Digital mapping of soil texture classes using Random Forest classification algorithm

Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present st...

Full description

Saved in:
Bibliographic Details
Published inSoil use and management Vol. 38; no. 1; pp. 135 - 149
Main Authors Dharumarajan, Subramanian, Hegde, Rajendra
Format Journal Article
LanguageEnglish
Published Bedfordshire Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present study, we mapped the soil textural classes over 16.2 M ha area of Andhra Pradesh state, India, at 250 m spatial resolution up to 2 m depth using the digital soil mapping approach. A total of 2,272 profile observations were used for the prediction of soil textural classes using the Random Forest (RF) classification algorithm. To estimate textural classes at six standard soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm), we used continuous depth function of texture distribution using average sand, silt and clay content of different textural classes. Depth‐wise spline outputs were then transformed into textural classes as per USDA textural classification. Sixteen environmental variables including Landsat‐8 data, digital elevation model attributes and climatic variables were used for modelling. For model building, 75% of data was used and 25% of data was used for validation. Overall classification accuracy index and kappa index were calculated for validation data sets using 100 RF models. We recorded overall accuracy of 50%–65% and kappa index of 35%–47% for various depths. We found that equal‐area quadratic splines of average sand, silt and clay are useful for soil profile depth harmonization of soil textural classes and random forest classification algorithm is a promising tool for spatial prediction of texture classes at the regional level. The present high‐resolution (250 m) maps of soil texture classes are useful for different hydrological studies and preparation of proper land‐use plans.
AbstractList Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present study, we mapped the soil textural classes over 16.2 M ha area of Andhra Pradesh state, India, at 250 m spatial resolution up to 2 m depth using the digital soil mapping approach. A total of 2,272 profile observations were used for the prediction of soil textural classes using the Random Forest (RF) classification algorithm. To estimate textural classes at six standard soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm), we used continuous depth function of texture distribution using average sand, silt and clay content of different textural classes. Depth‐wise spline outputs were then transformed into textural classes as per USDA textural classification. Sixteen environmental variables including Landsat‐8 data, digital elevation model attributes and climatic variables were used for modelling. For model building, 75% of data was used and 25% of data was used for validation. Overall classification accuracy index and kappa index were calculated for validation data sets using 100 RF models. We recorded overall accuracy of 50%–65% and kappa index of 35%–47% for various depths. We found that equal‐area quadratic splines of average sand, silt and clay are useful for soil profile depth harmonization of soil textural classes and random forest classification algorithm is a promising tool for spatial prediction of texture classes at the regional level. The present high‐resolution (250 m) maps of soil texture classes are useful for different hydrological studies and preparation of proper land‐use plans.
Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present study, we mapped the soil textural classes over 16.2 M ha area of Andhra Pradesh state, India, at 250 m spatial resolution up to 2 m depth using the digital soil mapping approach. A total of 2,272 profile observations were used for the prediction of soil textural classes using the Random Forest (RF) classification algorithm. To estimate textural classes at six standard soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm), we used continuous depth function of texture distribution using average sand, silt and clay content of different textural classes. Depth‐wise spline outputs were then transformed into textural classes as per USDA textural classification. Sixteen environmental variables including Landsat‐8 data, digital elevation model attributes and climatic variables were used for modelling. For model building, 75% of data was used and 25% of data was used for validation. Overall classification accuracy index and kappa index were calculated for validation data sets using 100 RF models. We recorded overall accuracy of 50%–65% and kappa index of 35%–47% for various depths. We found that equal‐area quadratic splines of average sand, silt and clay are useful for soil profile depth harmonization of soil textural classes and random forest classification algorithm is a promising tool for spatial prediction of texture classes at the regional level. The present high‐resolution (250 m) maps of soil texture classes are useful for different hydrological studies and preparation of proper land‐use plans.
Author Dharumarajan, Subramanian
Hegde, Rajendra
Author_xml – sequence: 1
  givenname: Subramanian
  orcidid: 0000-0002-0614-2101
  surname: Dharumarajan
  fullname: Dharumarajan, Subramanian
  email: sdharmag@gmail.com
  organization: Regional Centre
– sequence: 2
  givenname: Rajendra
  surname: Hegde
  fullname: Hegde, Rajendra
  organization: Regional Centre
BookMark eNp9kM9LwzAUx4NMcJse_A8KXvTQLb-a5irTqTARdDuXNE1mRtrUpEX335tZTwN9lwfvfd7jy2cCRo1rFACXCM5QrHno6xnCjPETMEY0z1KcUzICYxhnKYQEn4FJCDsIMcoZHIP1ndmaTtikFm1rmm3idBKcsUmnvrreq0RaEYIKSR8O21fRVK5Ols6r0A07o40UnXFNIuzWedO91-fgVAsb1MVvn4LN8n69eExXLw9Pi9tVKgmBPK2kzsuMoopgXklWYkQhIpIzJajgmZQ0BpZQ6ozJDJW6pFSUmhOOcF5RhsgUXA9_W-8--pioqE2QylrRKNeHAjPCKMUc84heHaE71_smposUJpjwjGaRuhko6V0IXumi9aYWfl8gWBz8FtFv8eM3svMjVkaRBxGdF8b-d_FprNr__bp42zwPF9-PXo5-
CitedBy_id crossref_primary_10_3389_frsen_2024_1461537
crossref_primary_10_3390_agronomy11081550
crossref_primary_10_3390_soilsystems8020055
crossref_primary_10_1016_j_soilbio_2024_109508
crossref_primary_10_1155_2024_8180765
crossref_primary_10_3390_rs14235909
crossref_primary_10_3390_app12178462
crossref_primary_10_3390_land11122279
crossref_primary_10_1117_1_JRS_16_026514
crossref_primary_10_1016_j_jhydrol_2024_131570
crossref_primary_10_5194_essd_14_4719_2022
crossref_primary_10_1002_esp_6032
crossref_primary_10_1016_j_ecolind_2023_111208
crossref_primary_10_1016_j_catena_2023_107713
crossref_primary_10_1016_j_catena_2023_107677
crossref_primary_10_1016_j_scitotenv_2024_173537
crossref_primary_10_1007_s13369_024_08961_3
crossref_primary_10_1016_j_ecolind_2025_113228
crossref_primary_10_1007_s10661_024_13188_8
crossref_primary_10_1007_s40710_024_00722_6
crossref_primary_10_7717_peerj_16396
crossref_primary_10_1016_j_geodrs_2024_e00813
crossref_primary_10_3390_s23198121
crossref_primary_10_1139_cjss_2022_0040
crossref_primary_10_1007_s12524_021_01336_3
crossref_primary_10_3390_rs14133153
crossref_primary_10_3390_rs16050785
crossref_primary_10_3390_agronomy12112613
crossref_primary_10_1016_j_isprsjprs_2023_06_003
crossref_primary_10_1080_10106049_2022_2108911
crossref_primary_10_1016_j_geoderma_2023_116405
crossref_primary_10_1111_sum_12833
crossref_primary_10_1080_10106049_2021_1926553
crossref_primary_10_1111_sum_12995
crossref_primary_10_1016_j_geodrs_2022_e00584
crossref_primary_10_1016_j_jsames_2023_104498
Cites_doi 10.1016/s1002‐0160(15)30038‐2
10.1111/gcb.12384
10.1016/j.geoderma.2016.09.019
10.1590/18069657rbcs20150335
10.1016/j.geodrs.2019.e00204
10.1038/s41598‐018‐30005‐8
10.2136/sssaj2011.0025
10.1016/S0016‐7061(03)00223‐4
10.2136/sssaj2012.0275
10.1016/s1464‐1909(01)85012‐7
10.1016/j.geoderma.2009.10.007
10.1007/s12524‐020‐01184‐7
10.1016/j.geoderma.2007.04.022
10.1016/j.compag.2006.08.001
10.1016/j.eja.2008.07.009
10.3390/rs11131520
10.2136/sssaj2017.04.0122
10.1201/9781420048568
10.1080/15324982.2013.828801
10.1016/j.compag.2017.11.037
10.2136/sssaj2014.05.0202
10.1371/journal.pone.0169748
10.1023/A:1010933404324
10.1016/j.geoderma.2020.114552
10.1016/S0016‐7061(99)00003‐8
10.1016/j.still.2019.06.006
10.3390/soilsystems3040065
10.1016/j.geodrs.2017.07.005
10.1016/0034‐4257(91)90048‐B
10.1016/j.geoderma.2014.04.029
10.18520/cs/v116/i7/1237‐1246
10.1016/j.geoderma.2015.08.009
10.1016/j.geoderma.2020.114214
10.1016/j.geoderma.2009.09.016
10.1111/j.0033‐0124.2005.00488.x
10.18805/LR‐3852
10.1007/978-3-540-72849-8_61
10.1016/j.geoderma.2015.05.014
10.1016/j.geoderma.2009.05.015
10.2136/sssaj2001.653849x
10.1590/0103‐9016‐2014‐0026
10.1016/j.agsy.2005.08.011
10.1007/s10021‐005‐0054‐1
10.1016/j.compag.2008.07.008
10.1016/j.geodrs.2019.e00250
10.1016/B978-0-12-386941-8.00021-6
10.1016/j.geodrs.2016.11.003
10.1016/j.apsoil.2009.10.003
10.3390/rs11050565
10.1016/j.catena.2017.10.002
10.5194/hess‐2018‐584
10.1016/B978‐0‐12‐800137‐0.00003‐0
10.1111/ejss.12382
ContentType Journal Article
Copyright 2020 British Society of Soil Science
2022 British Society of Soil Science
Copyright_xml – notice: 2020 British Society of Soil Science
– notice: 2022 British Society of Soil Science
DBID AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
DOI 10.1111/sum.12668
DatabaseName CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1475-2743
EndPage 149
ExternalDocumentID 10_1111_sum_12668
SUM12668
Genre article
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: ICAR‐National Bureau of Soil Survey and Land Use Planning
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3308-dcf7b541d328dc6b214013c86ea4a85cc4003c0cf56c51bfb44abf838127d4613
IEDL.DBID DR2
ISSN 0266-0032
IngestDate Fri Jul 11 18:30:48 EDT 2025
Fri Jul 25 23:12:39 EDT 2025
Tue Jul 01 00:47:32 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 16:27:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-dcf7b541d328dc6b214013c86ea4a85cc4003c0cf56c51bfb44abf838127d4613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0614-2101
PQID 2623238545
PQPubID 1046348
PageCount 15
ParticipantIDs proquest_miscellaneous_2636442828
proquest_journals_2623238545
crossref_primary_10_1111_sum_12668
crossref_citationtrail_10_1111_sum_12668
wiley_primary_10_1111_sum_12668_SUM12668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Bedfordshire
PublicationPlace_xml – name: Bedfordshire
PublicationTitle Soil use and management
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 160
2003; 117
2020; 20
2007; 140
2019; 11
2015; 72
2009; 154
2019; 16
2014; 24
2020; 365
2009; 152
2018; 82
2014; 28
2001; 45
2017; 9
2016; 262
2014; 20
2018; 8
2015; 259
2019; 116
2016; 40
2020; 376
2017; 285
1999; 91
2019; 194
2014; 125
2018; 144
2019; 3
2009; 65
1991; 37
2012
2006; 54
2006; 9
1998
2011; 75
2002; 2
2007
1996
2001; 26
2007; 94
2003
2014; 232
2001; 65
2010; 44
2015; 25
2009; 30
2013; 77
2019; 42
2017; 10C
2020
2017; 12
2004; 57
2019
2018
2014; 78
2016; 67
1966
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Soil Survey Staff (e_1_2_7_48_1) 2003
e_1_2_7_50_1
e_1_2_7_31_1
e_1_2_7_52_1
Moeys J. (e_1_2_7_38_1) 2018
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
GSI (e_1_2_7_25_1) 2020
Reddy R. S. (e_1_2_7_46_1) 1996
Piper C. S. (e_1_2_7_42_1) 1966
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Liaw A. (e_1_2_7_33_1) 2002; 2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
Naidu L. G. K. (e_1_2_7_39_1) 2014; 24
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
References_xml – volume: 9
  start-page: 181
  year: 2006
  end-page: 199
  article-title: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
  publication-title: Ecosystems
– volume: 262
  start-page: 101
  year: 2016
  end-page: 111
  article-title: Linking soils to ecosystem services – A global review
  publication-title: Geoderma
– year: 1966
– volume: 30
  start-page: 95
  year: 2009
  end-page: 100
  article-title: The effect of soil texture on the water use efficiency of irrigated crops: Results of multi‐year experiment carried out in the Mediterranean region
  publication-title: European Journal of Agronomy
– start-page: 665
  year: 2012
  end-page: 709
– volume: 11
  start-page: 1520
  year: 2019
  article-title: Soil texture estimation using radar and optical data from sentinel‐1 and sentinel‐2
  publication-title: Remote Sensing
– volume: 11
  start-page: 565
  year: 2019
  article-title: Use of Sentinel‐2 time‐series images for classification and uncertainty analysis of inherent biophysical property: Case of soil texture mapping
  publication-title: Remote Sensing
– volume: 116
  start-page: 1237
  year: 2019
  article-title: Pedo‐transfer functions for predicting soil hydraulic properties in semi‐arid regions of Karnataka Plateau, India
  publication-title: Current Science
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 65
  start-page: 849
  year: 2001
  end-page: 852
  article-title: Simplified method for soil particle‐size determination to accompany soil‐quality analyses
  publication-title: Soil Science Society of America Journal
– year: 2018
– year: 1998
– volume: 9
  start-page: 5
  year: 2017
  end-page: 16
  article-title: 3D mapping of soil texture in Scotland
  publication-title: Geoderma Regional
– year: 2019
  article-title: Systematic comparison of five machine‐learning methods in classification and interpolation of soil particle size fractions using different transformed data
  publication-title: Hydrology and Earth System Sciences Discussion
– volume: 54
  start-page: 53
  year: 2006
  end-page: 68
  article-title: Soil texture classification with artificial neural networks operating on remote sensing data
  publication-title: Computers and Electronics in Agriculture
– volume: 194
  start-page: 104289
  year: 2019
  article-title: Some practical aspects of predicting texture data in digital soil mapping
  publication-title: Soil and Tillage Research
– volume: 259
  start-page: 134
  year: 2015
  end-page: 148
  article-title: On the application of Bayesian networks in digital soil mapping
  publication-title: Geoderma
– volume: 144
  start-page: 86
  year: 2018
  end-page: 93
  article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China
  publication-title: Computers and Electronics in Agriculture
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 94
  start-page: 13
  year: 2007
  end-page: 25
  article-title: Soil organic carbon dynamics, functions and management in West African agro‐ecosystems
  publication-title: Agricultural Systems
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  article-title: Digital soil mapping and modeling at continental scales: Finding solutions for global issues
  publication-title: Soil Science Society of America Journal
– volume: 67
  start-page: 707
  year: 2016
  end-page: 725
  article-title: Predicting and mapping of soil particle‐size fractions with adaptive neuro‐fuzzy inference and ant colony optimization in central Iran
  publication-title: European Journal of Soil Science
– volume: 25
  start-page: 580
  year: 2015
  end-page: 591
  article-title: Digital soil mapping using artificial neural networks and terrain‐related attributes
  publication-title: Pedosphere
– volume: 140
  start-page: 417
  issue: 4
  year: 2007
  end-page: 427
  article-title: Methods to interpolate soil categorical variables from profile observations: Lessons from Iran
  publication-title: Geoderma
– volume: 12
  year: 2017
  article-title: Soilgrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 152
  start-page: 43
  year: 2009
  end-page: 52
  article-title: Modelling the three‐dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flan‐ders, Belgium)
  publication-title: Geoderma
– volume: 10C
  start-page: 154
  year: 2017
  end-page: 162
  article-title: Spatial prediction of major soil properties using Random Forest techniques – A case study in semi‐arid tropics of South India
  publication-title: Geoderma Regional
– volume: 57
  start-page: 423
  year: 2004
  end-page: 437
  article-title: A comparison of methods to predict soil surface texture in an alluvial basin
  publication-title: The Professional Geographer
– volume: 20
  start-page: 653
  year: 2014
  end-page: 665
  article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation
  publication-title: Global Change Biology
– volume: 77
  start-page: 860
  year: 2013
  end-page: 876
  article-title: High‐resolution 3‐D mapping of soil texture in Denmark
  publication-title: Soil Science Society of America Journal
– year: 2003
– volume: 16
  year: 2019
  article-title: The need for digital soil mapping in India
  publication-title: Geoderma Regional
– year: 2020
  article-title: Prediction of soil depth in Karnataka using digital soil mapping approach
  publication-title: Journal of Indian Society of Remote Sensing
– year: 1996
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  article-title: Modelling soil attribute depth functions with equal‐area quadratic smoothing splines
  publication-title: Geoderma
– volume: 365
  start-page: 114214
  year: 2020
  article-title: Comparison of additive and isometric log‐ratio transformations combined with machine learning and regression kriging models for mapping soil particle size fractions
  publication-title: Geoderma
– volume: 2
  start-page: 18
  year: 2002
  end-page: 21
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 65
  start-page: 36
  year: 2009
  end-page: 48
  article-title: Predict soil texture distributions using an artificial neural network model
  publication-title: Computers and Electronics in Agriculture
– volume: 125
  start-page: 93
  year: 2014
  end-page: 134
  article-title: GlobalSoilMap: Toward a fine‐resolution global grid of soil properties
  publication-title: Advances in Agronomy
– volume: 40
  year: 2016
  article-title: Is it possible to classify topsoil texture using a sensor located 800 km away from the surface?
  publication-title: Revista Brasileira de Ciência do Solo
– volume: 78
  start-page: 1953
  year: 2014
  end-page: 1966
  article-title: Digital mapping of soil particle‐size fractions for Nigeria
  publication-title: Soil Science Society of America Journal
– volume: 26
  start-page: 41
  year: 2001
  end-page: 45
  article-title: Soil‐landscape modelling to quantify spatial variability of soil texture
  publication-title: Physics and Chemistry of the Earth Part B‐Hydrology Oceans and Atmosphere
– volume: 285
  start-page: 35
  year: 2017
  end-page: 49
  article-title: A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization
  publication-title: Geoderma
– volume: 42
  start-page: 326
  year: 2019
  end-page: 333
  article-title: Land evaluation for groundnut ( L.) production in Pulivendula tehsil, Kadapa district, Andhra Pradesh, India
  publication-title: Legume Research
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– volume: 232
  start-page: 148
  year: 2014
  end-page: 163
  article-title: Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran
  publication-title: Geoderma
– volume: 376
  start-page: 114552
  year: 2020
  article-title: Multi‐task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran
  publication-title: Geoderma
– volume: 28
  start-page: 147
  year: 2014
  end-page: 168
  article-title: Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran
  publication-title: Arid Land Research and Management
– volume: 20
  year: 2020
  article-title: Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau
  publication-title: Geoderma Regional
– volume: 44
  start-page: 80
  year: 2010
  end-page: 88
  article-title: Effect of land management and soil texture on seasonal variations in soil microbial biomass in dry tropical agroecosystems in Tanzania
  publication-title: Applied Soil Ecology
– year: 2020
– volume: 160
  start-page: 275
  year: 2018
  end-page: 281
  article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran)
  publication-title: Catena
– volume: 72
  start-page: 75
  year: 2015
  end-page: 82
  article-title: Aggregation agents and structural stability in soils with different texture and organic carbon contents
  publication-title: Scientia Agricola
– volume: 37
  start-page: 35
  year: 1991
  end-page: 46
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sensing of Environment
– volume: 3
  start-page: 65
  year: 2019
  article-title: The spatial prediction of soil texture fractions in arid regions of Iran
  publication-title: Soil System
– volume: 8
  start-page: 11725
  year: 2018
  article-title: Soil properties drive microbial community structure in a large scale transect in South Eastern Australia
  publication-title: Scientific Reporters
– volume: 24
  start-page: 253
  year: 2014
  end-page: 261
  article-title: Categorisation and delineation of prime and marginal lands of Andhra Pradesh for different uses
  publication-title: Agropedology
– volume: 82
  start-page: 186
  issue: 1
  year: 2018
  end-page: 201
  article-title: Soil property and class maps of the conterminous United States at 100‐meter spatial resolution
  publication-title: Soil Science Society of America Journal
– volume: 154
  start-page: 86
  year: 2009
  end-page: 92
  article-title: Effects of soil texture and land use interactions on organic carbon in soils in North China cities' urban fringe
  publication-title: Geoderma
– start-page: 483
  year: 2007
  end-page: 490
– ident: e_1_2_7_7_1
  doi: 10.1016/s1002‐0160(15)30038‐2
– ident: e_1_2_7_56_1
  doi: 10.1111/gcb.12384
– ident: e_1_2_7_12_1
  doi: 10.1016/j.geoderma.2016.09.019
– ident: e_1_2_7_16_1
  doi: 10.1590/18069657rbcs20150335
– volume-title: Soil and plant analysis
  year: 1966
  ident: e_1_2_7_42_1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.geodrs.2019.e00204
– ident: e_1_2_7_58_1
  doi: 10.1038/s41598‐018‐30005‐8
– ident: e_1_2_7_24_1
  doi: 10.2136/sssaj2011.0025
– ident: e_1_2_7_35_1
  doi: 10.1016/S0016‐7061(03)00223‐4
– ident: e_1_2_7_3_1
  doi: 10.2136/sssaj2012.0275
– ident: e_1_2_7_22_1
  doi: 10.1016/s1464‐1909(01)85012‐7
– ident: e_1_2_7_34_1
  doi: 10.1016/j.geoderma.2009.10.007
– ident: e_1_2_7_21_1
  doi: 10.1007/s12524‐020‐01184‐7
– ident: e_1_2_7_28_1
  doi: 10.1016/j.geoderma.2007.04.022
– ident: e_1_2_7_59_1
  doi: 10.1016/j.compag.2006.08.001
– ident: e_1_2_7_30_1
  doi: 10.1016/j.eja.2008.07.009
– ident: e_1_2_7_10_1
  doi: 10.3390/rs11131520
– ident: e_1_2_7_45_1
  doi: 10.2136/sssaj2017.04.0122
– ident: e_1_2_7_15_1
  doi: 10.1201/9781420048568
– ident: e_1_2_7_52_1
  doi: 10.1080/15324982.2013.828801
– ident: e_1_2_7_57_1
  doi: 10.1016/j.compag.2017.11.037
– volume: 2
  start-page: 18
  year: 2002
  ident: e_1_2_7_33_1
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: e_1_2_7_4_1
  doi: 10.2136/sssaj2014.05.0202
– ident: e_1_2_7_27_1
  doi: 10.1371/journal.pone.0169748
– ident: e_1_2_7_11_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_51_1
  doi: 10.1016/j.geoderma.2020.114552
– volume-title: Soils of Andhra Pradesh for optimising Land Use
  year: 1996
  ident: e_1_2_7_46_1
– volume-title: Soiltexture: Functions for soil texture plot, classification and transformation
  year: 2018
  ident: e_1_2_7_38_1
– ident: e_1_2_7_9_1
  doi: 10.1016/S0016‐7061(99)00003‐8
– volume: 24
  start-page: 253
  year: 2014
  ident: e_1_2_7_39_1
  article-title: Categorisation and delineation of prime and marginal lands of Andhra Pradesh for different uses
  publication-title: Agropedology
– volume-title: Soil survey manual, USDA
  year: 2003
  ident: e_1_2_7_48_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.still.2019.06.006
– ident: e_1_2_7_37_1
  doi: 10.3390/soilsystems3040065
– ident: e_1_2_7_19_1
  doi: 10.1016/j.geodrs.2017.07.005
– ident: e_1_2_7_14_1
  doi: 10.1016/0034‐4257(91)90048‐B
– ident: e_1_2_7_29_1
  doi: 10.1016/j.geoderma.2014.04.029
– ident: e_1_2_7_18_1
  doi: 10.18520/cs/v116/i7/1237‐1246
– ident: e_1_2_7_2_1
  doi: 10.1016/j.geoderma.2015.08.009
– ident: e_1_2_7_55_1
  doi: 10.1016/j.geoderma.2020.114214
– ident: e_1_2_7_32_1
  doi: 10.1016/j.geoderma.2009.09.016
– ident: e_1_2_7_47_1
  doi: 10.1111/j.0033‐0124.2005.00488.x
– volume-title: Geological survey of India
  year: 2020
  ident: e_1_2_7_25_1
– ident: e_1_2_7_26_1
  doi: 10.18805/LR‐3852
– ident: e_1_2_7_40_1
  doi: 10.1007/978-3-540-72849-8_61
– ident: e_1_2_7_50_1
  doi: 10.1016/j.geoderma.2015.05.014
– ident: e_1_2_7_36_1
  doi: 10.1016/j.geoderma.2009.05.015
– ident: e_1_2_7_31_1
  doi: 10.2136/sssaj2001.653849x
– ident: e_1_2_7_13_1
  doi: 10.1590/0103‐9016‐2014‐0026
– ident: e_1_2_7_8_1
  doi: 10.1016/j.agsy.2005.08.011
– ident: e_1_2_7_44_1
  doi: 10.1007/s10021‐005‐0054‐1
– ident: e_1_2_7_61_1
  doi: 10.1016/j.compag.2008.07.008
– ident: e_1_2_7_20_1
  doi: 10.1016/j.geodrs.2019.e00250
– ident: e_1_2_7_54_1
  doi: 10.1016/B978-0-12-386941-8.00021-6
– ident: e_1_2_7_43_1
  doi: 10.1016/j.geodrs.2016.11.003
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apsoil.2009.10.003
– ident: e_1_2_7_23_1
  doi: 10.3390/rs11050565
– ident: e_1_2_7_41_1
  doi: 10.1016/j.catena.2017.10.002
– ident: e_1_2_7_60_1
  doi: 10.5194/hess‐2018‐584
– ident: e_1_2_7_6_1
  doi: 10.1016/B978‐0‐12‐800137‐0.00003‐0
– ident: e_1_2_7_53_1
  doi: 10.1111/ejss.12382
SSID ssj0021760
Score 2.5339808
Snippet Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Accuracy
Algorithms
Classification
classification algorithm
Clay
clay fraction
Clay soils
Climate change
Continuity (mathematics)
Crop growth
Depth
Digital Elevation Models
Digital mapping
digital soil mapping
Distribution
Hydrology
India
Land use
Landsat
Mapping
Nutrient availability
Physical properties
prediction
random forest model
Regional planning
Remote sensing
Resolution
Sand
Silt
Soil
Soil classification
Soil depth
Soil mapping
Soil maps
Soil physical properties
Soil profiles
Soil properties
Soil texture
Spatial discrimination
Spatial distribution
Spatial resolution
Spline functions
Splines
Texture
USDA
Title Digital mapping of soil texture classes using Random Forest classification algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12668
https://www.proquest.com/docview/2623238545
https://www.proquest.com/docview/2636442828
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJzgUKFTdApWLOHDJauNXjDghCkKVygGBxKFSZDtOWLGbVJvshV_PjPPgISqh3iJ54jgeT_zNZOYzIYeSW8WFZ1EWswRDN3mks1hHJmbKJtKrXGI18u8rdXkrft3JuxVy0tfCtPwQQ8ANLSN8r9HAja1fGDkoagwdKiz0xVwtBETXA3UUIG3VxVfAY55w1rEKYRbPcOfrvegZYL6EqWGfudggf_oRtuklD-NlY8fu8Q1543--wib51OFPetoumC2y4svPZP20WHQcHH6b3PycFniUCJ0bJG8oaJXTuprOKCaJgAR1iLh9TTFnvqDXpsyqOcUzPuumbcP0o6BxamZFtZg29_MdcntxfnN2GXWHL0SO84mOMpcnVoo440xnTlkWPDGnlTfCaOkcGD93E5dL5WRscyuEsbkGAMCSTABI-EJWy6r0Xwk9zryUJhZeKS-0F0Zo6GKSJDbhsRNqRI56NaSuYybHAzJmae-hwESlYaJG5GAQ_dvScbwntNfrMu0ssk4Z4DyAJwAYR-TH0Ay2hD9ITOmrJcpwgIfohMKQguL-_ZAUdr1w8e3jortkjWH1RIjg7JHVZrH0-4BpGvs9LN4nGWrzCg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOvBELBQziwCWrjV8xEpcKqBZoe6i2Ui8osh0nrNhN0G72wq9nxnlQEEiIWyRPHMfjib-ZjL8BeKmE00IGnhQpzyh0UyamSE1iU65dpoIuFZ1GPjnV83P58UJd7MGb4SxMxw8xBtzIMuL3mgycAtKXrBw1NcUetbkCV6mid3SozkbyKMTauo-woM88E7znFaI8nvHWX3ejnxDzMlCNO83RLfg8jLFLMPk63bVu6r__Rt_4vy9xG272EJQddmvmDuyF-i7cOKw2PQ1HuAeLd8uKqomwtSX-hoo1Jds2yxWjPBGUYJ5Ad9gySpuv2Jmti2bNqMzntu3aKAMpKp3ZVdVslu2X9X04P3q_eDtP-voLiRdiZpLCl5lTMi0EN4XXjkdnzBsdrLRGeY_2L_zMl0p7lbrSSWldaRAD8KyQiBMewH7d1OEhsNdFUMqmMmgdpAnSSoNdzLLMZSL1Uk_g1aCH3Pfk5FQjY5UPTgpOVB4nagIvRtFvHSPHn4QOBmXmvVFuc45QDxEKYsYJPB-b0ZzoH4mtQ7MjGYEIkfxQHFLU3N8fkuPGFy8e_bvoM7g2X5wc58cfTj89huucDlPEgM4B7LebXXiCEKd1T-NK_gFDKvcl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiE48K5YKGAQBy5ZJX7FFaeKZVVeFapaqQekyK-EFbtJtZu99NfjcR4UBBLiFskTx_F44m8m428AXglmJOOeJi6jOYZuykS5TCU6o9LkwstS4Gnkz8fy6Ix_OBfnO_BmOAvT8UOMATe0jPi9RgO_cOUVIw-KmoYOpboG17lMFS7p2cnIHRWgtuwDLMFlThntaYUwjWe89dfN6CfCvIpT40YzvwNfhyF2-SXfp9vWTO3lb-yN__kOd-F2D0DJYbdi7sGOr-_DrcNq3ZNw-AdwOltUWEuErDSyN1SkKcmmWSwJZokECWIRcvsNwaT5ipzo2jUrgkU-N23XhvlHUeVEL6tmvWi_rR7C2fzd6dujpK--kFjGUpU4W-ZG8MwxqpyVhkZXzCrpNddKWBusn9nUlkJakZnScK5NqQICoLnjASXswW7d1P4RkAPnhdAZ91J6rjzXXIUu0jw3OcsslxN4PaihsD01OVbIWBaDixImqogTNYGXo-hFx8fxJ6H9QZdFb5KbggagF_BJQIwTeDE2B2PCPyS69s0WZVjAh-iFhiFFxf39IUXY9uLF438XfQ43vszmxaf3xx-fwE2KJyliNGcfdtv11j8N-KY1z-I6_gGFwPXd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+mapping+of+soil+texture+classes+using+Random+Forest+classification+algorithm&rft.jtitle=Soil+use+and+management&rft.au=Subramanian+Dharumarajan&rft.au=Hegde%2C+Rajendra&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=38&rft.issue=1&rft.spage=135&rft.epage=149&rft_id=info:doi/10.1111%2Fsum.12668&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon