on solar cells incorporating the CdSe/PCBM composite as the ETL show enhanced photocurrent and fill factor, which is related to the in-built electric field between CH₃NH₃PbI₃₋ₓClₓ and CdSe that greatly facilitates the separation of electron and hole pairs. We show an improved PCE of 13.7% with enhanced device stability in a highly humid atmosphere. These joint theoretical–experimental results may provide a new aspect for improving the structural stability and operating performance of optoelectronic devices based on perovskite structures. |
Author | Zhou, Tingwei Zang, Zhigang Leng, Chongqian Lu, Shirong Zhou, Miao Zeng, Xiaofeng Tang, Xiaosheng Hu, Wei Wang, Ming Fang, Liang |
Author_xml | – sequence: 1 givenname: Xiaofeng surname: Zeng fullname: Zeng, Xiaofeng organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 – sequence: 2 givenname: Tingwei surname: Zhou fullname: Zhou, Tingwei organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 – sequence: 3 givenname: Chongqian surname: Leng fullname: Leng, Chongqian organization: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China – sequence: 4 givenname: Zhigang surname: Zang fullname: Zang, Zhigang organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 – sequence: 5 givenname: Ming surname: Wang fullname: Wang, Ming organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 – sequence: 6 givenname: Wei surname: Hu fullname: Hu, Wei organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 – sequence: 7 givenname: Xiaosheng surname: Tang fullname: Tang, Xiaosheng organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 – sequence: 8 givenname: Shirong surname: Lu fullname: Lu, Shirong organization: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China – sequence: 9 givenname: Liang surname: Fang fullname: Fang, Liang organization: Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331, China – sequence: 10 givenname: Miao orcidid: 0000-0003-1390-372X surname: Zhou fullname: Zhou, Miao organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 |
BookMark | eNptkF9LwzAUxYNMcM69-AnyKMJc2rRL8ziL_2DiwPlcbtMbqbZJl6TCnvzqdkwUxPty74HfuXDOKRkZa5CQ84hdRYzLeS42S8ZixvMjMo5ZymYikYvRz51lJ2Tq_RsbJmNsIeWYfK7RaetaMApp3XbOfmCLJlCraYeD8u91QOptA44qbBpPyx3FtmvsrjavFGhePSPd9mBC39LKhvk6v36kyrad9XsreAqGYoMqOGtocGB8Z12gDezQnZFjDY3H6feekJfbm01-P1s93T3ky9VMcc7CLKpkLDRTXCHyCiEBjTLTIuJaMpEInVZJVQlZwqKCuCwjzhQkWAqpYkzTmE_IxeHvkHDbow9FW_t9HjBoe1_EsYiyNJJpMqCXB1Q5671DXXSubsHtiogV-6KL36IHmP2BVR0g1NYMQevmP8sXbuiEig |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2019_144274 crossref_primary_10_1016_j_synthmet_2022_117144 crossref_primary_10_3390_nano11112909 crossref_primary_10_1016_j_solener_2021_05_070 crossref_primary_10_1016_j_solener_2020_06_038 crossref_primary_10_1016_j_jallcom_2020_155579 crossref_primary_10_1007_s12596_024_01819_9 crossref_primary_10_1016_j_solener_2018_09_066 crossref_primary_10_1016_j_cej_2024_154821 crossref_primary_10_1016_j_tsf_2018_08_026 crossref_primary_10_1016_j_solmat_2018_06_002 crossref_primary_10_1016_j_solener_2019_04_092 crossref_primary_10_1016_j_solmat_2019_110284 crossref_primary_10_1039_D0NR01171A crossref_primary_10_1016_j_jallcom_2019_01_068 crossref_primary_10_1016_j_jcis_2023_06_132 crossref_primary_10_1016_j_solmat_2019_01_020 crossref_primary_10_1016_j_tsf_2018_08_041 crossref_primary_10_1016_j_solener_2019_06_006 crossref_primary_10_1016_j_jallcom_2018_08_322 crossref_primary_10_1039_D0RA03397A crossref_primary_10_3390_polym11010147 crossref_primary_10_1016_j_apsusc_2018_11_237 crossref_primary_10_1016_j_solmat_2019_04_007 crossref_primary_10_3390_ijms23169482 crossref_primary_10_1016_j_orgel_2019_105543 crossref_primary_10_1016_j_solener_2020_03_062 crossref_primary_10_1016_j_orgel_2019_03_022 crossref_primary_10_1088_1361_6528_ab4f2a crossref_primary_10_1016_j_jallcom_2019_152742 crossref_primary_10_1109_TED_2018_2878828 crossref_primary_10_1016_j_matlet_2020_128777 crossref_primary_10_1016_j_orgel_2018_08_025 crossref_primary_10_1016_j_jallcom_2020_156329 crossref_primary_10_3389_fchem_2020_00791 crossref_primary_10_1016_j_orgel_2019_105433 crossref_primary_10_1007_s11082_018_1612_z crossref_primary_10_1016_j_solmat_2019_110022 crossref_primary_10_1016_j_solmat_2019_110261 crossref_primary_10_1016_j_electacta_2020_135796 crossref_primary_10_1016_j_solmat_2019_110383 crossref_primary_10_1007_s10311_020_01171_x crossref_primary_10_1016_j_solener_2020_03_093 crossref_primary_10_3390_ijms232214441 crossref_primary_10_1016_j_orgel_2019_03_053 crossref_primary_10_1016_j_orgel_2018_06_043 crossref_primary_10_1016_j_orgel_2018_08_034 crossref_primary_10_1039_D2TC02911A crossref_primary_10_1016_j_jallcom_2018_07_185 crossref_primary_10_1016_j_solener_2019_02_012 crossref_primary_10_1016_j_apsusc_2018_08_088 crossref_primary_10_1016_j_apsusc_2018_12_124 crossref_primary_10_1007_s10853_018_2249_9 crossref_primary_10_1016_j_jallcom_2020_154710 crossref_primary_10_1039_D3NA00319A crossref_primary_10_1021_acssuschemeng_9b05535 crossref_primary_10_1016_j_jallcom_2018_07_190 crossref_primary_10_1007_s10854_020_03195_z crossref_primary_10_1016_j_cej_2021_129247 crossref_primary_10_1016_j_mtchem_2021_100595 crossref_primary_10_1016_j_matlet_2018_01_106 crossref_primary_10_1002_smll_202400807 crossref_primary_10_1016_j_jpowsour_2019_227586 crossref_primary_10_1016_j_solmat_2019_110252 crossref_primary_10_1039_D0TC05877G crossref_primary_10_1016_j_solmat_2019_110251 crossref_primary_10_1016_j_jpowsour_2019_04_088 crossref_primary_10_1039_C8TC02133C crossref_primary_10_1016_j_jallcom_2019_153616 crossref_primary_10_1002_adfm_202419268 crossref_primary_10_1016_j_apsusc_2019_144478 crossref_primary_10_1016_j_apsusc_2018_12_118 crossref_primary_10_1016_j_matlet_2018_01_057 crossref_primary_10_1039_D0TA03176C crossref_primary_10_1016_j_solener_2019_10_046 crossref_primary_10_1039_C9TA08314F crossref_primary_10_1016_j_optmat_2021_111316 crossref_primary_10_1016_j_jallcom_2020_157396 crossref_primary_10_1016_j_apsusc_2019_01_031 crossref_primary_10_1016_j_tsf_2018_07_033 crossref_primary_10_1016_j_tsf_2018_07_039 crossref_primary_10_1016_j_jpowsour_2019_03_050 crossref_primary_10_1557_adv_2018_349 crossref_primary_10_1016_j_optmat_2018_08_015 crossref_primary_10_1016_j_ccr_2018_07_009 crossref_primary_10_1016_j_electacta_2018_10_087 crossref_primary_10_1039_C8TA03953D crossref_primary_10_1016_j_jcis_2018_12_001 crossref_primary_10_1016_j_jpowsour_2019_227362 crossref_primary_10_1016_j_apsusc_2017_11_258 crossref_primary_10_1016_j_jallcom_2020_156752 crossref_primary_10_1364_OL_44_004865 crossref_primary_10_1016_j_electacta_2020_135637 crossref_primary_10_1016_j_orgel_2018_12_007 crossref_primary_10_1016_j_jpowsour_2019_02_018 crossref_primary_10_1002_cssc_201801249 crossref_primary_10_1016_j_solmat_2018_05_015 crossref_primary_10_1016_j_solmat_2019_03_040 crossref_primary_10_1109_LPT_2021_3088219 crossref_primary_10_1039_C9TA04871E crossref_primary_10_1063_5_0005464 crossref_primary_10_1016_j_jallcom_2019_05_051 crossref_primary_10_1016_j_matlet_2018_12_048 crossref_primary_10_1016_j_solmat_2018_12_010 crossref_primary_10_1088_1361_6528_aacf7c crossref_primary_10_1007_s00339_021_04474_0 crossref_primary_10_1016_j_electacta_2020_136720 crossref_primary_10_1016_j_jallcom_2019_153620 crossref_primary_10_1016_j_orgel_2020_105681 crossref_primary_10_1039_C8TA09933B crossref_primary_10_1039_D1TA02786G crossref_primary_10_1016_j_solmat_2024_112955 crossref_primary_10_1016_j_solener_2019_01_095 crossref_primary_10_1016_j_jpowsour_2019_03_037 crossref_primary_10_1088_2632_959X_abc599 crossref_primary_10_1016_j_jpowsour_2019_03_039 crossref_primary_10_1088_1361_6528_ab1a69 crossref_primary_10_1016_j_optcom_2017_09_037 crossref_primary_10_1016_j_cej_2019_122830 crossref_primary_10_1039_C7TA10742K crossref_primary_10_1016_j_electacta_2020_135884 crossref_primary_10_1016_j_orgel_2019_03_004 crossref_primary_10_1016_j_cej_2020_126740 crossref_primary_10_1016_j_cclet_2021_01_004 crossref_primary_10_1016_j_jpowsour_2019_04_041 crossref_primary_10_1016_j_solmat_2019_03_023 crossref_primary_10_1016_j_apsusc_2018_06_286 crossref_primary_10_1016_j_solmat_2019_03_029 crossref_primary_10_1016_j_jallcom_2019_03_187 crossref_primary_10_1021_acs_nanolett_1c03050 crossref_primary_10_1016_j_orgel_2018_11_020 crossref_primary_10_1016_j_orgel_2019_105495 crossref_primary_10_1016_j_orgel_2020_105712 crossref_primary_10_1016_j_jallcom_2019_06_269 crossref_primary_10_1002_adom_202102566 crossref_primary_10_1016_j_solener_2019_08_030 crossref_primary_10_1016_j_nanoen_2019_03_029 crossref_primary_10_1016_j_orgel_2019_01_003 crossref_primary_10_1016_j_apsusc_2018_07_083 crossref_primary_10_1002_adfm_202210885 crossref_primary_10_1016_j_solener_2019_08_033 crossref_primary_10_1016_j_solener_2019_04_019 crossref_primary_10_3390_pr10071408 crossref_primary_10_1016_j_orgel_2018_11_034 crossref_primary_10_1016_j_apsusc_2018_11_079 crossref_primary_10_1016_j_solmat_2019_110318 crossref_primary_10_1016_j_solmat_2019_110316 crossref_primary_10_1016_j_apsusc_2018_02_251 crossref_primary_10_1016_j_cej_2018_12_056 crossref_primary_10_1016_j_electacta_2019_06_102 crossref_primary_10_1016_j_jallcom_2020_158335 crossref_primary_10_1016_j_solener_2022_01_070 crossref_primary_10_1016_j_jpowsour_2019_04_056 crossref_primary_10_1016_j_solener_2019_05_033 crossref_primary_10_1016_j_solmat_2019_03_002 crossref_primary_10_1016_j_solener_2018_11_024 crossref_primary_10_1016_j_solener_2018_11_025 crossref_primary_10_1016_j_solener_2018_11_026 crossref_primary_10_1088_2053_1591_aaa616 crossref_primary_10_1016_j_solmat_2020_110448 crossref_primary_10_1016_j_matlet_2018_03_041 crossref_primary_10_1016_j_solener_2018_11_020 crossref_primary_10_1016_j_solener_2020_04_044 crossref_primary_10_1063_5_0007685 crossref_primary_10_1016_j_electacta_2020_137452 crossref_primary_10_1039_D3LF00183K crossref_primary_10_1016_j_solener_2018_09_003 crossref_primary_10_1016_j_jallcom_2019_151817 crossref_primary_10_1016_j_nanoen_2019_03_044 crossref_primary_10_1016_j_nantod_2021_101286 crossref_primary_10_1016_j_orgel_2019_105397 crossref_primary_10_1016_j_orgel_2018_07_010 crossref_primary_10_1002_adts_201800075 crossref_primary_10_1016_j_jallcom_2018_03_236 crossref_primary_10_1016_j_jallcom_2017_12_199 crossref_primary_10_1007_s10854_021_06331_5 crossref_primary_10_1016_j_jpowsour_2019_04_024 crossref_primary_10_1016_j_apsusc_2019_05_092 crossref_primary_10_1016_j_solener_2020_09_059 crossref_primary_10_1016_j_jallcom_2018_09_054 crossref_primary_10_1016_j_cplett_2017_10_053 crossref_primary_10_1016_j_apsusc_2018_12_084 crossref_primary_10_1007_s10854_020_03872_z crossref_primary_10_1016_j_solener_2019_06_069 crossref_primary_10_1016_j_electacta_2019_03_221 crossref_primary_10_1016_j_electacta_2019_03_223 crossref_primary_10_1016_j_physleta_2024_130053 crossref_primary_10_1364_JOSAB_402116 crossref_primary_10_3390_nanomanufacturing3020012 crossref_primary_10_1016_j_jpowsour_2019_04_039 crossref_primary_10_1016_j_nanoms_2019_10_007 crossref_primary_10_1016_j_apsusc_2019_145071 crossref_primary_10_1016_j_jallcom_2020_155883 crossref_primary_10_1016_j_nanoen_2019_104249 crossref_primary_10_1039_D0NA00466A crossref_primary_10_1016_j_jallcom_2018_04_283 crossref_primary_10_1039_D4MH01478B crossref_primary_10_1002_pssb_201900784 crossref_primary_10_1007_s10854_023_10008_6 crossref_primary_10_1016_j_solener_2019_02_041 crossref_primary_10_1088_1361_6528_aad2ec crossref_primary_10_1002_aenm_202002326 crossref_primary_10_1016_j_jallcom_2020_154717 crossref_primary_10_1088_1361_6528_abead9 crossref_primary_10_1016_j_jallcom_2019_01_372 crossref_primary_10_1016_j_jallcom_2020_154600 crossref_primary_10_1021_acsphotonics_0c00697 crossref_primary_10_1016_j_matlet_2018_05_082 crossref_primary_10_1016_j_snb_2020_129198 crossref_primary_10_1364_JOSAB_440366 crossref_primary_10_1016_j_solener_2019_05_007 crossref_primary_10_1016_j_electacta_2019_06_134 crossref_primary_10_1016_j_apsusc_2019_02_105 crossref_primary_10_1016_j_apsusc_2017_12_085 crossref_primary_10_1016_j_electacta_2019_135197 crossref_primary_10_1016_j_jiec_2018_11_008 crossref_primary_10_1016_j_apsusc_2019_04_069 crossref_primary_10_1088_1361_6528_ac962b crossref_primary_10_1016_j_jallcom_2017_10_046 crossref_primary_10_1016_j_orgel_2019_01_040 crossref_primary_10_1016_j_orgel_2018_10_028 crossref_primary_10_1021_acssuschemeng_0c02565 crossref_primary_10_1016_j_solener_2019_02_034 crossref_primary_10_1016_j_jallcom_2019_151947 crossref_primary_10_1039_D0TA11336K crossref_primary_10_1016_j_orgel_2019_02_029 crossref_primary_10_1021_acs_jpcc_9b11572 crossref_primary_10_1016_j_orgel_2019_02_025 crossref_primary_10_1364_OSAC_2_001880 crossref_primary_10_1007_s13233_018_6086_0 crossref_primary_10_1016_j_heliyon_2022_e11878 crossref_primary_10_1007_s10008_020_04830_9 crossref_primary_10_1007_s10854_020_04526_w crossref_primary_10_1016_j_jpowsour_2019_227407 crossref_primary_10_1016_j_solener_2018_10_037 crossref_primary_10_1016_j_solmat_2019_110113 crossref_primary_10_1016_j_apsusc_2019_143552 crossref_primary_10_1016_j_apsusc_2018_02_178 crossref_primary_10_1016_j_jallcom_2018_12_048 crossref_primary_10_1007_s10853_023_08421_7 crossref_primary_10_1016_j_matlet_2018_10_029 crossref_primary_10_1016_j_solmat_2019_110352 crossref_primary_10_1016_j_electacta_2018_08_117 crossref_primary_10_1016_j_orgel_2020_105740 crossref_primary_10_1016_j_solener_2019_08_080 crossref_primary_10_1016_j_jpowsour_2019_227091 crossref_primary_10_1016_j_orgel_2019_105519 crossref_primary_10_1016_j_solmat_2020_110409 crossref_primary_10_3390_nano13081363 crossref_primary_10_1016_j_electacta_2019_135183 crossref_primary_10_1016_j_jallcom_2021_159150 crossref_primary_10_1016_j_solener_2022_12_002 crossref_primary_10_1016_j_jallcom_2019_05_204 crossref_primary_10_1016_j_solener_2018_11_061 crossref_primary_10_1002_solr_202300230 crossref_primary_10_1016_j_future_2020_01_023 crossref_primary_10_1016_j_solener_2018_10_025 crossref_primary_10_1016_j_solener_2020_03_037 crossref_primary_10_1016_j_solener_2020_03_036 crossref_primary_10_1016_j_jiec_2022_12_016 crossref_primary_10_1088_1361_6528_ab7de1 crossref_primary_10_3390_molecules27248953 crossref_primary_10_1016_j_orgel_2019_01_029 crossref_primary_10_3390_pr11061852 crossref_primary_10_1016_j_solmat_2017_12_015 crossref_primary_10_1016_j_orgel_2019_01_027 crossref_primary_10_1016_j_jallcom_2019_02_280 crossref_primary_10_1016_j_nanoen_2019_104313 crossref_primary_10_1016_j_optmat_2017_09_012 crossref_primary_10_3390_molecules29112556 crossref_primary_10_1002_solr_202100843 crossref_primary_10_1016_j_jallcom_2019_02_027 crossref_primary_10_1007_s10854_019_01046_0 crossref_primary_10_1016_j_solener_2019_02_056 crossref_primary_10_1149_2_0201906jss crossref_primary_10_1016_j_carbon_2019_11_036 crossref_primary_10_1016_j_cclet_2019_03_006 crossref_primary_10_1016_j_jpowsour_2019_01_041 crossref_primary_10_1016_j_solener_2021_04_012 crossref_primary_10_1016_j_solmat_2019_01_041 crossref_primary_10_1002_aenm_201900664 crossref_primary_10_1016_j_orgel_2019_06_029 crossref_primary_10_1007_s10854_018_9070_8 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1016_j_orgel_2018_05_052 crossref_primary_10_1016_j_solmat_2019_110214 crossref_primary_10_3390_su11143867 crossref_primary_10_1016_j_orgel_2019_105522 crossref_primary_10_1016_j_orgel_2019_01_017 |
Cites_doi | 10.1021/acsami.5b05104 10.1021/ja056494n 10.1093/oso/9780198551683.001.0001 10.1039/C4TA04272G 10.1039/C4TC01875C 10.1103/PhysRevB.74.035101 10.1038/nphoton.2013.80 10.1021/acs.jpcc.5b07828 10.1126/science.1185509 10.1038/nature14563 10.1016/j.electacta.2016.10.132 10.1002/adma.201305172 10.1126/science.aaa9272 10.1021/nl501838y 10.1103/PhysRevB.13.5188 10.1038/35003535 10.1103/PhysRevB.47.558 10.1021/ja809598r 10.1002/aenm.201502458 10.1039/c3cc42297f 10.1002/advs.201500194 10.1021/jacs.5b04015 10.1063/1.1564060 10.1016/j.jpowsour.2014.05.053 10.1021/nl902438d 10.1126/science.286.5441.945 10.1021/cm5040886 10.1103/PhysRevB.75.235102 10.1103/PhysRevLett.77.3865 10.1246/cl.2012.397 10.1103/PhysRevB.59.1758 10.1126/science.1209845 10.1103/PhysRevB.90.174103 10.1038/nphoton.2013.342 10.1103/PhysRevB.93.195211 10.1039/c2jm16448e 10.1103/PhysRevB.50.17953 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1039/C7TA00203C |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 17505 |
ExternalDocumentID | 10_1039_C7TA00203C |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7S9 L.6 |
ID | FETCH-LOGICAL-c330t-1d927f0c3cee3dea4afe98f713f90747f5d4dd79ba6da2bb130ca4eb79c2e5523 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 01:25:44 EDT 2025 Thu Jul 03 08:40:57 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-1d927f0c3cee3dea4afe98f713f90747f5d4dd79ba6da2bb130ca4eb79c2e5523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1390-372X |
PQID | 2271851954 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271851954 crossref_primary_10_1039_C7TA00203C crossref_citationtrail_10_1039_C7TA00203C |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2017 |
References | Kojima (C7TA00203C-(cit2)/*[position()=1]) 2012; 41 Monkhorst (C7TA00203C-(cit43)/*[position()=1]) 1976; 13 Tang (C7TA00203C-(cit20)/*[position()=1]) 2016; 5 Wehrenfennig (C7TA00203C-(cit4)/*[position()=1]) 2014; 26 Heo (C7TA00203C-(cit8)/*[position()=1]) 2013; 7 Robel (C7TA00203C-(cit22)/*[position()=1]) 2006; 128 Li (C7TA00203C-(cit32)/*[position()=1]) 2017; 29 Bader (C7TA00203C-(cit30)/*[position()=1]) 1990 Blöchl (C7TA00203C-(cit34)/*[position()=1]) 1994; 50 Kim (C7TA00203C-(cit5)/*[position()=1]) 2012; 2 Kresse (C7TA00203C-(cit36)/*[position()=1]) 1993; 47 Kojima (C7TA00203C-(cit1)/*[position()=1]) 2009; 131 Ning (C7TA00203C-(cit29)/*[position()=1]) 2015; 523 Cho (C7TA00203C-(cit27)/*[position()=1]) 2012; 22 Peng (C7TA00203C-(cit21)/*[position()=1]) 2000; 404 Aniskevich (C7TA00203C-(cit24)/*[position()=1]) 2016; 220 Perdew (C7TA00203C-(cit37)/*[position()=1]) 1996; 77 Shi (C7TA00203C-(cit42)/*[position()=1]) 2014; 90 Lee (C7TA00203C-(cit23)/*[position()=1]) 2009; 9 Lv (C7TA00203C-(cit13)/*[position()=1]) 2015; 7 Shishkin (C7TA00203C-(cit40)/*[position()=1]) 2007; 75 Huang (C7TA00203C-(cit33)/*[position()=1]) 2015; 9 Yang (C7TA00203C-(cit6)/*[position()=1]) 2015; 348 Jara (C7TA00203C-(cit15)/*[position()=1]) 2014; 26 Shishkin (C7TA00203C-(cit39)/*[position()=1]) 2006; 74 Qin (C7TA00203C-(cit11)/*[position()=1]) 2014; 5 Semonin (C7TA00203C-(cit19)/*[position()=1]) 2011; 334 Lin (C7TA00203C-(cit16)/*[position()=1]) 2014; 284 C7TA00203C-(cit7)/*[position()=1] Tisdale (C7TA00203C-(cit18)/*[position()=1]) 2010; 328 Feng (C7TA00203C-(cit31)/*[position()=1]) 2015; 137 Xiao (C7TA00203C-(cit10)/*[position()=1]) 2014; 267 Liu (C7TA00203C-(cit14)/*[position()=1]) 2014; 8 Chen (C7TA00203C-(cit26)/*[position()=1]) 2014; 14 Hu (C7TA00203C-(cit12)/*[position()=1]) 2015; 3 Chen (C7TA00203C-(cit9)/*[position()=1]) 2013; 49 Heyd (C7TA00203C-(cit38)/*[position()=1]) 2003; 118 Kagan (C7TA00203C-(cit3)/*[position()=1]) 1999; 286 Sutton (C7TA00203C-(cit17)/*[position()=1]) 2016; 6 Kresse (C7TA00203C-(cit35)/*[position()=1]) 1999; 59 Wang (C7TA00203C-(cit25)/*[position()=1]) 2014; 2 Colbert (C7TA00203C-(cit28)/*[position()=1]) 2015; 119 Huang (C7TA00203C-(cit41)/*[position()=1]) 2016; 93 |
References_xml | – volume: 7 start-page: 17482 year: 2015 ident: C7TA00203C-(cit13)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05104 – volume: 284 start-page: 1038 year: 2014 ident: C7TA00203C-(cit16)/*[position()=1] publication-title: Photonics – volume: 128 start-page: 2385 year: 2006 ident: C7TA00203C-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056494n – volume-title: Atoms in Molecules: A Quantum Theory year: 1990 ident: C7TA00203C-(cit30)/*[position()=1] doi: 10.1093/oso/9780198551683.001.0001 – volume: 3 start-page: 515 year: 2015 ident: C7TA00203C-(cit12)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04272G – volume: 2 start-page: 9087 year: 2014 ident: C7TA00203C-(cit25)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01875C – ident: C7TA00203C-(cit7)/*[position()=1] – volume: 74 start-page: 035101 year: 2006 ident: C7TA00203C-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.035101 – volume: 7 start-page: 487 year: 2013 ident: C7TA00203C-(cit8)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.80 – volume: 119 start-page: 24733 year: 2015 ident: C7TA00203C-(cit28)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07828 – volume: 328 start-page: 1543 year: 2010 ident: C7TA00203C-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.1185509 – volume: 523 start-page: 324 year: 2015 ident: C7TA00203C-(cit29)/*[position()=1] publication-title: Nature doi: 10.1038/nature14563 – volume: 5 start-page: 1 year: 2014 ident: C7TA00203C-(cit11)/*[position()=1] publication-title: Nat. Commun. – volume: 220 start-page: 493 year: 2016 ident: C7TA00203C-(cit24)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.132 – volume: 26 start-page: 1584 year: 2014 ident: C7TA00203C-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305172 – volume: 348 start-page: 1234 year: 2015 ident: C7TA00203C-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa9272 – volume: 14 start-page: 4158 year: 2014 ident: C7TA00203C-(cit26)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl501838y – volume: 13 start-page: 5188 year: 1976 ident: C7TA00203C-(cit43)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 – volume: 5 start-page: 1 year: 2016 ident: C7TA00203C-(cit20)/*[position()=1] publication-title: Adv. Opt. Mater. – volume: 404 start-page: 59 year: 2000 ident: C7TA00203C-(cit21)/*[position()=1] publication-title: Nature doi: 10.1038/35003535 – volume: 47 start-page: 558 year: 1993 ident: C7TA00203C-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.47.558 – volume: 2 start-page: 1 year: 2012 ident: C7TA00203C-(cit5)/*[position()=1] publication-title: Sci. Rep. – volume: 131 start-page: 6050 year: 2009 ident: C7TA00203C-(cit1)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 6 start-page: 1502458 year: 2016 ident: C7TA00203C-(cit17)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502458 – volume: 49 start-page: 7277 year: 2013 ident: C7TA00203C-(cit9)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc42297f – volume: 9 start-page: 1500194 year: 2015 ident: C7TA00203C-(cit33)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500194 – volume: 137 start-page: 8227 year: 2015 ident: C7TA00203C-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04015 – volume: 118 start-page: 8207 year: 2003 ident: C7TA00203C-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 267 start-page: 1 year: 2014 ident: C7TA00203C-(cit10)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.053 – volume: 9 start-page: 4221 year: 2009 ident: C7TA00203C-(cit23)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl902438d – volume: 286 start-page: 945 year: 1999 ident: C7TA00203C-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.286.5441.945 – volume: 26 start-page: 7221 year: 2014 ident: C7TA00203C-(cit15)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5040886 – volume: 75 start-page: 235102 year: 2007 ident: C7TA00203C-(cit40)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.235102 – volume: 77 start-page: 3865 year: 1996 ident: C7TA00203C-(cit37)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 41 start-page: 397 year: 2012 ident: C7TA00203C-(cit2)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2012.397 – volume: 59 start-page: 1758 year: 1999 ident: C7TA00203C-(cit35)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 334 start-page: 1530 year: 2011 ident: C7TA00203C-(cit19)/*[position()=1] publication-title: Science doi: 10.1126/science.1209845 – volume: 90 start-page: 174103 year: 2014 ident: C7TA00203C-(cit42)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.174103 – volume: 29 start-page: 1 year: 2017 ident: C7TA00203C-(cit32)/*[position()=1] publication-title: Adv. Mater. – volume: 8 start-page: 133 year: 2014 ident: C7TA00203C-(cit14)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.342 – volume: 93 start-page: 195211 year: 2016 ident: C7TA00203C-(cit41)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.195211 – volume: 22 start-page: 10827 year: 2012 ident: C7TA00203C-(cit27)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm16448e – volume: 50 start-page: 17953 year: 1994 ident: C7TA00203C-(cit34)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 |
SSID | ssj0000800699 |
Score | 2.60515 |
Snippet | Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 17499 |
SubjectTerms | absorbance adsorption density functional theory electric current electric field electron transfer quantum dots roughness solar cells solar energy |
Title | Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer |
URI | https://www.proquest.com/docview/2271851954 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLxnBBUVZ0tiJm2OJFi0I0Ep0paqXyHbsbqUlAdqClgs_k7_D-JVm6R4WLlHlulaS-TrzeTwPhF4IJjhTVMVjnYiYCtCDRZqTmOQyEyNRZJm21T4_5kcn9N0smw0Gv3tRS5u1OJA_L80r-R-pwhjI1WTJ_oNku0VhAD6DfOEKEobrlWR83Iv6X1rvgApn-6b-9_eVcc1GK7N7jYyHfmXIprI9fm1uYlTWn5TJqwTD8zmC_SncynH5-oMNNDfRXMq0oQENEJrlmI4SrhZ6dMbPfWDvLrUFFuweP5Khn9xBNHGpQeEbW2rcJR5a331I5DKxup2bf66cKpoteauVN7LWzd1uHNKaxQ-13EYVuenladssvvaAP_de8fnpcsH9Mt7V4XI6nS5MkywxZU-dqlb9MdcQNyjzrIdZQnqaGXZerhOTN_NAm2y-964NSYgpwVqy6cQe05ZbSxmiA_4yoF1Yoz3QJ0W1_e01tJfC_iUdor3J4fTt-879Z4h6brubdo8WiueS4tV2gYt06SJbsBRoegvd9ALGEwfE22igmjvoRq-i5V30qwdJ3IMkbjXeQhJbSGILSSzOcQdJzLGBJPaQxMZlYgCJO0BivsK8wQGQuAMktoC8h07eHE7Lo9j3-IglIck6HtVFynQiCZA1UitOuVbFWLMR0cZtw3RW07pmheB5zVMhgHJJTpVghUxVlqXkPho2baMeIExGOqE1S2TCJGVsPM71CPgvVeOCwq5a7qOX4VVW0hfAN31Yzqpdue2j593cL67sy6WzngWJVPBnMm-NN6rdrKo0Bc5nCjfRh1da6RG6bgDvfHuP0XD9baOeANtdi6ceOX8Al7Sxdw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+perovskite+solar+cells+by+employing+a+CdSe+quantum+dot%2FPCBM+composite+as+an+electron+transport+layer&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zeng%2C+Xiaofeng&rft.au=Zhou%2C+Tingwei&rft.au=Leng%2C+Chongqian&rft.au=Zang%2C+Zhigang&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=33&rft.spage=17499&rft.epage=17505&rft_id=info:doi/10.1039%2FC7TA00203C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TA00203C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |