Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer

Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) t...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 33; pp. 17499 - 17505
Main Authors Zeng, Xiaofeng, Zhou, Tingwei, Leng, Chongqian, Zang, Zhigang, Wang, Ming, Hu, Wei, Tang, Xiaosheng, Lu, Shirong, Fang, Liang, Zhou, Miao
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) to investigate the structure, stability and PCE of CH 3 NH 3 PbI 3−x Cl x perovskite solar cells. It is found that adsorption of the CdSe/PCBM composite reduces the roughness of the perovskite, leading to a high-quality film with a compact morphology. Density functional theory (DFT) based first-principles calculations show that CdSe enhances the chemical stability of CH 3 NH 3 PbI 3−x Cl x involving strong atomic orbital hybridization. Interestingly, an inorganic-terminated perovskite surface has much stronger interaction with CdSe compared to the surface with organic CH 3 NH 3 termination, with noticeable interfacial charge redistribution. Experiments on solar cells incorporating the CdSe/PCBM composite as the ETL show enhanced photocurrent and fill factor, which is related to the in-built electric field between CH 3 NH 3 PbI 3−x Cl x and CdSe that greatly facilitates the separation of electron and hole pairs. We show an improved PCE of 13.7% with enhanced device stability in a highly humid atmosphere. These joint theoretical–experimental results may provide a new aspect for improving the structural stability and operating performance of optoelectronic devices based on perovskite structures.
AbstractList Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) to investigate the structure, stability and PCE of CH 3 NH 3 PbI 3−x Cl x perovskite solar cells. It is found that adsorption of the CdSe/PCBM composite reduces the roughness of the perovskite, leading to a high-quality film with a compact morphology. Density functional theory (DFT) based first-principles calculations show that CdSe enhances the chemical stability of CH 3 NH 3 PbI 3−x Cl x involving strong atomic orbital hybridization. Interestingly, an inorganic-terminated perovskite surface has much stronger interaction with CdSe compared to the surface with organic CH 3 NH 3 termination, with noticeable interfacial charge redistribution. Experiments on solar cells incorporating the CdSe/PCBM composite as the ETL show enhanced photocurrent and fill factor, which is related to the in-built electric field between CH 3 NH 3 PbI 3−x Cl x and CdSe that greatly facilitates the separation of electron and hole pairs. We show an improved PCE of 13.7% with enhanced device stability in a highly humid atmosphere. These joint theoretical–experimental results may provide a new aspect for improving the structural stability and operating performance of optoelectronic devices based on perovskite structures.
Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption coefficient and high power conversion efficiency (PCE). Herein, we utilize a CdSe quantum dot/PCBM composite as an electron transport layer (ETL) to investigate the structure, stability and PCE of CH₃NH₃PbI₃₋ₓClₓ perovskite solar cells. It is found that adsorption of the CdSe/PCBM composite reduces the roughness of the perovskite, leading to a high-quality film with a compact morphology. Density functional theory (DFT) based first-principles calculations show that CdSe enhances the chemical stability of CH₃NH₃PbI₃₋ₓClₓ involving strong atomic orbital hybridization. Interestingly, an inorganic-terminated perovskite surface has much stronger interaction with CdSe compared to the surface with organic CH₃NH₃ termination, with noticeable interfacial charge redistribution. Experiments on solar cells incorporating the CdSe/PCBM composite as the ETL show enhanced photocurrent and fill factor, which is related to the in-built electric field between CH₃NH₃PbI₃₋ₓClₓ and CdSe that greatly facilitates the separation of electron and hole pairs. We show an improved PCE of 13.7% with enhanced device stability in a highly humid atmosphere. These joint theoretical–experimental results may provide a new aspect for improving the structural stability and operating performance of optoelectronic devices based on perovskite structures.
Author Zhou, Tingwei
Zang, Zhigang
Leng, Chongqian
Lu, Shirong
Zhou, Miao
Zeng, Xiaofeng
Tang, Xiaosheng
Hu, Wei
Wang, Ming
Fang, Liang
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Zeng
  fullname: Zeng, Xiaofeng
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
– sequence: 2
  givenname: Tingwei
  surname: Zhou
  fullname: Zhou, Tingwei
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
– sequence: 3
  givenname: Chongqian
  surname: Leng
  fullname: Leng, Chongqian
  organization: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China
– sequence: 4
  givenname: Zhigang
  surname: Zang
  fullname: Zang, Zhigang
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
– sequence: 5
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
– sequence: 6
  givenname: Wei
  surname: Hu
  fullname: Hu, Wei
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
– sequence: 7
  givenname: Xiaosheng
  surname: Tang
  fullname: Tang, Xiaosheng
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
– sequence: 8
  givenname: Shirong
  surname: Lu
  fullname: Lu, Shirong
  organization: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China
– sequence: 9
  givenname: Liang
  surname: Fang
  fullname: Fang, Liang
  organization: Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331, China
– sequence: 10
  givenname: Miao
  orcidid: 0000-0003-1390-372X
  surname: Zhou
  fullname: Zhou, Miao
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
BookMark eNptkF9LwzAUxYNMcM69-AnyKMJc2rRL8ziL_2DiwPlcbtMbqbZJl6TCnvzqdkwUxPty74HfuXDOKRkZa5CQ84hdRYzLeS42S8ZixvMjMo5ZymYikYvRz51lJ2Tq_RsbJmNsIeWYfK7RaetaMApp3XbOfmCLJlCraYeD8u91QOptA44qbBpPyx3FtmvsrjavFGhePSPd9mBC39LKhvk6v36kyrad9XsreAqGYoMqOGtocGB8Z12gDezQnZFjDY3H6feekJfbm01-P1s93T3ky9VMcc7CLKpkLDRTXCHyCiEBjTLTIuJaMpEInVZJVQlZwqKCuCwjzhQkWAqpYkzTmE_IxeHvkHDbow9FW_t9HjBoe1_EsYiyNJJpMqCXB1Q5671DXXSubsHtiogV-6KL36IHmP2BVR0g1NYMQevmP8sXbuiEig
CitedBy_id crossref_primary_10_1016_j_apsusc_2019_144274
crossref_primary_10_1016_j_synthmet_2022_117144
crossref_primary_10_3390_nano11112909
crossref_primary_10_1016_j_solener_2021_05_070
crossref_primary_10_1016_j_solener_2020_06_038
crossref_primary_10_1016_j_jallcom_2020_155579
crossref_primary_10_1007_s12596_024_01819_9
crossref_primary_10_1016_j_solener_2018_09_066
crossref_primary_10_1016_j_cej_2024_154821
crossref_primary_10_1016_j_tsf_2018_08_026
crossref_primary_10_1016_j_solmat_2018_06_002
crossref_primary_10_1016_j_solener_2019_04_092
crossref_primary_10_1016_j_solmat_2019_110284
crossref_primary_10_1039_D0NR01171A
crossref_primary_10_1016_j_jallcom_2019_01_068
crossref_primary_10_1016_j_jcis_2023_06_132
crossref_primary_10_1016_j_solmat_2019_01_020
crossref_primary_10_1016_j_tsf_2018_08_041
crossref_primary_10_1016_j_solener_2019_06_006
crossref_primary_10_1016_j_jallcom_2018_08_322
crossref_primary_10_1039_D0RA03397A
crossref_primary_10_3390_polym11010147
crossref_primary_10_1016_j_apsusc_2018_11_237
crossref_primary_10_1016_j_solmat_2019_04_007
crossref_primary_10_3390_ijms23169482
crossref_primary_10_1016_j_orgel_2019_105543
crossref_primary_10_1016_j_solener_2020_03_062
crossref_primary_10_1016_j_orgel_2019_03_022
crossref_primary_10_1088_1361_6528_ab4f2a
crossref_primary_10_1016_j_jallcom_2019_152742
crossref_primary_10_1109_TED_2018_2878828
crossref_primary_10_1016_j_matlet_2020_128777
crossref_primary_10_1016_j_orgel_2018_08_025
crossref_primary_10_1016_j_jallcom_2020_156329
crossref_primary_10_3389_fchem_2020_00791
crossref_primary_10_1016_j_orgel_2019_105433
crossref_primary_10_1007_s11082_018_1612_z
crossref_primary_10_1016_j_solmat_2019_110022
crossref_primary_10_1016_j_solmat_2019_110261
crossref_primary_10_1016_j_electacta_2020_135796
crossref_primary_10_1016_j_solmat_2019_110383
crossref_primary_10_1007_s10311_020_01171_x
crossref_primary_10_1016_j_solener_2020_03_093
crossref_primary_10_3390_ijms232214441
crossref_primary_10_1016_j_orgel_2019_03_053
crossref_primary_10_1016_j_orgel_2018_06_043
crossref_primary_10_1016_j_orgel_2018_08_034
crossref_primary_10_1039_D2TC02911A
crossref_primary_10_1016_j_jallcom_2018_07_185
crossref_primary_10_1016_j_solener_2019_02_012
crossref_primary_10_1016_j_apsusc_2018_08_088
crossref_primary_10_1016_j_apsusc_2018_12_124
crossref_primary_10_1007_s10853_018_2249_9
crossref_primary_10_1016_j_jallcom_2020_154710
crossref_primary_10_1039_D3NA00319A
crossref_primary_10_1021_acssuschemeng_9b05535
crossref_primary_10_1016_j_jallcom_2018_07_190
crossref_primary_10_1007_s10854_020_03195_z
crossref_primary_10_1016_j_cej_2021_129247
crossref_primary_10_1016_j_mtchem_2021_100595
crossref_primary_10_1016_j_matlet_2018_01_106
crossref_primary_10_1002_smll_202400807
crossref_primary_10_1016_j_jpowsour_2019_227586
crossref_primary_10_1016_j_solmat_2019_110252
crossref_primary_10_1039_D0TC05877G
crossref_primary_10_1016_j_solmat_2019_110251
crossref_primary_10_1016_j_jpowsour_2019_04_088
crossref_primary_10_1039_C8TC02133C
crossref_primary_10_1016_j_jallcom_2019_153616
crossref_primary_10_1002_adfm_202419268
crossref_primary_10_1016_j_apsusc_2019_144478
crossref_primary_10_1016_j_apsusc_2018_12_118
crossref_primary_10_1016_j_matlet_2018_01_057
crossref_primary_10_1039_D0TA03176C
crossref_primary_10_1016_j_solener_2019_10_046
crossref_primary_10_1039_C9TA08314F
crossref_primary_10_1016_j_optmat_2021_111316
crossref_primary_10_1016_j_jallcom_2020_157396
crossref_primary_10_1016_j_apsusc_2019_01_031
crossref_primary_10_1016_j_tsf_2018_07_033
crossref_primary_10_1016_j_tsf_2018_07_039
crossref_primary_10_1016_j_jpowsour_2019_03_050
crossref_primary_10_1557_adv_2018_349
crossref_primary_10_1016_j_optmat_2018_08_015
crossref_primary_10_1016_j_ccr_2018_07_009
crossref_primary_10_1016_j_electacta_2018_10_087
crossref_primary_10_1039_C8TA03953D
crossref_primary_10_1016_j_jcis_2018_12_001
crossref_primary_10_1016_j_jpowsour_2019_227362
crossref_primary_10_1016_j_apsusc_2017_11_258
crossref_primary_10_1016_j_jallcom_2020_156752
crossref_primary_10_1364_OL_44_004865
crossref_primary_10_1016_j_electacta_2020_135637
crossref_primary_10_1016_j_orgel_2018_12_007
crossref_primary_10_1016_j_jpowsour_2019_02_018
crossref_primary_10_1002_cssc_201801249
crossref_primary_10_1016_j_solmat_2018_05_015
crossref_primary_10_1016_j_solmat_2019_03_040
crossref_primary_10_1109_LPT_2021_3088219
crossref_primary_10_1039_C9TA04871E
crossref_primary_10_1063_5_0005464
crossref_primary_10_1016_j_jallcom_2019_05_051
crossref_primary_10_1016_j_matlet_2018_12_048
crossref_primary_10_1016_j_solmat_2018_12_010
crossref_primary_10_1088_1361_6528_aacf7c
crossref_primary_10_1007_s00339_021_04474_0
crossref_primary_10_1016_j_electacta_2020_136720
crossref_primary_10_1016_j_jallcom_2019_153620
crossref_primary_10_1016_j_orgel_2020_105681
crossref_primary_10_1039_C8TA09933B
crossref_primary_10_1039_D1TA02786G
crossref_primary_10_1016_j_solmat_2024_112955
crossref_primary_10_1016_j_solener_2019_01_095
crossref_primary_10_1016_j_jpowsour_2019_03_037
crossref_primary_10_1088_2632_959X_abc599
crossref_primary_10_1016_j_jpowsour_2019_03_039
crossref_primary_10_1088_1361_6528_ab1a69
crossref_primary_10_1016_j_optcom_2017_09_037
crossref_primary_10_1016_j_cej_2019_122830
crossref_primary_10_1039_C7TA10742K
crossref_primary_10_1016_j_electacta_2020_135884
crossref_primary_10_1016_j_orgel_2019_03_004
crossref_primary_10_1016_j_cej_2020_126740
crossref_primary_10_1016_j_cclet_2021_01_004
crossref_primary_10_1016_j_jpowsour_2019_04_041
crossref_primary_10_1016_j_solmat_2019_03_023
crossref_primary_10_1016_j_apsusc_2018_06_286
crossref_primary_10_1016_j_solmat_2019_03_029
crossref_primary_10_1016_j_jallcom_2019_03_187
crossref_primary_10_1021_acs_nanolett_1c03050
crossref_primary_10_1016_j_orgel_2018_11_020
crossref_primary_10_1016_j_orgel_2019_105495
crossref_primary_10_1016_j_orgel_2020_105712
crossref_primary_10_1016_j_jallcom_2019_06_269
crossref_primary_10_1002_adom_202102566
crossref_primary_10_1016_j_solener_2019_08_030
crossref_primary_10_1016_j_nanoen_2019_03_029
crossref_primary_10_1016_j_orgel_2019_01_003
crossref_primary_10_1016_j_apsusc_2018_07_083
crossref_primary_10_1002_adfm_202210885
crossref_primary_10_1016_j_solener_2019_08_033
crossref_primary_10_1016_j_solener_2019_04_019
crossref_primary_10_3390_pr10071408
crossref_primary_10_1016_j_orgel_2018_11_034
crossref_primary_10_1016_j_apsusc_2018_11_079
crossref_primary_10_1016_j_solmat_2019_110318
crossref_primary_10_1016_j_solmat_2019_110316
crossref_primary_10_1016_j_apsusc_2018_02_251
crossref_primary_10_1016_j_cej_2018_12_056
crossref_primary_10_1016_j_electacta_2019_06_102
crossref_primary_10_1016_j_jallcom_2020_158335
crossref_primary_10_1016_j_solener_2022_01_070
crossref_primary_10_1016_j_jpowsour_2019_04_056
crossref_primary_10_1016_j_solener_2019_05_033
crossref_primary_10_1016_j_solmat_2019_03_002
crossref_primary_10_1016_j_solener_2018_11_024
crossref_primary_10_1016_j_solener_2018_11_025
crossref_primary_10_1016_j_solener_2018_11_026
crossref_primary_10_1088_2053_1591_aaa616
crossref_primary_10_1016_j_solmat_2020_110448
crossref_primary_10_1016_j_matlet_2018_03_041
crossref_primary_10_1016_j_solener_2018_11_020
crossref_primary_10_1016_j_solener_2020_04_044
crossref_primary_10_1063_5_0007685
crossref_primary_10_1016_j_electacta_2020_137452
crossref_primary_10_1039_D3LF00183K
crossref_primary_10_1016_j_solener_2018_09_003
crossref_primary_10_1016_j_jallcom_2019_151817
crossref_primary_10_1016_j_nanoen_2019_03_044
crossref_primary_10_1016_j_nantod_2021_101286
crossref_primary_10_1016_j_orgel_2019_105397
crossref_primary_10_1016_j_orgel_2018_07_010
crossref_primary_10_1002_adts_201800075
crossref_primary_10_1016_j_jallcom_2018_03_236
crossref_primary_10_1016_j_jallcom_2017_12_199
crossref_primary_10_1007_s10854_021_06331_5
crossref_primary_10_1016_j_jpowsour_2019_04_024
crossref_primary_10_1016_j_apsusc_2019_05_092
crossref_primary_10_1016_j_solener_2020_09_059
crossref_primary_10_1016_j_jallcom_2018_09_054
crossref_primary_10_1016_j_cplett_2017_10_053
crossref_primary_10_1016_j_apsusc_2018_12_084
crossref_primary_10_1007_s10854_020_03872_z
crossref_primary_10_1016_j_solener_2019_06_069
crossref_primary_10_1016_j_electacta_2019_03_221
crossref_primary_10_1016_j_electacta_2019_03_223
crossref_primary_10_1016_j_physleta_2024_130053
crossref_primary_10_1364_JOSAB_402116
crossref_primary_10_3390_nanomanufacturing3020012
crossref_primary_10_1016_j_jpowsour_2019_04_039
crossref_primary_10_1016_j_nanoms_2019_10_007
crossref_primary_10_1016_j_apsusc_2019_145071
crossref_primary_10_1016_j_jallcom_2020_155883
crossref_primary_10_1016_j_nanoen_2019_104249
crossref_primary_10_1039_D0NA00466A
crossref_primary_10_1016_j_jallcom_2018_04_283
crossref_primary_10_1039_D4MH01478B
crossref_primary_10_1002_pssb_201900784
crossref_primary_10_1007_s10854_023_10008_6
crossref_primary_10_1016_j_solener_2019_02_041
crossref_primary_10_1088_1361_6528_aad2ec
crossref_primary_10_1002_aenm_202002326
crossref_primary_10_1016_j_jallcom_2020_154717
crossref_primary_10_1088_1361_6528_abead9
crossref_primary_10_1016_j_jallcom_2019_01_372
crossref_primary_10_1016_j_jallcom_2020_154600
crossref_primary_10_1021_acsphotonics_0c00697
crossref_primary_10_1016_j_matlet_2018_05_082
crossref_primary_10_1016_j_snb_2020_129198
crossref_primary_10_1364_JOSAB_440366
crossref_primary_10_1016_j_solener_2019_05_007
crossref_primary_10_1016_j_electacta_2019_06_134
crossref_primary_10_1016_j_apsusc_2019_02_105
crossref_primary_10_1016_j_apsusc_2017_12_085
crossref_primary_10_1016_j_electacta_2019_135197
crossref_primary_10_1016_j_jiec_2018_11_008
crossref_primary_10_1016_j_apsusc_2019_04_069
crossref_primary_10_1088_1361_6528_ac962b
crossref_primary_10_1016_j_jallcom_2017_10_046
crossref_primary_10_1016_j_orgel_2019_01_040
crossref_primary_10_1016_j_orgel_2018_10_028
crossref_primary_10_1021_acssuschemeng_0c02565
crossref_primary_10_1016_j_solener_2019_02_034
crossref_primary_10_1016_j_jallcom_2019_151947
crossref_primary_10_1039_D0TA11336K
crossref_primary_10_1016_j_orgel_2019_02_029
crossref_primary_10_1021_acs_jpcc_9b11572
crossref_primary_10_1016_j_orgel_2019_02_025
crossref_primary_10_1364_OSAC_2_001880
crossref_primary_10_1007_s13233_018_6086_0
crossref_primary_10_1016_j_heliyon_2022_e11878
crossref_primary_10_1007_s10008_020_04830_9
crossref_primary_10_1007_s10854_020_04526_w
crossref_primary_10_1016_j_jpowsour_2019_227407
crossref_primary_10_1016_j_solener_2018_10_037
crossref_primary_10_1016_j_solmat_2019_110113
crossref_primary_10_1016_j_apsusc_2019_143552
crossref_primary_10_1016_j_apsusc_2018_02_178
crossref_primary_10_1016_j_jallcom_2018_12_048
crossref_primary_10_1007_s10853_023_08421_7
crossref_primary_10_1016_j_matlet_2018_10_029
crossref_primary_10_1016_j_solmat_2019_110352
crossref_primary_10_1016_j_electacta_2018_08_117
crossref_primary_10_1016_j_orgel_2020_105740
crossref_primary_10_1016_j_solener_2019_08_080
crossref_primary_10_1016_j_jpowsour_2019_227091
crossref_primary_10_1016_j_orgel_2019_105519
crossref_primary_10_1016_j_solmat_2020_110409
crossref_primary_10_3390_nano13081363
crossref_primary_10_1016_j_electacta_2019_135183
crossref_primary_10_1016_j_jallcom_2021_159150
crossref_primary_10_1016_j_solener_2022_12_002
crossref_primary_10_1016_j_jallcom_2019_05_204
crossref_primary_10_1016_j_solener_2018_11_061
crossref_primary_10_1002_solr_202300230
crossref_primary_10_1016_j_future_2020_01_023
crossref_primary_10_1016_j_solener_2018_10_025
crossref_primary_10_1016_j_solener_2020_03_037
crossref_primary_10_1016_j_solener_2020_03_036
crossref_primary_10_1016_j_jiec_2022_12_016
crossref_primary_10_1088_1361_6528_ab7de1
crossref_primary_10_3390_molecules27248953
crossref_primary_10_1016_j_orgel_2019_01_029
crossref_primary_10_3390_pr11061852
crossref_primary_10_1016_j_solmat_2017_12_015
crossref_primary_10_1016_j_orgel_2019_01_027
crossref_primary_10_1016_j_jallcom_2019_02_280
crossref_primary_10_1016_j_nanoen_2019_104313
crossref_primary_10_1016_j_optmat_2017_09_012
crossref_primary_10_3390_molecules29112556
crossref_primary_10_1002_solr_202100843
crossref_primary_10_1016_j_jallcom_2019_02_027
crossref_primary_10_1007_s10854_019_01046_0
crossref_primary_10_1016_j_solener_2019_02_056
crossref_primary_10_1149_2_0201906jss
crossref_primary_10_1016_j_carbon_2019_11_036
crossref_primary_10_1016_j_cclet_2019_03_006
crossref_primary_10_1016_j_jpowsour_2019_01_041
crossref_primary_10_1016_j_solener_2021_04_012
crossref_primary_10_1016_j_solmat_2019_01_041
crossref_primary_10_1002_aenm_201900664
crossref_primary_10_1016_j_orgel_2019_06_029
crossref_primary_10_1007_s10854_018_9070_8
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1016_j_orgel_2018_05_052
crossref_primary_10_1016_j_solmat_2019_110214
crossref_primary_10_3390_su11143867
crossref_primary_10_1016_j_orgel_2019_105522
crossref_primary_10_1016_j_orgel_2019_01_017
Cites_doi 10.1021/acsami.5b05104
10.1021/ja056494n
10.1093/oso/9780198551683.001.0001
10.1039/C4TA04272G
10.1039/C4TC01875C
10.1103/PhysRevB.74.035101
10.1038/nphoton.2013.80
10.1021/acs.jpcc.5b07828
10.1126/science.1185509
10.1038/nature14563
10.1016/j.electacta.2016.10.132
10.1002/adma.201305172
10.1126/science.aaa9272
10.1021/nl501838y
10.1103/PhysRevB.13.5188
10.1038/35003535
10.1103/PhysRevB.47.558
10.1021/ja809598r
10.1002/aenm.201502458
10.1039/c3cc42297f
10.1002/advs.201500194
10.1021/jacs.5b04015
10.1063/1.1564060
10.1016/j.jpowsour.2014.05.053
10.1021/nl902438d
10.1126/science.286.5441.945
10.1021/cm5040886
10.1103/PhysRevB.75.235102
10.1103/PhysRevLett.77.3865
10.1246/cl.2012.397
10.1103/PhysRevB.59.1758
10.1126/science.1209845
10.1103/PhysRevB.90.174103
10.1038/nphoton.2013.342
10.1103/PhysRevB.93.195211
10.1039/c2jm16448e
10.1103/PhysRevB.50.17953
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1039/C7TA00203C
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 17505
ExternalDocumentID 10_1039_C7TA00203C
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7S9
L.6
ID FETCH-LOGICAL-c330t-1d927f0c3cee3dea4afe98f713f90747f5d4dd79ba6da2bb130ca4eb79c2e5523
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 01:25:44 EDT 2025
Thu Jul 03 08:40:57 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1d927f0c3cee3dea4afe98f713f90747f5d4dd79ba6da2bb130ca4eb79c2e5523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1390-372X
PQID 2271851954
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2271851954
crossref_primary_10_1039_C7TA00203C
crossref_citationtrail_10_1039_C7TA00203C
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2017
References Kojima (C7TA00203C-(cit2)/*[position()=1]) 2012; 41
Monkhorst (C7TA00203C-(cit43)/*[position()=1]) 1976; 13
Tang (C7TA00203C-(cit20)/*[position()=1]) 2016; 5
Wehrenfennig (C7TA00203C-(cit4)/*[position()=1]) 2014; 26
Heo (C7TA00203C-(cit8)/*[position()=1]) 2013; 7
Robel (C7TA00203C-(cit22)/*[position()=1]) 2006; 128
Li (C7TA00203C-(cit32)/*[position()=1]) 2017; 29
Bader (C7TA00203C-(cit30)/*[position()=1]) 1990
Blöchl (C7TA00203C-(cit34)/*[position()=1]) 1994; 50
Kim (C7TA00203C-(cit5)/*[position()=1]) 2012; 2
Kresse (C7TA00203C-(cit36)/*[position()=1]) 1993; 47
Kojima (C7TA00203C-(cit1)/*[position()=1]) 2009; 131
Ning (C7TA00203C-(cit29)/*[position()=1]) 2015; 523
Cho (C7TA00203C-(cit27)/*[position()=1]) 2012; 22
Peng (C7TA00203C-(cit21)/*[position()=1]) 2000; 404
Aniskevich (C7TA00203C-(cit24)/*[position()=1]) 2016; 220
Perdew (C7TA00203C-(cit37)/*[position()=1]) 1996; 77
Shi (C7TA00203C-(cit42)/*[position()=1]) 2014; 90
Lee (C7TA00203C-(cit23)/*[position()=1]) 2009; 9
Lv (C7TA00203C-(cit13)/*[position()=1]) 2015; 7
Shishkin (C7TA00203C-(cit40)/*[position()=1]) 2007; 75
Huang (C7TA00203C-(cit33)/*[position()=1]) 2015; 9
Yang (C7TA00203C-(cit6)/*[position()=1]) 2015; 348
Jara (C7TA00203C-(cit15)/*[position()=1]) 2014; 26
Shishkin (C7TA00203C-(cit39)/*[position()=1]) 2006; 74
Qin (C7TA00203C-(cit11)/*[position()=1]) 2014; 5
Semonin (C7TA00203C-(cit19)/*[position()=1]) 2011; 334
Lin (C7TA00203C-(cit16)/*[position()=1]) 2014; 284
C7TA00203C-(cit7)/*[position()=1]
Tisdale (C7TA00203C-(cit18)/*[position()=1]) 2010; 328
Feng (C7TA00203C-(cit31)/*[position()=1]) 2015; 137
Xiao (C7TA00203C-(cit10)/*[position()=1]) 2014; 267
Liu (C7TA00203C-(cit14)/*[position()=1]) 2014; 8
Chen (C7TA00203C-(cit26)/*[position()=1]) 2014; 14
Hu (C7TA00203C-(cit12)/*[position()=1]) 2015; 3
Chen (C7TA00203C-(cit9)/*[position()=1]) 2013; 49
Heyd (C7TA00203C-(cit38)/*[position()=1]) 2003; 118
Kagan (C7TA00203C-(cit3)/*[position()=1]) 1999; 286
Sutton (C7TA00203C-(cit17)/*[position()=1]) 2016; 6
Kresse (C7TA00203C-(cit35)/*[position()=1]) 1999; 59
Wang (C7TA00203C-(cit25)/*[position()=1]) 2014; 2
Colbert (C7TA00203C-(cit28)/*[position()=1]) 2015; 119
Huang (C7TA00203C-(cit41)/*[position()=1]) 2016; 93
References_xml – volume: 7
  start-page: 17482
  year: 2015
  ident: C7TA00203C-(cit13)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05104
– volume: 284
  start-page: 1038
  year: 2014
  ident: C7TA00203C-(cit16)/*[position()=1]
  publication-title: Photonics
– volume: 128
  start-page: 2385
  year: 2006
  ident: C7TA00203C-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056494n
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: C7TA00203C-(cit30)/*[position()=1]
  doi: 10.1093/oso/9780198551683.001.0001
– volume: 3
  start-page: 515
  year: 2015
  ident: C7TA00203C-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04272G
– volume: 2
  start-page: 9087
  year: 2014
  ident: C7TA00203C-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01875C
– ident: C7TA00203C-(cit7)/*[position()=1]
– volume: 74
  start-page: 035101
  year: 2006
  ident: C7TA00203C-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.035101
– volume: 7
  start-page: 487
  year: 2013
  ident: C7TA00203C-(cit8)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.80
– volume: 119
  start-page: 24733
  year: 2015
  ident: C7TA00203C-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07828
– volume: 328
  start-page: 1543
  year: 2010
  ident: C7TA00203C-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1185509
– volume: 523
  start-page: 324
  year: 2015
  ident: C7TA00203C-(cit29)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14563
– volume: 5
  start-page: 1
  year: 2014
  ident: C7TA00203C-(cit11)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 220
  start-page: 493
  year: 2016
  ident: C7TA00203C-(cit24)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.132
– volume: 26
  start-page: 1584
  year: 2014
  ident: C7TA00203C-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305172
– volume: 348
  start-page: 1234
  year: 2015
  ident: C7TA00203C-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa9272
– volume: 14
  start-page: 4158
  year: 2014
  ident: C7TA00203C-(cit26)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl501838y
– volume: 13
  start-page: 5188
  year: 1976
  ident: C7TA00203C-(cit43)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 5
  start-page: 1
  year: 2016
  ident: C7TA00203C-(cit20)/*[position()=1]
  publication-title: Adv. Opt. Mater.
– volume: 404
  start-page: 59
  year: 2000
  ident: C7TA00203C-(cit21)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35003535
– volume: 47
  start-page: 558
  year: 1993
  ident: C7TA00203C-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.558
– volume: 2
  start-page: 1
  year: 2012
  ident: C7TA00203C-(cit5)/*[position()=1]
  publication-title: Sci. Rep.
– volume: 131
  start-page: 6050
  year: 2009
  ident: C7TA00203C-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 6
  start-page: 1502458
  year: 2016
  ident: C7TA00203C-(cit17)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502458
– volume: 49
  start-page: 7277
  year: 2013
  ident: C7TA00203C-(cit9)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42297f
– volume: 9
  start-page: 1500194
  year: 2015
  ident: C7TA00203C-(cit33)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500194
– volume: 137
  start-page: 8227
  year: 2015
  ident: C7TA00203C-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04015
– volume: 118
  start-page: 8207
  year: 2003
  ident: C7TA00203C-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 267
  start-page: 1
  year: 2014
  ident: C7TA00203C-(cit10)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.053
– volume: 9
  start-page: 4221
  year: 2009
  ident: C7TA00203C-(cit23)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl902438d
– volume: 286
  start-page: 945
  year: 1999
  ident: C7TA00203C-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.286.5441.945
– volume: 26
  start-page: 7221
  year: 2014
  ident: C7TA00203C-(cit15)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5040886
– volume: 75
  start-page: 235102
  year: 2007
  ident: C7TA00203C-(cit40)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.235102
– volume: 77
  start-page: 3865
  year: 1996
  ident: C7TA00203C-(cit37)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 41
  start-page: 397
  year: 2012
  ident: C7TA00203C-(cit2)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.397
– volume: 59
  start-page: 1758
  year: 1999
  ident: C7TA00203C-(cit35)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 334
  start-page: 1530
  year: 2011
  ident: C7TA00203C-(cit19)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1209845
– volume: 90
  start-page: 174103
  year: 2014
  ident: C7TA00203C-(cit42)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.174103
– volume: 29
  start-page: 1
  year: 2017
  ident: C7TA00203C-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 8
  start-page: 133
  year: 2014
  ident: C7TA00203C-(cit14)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.342
– volume: 93
  start-page: 195211
  year: 2016
  ident: C7TA00203C-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.195211
– volume: 22
  start-page: 10827
  year: 2012
  ident: C7TA00203C-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16448e
– volume: 50
  start-page: 17953
  year: 1994
  ident: C7TA00203C-(cit34)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
SSID ssj0000800699
Score 2.60515
Snippet Organic–inorganic hybrid perovskites have recently attracted considerable interest for application in solar cells due to their low cost, high absorption...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 17499
SubjectTerms absorbance
adsorption
density functional theory
electric current
electric field
electron transfer
quantum dots
roughness
solar cells
solar energy
Title Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer
URI https://www.proquest.com/docview/2271851954
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLxnBBUVZ0tiJm2OJFi0I0Ep0paqXyHbsbqUlAdqClgs_k7_D-JVm6R4WLlHlulaS-TrzeTwPhF4IJjhTVMVjnYiYCtCDRZqTmOQyEyNRZJm21T4_5kcn9N0smw0Gv3tRS5u1OJA_L80r-R-pwhjI1WTJ_oNku0VhAD6DfOEKEobrlWR83Iv6X1rvgApn-6b-9_eVcc1GK7N7jYyHfmXIprI9fm1uYlTWn5TJqwTD8zmC_SncynH5-oMNNDfRXMq0oQENEJrlmI4SrhZ6dMbPfWDvLrUFFuweP5Khn9xBNHGpQeEbW2rcJR5a331I5DKxup2bf66cKpoteauVN7LWzd1uHNKaxQ-13EYVuenladssvvaAP_de8fnpcsH9Mt7V4XI6nS5MkywxZU-dqlb9MdcQNyjzrIdZQnqaGXZerhOTN_NAm2y-964NSYgpwVqy6cQe05ZbSxmiA_4yoF1Yoz3QJ0W1_e01tJfC_iUdor3J4fTt-879Z4h6brubdo8WiueS4tV2gYt06SJbsBRoegvd9ALGEwfE22igmjvoRq-i5V30qwdJ3IMkbjXeQhJbSGILSSzOcQdJzLGBJPaQxMZlYgCJO0BivsK8wQGQuAMktoC8h07eHE7Lo9j3-IglIck6HtVFynQiCZA1UitOuVbFWLMR0cZtw3RW07pmheB5zVMhgHJJTpVghUxVlqXkPho2baMeIExGOqE1S2TCJGVsPM71CPgvVeOCwq5a7qOX4VVW0hfAN31Yzqpdue2j593cL67sy6WzngWJVPBnMm-NN6rdrKo0Bc5nCjfRh1da6RG6bgDvfHuP0XD9baOeANtdi6ceOX8Al7Sxdw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+perovskite+solar+cells+by+employing+a+CdSe+quantum+dot%2FPCBM+composite+as+an+electron+transport+layer&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zeng%2C+Xiaofeng&rft.au=Zhou%2C+Tingwei&rft.au=Leng%2C+Chongqian&rft.au=Zang%2C+Zhigang&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=33&rft.spage=17499&rft.epage=17505&rft_id=info:doi/10.1039%2FC7TA00203C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TA00203C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon