Extending the cell‐based smoothed finite element method into strongly coupled fluid–thermal–structure interaction
This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approxima...
Saved in:
Published in | International journal for numerical methods in fluids Vol. 93; no. 4; pp. 1269 - 1291 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0271-2091 1097-0363 |
DOI | 10.1002/fld.4928 |
Cover
Abstract | This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐α method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM.
The cell‐based smoothed finite element method (CS‐FEM) is extended to unsteady strongly coupled fluid–thermal–structure interaction (FTSI) through the arbitrary Lagrangian–Eulerian description and Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm. The cell‐based smoothing concept is also adopted to impose interface conditions. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM. |
---|---|
AbstractList | This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐α method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM.
The cell‐based smoothed finite element method (CS‐FEM) is extended to unsteady strongly coupled fluid–thermal–structure interaction (FTSI) through the arbitrary Lagrangian–Eulerian description and Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm. The cell‐based smoothing concept is also adopted to impose interface conditions. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM. This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐α method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM. This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary Lagrangian–Eulerian description. The thermal buoyancy is included with the incompressible Navier–Stokes equations through the Boussinesq approximation. The combined fluid flow and energy equations are solved by a smoothed characteristics‐based split algorithm that incorporates equal low‐order interpolations for the three primitive variables. The structural motions involving both oscillating rigid and flexible bodies are advanced by the generalized‐ method. Moreover, the nonlinear elastodynamics equations discretized with the CS‐FEM are linearized by the modified Newton–Raphson method. An efficient two‐level mesh updating scheme is subsequently discussed to account for large structural displacement and finite solid deformation. The cell‐based smoothing concept is then adopted to evaluate fluid forces acting on the immersed structure. The smoothed FTSI system is iteratively solved by the block‐Gauss–Seidel procedure. Transient FTSI examples are tested to demonstrate the effectiveness and robustness of the CS‐FEM. |
Author | He, Tao |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2042-2062 surname: He fullname: He, Tao email: taohe@shnu.edu.cn organization: Shanghai Normal University |
BookMark | eNp10MtKxDAUBuAgCo4X8BECbtx0zKXTTJbiHQbc6Lqk6alG0mRMUnR2PoIwb-iTmDquRFeBw_efE_49tO28A4SOKJlSQthpZ9tpKdl8C00okaIgvOLbaEKYoAUjku6ivRifCSHZ8Al6vXxL4FrjHnF6AqzB2s_3j0ZFaHHsvc_DFnfGmQQYLPTgEu4hPfkWG5c8jil492hXWPthaUdrB9N-vq9zMPQqL1tnMug0BBgTEJROxrsDtNMpG-Hw591HD1eX9-c3xeLu-vb8bFFozsm86EpNy4qWUs-54A2ZyZJXUkDLRNlo0syg0Z0AmLdE0aYpORWs4ZIzXQmmRMX30fFm7zL4lwFiqp_9EFw-WbMZYYwJKXlW043SwccYoKu1SWr8ZwrK2JqSeiy3zuXWY7k5cPIrsAymV2H1Fy029NVYWP3r6qvFxbf_AvAaj6c |
CitedBy_id | crossref_primary_10_1016_j_apacoust_2021_108541 crossref_primary_10_1002_fld_5289 |
Cites_doi | 10.1080/10618562.2014.927057 10.1063/1.5008474 10.1142/S0219876208001510 10.1016/j.compstruc.2009.01.017 10.1007/s00466-006-0075-4 10.1016/j.apacoust.2010.03.006 10.1002/fld.2274 10.1090/S0025-5718-1968-0242392-2 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A 10.1016/0045-7825(96)01028-6 10.24033/bsmf.1662 10.1201/EBK1439820278 10.1002/nme.1968 10.1016/0045-7825(92)90085-X 10.1016/j.jsv.2006.10.035 10.1016/j.finel.2005.01.003 10.1016/j.oceaneng.2018.03.054 10.1016/j.ijheatmasstransfer.2011.04.047 10.1016/j.compstruc.2019.07.007 10.1016/S0045-7825(99)00206-6 10.1016/0045-7825(82)90128-1 10.1002/nme.972 10.1016/j.compfluid.2012.11.004 10.1016/j.compstruc.2008.07.006 10.1142/S0219876215500255 10.1016/j.cma.2015.09.020 10.1115/1.2900803 10.1142/S0219876213400100 10.1016/j.compfluid.2018.01.022 10.1007/s00466-018-1549-x 10.4208/cicp.OA-2017-0174 10.1002/nme.2941 10.1002/nme.1620090207 10.1016/j.compstruc.2020.106264 10.1016/j.cma.2006.04.009 10.1016/0045-7825(95)92707-9 10.1016/j.cma.2018.07.016 10.1016/j.ijheatfluidflow.2020.108572 10.1016/j.compstruc.2017.01.006 10.1016/j.ijheatmasstransfer.2010.01.029 10.1002/fld.4406 10.1080/10407790.2019.1615786 10.1002/fld.4501 10.2514/1.J056572 10.1016/j.cma.2012.02.007 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7 10.1002/fld.1650041105 10.1016/j.applthermaleng.2018.09.039 10.1016/j.compstruc.2018.10.021 10.1016/j.ijthermalsci.2018.02.012 10.1016/0021-9991(74)90051-5 10.1002/nme.4662 10.1108/EC-10-2014-0219 10.1108/02644409610128382 10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R 10.1016/j.ijheatmasstransfer.2016.04.046 10.1002/nme.2146 10.1063/1.5122851 10.1002/nme.1698 10.1002/nme.6355 10.1002/nme.2284 10.1007/s11831-016-9193-0 10.1063/5.0010562 10.1016/j.jnnfm.2019.104162 10.1016/0045-7825(81)90049-9 10.1016/j.finel.2007.05.009 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
DOI | 10.1002/fld.4928 |
DatabaseName | CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1097-0363 |
EndPage | 1291 |
ExternalDocumentID | 10_1002_fld_4928 FLD4928 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai funderid: 19ZR1437200 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 VOH W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~A~ ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7QH 7SC 7TB 7U5 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c3308-f4c146149c8373b05943697ed274bc0b5ebcf7ee8d0a1bb43172b3932c672a763 |
IEDL.DBID | DR2 |
ISSN | 0271-2091 |
IngestDate | Fri Jul 25 09:26:40 EDT 2025 Tue Jul 01 02:08:43 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Jan 22 16:29:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3308-f4c146149c8373b05943697ed274bc0b5ebcf7ee8d0a1bb43172b3932c672a763 |
Notes | Funding information Natural Science Foundation of Shanghai, 19ZR1437200 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2042-2062 |
PQID | 2502227993 |
PQPubID | 996375 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2502227993 crossref_citationtrail_10_1002_fld_4928 crossref_primary_10_1002_fld_4928 wiley_primary_10_1002_fld_4928_FLD4928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in fluids |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 39 2007; 301 1974; 14 2018; 166 2001; 50 2010; 53 2009; 87 2004; 60 2018; 128 1993; 60 2020; 121 2015; 32 2016; 100 2013; 71 2011; 54 2007; 71 2008; 5 2008; 74 2008; 75 2014; 28 2018; 87 2018; 86 1968; 22 1992; 95 2010; 64 2001 2013; 10 2006; 66 2008; 28 1995; 124 2018; 30 2019; 272 1897; 1 1975; 9 1996; 134 2014; 98 1968; 96 2010; 71 2015; 12 2018; 341 2012; 223 2019; 31 2019; 75 2010 2020; 83 2018; 145 1997; 25 2017; 24 1982; 33 1998 2005; 41 1996 1981; 29 2018; 62 2020; 32 1996; 13 2010; 84 2019; 222 2018; 24 2010; 88 1984; 4 2018; 157 2007; 196 2000; 182 2019; 212 2016; 298 2017; 182 1999; 31 2016 2020; 235 2018; 56 2007; 43 e_1_2_11_70_1 Wall WA (e_1_2_11_72_1) 1998 Boussinesq J (e_1_2_11_2_1) 1897 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 Cui X (e_1_2_11_28_1) 2008; 28 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 Nithiarasu P (e_1_2_11_56_1) 2016 e_1_2_11_50_1 e_1_2_11_71_1 Mok D (e_1_2_11_68_1) 2001 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 Bathe K (e_1_2_11_15_1) 1996 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 166 start-page: 64 year: 2018 end-page: 77 article-title: The use of artificial compressibility to improve partitioned semi‐implicit FSI coupling within the classical Chorin–Témam projection framework publication-title: Comput Fluids – volume: 86 start-page: 20 issue: 1 year: 2018 end-page: 45 article-title: A cell‐based smoothed finite element method with semi‐implicit CBS procedures for incompressible laminar viscous flows publication-title: Int J Numer Methods Fluids – volume: 5 start-page: 199 issue: 2 year: 2008 end-page: 236 article-title: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods publication-title: Int J Comput Methods – volume: 12 issue: 5 year: 2015 article-title: Semi‐implicit coupling of CS‐FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid publication-title: Int J Comput Methods – volume: 1 year: 1897 – volume: 14 start-page: 227 issue: 3 year: 1974 end-page: 253 article-title: An arbitrary Lagrangian–Eulerian computing method for all flow speeds publication-title: J Comput Phys – volume: 98 start-page: 988 issue: 13 year: 2014 end-page: 1014 article-title: A cell‐based smoothed discrete shear gap method (CS‐FEM‐DSG3) based on the C0‐type higher‐order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle publication-title: Int J Numer Methods Eng – volume: 182 start-page: 475 year: 2017 end-page: 490 article-title: Polygonal type variable‐node elements by means of the smoothed finite element method for analysis of two‐dimensional fluid–solid interaction problems in viscous incompressible flows publication-title: Comput Struct – volume: 341 start-page: 658 year: 2018 end-page: 694 article-title: The surrounding cell method based on the S‐FEM for analysis of FSI problems dealing with an immersed solid publication-title: Comput Methods Appl Mech Eng – volume: 9 start-page: 353 issue: 2 year: 1975 end-page: 386 article-title: Finite element formulations for large deformation dynamic analysis publication-title: Int J Numer Methods Eng – volume: 28 start-page: 272 issue: 6‐10 year: 2014 end-page: 300 article-title: Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method publication-title: Int J Comput Fluid Dyn – volume: 298 start-page: 252 year: 2016 end-page: 278 article-title: CBS‐based partitioned semi‐implicit coupling algorithm for fluid–structure interaction using MCIBC method publication-title: Comput Methods Appl Mech Eng – volume: 54 start-page: 3826 issue: 17‐18 year: 2011 end-page: 3836 article-title: Fluid–structure interaction analysis of mixed convection heat transfer in a lid‐driven cavity with a flexible bottom wall publication-title: Int J Heat Mass Transf – volume: 31 issue: 11 year: 2019 article-title: Vortex‐induced vibration and galloping of a circular cylinder in presence of cross‐flow thermal buoyancy publication-title: Phys Fluids – volume: 4 start-page: 1043 issue: 11 year: 1984 end-page: 1063 article-title: The solution of non‐linear hyperbolic equation systems by the finite element method publication-title: Int J Numer Methods Fluids – volume: 83 year: 2020 article-title: A high‐order discontinuous Galerkin method for simulating incompressible fluid–thermal–structural interaction problems publication-title: Int J Heat Fluid Flow – volume: 60 start-page: 861 issue: 5 year: 2004 end-page: 890 article-title: Stabilized conforming nodal integration in the natural‐element method publication-title: Int J Numer Methods Eng – volume: 22 start-page: 745 issue: 104 year: 1968 end-page: 762 article-title: Numerical solution of the Navier–Stokes equations publication-title: Math Comput – volume: 222 start-page: 133 year: 2019 end-page: 147 article-title: The cell‐based smoothed finite element method for viscoelastic fluid flows using fractional‐step schemes publication-title: Comput Struct – volume: 87 start-page: 604 issue: 11‐12 year: 2009 end-page: 617 article-title: A mesh adaptivity procedure for CFD and fluid–structure interactions publication-title: Comput Struct – volume: 24 start-page: 891 issue: 4 year: 2017 end-page: 934 article-title: An overview of the combined interface boundary condition method for fluid–structure interaction publication-title: Arch Comput Methods Eng – volume: 31 start-page: 359 issue: 1 year: 1999 end-page: 392 article-title: The characteristic‐based‐split procedure: an efficient and accurate algorithm for fluid problems publication-title: Int J Numer Methods Fluids – volume: 53 start-page: 1646 issue: 9‐10 year: 2010 end-page: 1653 article-title: Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell publication-title: Int J Heat Mass Transf – volume: 60 start-page: 371 issue: 2 year: 1993 end-page: 375 article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐ method publication-title: J Appl Mech–Trans ASME – volume: 62 start-page: 1037 issue: 5 year: 2018 end-page: 1057 article-title: A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction publication-title: Comput Mech – volume: 56 start-page: 3610 issue: 9 year: 2018 end-page: 3621 article-title: Efficient fluid–thermal–structural time marching with computational fluid dynamics publication-title: AIAA J – volume: 41 start-page: 1118 issue: 11 year: 2005 end-page: 1139 article-title: A semi‐torsional spring analogy model for updating unstructured meshes in 3D moving domains publication-title: Finite Elem Anal Des – volume: 50 start-page: 435 issue: 2 year: 2001 end-page: 466 article-title: A stabilized conforming nodal integration for Galerkin mesh‐free methods publication-title: Int J Numer Methods Eng – volume: 71 start-page: 902 issue: 8 year: 2007 end-page: 930 article-title: Theoretical aspects of the smoothed finite element method (SFEM) publication-title: Int J Numer Methods Eng – volume: 121 start-page: 3227 issue: 14 year: 2020 end-page: 3248 article-title: A truly mesh‐distortion‐enabled implementation of cell‐based smoothed finite element method for incompressible fluid flows with fixed and moving boundaries publication-title: Int J Numer Methods Eng – volume: 66 start-page: 1514 issue: 10 year: 2006 end-page: 1546 article-title: The characteristic‐based split (CBS) scheme–a unified approach to fluid dynamics publication-title: Int J Numer Methods Eng – volume: 157 start-page: 350 year: 2018 end-page: 363 article-title: Towards straightforward use of cell‐based smoothed finite element method in fluid–structure interaction publication-title: Ocean Eng – volume: 30 issue: 2 year: 2018 article-title: A sharp interface immersed boundary method for vortex‐induced vibration in the presence of thermal buoyancy publication-title: Phys Fluids – volume: 71 start-page: 743 issue: 8 year: 2010 end-page: 753 article-title: Numerical treatment of acoustic problems with the smoothed finite element method publication-title: Appl Acoust – volume: 96 start-page: 115 year: 1968 end-page: 152 article-title: Une méthode d'approximation de la solution des équations de Navier–Stokes publication-title: Bull Soc Math France – volume: 84 start-page: 1222 issue: 10 year: 2010 end-page: 1256 article-title: A theoretical study on the smoothed FEM (S‐FEM) models: properties, accuracy and convergence rates publication-title: Int J Numer Methods Eng – volume: 100 start-page: 303 year: 2016 end-page: 319 article-title: Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal‐conductive flexible diagonal partition publication-title: Int J Heat Mass Transf – volume: 32 issue: 6 year: 2020 article-title: An efficient selective cell‐based smoothed finite element approach to fluid‐structure interaction publication-title: Phys Fluids – volume: 28 start-page: 109 issue: 2 year: 2008 end-page: 126 article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells publication-title: Comput Model Eng Sci – volume: 25 start-page: 1207 issue: 10 year: 1997 end-page: 1226 article-title: Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations publication-title: Int J Numer Methods Fluids – start-page: 1 year: 1998 end-page: 20 – volume: 10 issue: 1 year: 2013 article-title: Smoothed finite element methods for thermo‐mechanical impact problems publication-title: Int J Comput Methods – volume: 29 start-page: 329 issue: 3 year: 1981 end-page: 349 article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows publication-title: Comput Methods Appl Mech Eng – volume: 39 start-page: 859 issue: 6 year: 2007 end-page: 877 article-title: A smoothed finite element method for mechanics problems publication-title: Comput Mech – year: 1996 – volume: 223 start-page: 81 year: 2012 end-page: 102 article-title: Combined interface boundary condition method for fluid–rigid body interaction publication-title: Comput Methods Appl Mech Eng – volume: 124 start-page: 79 issue: 1‐2 year: 1995 end-page: 112 article-title: Partitioned procedures for the transient solution of coupled aroelastic problems Part I: model problem, theory and two‐dimensional application publication-title: Comput Methods Appl Mech Eng – volume: 301 start-page: 803 issue: 3 year: 2007 end-page: 820 article-title: Free and forced vibration analysis using the smoothed finite element method (SFEM) publication-title: J Sound Vib – volume: 64 start-page: 1129 issue: 10‐12 year: 2010 end-page: 1147 article-title: Performance evaluation of nonlinear algorithms with line‐search for partitioned coupling techniques for fluid–structure interactions publication-title: Int J Numer Methods Fluids – start-page: 689 year: 2001 end-page: 698 – volume: 88 start-page: 1419 issue: 23‐24 year: 2010 end-page: 1443 article-title: Strain smoothing in FEM and XFEM publication-title: Comput Struct – volume: 235 start-page: 106264 year: 2020 article-title: A strongly‐coupled cell‐based smoothed finite element solver for unsteady viscoelastic fluid–structure interaction publication-title: Comput Struct – year: 2016 – volume: 182 start-page: 499 issue: 3 year: 2000 end-page: 515 article-title: Two efficient staggered algorithms for the serial and parallel solution of three‐dimensional nonlinear transient aeroelastic problems publication-title: Comput Methods Appl Mech Eng – volume: 32 start-page: 2292 issue: 8 year: 2015 end-page: 2317 article-title: Acoustic analysis using a mass‐redistributed smoothed finite element method with quadrilateral mesh publication-title: Eng Comput – volume: 74 start-page: 175 issue: 2 year: 2008 end-page: 208 article-title: Smooth finite element methods: convergence, accuracy and properties publication-title: Int J Numer Methods Eng – year: 2010 – volume: 212 start-page: 215 year: 2019 end-page: 224 article-title: Insight into the cell‐based smoothed finite element method for convection‐dominated flows publication-title: Comput Struct – volume: 272 start-page: 104162 year: 2019 article-title: A cell‐based smoothed CBS finite element formulation for computing the Oldroyd‐B fluid flow publication-title: J Non‐Newtonian Fluid Mech – volume: 13 start-page: 4 issue: 6 year: 1996 end-page: 30 article-title: On the computational efficiency and implementation of block‐iterative algorithms for nonlinear coupled problems publication-title: Eng Comput – volume: 33 start-page: 689 issue: 1‐3 year: 1982 end-page: 723 article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions publication-title: Comput Methods Appl Mech Eng – volume: 87 start-page: 463 issue: 9 year: 2018 end-page: 486 article-title: Improving the CBS‐based partitioned semi‐implicit coupling algorithm for fluid–structure interaction publication-title: Int J Numer Methods Fluids – volume: 24 start-page: 742 issue: 3 year: 2018 end-page: 763 article-title: A three‐field smoothed formulation for prediction of large‐displacement fluid–structure interaction via the explicit relaxed interface coupling (ERIC) scheme publication-title: Commun Comput Phys – volume: 196 start-page: 747 issue: 4 year: 2007 end-page: 765 article-title: The ortho‐semi‐torsional (OST) spring analogy method for 3D mesh moving boundary problems publication-title: Comput Methods Appl Mech Eng – volume: 134 start-page: 71 issue: 1‐2 year: 1996 end-page: 90 article-title: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations publication-title: Comput Methods Appl Mech Eng – volume: 145 start-page: 80 year: 2018 end-page: 97 article-title: Fluid–structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating publication-title: Appl Therm Eng – volume: 75 start-page: 198 issue: 3 year: 2019 end-page: 216 article-title: A three‐field smoothed formulation for partitioned fluid–structure interaction via nonlinear block‐Gauss–Seidel procedure publication-title: Numer Heat Transf B – volume: 75 start-page: 1085 issue: 9 year: 2008 end-page: 1101 article-title: A simple mesh deformation technique for fluid–structure interaction based on a submesh approach publication-title: Int J Numer Methods Eng – volume: 43 start-page: 847 issue: 11‐12 year: 2007 end-page: 860 article-title: An ‐sided polygonal smoothed finite element method ( SFEM) for solid mechanics publication-title: Finite Elem Anal Des – volume: 95 start-page: 115 issue: 1 year: 1992 end-page: 138 article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body publication-title: Comput Methods Appl Mech Eng – volume: 128 start-page: 1 year: 2018 end-page: 14 article-title: A numerical study of the effect of fluid–structure interaction on transient natural convection in an air‐filled square cavity publication-title: Int J Therm Sci – volume: 71 start-page: 306 year: 2013 end-page: 319 article-title: Partitioned solver for strongly coupled fluid–structure interaction publication-title: Comput Fluids – ident: e_1_2_11_64_1 doi: 10.1080/10618562.2014.927057 – ident: e_1_2_11_10_1 doi: 10.1063/1.5008474 – ident: e_1_2_11_24_1 doi: 10.1142/S0219876208001510 – ident: e_1_2_11_70_1 doi: 10.1016/j.compstruc.2009.01.017 – ident: e_1_2_11_16_1 doi: 10.1007/s00466-006-0075-4 – ident: e_1_2_11_30_1 doi: 10.1016/j.apacoust.2010.03.006 – ident: e_1_2_11_69_1 doi: 10.1002/fld.2274 – ident: e_1_2_11_54_1 doi: 10.1090/S0025-5718-1968-0242392-2 – ident: e_1_2_11_20_1 doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A – volume: 28 start-page: 109 issue: 2 year: 2008 ident: e_1_2_11_28_1 article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells publication-title: Comput Model Eng Sci – ident: e_1_2_11_66_1 doi: 10.1016/0045-7825(96)01028-6 – ident: e_1_2_11_55_1 doi: 10.24033/bsmf.1662 – ident: e_1_2_11_18_1 doi: 10.1201/EBK1439820278 – ident: e_1_2_11_23_1 doi: 10.1002/nme.1968 – ident: e_1_2_11_58_1 doi: 10.1016/0045-7825(92)90085-X – ident: e_1_2_11_17_1 doi: 10.1016/j.jsv.2006.10.035 – ident: e_1_2_11_62_1 doi: 10.1016/j.finel.2005.01.003 – ident: e_1_2_11_35_1 doi: 10.1016/j.oceaneng.2018.03.054 – ident: e_1_2_11_50_1 doi: 10.1016/j.ijheatmasstransfer.2011.04.047 – ident: e_1_2_11_43_1 doi: 10.1016/j.compstruc.2019.07.007 – ident: e_1_2_11_8_1 doi: 10.1016/S0045-7825(99)00206-6 – ident: e_1_2_11_14_1 doi: 10.1016/0045-7825(82)90128-1 – ident: e_1_2_11_21_1 doi: 10.1002/nme.972 – ident: e_1_2_11_71_1 doi: 10.1016/j.compfluid.2012.11.004 – ident: e_1_2_11_26_1 doi: 10.1016/j.compstruc.2008.07.006 – ident: e_1_2_11_33_1 doi: 10.1142/S0219876215500255 – ident: e_1_2_11_34_1 doi: 10.1016/j.cma.2015.09.020 – ident: e_1_2_11_57_1 doi: 10.1115/1.2900803 – ident: e_1_2_11_32_1 doi: 10.1142/S0219876213400100 – ident: e_1_2_11_65_1 doi: 10.1016/j.compfluid.2018.01.022 – ident: e_1_2_11_40_1 doi: 10.1007/s00466-018-1549-x – ident: e_1_2_11_36_1 doi: 10.4208/cicp.OA-2017-0174 – start-page: 1 volume-title: Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications year: 1998 ident: e_1_2_11_72_1 – volume-title: Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section year: 1897 ident: e_1_2_11_2_1 – ident: e_1_2_11_27_1 doi: 10.1002/nme.2941 – ident: e_1_2_11_59_1 doi: 10.1002/nme.1620090207 – ident: e_1_2_11_45_1 doi: 10.1016/j.compstruc.2020.106264 – ident: e_1_2_11_61_1 doi: 10.1016/j.cma.2006.04.009 – ident: e_1_2_11_9_1 doi: 10.1016/0045-7825(95)92707-9 – ident: e_1_2_11_38_1 doi: 10.1016/j.cma.2018.07.016 – ident: e_1_2_11_11_1 doi: 10.1016/j.ijheatfluidflow.2020.108572 – ident: e_1_2_11_37_1 doi: 10.1016/j.compstruc.2017.01.006 – ident: e_1_2_11_73_1 doi: 10.1016/j.ijheatmasstransfer.2010.01.029 – ident: e_1_2_11_39_1 doi: 10.1002/fld.4406 – ident: e_1_2_11_42_1 doi: 10.1080/10407790.2019.1615786 – ident: e_1_2_11_41_1 doi: 10.1002/fld.4501 – ident: e_1_2_11_7_1 doi: 10.2514/1.J056572 – ident: e_1_2_11_63_1 doi: 10.1016/j.cma.2012.02.007 – ident: e_1_2_11_51_1 doi: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7 – ident: e_1_2_11_53_1 doi: 10.1002/fld.1650041105 – ident: e_1_2_11_5_1 doi: 10.1016/j.applthermaleng.2018.09.039 – ident: e_1_2_11_22_1 doi: 10.1016/j.compstruc.2018.10.021 – ident: e_1_2_11_4_1 doi: 10.1016/j.ijthermalsci.2018.02.012 – ident: e_1_2_11_12_1 doi: 10.1016/0021-9991(74)90051-5 – ident: e_1_2_11_29_1 doi: 10.1002/nme.4662 – ident: e_1_2_11_31_1 doi: 10.1108/EC-10-2014-0219 – ident: e_1_2_11_49_1 doi: 10.1108/02644409610128382 – ident: e_1_2_11_67_1 doi: 10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R – ident: e_1_2_11_3_1 doi: 10.1016/j.ijheatmasstransfer.2016.04.046 – ident: e_1_2_11_25_1 doi: 10.1002/nme.2146 – volume-title: Fundamentals of the Finite Element Method for Heat and Mass Transfer year: 2016 ident: e_1_2_11_56_1 – ident: e_1_2_11_6_1 doi: 10.1063/1.5122851 – ident: e_1_2_11_52_1 doi: 10.1002/nme.1698 – ident: e_1_2_11_46_1 doi: 10.1002/nme.6355 – volume-title: Finite Element Procedures year: 1996 ident: e_1_2_11_15_1 – start-page: 689 volume-title: Trends in Computational Structural Mechanics year: 2001 ident: e_1_2_11_68_1 – ident: e_1_2_11_60_1 doi: 10.1002/nme.2284 – ident: e_1_2_11_48_1 doi: 10.1007/s11831-016-9193-0 – ident: e_1_2_11_47_1 doi: 10.1063/5.0010562 – ident: e_1_2_11_44_1 doi: 10.1016/j.jnnfm.2019.104162 – ident: e_1_2_11_13_1 doi: 10.1016/0045-7825(81)90049-9 – ident: e_1_2_11_19_1 doi: 10.1016/j.finel.2007.05.009 |
SSID | ssj0009283 |
Score | 2.324628 |
Snippet | This work generalizes the cell‐based smoothed finite element method (CS‐FEM) into fluid–thermal–structure interaction (FTSI) analysis under the arbitrary... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1269 |
SubjectTerms | Algorithms Approximation Aquatic reptiles arbitrary Lagrangian–Eulerian Boussinesq approximation CS‐FEM Deformation Elastodynamics Finite element analysis Finite element method Flexible bodies Fluid dynamics Fluid flow Fluid-structure interaction fluid–thermal–structure interaction Incompressible flow Mathematical analysis Navier-Stokes equations partitioned strong coupling smoothed finite element method thermal buoyancy |
Title | Extending the cell‐based smoothed finite element method into strongly coupled fluid–thermal–structure interaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4928 https://www.proquest.com/docview/2502227993 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7Ekx6sv1j_WEH0lLbZ3W6ao6iliHgQBcFDyG42UkzT0rSInvoIgm_okziTTdoqCuKpgc6GZGdn95vJzDeEHMF2p6TQnhMacFeF1trxZVM7IgTrkhEPwZvDbItr2bkTl_fN-yKrEmthLD_ENOCGlpHv12jgocrqM9LQOIlqwmdY5-tyibT55zcz5ij4I_-4zDwXFoLvlryzDVYvB349iWbwch6k5qdMu0IeyuezySVPtfFI1fTrN-rG_73AKlkpwCc9tatljSyYdJ1UCiBKCzPP1snyHEvhBnm-yAPlcE0BLVIM9X9M3vD4i2jW62MJV0TjLoJXamw2OrWNqWk3HfVphtH2x-SF6v54kKBsMu5GH5N3xJ69EG72bllsx0ODI8zQFltskrv2xe1Zxyn6NTia80bLiYXGLuHC1-D1coVMMFz6nonA81W6oZpG6dgzphU1QlcphC5McQCQWnoshI1uiyym_dRsExpzrlyuBfMMF1ILxSJQslQh4EXlsrhKTkrdBbogM8eeGklgaZhZALMb4OxWyeFUcmAJPH6Q2SvVHxQmnAWADbFOGPBblRznevx1fNC-Osffnb8K7pIlhrkxeQbQHlmESTb7AG5G6iBfxp-GJ_te |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xcGA58NpFlNcaCbGnlMZ2nUacEFAVKBwQSBxWimLHQRWhRbQVghM_AYl_yC9hJk4ooF1pxSmRMo7ix9jfTGa-AdjA7U4raQIvtmiuSmOMF6q68WSM2qUSEaM1R9EWJ6p1Lg8v6hdjsF3mwjh-iDeHG2lGvl-TgpNDemvEGppmSVWGvPENJiTiDLK89k5H3FH4JP-9zAMfl0Lol8yzNb5Vtvx4Fo0A5nuYmp8zzRn4U36hCy-5qg4HumoePpE3frELszBd4E-24xbMHIzZ7jzMFFiUFZren4epd0SFP-BuP_eV4z1DwMjI2__y-EQnYML61z3K4kpY2iH8yqwLSGeuNjXrdAc91ieH-2V2z0xveJORbDbsJC-PzwQ_r2N82bMjsh3eWmphb12-xU84b-6f7ba8omSDZ4SoNbxUGioULkODhq_QRAYjVBjYBI1fbWq6brVJA2sbSS32tSb0wrVADGlUwGPc6xZgvNvr2kVgqRDaF0bywAqpjNQ88YVSOkbIqH2eVuB3OXmRKfjMqaxGFjkmZh7h6EY0uhVYf5O8cRwef5FZKec_KrS4HyE8pFRhhHAV2Mwn8p_to2Z7j65L_yv4CyZbZ8ftqH1wcrQM3zmFyuQBQSswjgNuVxHrDPRavqZfASvL_30 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-qhaIPflY8tXYFqU-5u-zubS6PpXrYKiJSQfAhZD8ih_Hu8O4QffJPEPwP_Us6k008WyyITwlkNmQ_Zvc3k5nfAGzjdqeVNFGQOjRXpTEmiFXLBDJF7VJWpGjNUbTFkdo_lb_OWmdlVCXlwnh-iGeHG2lGsV-Tgg9s1piQhma5rcuYt6fgo1QIJAgQnUyoo_BJ8XeZRyGuhDisiGebvFG1_PsomuDLlyi1OGY683BefaCPLrmsj0e6bu7-4W58Xw8WYK5En-y7Xy6L8MH1lmC-RKKs1PPhEsy-oClchpu9wlOO9wzhIiNf_9P9A51_lg2v-pTDZVnWJfTKnA9HZ74yNev2Rn02JHf7RX7LTH88yEk2H3ft0_0jgc-rFF_26Glsx9eOWrhrn23xGU47e79_7AdlwYbACNFsB5k0VCZcxgbNXqGJCkaoOHIWTV9tmrrltMki59q2mYZaE3bhWiCCNCriKe50KzDd6_fcKrBMCB0KI3nkhFRGam5DoZROETDqkGc12KnmLjElmzkV1cgTz8PMExzdhEa3BlvPkgPP4PGKzEY1_Umpw8MEwSElCiOAq8G3Yh7_2z7pHO7Sde2tgl_h0_FuJzn8eXSwDjOc4mSKaKANmMbxdl8Q6Iz0ZrGi_wBCvf4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+cell%E2%80%90based+smoothed+finite+element+method+into+strongly+coupled+fluid%E2%80%93thermal%E2%80%93structure+interaction&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=He%2C+Tao&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=93&rft.issue=4&rft.spage=1269&rft.epage=1291&rft_id=info:doi/10.1002%2Ffld.4928&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |