Extending the cell‐based smoothed finite element method into strongly coupled fluid–thermal–structure interaction

This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approxima...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 93; no. 4; pp. 1269 - 1291
Main Author He, Tao
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text
ISSN0271-2091
1097-0363
DOI10.1002/fld.4928

Cover

Abstract This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐α method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM. The cell‐based smoothed finite element method (CS‐FEM) is extended to unsteady strongly coupled fluid–thermal–structure interaction (FTSI) through the arbitrary Lagrangian–Eulerian description and Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm. The cell‐based smoothing concept is also adopted to impose interface conditions. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM.
AbstractList This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐α method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM. The cell‐based smoothed finite element method (CS‐FEM) is extended to unsteady strongly coupled fluid–thermal–structure interaction (FTSI) through the arbitrary Lagrangian–Eulerian description and Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm. The cell‐based smoothing concept is also adopted to impose interface conditions. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM.
This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐α method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM.
This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐ method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM.
Author He, Tao
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2042-2062
  surname: He
  fullname: He, Tao
  email: taohe@shnu.edu.cn
  organization: Shanghai Normal University
BookMark eNp10MtKxDAUBuAgCo4X8BECbtx0zKXTTJbiHQbc6Lqk6alG0mRMUnR2PoIwb-iTmDquRFeBw_efE_49tO28A4SOKJlSQthpZ9tpKdl8C00okaIgvOLbaEKYoAUjku6ivRifCSHZ8Al6vXxL4FrjHnF6AqzB2s_3j0ZFaHHsvc_DFnfGmQQYLPTgEu4hPfkWG5c8jil492hXWPthaUdrB9N-vq9zMPQqL1tnMug0BBgTEJROxrsDtNMpG-Hw591HD1eX9-c3xeLu-vb8bFFozsm86EpNy4qWUs-54A2ZyZJXUkDLRNlo0syg0Z0AmLdE0aYpORWs4ZIzXQmmRMX30fFm7zL4lwFiqp_9EFw-WbMZYYwJKXlW043SwccYoKu1SWr8ZwrK2JqSeiy3zuXWY7k5cPIrsAymV2H1Fy029NVYWP3r6qvFxbf_AvAaj6c
CitedBy_id crossref_primary_10_1016_j_apacoust_2021_108541
crossref_primary_10_1002_fld_5289
Cites_doi 10.1080/10618562.2014.927057
10.1063/1.5008474
10.1142/S0219876208001510
10.1016/j.compstruc.2009.01.017
10.1007/s00466-006-0075-4
10.1016/j.apacoust.2010.03.006
10.1002/fld.2274
10.1090/S0025-5718-1968-0242392-2
10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
10.1016/0045-7825(96)01028-6
10.24033/bsmf.1662
10.1201/EBK1439820278
10.1002/nme.1968
10.1016/0045-7825(92)90085-X
10.1016/j.jsv.2006.10.035
10.1016/j.finel.2005.01.003
10.1016/j.oceaneng.2018.03.054
10.1016/j.ijheatmasstransfer.2011.04.047
10.1016/j.compstruc.2019.07.007
10.1016/S0045-7825(99)00206-6
10.1016/0045-7825(82)90128-1
10.1002/nme.972
10.1016/j.compfluid.2012.11.004
10.1016/j.compstruc.2008.07.006
10.1142/S0219876215500255
10.1016/j.cma.2015.09.020
10.1115/1.2900803
10.1142/S0219876213400100
10.1016/j.compfluid.2018.01.022
10.1007/s00466-018-1549-x
10.4208/cicp.OA-2017-0174
10.1002/nme.2941
10.1002/nme.1620090207
10.1016/j.compstruc.2020.106264
10.1016/j.cma.2006.04.009
10.1016/0045-7825(95)92707-9
10.1016/j.cma.2018.07.016
10.1016/j.ijheatfluidflow.2020.108572
10.1016/j.compstruc.2017.01.006
10.1016/j.ijheatmasstransfer.2010.01.029
10.1002/fld.4406
10.1080/10407790.2019.1615786
10.1002/fld.4501
10.2514/1.J056572
10.1016/j.cma.2012.02.007
10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
10.1002/fld.1650041105
10.1016/j.applthermaleng.2018.09.039
10.1016/j.compstruc.2018.10.021
10.1016/j.ijthermalsci.2018.02.012
10.1016/0021-9991(74)90051-5
10.1002/nme.4662
10.1108/EC-10-2014-0219
10.1108/02644409610128382
10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R
10.1016/j.ijheatmasstransfer.2016.04.046
10.1002/nme.2146
10.1063/1.5122851
10.1002/nme.1698
10.1002/nme.6355
10.1002/nme.2284
10.1007/s11831-016-9193-0
10.1063/5.0010562
10.1016/j.jnnfm.2019.104162
10.1016/0045-7825(81)90049-9
10.1016/j.finel.2007.05.009
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.4928
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 1291
ExternalDocumentID 10_1002_fld_4928
FLD4928
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  funderid: 19ZR1437200
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3308-f4c146149c8373b05943697ed274bc0b5ebcf7ee8d0a1bb43172b3932c672a763
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Fri Jul 25 09:26:40 EDT 2025
Tue Jul 01 02:08:43 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Jan 22 16:29:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-f4c146149c8373b05943697ed274bc0b5ebcf7ee8d0a1bb43172b3932c672a763
Notes Funding information
Natural Science Foundation of Shanghai, 19ZR1437200
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2042-2062
PQID 2502227993
PQPubID 996375
PageCount 24
ParticipantIDs proquest_journals_2502227993
crossref_citationtrail_10_1002_fld_4928
crossref_primary_10_1002_fld_4928
wiley_primary_10_1002_fld_4928_FLD4928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 39
2007; 301
1974; 14
2018; 166
2001; 50
2010; 53
2009; 87
2004; 60
2018; 128
1993; 60
2020; 121
2015; 32
2016; 100
2013; 71
2011; 54
2007; 71
2008; 5
2008; 74
2008; 75
2014; 28
2018; 87
2018; 86
1968; 22
1992; 95
2010; 64
2001
2013; 10
2006; 66
2008; 28
1995; 124
2018; 30
2019; 272
1897; 1
1975; 9
1996; 134
2014; 98
1968; 96
2010; 71
2015; 12
2018; 341
2012; 223
2019; 31
2019; 75
2010
2020; 83
2018; 145
1997; 25
2017; 24
1982; 33
1998
2005; 41
1996
1981; 29
2018; 62
2020; 32
1996; 13
2010; 84
2019; 222
2018; 24
2010; 88
1984; 4
2018; 157
2007; 196
2000; 182
2019; 212
2016; 298
2017; 182
1999; 31
2016
2020; 235
2018; 56
2007; 43
e_1_2_11_70_1
Wall WA (e_1_2_11_72_1) 1998
Boussinesq J (e_1_2_11_2_1) 1897
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
Cui X (e_1_2_11_28_1) 2008; 28
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Nithiarasu P (e_1_2_11_56_1) 2016
e_1_2_11_50_1
e_1_2_11_71_1
Mok D (e_1_2_11_68_1) 2001
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
Bathe K (e_1_2_11_15_1) 1996
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 166
  start-page: 64
  year: 2018
  end-page: 77
  article-title: The use of artificial compressibility to improve partitioned semi‐implicit FSI coupling within the classical Chorin–Témam projection framework
  publication-title: Comput Fluids
– volume: 86
  start-page: 20
  issue: 1
  year: 2018
  end-page: 45
  article-title: A cell‐based smoothed finite element method with semi‐implicit CBS procedures for incompressible laminar viscous flows
  publication-title: Int J Numer Methods Fluids
– volume: 5
  start-page: 199
  issue: 2
  year: 2008
  end-page: 236
  article-title: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods
  publication-title: Int J Comput Methods
– volume: 12
  issue: 5
  year: 2015
  article-title: Semi‐implicit coupling of CS‐FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid
  publication-title: Int J Comput Methods
– volume: 1
  year: 1897
– volume: 14
  start-page: 227
  issue: 3
  year: 1974
  end-page: 253
  article-title: An arbitrary Lagrangian–Eulerian computing method for all flow speeds
  publication-title: J Comput Phys
– volume: 98
  start-page: 988
  issue: 13
  year: 2014
  end-page: 1014
  article-title: A cell‐based smoothed discrete shear gap method (CS‐FEM‐DSG3) based on the C0‐type higher‐order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle
  publication-title: Int J Numer Methods Eng
– volume: 182
  start-page: 475
  year: 2017
  end-page: 490
  article-title: Polygonal type variable‐node elements by means of the smoothed finite element method for analysis of two‐dimensional fluid–solid interaction problems in viscous incompressible flows
  publication-title: Comput Struct
– volume: 341
  start-page: 658
  year: 2018
  end-page: 694
  article-title: The surrounding cell method based on the S‐FEM for analysis of FSI problems dealing with an immersed solid
  publication-title: Comput Methods Appl Mech Eng
– volume: 9
  start-page: 353
  issue: 2
  year: 1975
  end-page: 386
  article-title: Finite element formulations for large deformation dynamic analysis
  publication-title: Int J Numer Methods Eng
– volume: 28
  start-page: 272
  issue: 6‐10
  year: 2014
  end-page: 300
  article-title: Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method
  publication-title: Int J Comput Fluid Dyn
– volume: 298
  start-page: 252
  year: 2016
  end-page: 278
  article-title: CBS‐based partitioned semi‐implicit coupling algorithm for fluid–structure interaction using MCIBC method
  publication-title: Comput Methods Appl Mech Eng
– volume: 54
  start-page: 3826
  issue: 17‐18
  year: 2011
  end-page: 3836
  article-title: Fluid–structure interaction analysis of mixed convection heat transfer in a lid‐driven cavity with a flexible bottom wall
  publication-title: Int J Heat Mass Transf
– volume: 31
  issue: 11
  year: 2019
  article-title: Vortex‐induced vibration and galloping of a circular cylinder in presence of cross‐flow thermal buoyancy
  publication-title: Phys Fluids
– volume: 4
  start-page: 1043
  issue: 11
  year: 1984
  end-page: 1063
  article-title: The solution of non‐linear hyperbolic equation systems by the finite element method
  publication-title: Int J Numer Methods Fluids
– volume: 83
  year: 2020
  article-title: A high‐order discontinuous Galerkin method for simulating incompressible fluid–thermal–structural interaction problems
  publication-title: Int J Heat Fluid Flow
– volume: 60
  start-page: 861
  issue: 5
  year: 2004
  end-page: 890
  article-title: Stabilized conforming nodal integration in the natural‐element method
  publication-title: Int J Numer Methods Eng
– volume: 22
  start-page: 745
  issue: 104
  year: 1968
  end-page: 762
  article-title: Numerical solution of the Navier–Stokes equations
  publication-title: Math Comput
– volume: 222
  start-page: 133
  year: 2019
  end-page: 147
  article-title: The cell‐based smoothed finite element method for viscoelastic fluid flows using fractional‐step schemes
  publication-title: Comput Struct
– volume: 87
  start-page: 604
  issue: 11‐12
  year: 2009
  end-page: 617
  article-title: A mesh adaptivity procedure for CFD and fluid–structure interactions
  publication-title: Comput Struct
– volume: 24
  start-page: 891
  issue: 4
  year: 2017
  end-page: 934
  article-title: An overview of the combined interface boundary condition method for fluid–structure interaction
  publication-title: Arch Comput Methods Eng
– volume: 31
  start-page: 359
  issue: 1
  year: 1999
  end-page: 392
  article-title: The characteristic‐based‐split procedure: an efficient and accurate algorithm for fluid problems
  publication-title: Int J Numer Methods Fluids
– volume: 53
  start-page: 1646
  issue: 9‐10
  year: 2010
  end-page: 1653
  article-title: Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell
  publication-title: Int J Heat Mass Transf
– volume: 60
  start-page: 371
  issue: 2
  year: 1993
  end-page: 375
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐ method
  publication-title: J Appl Mech–Trans ASME
– volume: 62
  start-page: 1037
  issue: 5
  year: 2018
  end-page: 1057
  article-title: A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction
  publication-title: Comput Mech
– volume: 56
  start-page: 3610
  issue: 9
  year: 2018
  end-page: 3621
  article-title: Efficient fluid–thermal–structural time marching with computational fluid dynamics
  publication-title: AIAA J
– volume: 41
  start-page: 1118
  issue: 11
  year: 2005
  end-page: 1139
  article-title: A semi‐torsional spring analogy model for updating unstructured meshes in 3D moving domains
  publication-title: Finite Elem Anal Des
– volume: 50
  start-page: 435
  issue: 2
  year: 2001
  end-page: 466
  article-title: A stabilized conforming nodal integration for Galerkin mesh‐free methods
  publication-title: Int J Numer Methods Eng
– volume: 71
  start-page: 902
  issue: 8
  year: 2007
  end-page: 930
  article-title: Theoretical aspects of the smoothed finite element method (SFEM)
  publication-title: Int J Numer Methods Eng
– volume: 121
  start-page: 3227
  issue: 14
  year: 2020
  end-page: 3248
  article-title: A truly mesh‐distortion‐enabled implementation of cell‐based smoothed finite element method for incompressible fluid flows with fixed and moving boundaries
  publication-title: Int J Numer Methods Eng
– volume: 66
  start-page: 1514
  issue: 10
  year: 2006
  end-page: 1546
  article-title: The characteristic‐based split (CBS) scheme–a unified approach to fluid dynamics
  publication-title: Int J Numer Methods Eng
– volume: 157
  start-page: 350
  year: 2018
  end-page: 363
  article-title: Towards straightforward use of cell‐based smoothed finite element method in fluid–structure interaction
  publication-title: Ocean Eng
– volume: 30
  issue: 2
  year: 2018
  article-title: A sharp interface immersed boundary method for vortex‐induced vibration in the presence of thermal buoyancy
  publication-title: Phys Fluids
– volume: 71
  start-page: 743
  issue: 8
  year: 2010
  end-page: 753
  article-title: Numerical treatment of acoustic problems with the smoothed finite element method
  publication-title: Appl Acoust
– volume: 96
  start-page: 115
  year: 1968
  end-page: 152
  article-title: Une méthode d'approximation de la solution des équations de Navier–Stokes
  publication-title: Bull Soc Math France
– volume: 84
  start-page: 1222
  issue: 10
  year: 2010
  end-page: 1256
  article-title: A theoretical study on the smoothed FEM (S‐FEM) models: properties, accuracy and convergence rates
  publication-title: Int J Numer Methods Eng
– volume: 100
  start-page: 303
  year: 2016
  end-page: 319
  article-title: Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal‐conductive flexible diagonal partition
  publication-title: Int J Heat Mass Transf
– volume: 32
  issue: 6
  year: 2020
  article-title: An efficient selective cell‐based smoothed finite element approach to fluid‐structure interaction
  publication-title: Phys Fluids
– volume: 28
  start-page: 109
  issue: 2
  year: 2008
  end-page: 126
  article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells
  publication-title: Comput Model Eng Sci
– volume: 25
  start-page: 1207
  issue: 10
  year: 1997
  end-page: 1226
  article-title: Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations
  publication-title: Int J Numer Methods Fluids
– start-page: 1
  year: 1998
  end-page: 20
– volume: 10
  issue: 1
  year: 2013
  article-title: Smoothed finite element methods for thermo‐mechanical impact problems
  publication-title: Int J Comput Methods
– volume: 29
  start-page: 329
  issue: 3
  year: 1981
  end-page: 349
  article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows
  publication-title: Comput Methods Appl Mech Eng
– volume: 39
  start-page: 859
  issue: 6
  year: 2007
  end-page: 877
  article-title: A smoothed finite element method for mechanics problems
  publication-title: Comput Mech
– year: 1996
– volume: 223
  start-page: 81
  year: 2012
  end-page: 102
  article-title: Combined interface boundary condition method for fluid–rigid body interaction
  publication-title: Comput Methods Appl Mech Eng
– volume: 124
  start-page: 79
  issue: 1‐2
  year: 1995
  end-page: 112
  article-title: Partitioned procedures for the transient solution of coupled aroelastic problems Part I: model problem, theory and two‐dimensional application
  publication-title: Comput Methods Appl Mech Eng
– volume: 301
  start-page: 803
  issue: 3
  year: 2007
  end-page: 820
  article-title: Free and forced vibration analysis using the smoothed finite element method (SFEM)
  publication-title: J Sound Vib
– volume: 64
  start-page: 1129
  issue: 10‐12
  year: 2010
  end-page: 1147
  article-title: Performance evaluation of nonlinear algorithms with line‐search for partitioned coupling techniques for fluid–structure interactions
  publication-title: Int J Numer Methods Fluids
– start-page: 689
  year: 2001
  end-page: 698
– volume: 88
  start-page: 1419
  issue: 23‐24
  year: 2010
  end-page: 1443
  article-title: Strain smoothing in FEM and XFEM
  publication-title: Comput Struct
– volume: 235
  start-page: 106264
  year: 2020
  article-title: A strongly‐coupled cell‐based smoothed finite element solver for unsteady viscoelastic fluid–structure interaction
  publication-title: Comput Struct
– year: 2016
– volume: 182
  start-page: 499
  issue: 3
  year: 2000
  end-page: 515
  article-title: Two efficient staggered algorithms for the serial and parallel solution of three‐dimensional nonlinear transient aeroelastic problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 32
  start-page: 2292
  issue: 8
  year: 2015
  end-page: 2317
  article-title: Acoustic analysis using a mass‐redistributed smoothed finite element method with quadrilateral mesh
  publication-title: Eng Comput
– volume: 74
  start-page: 175
  issue: 2
  year: 2008
  end-page: 208
  article-title: Smooth finite element methods: convergence, accuracy and properties
  publication-title: Int J Numer Methods Eng
– year: 2010
– volume: 212
  start-page: 215
  year: 2019
  end-page: 224
  article-title: Insight into the cell‐based smoothed finite element method for convection‐dominated flows
  publication-title: Comput Struct
– volume: 272
  start-page: 104162
  year: 2019
  article-title: A cell‐based smoothed CBS finite element formulation for computing the Oldroyd‐B fluid flow
  publication-title: J Non‐Newtonian Fluid Mech
– volume: 13
  start-page: 4
  issue: 6
  year: 1996
  end-page: 30
  article-title: On the computational efficiency and implementation of block‐iterative algorithms for nonlinear coupled problems
  publication-title: Eng Comput
– volume: 33
  start-page: 689
  issue: 1‐3
  year: 1982
  end-page: 723
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions
  publication-title: Comput Methods Appl Mech Eng
– volume: 87
  start-page: 463
  issue: 9
  year: 2018
  end-page: 486
  article-title: Improving the CBS‐based partitioned semi‐implicit coupling algorithm for fluid–structure interaction
  publication-title: Int J Numer Methods Fluids
– volume: 24
  start-page: 742
  issue: 3
  year: 2018
  end-page: 763
  article-title: A three‐field smoothed formulation for prediction of large‐displacement fluid–structure interaction via the explicit relaxed interface coupling (ERIC) scheme
  publication-title: Commun Comput Phys
– volume: 196
  start-page: 747
  issue: 4
  year: 2007
  end-page: 765
  article-title: The ortho‐semi‐torsional (OST) spring analogy method for 3D mesh moving boundary problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 134
  start-page: 71
  issue: 1‐2
  year: 1996
  end-page: 90
  article-title: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations
  publication-title: Comput Methods Appl Mech Eng
– volume: 145
  start-page: 80
  year: 2018
  end-page: 97
  article-title: Fluid–structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating
  publication-title: Appl Therm Eng
– volume: 75
  start-page: 198
  issue: 3
  year: 2019
  end-page: 216
  article-title: A three‐field smoothed formulation for partitioned fluid–structure interaction via nonlinear block‐Gauss–Seidel procedure
  publication-title: Numer Heat Transf B
– volume: 75
  start-page: 1085
  issue: 9
  year: 2008
  end-page: 1101
  article-title: A simple mesh deformation technique for fluid–structure interaction based on a submesh approach
  publication-title: Int J Numer Methods Eng
– volume: 43
  start-page: 847
  issue: 11‐12
  year: 2007
  end-page: 860
  article-title: An ‐sided polygonal smoothed finite element method ( SFEM) for solid mechanics
  publication-title: Finite Elem Anal Des
– volume: 95
  start-page: 115
  issue: 1
  year: 1992
  end-page: 138
  article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput Methods Appl Mech Eng
– volume: 128
  start-page: 1
  year: 2018
  end-page: 14
  article-title: A numerical study of the effect of fluid–structure interaction on transient natural convection in an air‐filled square cavity
  publication-title: Int J Therm Sci
– volume: 71
  start-page: 306
  year: 2013
  end-page: 319
  article-title: Partitioned solver for strongly coupled fluid–structure interaction
  publication-title: Comput Fluids
– ident: e_1_2_11_64_1
  doi: 10.1080/10618562.2014.927057
– ident: e_1_2_11_10_1
  doi: 10.1063/1.5008474
– ident: e_1_2_11_24_1
  doi: 10.1142/S0219876208001510
– ident: e_1_2_11_70_1
  doi: 10.1016/j.compstruc.2009.01.017
– ident: e_1_2_11_16_1
  doi: 10.1007/s00466-006-0075-4
– ident: e_1_2_11_30_1
  doi: 10.1016/j.apacoust.2010.03.006
– ident: e_1_2_11_69_1
  doi: 10.1002/fld.2274
– ident: e_1_2_11_54_1
  doi: 10.1090/S0025-5718-1968-0242392-2
– ident: e_1_2_11_20_1
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– volume: 28
  start-page: 109
  issue: 2
  year: 2008
  ident: e_1_2_11_28_1
  article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells
  publication-title: Comput Model Eng Sci
– ident: e_1_2_11_66_1
  doi: 10.1016/0045-7825(96)01028-6
– ident: e_1_2_11_55_1
  doi: 10.24033/bsmf.1662
– ident: e_1_2_11_18_1
  doi: 10.1201/EBK1439820278
– ident: e_1_2_11_23_1
  doi: 10.1002/nme.1968
– ident: e_1_2_11_58_1
  doi: 10.1016/0045-7825(92)90085-X
– ident: e_1_2_11_17_1
  doi: 10.1016/j.jsv.2006.10.035
– ident: e_1_2_11_62_1
  doi: 10.1016/j.finel.2005.01.003
– ident: e_1_2_11_35_1
  doi: 10.1016/j.oceaneng.2018.03.054
– ident: e_1_2_11_50_1
  doi: 10.1016/j.ijheatmasstransfer.2011.04.047
– ident: e_1_2_11_43_1
  doi: 10.1016/j.compstruc.2019.07.007
– ident: e_1_2_11_8_1
  doi: 10.1016/S0045-7825(99)00206-6
– ident: e_1_2_11_14_1
  doi: 10.1016/0045-7825(82)90128-1
– ident: e_1_2_11_21_1
  doi: 10.1002/nme.972
– ident: e_1_2_11_71_1
  doi: 10.1016/j.compfluid.2012.11.004
– ident: e_1_2_11_26_1
  doi: 10.1016/j.compstruc.2008.07.006
– ident: e_1_2_11_33_1
  doi: 10.1142/S0219876215500255
– ident: e_1_2_11_34_1
  doi: 10.1016/j.cma.2015.09.020
– ident: e_1_2_11_57_1
  doi: 10.1115/1.2900803
– ident: e_1_2_11_32_1
  doi: 10.1142/S0219876213400100
– ident: e_1_2_11_65_1
  doi: 10.1016/j.compfluid.2018.01.022
– ident: e_1_2_11_40_1
  doi: 10.1007/s00466-018-1549-x
– ident: e_1_2_11_36_1
  doi: 10.4208/cicp.OA-2017-0174
– start-page: 1
  volume-title: Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications
  year: 1998
  ident: e_1_2_11_72_1
– volume-title: Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section
  year: 1897
  ident: e_1_2_11_2_1
– ident: e_1_2_11_27_1
  doi: 10.1002/nme.2941
– ident: e_1_2_11_59_1
  doi: 10.1002/nme.1620090207
– ident: e_1_2_11_45_1
  doi: 10.1016/j.compstruc.2020.106264
– ident: e_1_2_11_61_1
  doi: 10.1016/j.cma.2006.04.009
– ident: e_1_2_11_9_1
  doi: 10.1016/0045-7825(95)92707-9
– ident: e_1_2_11_38_1
  doi: 10.1016/j.cma.2018.07.016
– ident: e_1_2_11_11_1
  doi: 10.1016/j.ijheatfluidflow.2020.108572
– ident: e_1_2_11_37_1
  doi: 10.1016/j.compstruc.2017.01.006
– ident: e_1_2_11_73_1
  doi: 10.1016/j.ijheatmasstransfer.2010.01.029
– ident: e_1_2_11_39_1
  doi: 10.1002/fld.4406
– ident: e_1_2_11_42_1
  doi: 10.1080/10407790.2019.1615786
– ident: e_1_2_11_41_1
  doi: 10.1002/fld.4501
– ident: e_1_2_11_7_1
  doi: 10.2514/1.J056572
– ident: e_1_2_11_63_1
  doi: 10.1016/j.cma.2012.02.007
– ident: e_1_2_11_51_1
  doi: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
– ident: e_1_2_11_53_1
  doi: 10.1002/fld.1650041105
– ident: e_1_2_11_5_1
  doi: 10.1016/j.applthermaleng.2018.09.039
– ident: e_1_2_11_22_1
  doi: 10.1016/j.compstruc.2018.10.021
– ident: e_1_2_11_4_1
  doi: 10.1016/j.ijthermalsci.2018.02.012
– ident: e_1_2_11_12_1
  doi: 10.1016/0021-9991(74)90051-5
– ident: e_1_2_11_29_1
  doi: 10.1002/nme.4662
– ident: e_1_2_11_31_1
  doi: 10.1108/EC-10-2014-0219
– ident: e_1_2_11_49_1
  doi: 10.1108/02644409610128382
– ident: e_1_2_11_67_1
  doi: 10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R
– ident: e_1_2_11_3_1
  doi: 10.1016/j.ijheatmasstransfer.2016.04.046
– ident: e_1_2_11_25_1
  doi: 10.1002/nme.2146
– volume-title: Fundamentals of the Finite Element Method for Heat and Mass Transfer
  year: 2016
  ident: e_1_2_11_56_1
– ident: e_1_2_11_6_1
  doi: 10.1063/1.5122851
– ident: e_1_2_11_52_1
  doi: 10.1002/nme.1698
– ident: e_1_2_11_46_1
  doi: 10.1002/nme.6355
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_11_15_1
– start-page: 689
  volume-title: Trends in Computational Structural Mechanics
  year: 2001
  ident: e_1_2_11_68_1
– ident: e_1_2_11_60_1
  doi: 10.1002/nme.2284
– ident: e_1_2_11_48_1
  doi: 10.1007/s11831-016-9193-0
– ident: e_1_2_11_47_1
  doi: 10.1063/5.0010562
– ident: e_1_2_11_44_1
  doi: 10.1016/j.jnnfm.2019.104162
– ident: e_1_2_11_13_1
  doi: 10.1016/0045-7825(81)90049-9
– ident: e_1_2_11_19_1
  doi: 10.1016/j.finel.2007.05.009
SSID ssj0009283
Score 2.324628
Snippet This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1269
SubjectTerms Algorithms
Approximation
Aquatic reptiles
arbitrary Lagrangian–Eulerian
Boussinesq approximation
CS‐FEM
Deformation
Elastodynamics
Finite element analysis
Finite element method
Flexible bodies
Fluid dynamics
Fluid flow
Fluid-structure interaction
fluid–thermal–structure interaction
Incompressible flow
Mathematical analysis
Navier-Stokes equations
partitioned strong coupling
smoothed finite element method
thermal buoyancy
Title Extending the cell‐based smoothed finite element method into strongly coupled fluid–thermal–structure interaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4928
https://www.proquest.com/docview/2502227993
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7Ekx6sv1j_WEH0lLbZ3W6ao6iliHgQBcFDyG42UkzT0rSInvoIgm_okziTTdoqCuKpgc6GZGdn95vJzDeEHMF2p6TQnhMacFeF1trxZVM7IgTrkhEPwZvDbItr2bkTl_fN-yKrEmthLD_ENOCGlpHv12jgocrqM9LQOIlqwmdY5-tyibT55zcz5ij4I_-4zDwXFoLvlryzDVYvB349iWbwch6k5qdMu0IeyuezySVPtfFI1fTrN-rG_73AKlkpwCc9tatljSyYdJ1UCiBKCzPP1snyHEvhBnm-yAPlcE0BLVIM9X9M3vD4i2jW62MJV0TjLoJXamw2OrWNqWk3HfVphtH2x-SF6v54kKBsMu5GH5N3xJ69EG72bllsx0ODI8zQFltskrv2xe1Zxyn6NTia80bLiYXGLuHC1-D1coVMMFz6nonA81W6oZpG6dgzphU1QlcphC5McQCQWnoshI1uiyym_dRsExpzrlyuBfMMF1ILxSJQslQh4EXlsrhKTkrdBbogM8eeGklgaZhZALMb4OxWyeFUcmAJPH6Q2SvVHxQmnAWADbFOGPBblRznevx1fNC-Osffnb8K7pIlhrkxeQbQHlmESTb7AG5G6iBfxp-GJ_te
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xcGA58NpFlNcaCbGnlMZ2nUacEFAVKBwQSBxWimLHQRWhRbQVghM_AYl_yC9hJk4ooF1pxSmRMo7ix9jfTGa-AdjA7U4raQIvtmiuSmOMF6q68WSM2qUSEaM1R9EWJ6p1Lg8v6hdjsF3mwjh-iDeHG2lGvl-TgpNDemvEGppmSVWGvPENJiTiDLK89k5H3FH4JP-9zAMfl0Lol8yzNb5Vtvx4Fo0A5nuYmp8zzRn4U36hCy-5qg4HumoePpE3frELszBd4E-24xbMHIzZ7jzMFFiUFZren4epd0SFP-BuP_eV4z1DwMjI2__y-EQnYML61z3K4kpY2iH8yqwLSGeuNjXrdAc91ieH-2V2z0xveJORbDbsJC-PzwQ_r2N82bMjsh3eWmphb12-xU84b-6f7ba8omSDZ4SoNbxUGioULkODhq_QRAYjVBjYBI1fbWq6brVJA2sbSS32tSb0wrVADGlUwGPc6xZgvNvr2kVgqRDaF0bywAqpjNQ88YVSOkbIqH2eVuB3OXmRKfjMqaxGFjkmZh7h6EY0uhVYf5O8cRwef5FZKec_KrS4HyE8pFRhhHAV2Mwn8p_to2Z7j65L_yv4CyZbZ8ftqH1wcrQM3zmFyuQBQSswjgNuVxHrDPRavqZfASvL_30
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-qhaIPflY8tXYFqU-5u-zubS6PpXrYKiJSQfAhZD8ih_Hu8O4QffJPEPwP_Us6k008WyyITwlkNmQ_Zvc3k5nfAGzjdqeVNFGQOjRXpTEmiFXLBDJF7VJWpGjNUbTFkdo_lb_OWmdlVCXlwnh-iGeHG2lGsV-Tgg9s1piQhma5rcuYt6fgo1QIJAgQnUyoo_BJ8XeZRyGuhDisiGebvFG1_PsomuDLlyi1OGY683BefaCPLrmsj0e6bu7-4W58Xw8WYK5En-y7Xy6L8MH1lmC-RKKs1PPhEsy-oClchpu9wlOO9wzhIiNf_9P9A51_lg2v-pTDZVnWJfTKnA9HZ74yNev2Rn02JHf7RX7LTH88yEk2H3ft0_0jgc-rFF_26Glsx9eOWrhrn23xGU47e79_7AdlwYbACNFsB5k0VCZcxgbNXqGJCkaoOHIWTV9tmrrltMki59q2mYZaE3bhWiCCNCriKe50KzDd6_fcKrBMCB0KI3nkhFRGam5DoZROETDqkGc12KnmLjElmzkV1cgTz8PMExzdhEa3BlvPkgPP4PGKzEY1_Umpw8MEwSElCiOAq8G3Yh7_2z7pHO7Sde2tgl_h0_FuJzn8eXSwDjOc4mSKaKANmMbxdl8Q6Iz0ZrGi_wBCvf4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+cell%E2%80%90based+smoothed+finite+element+method+into+strongly+coupled+fluid%E2%80%93thermal%E2%80%93structure+interaction&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=He%2C+Tao&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=93&rft.issue=4&rft.spage=1269&rft.epage=1291&rft_id=info:doi/10.1002%2Ffld.4928&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon