Digital mapping of soil texture classes using Random Forest classification algorithm
Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present st...
Saved in:
Published in | Soil use and management Vol. 38; no. 1; pp. 135 - 149 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bedfordshire
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present study, we mapped the soil textural classes over 16.2 M ha area of Andhra Pradesh state, India, at 250 m spatial resolution up to 2 m depth using the digital soil mapping approach. A total of 2,272 profile observations were used for the prediction of soil textural classes using the Random Forest (RF) classification algorithm. To estimate textural classes at six standard soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm), we used continuous depth function of texture distribution using average sand, silt and clay content of different textural classes. Depth‐wise spline outputs were then transformed into textural classes as per USDA textural classification. Sixteen environmental variables including Landsat‐8 data, digital elevation model attributes and climatic variables were used for modelling. For model building, 75% of data was used and 25% of data was used for validation. Overall classification accuracy index and kappa index were calculated for validation data sets using 100 RF models. We recorded overall accuracy of 50%–65% and kappa index of 35%–47% for various depths. We found that equal‐area quadratic splines of average sand, silt and clay are useful for soil profile depth harmonization of soil textural classes and random forest classification algorithm is a promising tool for spatial prediction of texture classes at the regional level. The present high‐resolution (250 m) maps of soil texture classes are useful for different hydrological studies and preparation of proper land‐use plans. |
---|---|
AbstractList | Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present study, we mapped the soil textural classes over 16.2 M ha area of Andhra Pradesh state, India, at 250 m spatial resolution up to 2 m depth using the digital soil mapping approach. A total of 2,272 profile observations were used for the prediction of soil textural classes using the Random Forest (RF) classification algorithm. To estimate textural classes at six standard soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm), we used continuous depth function of texture distribution using average sand, silt and clay content of different textural classes. Depth‐wise spline outputs were then transformed into textural classes as per USDA textural classification. Sixteen environmental variables including Landsat‐8 data, digital elevation model attributes and climatic variables were used for modelling. For model building, 75% of data was used and 25% of data was used for validation. Overall classification accuracy index and kappa index were calculated for validation data sets using 100 RF models. We recorded overall accuracy of 50%–65% and kappa index of 35%–47% for various depths. We found that equal‐area quadratic splines of average sand, silt and clay are useful for soil profile depth harmonization of soil textural classes and random forest classification algorithm is a promising tool for spatial prediction of texture classes at the regional level. The present high‐resolution (250 m) maps of soil texture classes are useful for different hydrological studies and preparation of proper land‐use plans. Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution of soil texture at a higher spatial resolution at regional and national level is essential for crop planning and management. In the present study, we mapped the soil textural classes over 16.2 M ha area of Andhra Pradesh state, India, at 250 m spatial resolution up to 2 m depth using the digital soil mapping approach. A total of 2,272 profile observations were used for the prediction of soil textural classes using the Random Forest (RF) classification algorithm. To estimate textural classes at six standard soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm), we used continuous depth function of texture distribution using average sand, silt and clay content of different textural classes. Depth‐wise spline outputs were then transformed into textural classes as per USDA textural classification. Sixteen environmental variables including Landsat‐8 data, digital elevation model attributes and climatic variables were used for modelling. For model building, 75% of data was used and 25% of data was used for validation. Overall classification accuracy index and kappa index were calculated for validation data sets using 100 RF models. We recorded overall accuracy of 50%–65% and kappa index of 35%–47% for various depths. We found that equal‐area quadratic splines of average sand, silt and clay are useful for soil profile depth harmonization of soil textural classes and random forest classification algorithm is a promising tool for spatial prediction of texture classes at the regional level. The present high‐resolution (250 m) maps of soil texture classes are useful for different hydrological studies and preparation of proper land‐use plans. |
Author | Dharumarajan, Subramanian Hegde, Rajendra |
Author_xml | – sequence: 1 givenname: Subramanian orcidid: 0000-0002-0614-2101 surname: Dharumarajan fullname: Dharumarajan, Subramanian email: sdharmag@gmail.com organization: Regional Centre – sequence: 2 givenname: Rajendra surname: Hegde fullname: Hegde, Rajendra organization: Regional Centre |
BookMark | eNp9kM9LwzAUx4NMcJse_A8KXvTQLb-a5irTqTARdDuXNE1mRtrUpEX335tZTwN9lwfvfd7jy2cCRo1rFACXCM5QrHno6xnCjPETMEY0z1KcUzICYxhnKYQEn4FJCDsIMcoZHIP1ndmaTtikFm1rmm3idBKcsUmnvrreq0RaEYIKSR8O21fRVK5Ols6r0A07o40UnXFNIuzWedO91-fgVAsb1MVvn4LN8n69eExXLw9Pi9tVKgmBPK2kzsuMoopgXklWYkQhIpIzJajgmZQ0BpZQ6ozJDJW6pFSUmhOOcF5RhsgUXA9_W-8--pioqE2QylrRKNeHAjPCKMUc84heHaE71_smposUJpjwjGaRuhko6V0IXumi9aYWfl8gWBz8FtFv8eM3svMjVkaRBxGdF8b-d_FprNr__bp42zwPF9-PXo5- |
CitedBy_id | crossref_primary_10_3389_frsen_2024_1461537 crossref_primary_10_3390_agronomy11081550 crossref_primary_10_3390_soilsystems8020055 crossref_primary_10_1016_j_soilbio_2024_109508 crossref_primary_10_1155_2024_8180765 crossref_primary_10_3390_rs14235909 crossref_primary_10_3390_app12178462 crossref_primary_10_3390_land11122279 crossref_primary_10_1117_1_JRS_16_026514 crossref_primary_10_1016_j_jhydrol_2024_131570 crossref_primary_10_5194_essd_14_4719_2022 crossref_primary_10_1002_esp_6032 crossref_primary_10_1016_j_ecolind_2023_111208 crossref_primary_10_1016_j_catena_2023_107713 crossref_primary_10_1016_j_catena_2023_107677 crossref_primary_10_1016_j_scitotenv_2024_173537 crossref_primary_10_1007_s13369_024_08961_3 crossref_primary_10_1016_j_ecolind_2025_113228 crossref_primary_10_1007_s10661_024_13188_8 crossref_primary_10_1007_s40710_024_00722_6 crossref_primary_10_7717_peerj_16396 crossref_primary_10_1016_j_geodrs_2024_e00813 crossref_primary_10_3390_s23198121 crossref_primary_10_1139_cjss_2022_0040 crossref_primary_10_1007_s12524_021_01336_3 crossref_primary_10_3390_rs14133153 crossref_primary_10_3390_rs16050785 crossref_primary_10_3390_agronomy12112613 crossref_primary_10_1016_j_isprsjprs_2023_06_003 crossref_primary_10_1080_10106049_2022_2108911 crossref_primary_10_1016_j_geoderma_2023_116405 crossref_primary_10_1111_sum_12833 crossref_primary_10_1080_10106049_2021_1926553 crossref_primary_10_1111_sum_12995 crossref_primary_10_1016_j_geodrs_2022_e00584 crossref_primary_10_1016_j_jsames_2023_104498 |
Cites_doi | 10.1016/s1002‐0160(15)30038‐2 10.1111/gcb.12384 10.1016/j.geoderma.2016.09.019 10.1590/18069657rbcs20150335 10.1016/j.geodrs.2019.e00204 10.1038/s41598‐018‐30005‐8 10.2136/sssaj2011.0025 10.1016/S0016‐7061(03)00223‐4 10.2136/sssaj2012.0275 10.1016/s1464‐1909(01)85012‐7 10.1016/j.geoderma.2009.10.007 10.1007/s12524‐020‐01184‐7 10.1016/j.geoderma.2007.04.022 10.1016/j.compag.2006.08.001 10.1016/j.eja.2008.07.009 10.3390/rs11131520 10.2136/sssaj2017.04.0122 10.1201/9781420048568 10.1080/15324982.2013.828801 10.1016/j.compag.2017.11.037 10.2136/sssaj2014.05.0202 10.1371/journal.pone.0169748 10.1023/A:1010933404324 10.1016/j.geoderma.2020.114552 10.1016/S0016‐7061(99)00003‐8 10.1016/j.still.2019.06.006 10.3390/soilsystems3040065 10.1016/j.geodrs.2017.07.005 10.1016/0034‐4257(91)90048‐B 10.1016/j.geoderma.2014.04.029 10.18520/cs/v116/i7/1237‐1246 10.1016/j.geoderma.2015.08.009 10.1016/j.geoderma.2020.114214 10.1016/j.geoderma.2009.09.016 10.1111/j.0033‐0124.2005.00488.x 10.18805/LR‐3852 10.1007/978-3-540-72849-8_61 10.1016/j.geoderma.2015.05.014 10.1016/j.geoderma.2009.05.015 10.2136/sssaj2001.653849x 10.1590/0103‐9016‐2014‐0026 10.1016/j.agsy.2005.08.011 10.1007/s10021‐005‐0054‐1 10.1016/j.compag.2008.07.008 10.1016/j.geodrs.2019.e00250 10.1016/B978-0-12-386941-8.00021-6 10.1016/j.geodrs.2016.11.003 10.1016/j.apsoil.2009.10.003 10.3390/rs11050565 10.1016/j.catena.2017.10.002 10.5194/hess‐2018‐584 10.1016/B978‐0‐12‐800137‐0.00003‐0 10.1111/ejss.12382 |
ContentType | Journal Article |
Copyright | 2020 British Society of Soil Science 2022 British Society of Soil Science |
Copyright_xml | – notice: 2020 British Society of Soil Science – notice: 2022 British Society of Soil Science |
DBID | AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H96 KR7 L.G SOI 7S9 L.6 |
DOI | 10.1111/sum.12668 |
DatabaseName | CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1475-2743 |
EndPage | 149 |
ExternalDocumentID | 10_1111_sum_12668 SUM12668 |
Genre | article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GrantInformation_xml | – fundername: ICAR‐National Bureau of Soil Survey and Land Use Planning |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KR7 L.G SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3308-dcf7b541d328dc6b214013c86ea4a85cc4003c0cf56c51bfb44abf838127d4613 |
IEDL.DBID | DR2 |
ISSN | 0266-0032 |
IngestDate | Fri Jul 11 18:30:48 EDT 2025 Fri Jul 25 23:12:39 EDT 2025 Tue Jul 01 00:47:32 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Wed Jan 22 16:27:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3308-dcf7b541d328dc6b214013c86ea4a85cc4003c0cf56c51bfb44abf838127d4613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0614-2101 |
PQID | 2623238545 |
PQPubID | 1046348 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2636442828 proquest_journals_2623238545 crossref_primary_10_1111_sum_12668 crossref_citationtrail_10_1111_sum_12668 wiley_primary_10_1111_sum_12668_SUM12668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bedfordshire |
PublicationPlace_xml | – name: Bedfordshire |
PublicationTitle | Soil use and management |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 160 2003; 117 2020; 20 2007; 140 2019; 11 2015; 72 2009; 154 2019; 16 2014; 24 2020; 365 2009; 152 2018; 82 2014; 28 2001; 45 2017; 9 2016; 262 2014; 20 2018; 8 2015; 259 2019; 116 2016; 40 2020; 376 2017; 285 1999; 91 2019; 194 2014; 125 2018; 144 2019; 3 2009; 65 1991; 37 2012 2006; 54 2006; 9 1998 2011; 75 2002; 2 2007 1996 2001; 26 2007; 94 2003 2014; 232 2001; 65 2010; 44 2015; 25 2009; 30 2013; 77 2019; 42 2017; 10C 2020 2017; 12 2004; 57 2019 2018 2014; 78 2016; 67 1966 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Soil Survey Staff (e_1_2_7_48_1) 2003 e_1_2_7_50_1 e_1_2_7_31_1 e_1_2_7_52_1 Moeys J. (e_1_2_7_38_1) 2018 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 GSI (e_1_2_7_25_1) 2020 Reddy R. S. (e_1_2_7_46_1) 1996 Piper C. S. (e_1_2_7_42_1) 1966 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Liaw A. (e_1_2_7_33_1) 2002; 2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 Naidu L. G. K. (e_1_2_7_39_1) 2014; 24 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 |
References_xml | – volume: 9 start-page: 181 year: 2006 end-page: 199 article-title: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction publication-title: Ecosystems – volume: 262 start-page: 101 year: 2016 end-page: 111 article-title: Linking soils to ecosystem services – A global review publication-title: Geoderma – year: 1966 – volume: 30 start-page: 95 year: 2009 end-page: 100 article-title: The effect of soil texture on the water use efficiency of irrigated crops: Results of multi‐year experiment carried out in the Mediterranean region publication-title: European Journal of Agronomy – start-page: 665 year: 2012 end-page: 709 – volume: 11 start-page: 1520 year: 2019 article-title: Soil texture estimation using radar and optical data from sentinel‐1 and sentinel‐2 publication-title: Remote Sensing – volume: 11 start-page: 565 year: 2019 article-title: Use of Sentinel‐2 time‐series images for classification and uncertainty analysis of inherent biophysical property: Case of soil texture mapping publication-title: Remote Sensing – volume: 116 start-page: 1237 year: 2019 article-title: Pedo‐transfer functions for predicting soil hydraulic properties in semi‐arid regions of Karnataka Plateau, India publication-title: Current Science – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 65 start-page: 849 year: 2001 end-page: 852 article-title: Simplified method for soil particle‐size determination to accompany soil‐quality analyses publication-title: Soil Science Society of America Journal – year: 2018 – year: 1998 – volume: 9 start-page: 5 year: 2017 end-page: 16 article-title: 3D mapping of soil texture in Scotland publication-title: Geoderma Regional – year: 2019 article-title: Systematic comparison of five machine‐learning methods in classification and interpolation of soil particle size fractions using different transformed data publication-title: Hydrology and Earth System Sciences Discussion – volume: 54 start-page: 53 year: 2006 end-page: 68 article-title: Soil texture classification with artificial neural networks operating on remote sensing data publication-title: Computers and Electronics in Agriculture – volume: 194 start-page: 104289 year: 2019 article-title: Some practical aspects of predicting texture data in digital soil mapping publication-title: Soil and Tillage Research – volume: 259 start-page: 134 year: 2015 end-page: 148 article-title: On the application of Bayesian networks in digital soil mapping publication-title: Geoderma – volume: 144 start-page: 86 year: 2018 end-page: 93 article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China publication-title: Computers and Electronics in Agriculture – volume: 117 start-page: 3 year: 2003 end-page: 52 article-title: On digital soil mapping publication-title: Geoderma – volume: 94 start-page: 13 year: 2007 end-page: 25 article-title: Soil organic carbon dynamics, functions and management in West African agro‐ecosystems publication-title: Agricultural Systems – volume: 75 start-page: 1201 year: 2011 end-page: 1213 article-title: Digital soil mapping and modeling at continental scales: Finding solutions for global issues publication-title: Soil Science Society of America Journal – volume: 67 start-page: 707 year: 2016 end-page: 725 article-title: Predicting and mapping of soil particle‐size fractions with adaptive neuro‐fuzzy inference and ant colony optimization in central Iran publication-title: European Journal of Soil Science – volume: 25 start-page: 580 year: 2015 end-page: 591 article-title: Digital soil mapping using artificial neural networks and terrain‐related attributes publication-title: Pedosphere – volume: 140 start-page: 417 issue: 4 year: 2007 end-page: 427 article-title: Methods to interpolate soil categorical variables from profile observations: Lessons from Iran publication-title: Geoderma – volume: 12 year: 2017 article-title: Soilgrids250m: Global gridded soil information based on machine learning publication-title: PLoS One – volume: 152 start-page: 43 year: 2009 end-page: 52 article-title: Modelling the three‐dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flan‐ders, Belgium) publication-title: Geoderma – volume: 10C start-page: 154 year: 2017 end-page: 162 article-title: Spatial prediction of major soil properties using Random Forest techniques – A case study in semi‐arid tropics of South India publication-title: Geoderma Regional – volume: 57 start-page: 423 year: 2004 end-page: 437 article-title: A comparison of methods to predict soil surface texture in an alluvial basin publication-title: The Professional Geographer – volume: 20 start-page: 653 year: 2014 end-page: 665 article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation publication-title: Global Change Biology – volume: 77 start-page: 860 year: 2013 end-page: 876 article-title: High‐resolution 3‐D mapping of soil texture in Denmark publication-title: Soil Science Society of America Journal – year: 2003 – volume: 16 year: 2019 article-title: The need for digital soil mapping in India publication-title: Geoderma Regional – year: 2020 article-title: Prediction of soil depth in Karnataka using digital soil mapping approach publication-title: Journal of Indian Society of Remote Sensing – year: 1996 – volume: 91 start-page: 27 year: 1999 end-page: 45 article-title: Modelling soil attribute depth functions with equal‐area quadratic smoothing splines publication-title: Geoderma – volume: 365 start-page: 114214 year: 2020 article-title: Comparison of additive and isometric log‐ratio transformations combined with machine learning and regression kriging models for mapping soil particle size fractions publication-title: Geoderma – volume: 2 start-page: 18 year: 2002 end-page: 21 article-title: Classification and regression by randomForest publication-title: R News – volume: 65 start-page: 36 year: 2009 end-page: 48 article-title: Predict soil texture distributions using an artificial neural network model publication-title: Computers and Electronics in Agriculture – volume: 125 start-page: 93 year: 2014 end-page: 134 article-title: GlobalSoilMap: Toward a fine‐resolution global grid of soil properties publication-title: Advances in Agronomy – volume: 40 year: 2016 article-title: Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? publication-title: Revista Brasileira de Ciência do Solo – volume: 78 start-page: 1953 year: 2014 end-page: 1966 article-title: Digital mapping of soil particle‐size fractions for Nigeria publication-title: Soil Science Society of America Journal – volume: 26 start-page: 41 year: 2001 end-page: 45 article-title: Soil‐landscape modelling to quantify spatial variability of soil texture publication-title: Physics and Chemistry of the Earth Part B‐Hydrology Oceans and Atmosphere – volume: 285 start-page: 35 year: 2017 end-page: 49 article-title: A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization publication-title: Geoderma – volume: 42 start-page: 326 year: 2019 end-page: 333 article-title: Land evaluation for groundnut ( L.) production in Pulivendula tehsil, Kadapa district, Andhra Pradesh, India publication-title: Legume Research – volume: 154 start-page: 138 year: 2009 end-page: 152 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 232 start-page: 148 year: 2014 end-page: 163 article-title: Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran publication-title: Geoderma – volume: 376 start-page: 114552 year: 2020 article-title: Multi‐task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran publication-title: Geoderma – volume: 28 start-page: 147 year: 2014 end-page: 168 article-title: Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran publication-title: Arid Land Research and Management – volume: 20 year: 2020 article-title: Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau publication-title: Geoderma Regional – volume: 44 start-page: 80 year: 2010 end-page: 88 article-title: Effect of land management and soil texture on seasonal variations in soil microbial biomass in dry tropical agroecosystems in Tanzania publication-title: Applied Soil Ecology – year: 2020 – volume: 160 start-page: 275 year: 2018 end-page: 281 article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran) publication-title: Catena – volume: 72 start-page: 75 year: 2015 end-page: 82 article-title: Aggregation agents and structural stability in soils with different texture and organic carbon contents publication-title: Scientia Agricola – volume: 37 start-page: 35 year: 1991 end-page: 46 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sensing of Environment – volume: 3 start-page: 65 year: 2019 article-title: The spatial prediction of soil texture fractions in arid regions of Iran publication-title: Soil System – volume: 8 start-page: 11725 year: 2018 article-title: Soil properties drive microbial community structure in a large scale transect in South Eastern Australia publication-title: Scientific Reporters – volume: 24 start-page: 253 year: 2014 end-page: 261 article-title: Categorisation and delineation of prime and marginal lands of Andhra Pradesh for different uses publication-title: Agropedology – volume: 82 start-page: 186 issue: 1 year: 2018 end-page: 201 article-title: Soil property and class maps of the conterminous United States at 100‐meter spatial resolution publication-title: Soil Science Society of America Journal – volume: 154 start-page: 86 year: 2009 end-page: 92 article-title: Effects of soil texture and land use interactions on organic carbon in soils in North China cities' urban fringe publication-title: Geoderma – start-page: 483 year: 2007 end-page: 490 – ident: e_1_2_7_7_1 doi: 10.1016/s1002‐0160(15)30038‐2 – ident: e_1_2_7_56_1 doi: 10.1111/gcb.12384 – ident: e_1_2_7_12_1 doi: 10.1016/j.geoderma.2016.09.019 – ident: e_1_2_7_16_1 doi: 10.1590/18069657rbcs20150335 – volume-title: Soil and plant analysis year: 1966 ident: e_1_2_7_42_1 – ident: e_1_2_7_17_1 doi: 10.1016/j.geodrs.2019.e00204 – ident: e_1_2_7_58_1 doi: 10.1038/s41598‐018‐30005‐8 – ident: e_1_2_7_24_1 doi: 10.2136/sssaj2011.0025 – ident: e_1_2_7_35_1 doi: 10.1016/S0016‐7061(03)00223‐4 – ident: e_1_2_7_3_1 doi: 10.2136/sssaj2012.0275 – ident: e_1_2_7_22_1 doi: 10.1016/s1464‐1909(01)85012‐7 – ident: e_1_2_7_34_1 doi: 10.1016/j.geoderma.2009.10.007 – ident: e_1_2_7_21_1 doi: 10.1007/s12524‐020‐01184‐7 – ident: e_1_2_7_28_1 doi: 10.1016/j.geoderma.2007.04.022 – ident: e_1_2_7_59_1 doi: 10.1016/j.compag.2006.08.001 – ident: e_1_2_7_30_1 doi: 10.1016/j.eja.2008.07.009 – ident: e_1_2_7_10_1 doi: 10.3390/rs11131520 – ident: e_1_2_7_45_1 doi: 10.2136/sssaj2017.04.0122 – ident: e_1_2_7_15_1 doi: 10.1201/9781420048568 – ident: e_1_2_7_52_1 doi: 10.1080/15324982.2013.828801 – ident: e_1_2_7_57_1 doi: 10.1016/j.compag.2017.11.037 – volume: 2 start-page: 18 year: 2002 ident: e_1_2_7_33_1 article-title: Classification and regression by randomForest publication-title: R News – ident: e_1_2_7_4_1 doi: 10.2136/sssaj2014.05.0202 – ident: e_1_2_7_27_1 doi: 10.1371/journal.pone.0169748 – ident: e_1_2_7_11_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_7_51_1 doi: 10.1016/j.geoderma.2020.114552 – volume-title: Soils of Andhra Pradesh for optimising Land Use year: 1996 ident: e_1_2_7_46_1 – volume-title: Soiltexture: Functions for soil texture plot, classification and transformation year: 2018 ident: e_1_2_7_38_1 – ident: e_1_2_7_9_1 doi: 10.1016/S0016‐7061(99)00003‐8 – volume: 24 start-page: 253 year: 2014 ident: e_1_2_7_39_1 article-title: Categorisation and delineation of prime and marginal lands of Andhra Pradesh for different uses publication-title: Agropedology – volume-title: Soil survey manual, USDA year: 2003 ident: e_1_2_7_48_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.still.2019.06.006 – ident: e_1_2_7_37_1 doi: 10.3390/soilsystems3040065 – ident: e_1_2_7_19_1 doi: 10.1016/j.geodrs.2017.07.005 – ident: e_1_2_7_14_1 doi: 10.1016/0034‐4257(91)90048‐B – ident: e_1_2_7_29_1 doi: 10.1016/j.geoderma.2014.04.029 – ident: e_1_2_7_18_1 doi: 10.18520/cs/v116/i7/1237‐1246 – ident: e_1_2_7_2_1 doi: 10.1016/j.geoderma.2015.08.009 – ident: e_1_2_7_55_1 doi: 10.1016/j.geoderma.2020.114214 – ident: e_1_2_7_32_1 doi: 10.1016/j.geoderma.2009.09.016 – ident: e_1_2_7_47_1 doi: 10.1111/j.0033‐0124.2005.00488.x – volume-title: Geological survey of India year: 2020 ident: e_1_2_7_25_1 – ident: e_1_2_7_26_1 doi: 10.18805/LR‐3852 – ident: e_1_2_7_40_1 doi: 10.1007/978-3-540-72849-8_61 – ident: e_1_2_7_50_1 doi: 10.1016/j.geoderma.2015.05.014 – ident: e_1_2_7_36_1 doi: 10.1016/j.geoderma.2009.05.015 – ident: e_1_2_7_31_1 doi: 10.2136/sssaj2001.653849x – ident: e_1_2_7_13_1 doi: 10.1590/0103‐9016‐2014‐0026 – ident: e_1_2_7_8_1 doi: 10.1016/j.agsy.2005.08.011 – ident: e_1_2_7_44_1 doi: 10.1007/s10021‐005‐0054‐1 – ident: e_1_2_7_61_1 doi: 10.1016/j.compag.2008.07.008 – ident: e_1_2_7_20_1 doi: 10.1016/j.geodrs.2019.e00250 – ident: e_1_2_7_54_1 doi: 10.1016/B978-0-12-386941-8.00021-6 – ident: e_1_2_7_43_1 doi: 10.1016/j.geodrs.2016.11.003 – ident: e_1_2_7_49_1 doi: 10.1016/j.apsoil.2009.10.003 – ident: e_1_2_7_23_1 doi: 10.3390/rs11050565 – ident: e_1_2_7_41_1 doi: 10.1016/j.catena.2017.10.002 – ident: e_1_2_7_60_1 doi: 10.5194/hess‐2018‐584 – ident: e_1_2_7_6_1 doi: 10.1016/B978‐0‐12‐800137‐0.00003‐0 – ident: e_1_2_7_53_1 doi: 10.1111/ejss.12382 |
SSID | ssj0021760 |
Score | 2.5339808 |
Snippet | Soil texture is the most important soil physical property that determines water holding capacity, nutrient availability and crop growth. Spatial distribution... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 135 |
SubjectTerms | Accuracy Algorithms Classification classification algorithm Clay clay fraction Clay soils Climate change Continuity (mathematics) Crop growth Depth Digital Elevation Models Digital mapping digital soil mapping Distribution Hydrology India Land use Landsat Mapping Nutrient availability Physical properties prediction random forest model Regional planning Remote sensing Resolution Sand Silt Soil Soil classification Soil depth Soil mapping Soil maps Soil physical properties Soil profiles Soil properties Soil texture Spatial discrimination Spatial distribution Spatial resolution Spline functions Splines Texture USDA |
Title | Digital mapping of soil texture classes using Random Forest classification algorithm |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12668 https://www.proquest.com/docview/2623238545 https://www.proquest.com/docview/2636442828 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJzgUKFTdApWLOHDJauNXjDghCkKVygGBxKFSZDtOWLGbVJvshV_PjPPgISqh3iJ54jgeT_zNZOYzIYeSW8WFZ1EWswRDN3mks1hHJmbKJtKrXGI18u8rdXkrft3JuxVy0tfCtPwQQ8ANLSN8r9HAja1fGDkoagwdKiz0xVwtBETXA3UUIG3VxVfAY55w1rEKYRbPcOfrvegZYL6EqWGfudggf_oRtuklD-NlY8fu8Q1543--wib51OFPetoumC2y4svPZP20WHQcHH6b3PycFniUCJ0bJG8oaJXTuprOKCaJgAR1iLh9TTFnvqDXpsyqOcUzPuumbcP0o6BxamZFtZg29_MdcntxfnN2GXWHL0SO84mOMpcnVoo440xnTlkWPDGnlTfCaOkcGD93E5dL5WRscyuEsbkGAMCSTABI-EJWy6r0Xwk9zryUJhZeKS-0F0Zo6GKSJDbhsRNqRI56NaSuYybHAzJmae-hwESlYaJG5GAQ_dvScbwntNfrMu0ssk4Z4DyAJwAYR-TH0Ay2hD9ITOmrJcpwgIfohMKQguL-_ZAUdr1w8e3jortkjWH1RIjg7JHVZrH0-4BpGvs9LN4nGWrzCg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOvBELBQziwCWrjV8xEpcKqBZoe6i2Ui8osh0nrNhN0G72wq9nxnlQEEiIWyRPHMfjib-ZjL8BeKmE00IGnhQpzyh0UyamSE1iU65dpoIuFZ1GPjnV83P58UJd7MGb4SxMxw8xBtzIMuL3mgycAtKXrBw1NcUetbkCV6mid3SozkbyKMTauo-woM88E7znFaI8nvHWX3ejnxDzMlCNO83RLfg8jLFLMPk63bVu6r__Rt_4vy9xG272EJQddmvmDuyF-i7cOKw2PQ1HuAeLd8uKqomwtSX-hoo1Jds2yxWjPBGUYJ5Ad9gySpuv2Jmti2bNqMzntu3aKAMpKp3ZVdVslu2X9X04P3q_eDtP-voLiRdiZpLCl5lTMi0EN4XXjkdnzBsdrLRGeY_2L_zMl0p7lbrSSWldaRAD8KyQiBMewH7d1OEhsNdFUMqmMmgdpAnSSoNdzLLMZSL1Uk_g1aCH3Pfk5FQjY5UPTgpOVB4nagIvRtFvHSPHn4QOBmXmvVFuc45QDxEKYsYJPB-b0ZzoH4mtQ7MjGYEIkfxQHFLU3N8fkuPGFy8e_bvoM7g2X5wc58cfTj89huucDlPEgM4B7LebXXiCEKd1T-NK_gFDKvcl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiE48K5YKGAQBy5ZJX7FFaeKZVVeFapaqQekyK-EFbtJtZu99NfjcR4UBBLiFskTx_F44m8m428AXglmJOOeJi6jOYZuykS5TCU6o9LkwstS4Gnkz8fy6Ix_OBfnO_BmOAvT8UOMATe0jPi9RgO_cOUVIw-KmoYOpboG17lMFS7p2cnIHRWgtuwDLMFlThntaYUwjWe89dfN6CfCvIpT40YzvwNfhyF2-SXfp9vWTO3lb-yN__kOd-F2D0DJYbdi7sGOr-_DrcNq3ZNw-AdwOltUWEuErDSyN1SkKcmmWSwJZokECWIRcvsNwaT5ipzo2jUrgkU-N23XhvlHUeVEL6tmvWi_rR7C2fzd6dujpK--kFjGUpU4W-ZG8MwxqpyVhkZXzCrpNddKWBusn9nUlkJakZnScK5NqQICoLnjASXswW7d1P4RkAPnhdAZ91J6rjzXXIUu0jw3OcsslxN4PaihsD01OVbIWBaDixImqogTNYGXo-hFx8fxJ6H9QZdFb5KbggagF_BJQIwTeDE2B2PCPyS69s0WZVjAh-iFhiFFxf39IUXY9uLF438XfQ43vszmxaf3xx-fwE2KJyliNGcfdtv11j8N-KY1z-I6_gGFwPXd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+mapping+of+soil+texture+classes+using+Random+Forest+classification+algorithm&rft.jtitle=Soil+use+and+management&rft.au=Subramanian+Dharumarajan&rft.au=Hegde%2C+Rajendra&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=38&rft.issue=1&rft.spage=135&rft.epage=149&rft_id=info:doi/10.1111%2Fsum.12668&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon |