Non‐local line method for notched elements with use of effective length calculated in an elasto‐plastic condition
The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a...
Saved in:
Published in | Fatigue & fracture of engineering materials & structures Vol. 40; no. 1; pp. 89 - 102 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM‐T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1 mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi‐linear hardening. Non‐local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined. |
---|---|
AbstractList | Abstract
The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM‐T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1 mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi‐linear hardening. Non‐local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined. The paper presents a non-local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM-T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi-linear hardening. Non-local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined. The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM‐T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1 mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi‐linear hardening. Non‐local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined. |
Author | Krzyżak, D. Robak, G. Łagoda, T. |
Author_xml | – sequence: 1 givenname: D. surname: Krzyżak fullname: Krzyżak, D. organization: Opole University of Technology – sequence: 2 givenname: G. surname: Robak fullname: Robak, G. email: g.robak@po.opole.pl organization: Opole University of Technology – sequence: 3 givenname: T. surname: Łagoda fullname: Łagoda, T. organization: Opole University of Technology |
BookMark | eNp1kUtOHDEQhq2ISBlIFrmBJTZh0eDX-LFEiAlIiGwSKbuW213OGHnsoe0Omh1H4Iw5SQzDConaVKn0_X-Vqg7RQcoJEPpKySltceY9nFImlP6AFlRI0jFplgdoodVSdmqpf39Ch6XcEUKl4HyB5tuc_j0-xexsxDEkwBuo6zxinyeccnVrGDFE2ECqBT-EusZzAZw9hjbK1fAXcIT0p_Wbg5ujrU0QErapyWypublvn4vgsMtpDDXk9Bl99DYW-PKaj9Cv1eXPi6vu5sf364vzm85xTnQ3GM-oZFwTRcjoh4ELJ6WgIxs0H9TImVPCClBaCemJsMyIkTkqR2m5NYYfoW973-2U72cotd-E4iBGmyDPpadaGaONobyhx2_QuzxPqW3XKCG0Yi016mRPuSmXMoHvt1PY2GnXU9I_P6BvV-lfHtDYsz37ECLs3gf71epyr_gPnFmLNA |
CitedBy_id | crossref_primary_10_1111_ffe_13280 crossref_primary_10_1016_j_ijfatigue_2017_09_007 crossref_primary_10_1016_j_ijfatigue_2024_108239 crossref_primary_10_1016_j_ijfatigue_2018_04_003 crossref_primary_10_2478_pomr_2018_0015 crossref_primary_10_1016_j_ijfatigue_2020_105541 crossref_primary_10_1016_j_prostr_2019_07_043 crossref_primary_10_1111_ffe_13166 crossref_primary_10_1016_j_ijfatigue_2019_04_032 |
Cites_doi | 10.1111/ffe.12231 10.1016/j.ijfatigue.2013.01.005 10.1016/j.engfracmech.2007.01.020 10.1007/s10704-013-9924-2 10.1016/S0142-1123(01)00051-2 10.1016/0013-7944(94)90158-9 10.1016/S0142-1123(99)00046-8 10.1016/j.matdes.2015.10.036 10.1016/j.ijfatigue.2011.05.003 10.1111/ffe.12216 10.1111/ffe.12307 10.4028/www.scientific.net/MSF.726.27 10.1016/j.engfailanal.2013.06.012 10.1111/ffe.12294 10.1111/ffe.12186 10.1016/j.matdes.2013.04.087 10.1016/j.engfracmech.2006.06.009 10.1016/j.ijfatigue.2011.01.012 10.1016/j.commatsci.2006.08.017 10.1016/S0142-1123(03)00143-9 10.1007/978-94-010-0880-8 10.1016/j.commatsci.2008.04.005 10.1111/ffe.12164 10.1016/0022-5096(73)90008-2 10.1111/j.1460-2695.2006.01084.x 10.1115/1.4011547 10.1016/j.engfracmech.2004.01.002 10.1111/ffe.12342 10.1111/ffe.12276 10.1111/ffe.12379 10.1007/978-3-642-30740-9 10.1016/j.ijfatigue.2013.12.004 10.1111/ffe.12272 10.1016/j.engfracmech.2006.12.004 |
ContentType | Journal Article |
Copyright | 2016 Wiley Publishing Ltd. 2017 Wiley Publishing Ltd. |
Copyright_xml | – notice: 2016 Wiley Publishing Ltd. – notice: 2017 Wiley Publishing Ltd. |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1111/ffe.12478 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1460-2695 |
EndPage | 102 |
ExternalDocumentID | 4266281981 10_1111_ffe_12478 FFE12478 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6KP 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDEX ABEFU ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c3308-b9f2162380700dfbb34c6641d2b83b7d32c74a4e78746f04a294d2c16d6a3a993 |
IEDL.DBID | DR2 |
ISSN | 8756-758X |
IngestDate | Fri Aug 16 00:19:20 EDT 2024 Thu Oct 10 20:21:09 EDT 2024 Fri Aug 23 01:45:23 EDT 2024 Sat Aug 24 00:51:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3308-b9f2162380700dfbb34c6641d2b83b7d32c74a4e78746f04a294d2c16d6a3a993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1844872184 |
PQPubID | 45644 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1879989913 proquest_journals_1844872184 crossref_primary_10_1111_ffe_12478 wiley_primary_10_1111_ffe_12478_FFE12478 |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Fatigue & fracture of engineering materials & structures |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1968; 7 2007; 39 2015; 38 2012 2010 2004; 26 1952 2011; 33 1994; 47 1999; 21 2003 2007; 74 2008; 75 2007; 30 2016; 39 2001; 23 2014; 61 2004; 71 2001 1973; 21 2013; 35 2013; 51 2013; 52 2014; 37 2008; 44 2014 2013 2014; 187 2016; 89 1957; 24 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Pluvinage G. (e_1_2_8_12_1) 2003 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Karolczuk A. (e_1_2_8_15_1) 2013; 52 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 Neuber H. (e_1_2_8_14_1) 1968; 7 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Taylor D. (e_1_2_8_2_1) 2010 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – start-page: 27 year: 2012 end-page: 32 – volume: 30 start-page: 95 year: 2007 end-page: 106 article-title: Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V‐notched components publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 75 start-page: 1804 year: 2008 end-page: 1814 article-title: An implicit gradient application to fatigue of complex structures publication-title: Eng. Fract. Mech. – volume: 71 start-page: 2407 year: 2004 end-page: 2416 article-title: Predicting the fracture strength of ceramic materials using the theory of critical distances publication-title: Eng. Fract. Mech. – volume: 38 start-page: 1419 year: 2015 end-page: 1431 article-title: Fatigue strength assessment of partial and full‐penetration steel and aluminium butt‐welded joints according to the peak stress method publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 21 start-page: 753 year: 1999 end-page: 760 article-title: Application of a new model proposal for fatigue life prediction on notches and key‐seats publication-title: Intern. J. Fatigue – volume: 21 start-page: 395 year: 1973 end-page: 410 article-title: On the relationship between critical tensile stress and fracture toughness in mild steel publication-title: J. Mech. Phys. Solids – volume: 38 start-page: 503 year: 2015 end-page: 517 article-title: Fatigue strength of severely notched specimens made of Ti–6Al–4 V under multiaxial loading publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 61 start-page: 59 year: 2014 end-page: 66 article-title: Fatigue life estimation of notched elements with use of non‐local volumetric method publication-title: Intern. J. Fatigue – volume: 38 start-page: 2 year: 2015 end-page: 28 article-title: State‐of‐the‐art review on the local strain energy density concept and its relation to the ‐integral and peak stress method publication-title: Fatigue Fract. Eng. Mater. Struct. – year: 2001 – volume: 75 start-page: 1706 year: 2008 end-page: 1724 article-title: The theory of critical distances: a review of its applications in fatigue publication-title: Eng. Fract. Mech. – year: 2003 – volume: 24 start-page: 361 year: 1957 end-page: 364 article-title: Analysis of stresses and strains near the end of a crack traversing a plate publication-title: J. Appl. Mech. – volume: 33 start-page: 1376 year: 2011 end-page: 1383 article-title: Fatigue life estimation under variable amplitude bending using the non‐local damage parameter and multisurface plasticity model publication-title: Intern. J. Fatigue – volume: 37 start-page: 740 year: 2014 end-page: 750 article-title: Notch stress and fracture mechanics based assessment of fatigue of seam weld ends under shear loading publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 37 start-page: 782 issue: 7 year: 2014 end-page: 799 article-title: Fatigue assessment of thin‐welded joints with pronounced terminations publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 33 start-page: 900 year: 2011 end-page: 911 article-title: The theory of critical distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading publication-title: Intern. J. Fatigue – volume: 7 start-page: 245 year: 1968 end-page: 251 article-title: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen publication-title: Konstruktion im Maschinen‐Apparatte und Gerätebau, Heft – volume: 38 start-page: 860 year: 2015 end-page: 869 article-title: Effect of vertex singularities on stress intensities near plate free surfaces publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 38 start-page: 190 year: 2015 end-page: 199 article-title: Implicit gradient and integral average effective stresses: relationships and numerical approximations publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 44 start-page: 464 year: 2008 end-page: 475 article-title: Non‐local stress gradient approach for multiaxial fatigue of defective material publication-title: Computat. Mater. Sci. – volume: 187 start-page: 187 year: 2014 end-page: 197 article-title: On characteristic lengths used in notch fracture mechanics publication-title: Intern. J. Fract. – volume: 38 start-page: 693 year: 2015 end-page: 699 article-title: Determining fatigue life of bent and tensioned elements with a notch, with use of fictitious radius publication-title: Fatigue Fract. Eng. Mater. Struct. – year: 1952 – year: 2014 – volume: 74 start-page: 515 year: 2007 end-page: 526 article-title: An implicit gradient application to fatigue of sharp notches and weldments publication-title: Eng. Fract. Mech. – year: 2010 – volume: 89 start-page: 913 year: 2016 end-page: 927 article-title: Tilted lateral V‐notches with root hole subjected to in‐plane mixed mode loading: fictitious notch rounding concept publication-title: Mater. Design – volume: 39 start-page: 267 year: 2016 end-page: 291 article-title: Brittle fracture assessment of engineering components in the presence of notches: a review publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 35 start-page: 665 year: 2013 end-page: 677 article-title: Application of the weakest link analysis to the area of fatigue design of steel welded joints publication-title: Eng. Failure Analy. – volume: 23 start-page: 903 year: 2001 end-page: 910 article-title: Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading publication-title: Intern. J. Fatigue – volume: 52 start-page: 297 year: 2013 end-page: 311 article-title: Modelling of stress gradient effect on fatigue life using Weibull based distribution function publication-title: J. Theor. Appl. Mech. – volume: 26 start-page: 265 year: 2004 end-page: 279 article-title: Assessment of multiaxial fatigue behaviour of welded joints under combined bending and torsion by application of a fictitious notch radius publication-title: Intern. J. fatigue – volume: 47 start-page: 673 year: 1994 end-page: 681 article-title: Brittle fracture criterion for structures with sharp notches publication-title: Eng. Fract. Mech. – volume: 39 start-page: 649 year: 2007 end-page: 663 article-title: Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots publication-title: Computat. Mater. Sci. – volume: 38 start-page: 1118 year: 2015 end-page: 1135 article-title: An extrapolation method to determine the effective notch stress in welded joints publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 51 start-page: 105 year: 2013 end-page: 115 article-title: Generalised Neuber concept of fictitious notch rounding publication-title: Intern. J. Fatigue – year: 2013 – volume: 51 start-page: 935 year: 2013 end-page: 942 article-title: Fatigue life of steel notched elements including the complex stress state publication-title: Mater. Design – ident: e_1_2_8_22_1 doi: 10.1111/ffe.12231 – ident: e_1_2_8_25_1 doi: 10.1016/j.ijfatigue.2013.01.005 – ident: e_1_2_8_4_1 doi: 10.1016/j.engfracmech.2007.01.020 – ident: e_1_2_8_35_1 doi: 10.1007/s10704-013-9924-2 – volume: 7 start-page: 245 year: 1968 ident: e_1_2_8_14_1 article-title: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen publication-title: Konstruktion im Maschinen‐Apparatte und Gerätebau, Heft contributor: fullname: Neuber H. – ident: e_1_2_8_38_1 doi: 10.1016/S0142-1123(01)00051-2 – ident: e_1_2_8_32_1 doi: 10.1016/0013-7944(94)90158-9 – ident: e_1_2_8_36_1 doi: 10.1016/S0142-1123(99)00046-8 – ident: e_1_2_8_27_1 doi: 10.1016/j.matdes.2015.10.036 – ident: e_1_2_8_39_1 doi: 10.1016/j.ijfatigue.2011.05.003 – ident: e_1_2_8_20_1 doi: 10.1111/ffe.12216 – ident: e_1_2_8_21_1 doi: 10.1111/ffe.12307 – ident: e_1_2_8_28_1 doi: 10.4028/www.scientific.net/MSF.726.27 – ident: e_1_2_8_16_1 doi: 10.1016/j.engfailanal.2013.06.012 – ident: e_1_2_8_19_1 doi: 10.1111/ffe.12294 – ident: e_1_2_8_23_1 doi: 10.1111/ffe.12186 – volume-title: The Theory of Critical Distances: A New Perspective in Fracture Mechanics year: 2010 ident: e_1_2_8_2_1 contributor: fullname: Taylor D. – ident: e_1_2_8_40_1 doi: 10.1016/j.matdes.2013.04.087 – ident: e_1_2_8_3_1 doi: 10.1016/j.engfracmech.2006.06.009 – ident: e_1_2_8_5_1 – volume: 52 start-page: 297 year: 2013 ident: e_1_2_8_15_1 article-title: Modelling of stress gradient effect on fatigue life using Weibull based distribution function publication-title: J. Theor. Appl. Mech. contributor: fullname: Karolczuk A. – ident: e_1_2_8_7_1 doi: 10.1016/j.ijfatigue.2011.01.012 – ident: e_1_2_8_37_1 doi: 10.1016/j.commatsci.2006.08.017 – ident: e_1_2_8_18_1 doi: 10.1016/S0142-1123(03)00143-9 – ident: e_1_2_8_30_1 doi: 10.1007/978-94-010-0880-8 – ident: e_1_2_8_41_1 – ident: e_1_2_8_17_1 doi: 10.1016/j.commatsci.2008.04.005 – ident: e_1_2_8_24_1 doi: 10.1111/ffe.12164 – ident: e_1_2_8_31_1 doi: 10.1016/0022-5096(73)90008-2 – ident: e_1_2_8_10_1 doi: 10.1111/j.1460-2695.2006.01084.x – ident: e_1_2_8_34_1 doi: 10.1115/1.4011547 – volume-title: Fracture and Fatigue Emanating from stress concentrators year: 2003 ident: e_1_2_8_12_1 contributor: fullname: Pluvinage G. – ident: e_1_2_8_33_1 doi: 10.1016/j.engfracmech.2004.01.002 – ident: e_1_2_8_11_1 doi: 10.1111/ffe.12342 – ident: e_1_2_8_26_1 doi: 10.1111/ffe.12276 – ident: e_1_2_8_9_1 doi: 10.1111/ffe.12379 – ident: e_1_2_8_13_1 doi: 10.1007/978-3-642-30740-9 – ident: e_1_2_8_29_1 doi: 10.1016/j.ijfatigue.2013.12.004 – ident: e_1_2_8_8_1 doi: 10.1111/ffe.12272 – ident: e_1_2_8_6_1 doi: 10.1016/j.engfracmech.2006.12.004 |
SSID | ssj0016433 |
Score | 2.249563 |
Snippet | The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an... Abstract The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of... The paper presents a non-local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 89 |
SubjectTerms | critical plane effective length effective stress distribution Equivalence Fatigue (materials) Fatigue life Finite element analysis Mathematical models non‐local methods notch effect Notches Planes Shear stress Simulation stress gradient Structural steels Weight function |
Title | Non‐local line method for notched elements with use of effective length calculated in an elasto‐plastic condition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.12478 https://www.proquest.com/docview/1844872184 https://search.proquest.com/docview/1879989913 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WT3rwLa4vonjw0qVN0qSLJ1GXRdCDKOxBKEmTgAituNuLJ3-Cv9Ff4iTdrqsgiLfS5tF0MpPvSyczAMeSC2p0mkbMORpxnhaRUiyJpNPIWYzoy5Bs4vpGDO_51SgddeC0PQvTxIeYbbh5zQj22iu40uM5JXfO9nBxkv6gb8Kkd-e6uJ2FjkIWENLIIxwXEWLi0TSqkPfimdX8vhZ9Acx5mBrWmcEKPLRv2LiXPPXqie4Vrz-CN_5zCKuwPMWf5KyZMGvQseU6LM1FJdyA-qYqP97ewypHfCekSTNNEN-SsvJiNsQ2budj4jdyST22pHKkcQ5B-0l8fha8jy14P1dEteSxJKrEagrRJrb-7C8eC4J03ASvsU24H1zenQ-jaXaGqGAsziLddzRB8JSh0YiN05rxQgieGKozpqVhtJBccYsWgQsXc0X73NAiEUYophAWbcFCWZV2G4hxCFxUFhtpkW8qrrI0xqllU21Taou0C0etnPLnJghH3pIXHFgevmEX9loJ5lM9HOfIX5GReRrbhcPZY9Qg_1tElbaqfRmJnBNxMuvCSRDX753kg8FluNj5e9FdWKQeC4R9mz1YmLzUdh-RzEQfhCn7CQnd8bw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwEB51u4fdPfCzgChbwCAOXFKltuOkEhcEVF1oe0Ag9bKK7NiWEFJSbZsLJx6BZ-RJduw0payEtNqblfgnjj0z3-dMZgBOYi6oVlEUMGtpwHmUBVKybhBbhZxFi17sk02MxmJwz68n0aQBZ_W_MFV8iOWBm5MMr6-dgLsD6RUpt9Z00DrFySf4jOLOXOKGy9tl8CjkAT6RPAJyESAqniziCjk_nmXT99boDWKuAlVvafrr8Kt-xsrB5LFTzlUne_orfOP_TmID1hYQlJxXe2YTGib_Dt9WAhNuQTku8tfnF2_oiBuFVJmmCUJckhdupTUxlef5jLizXFLODCksqfxDUIUSl6IFr2MPztUVgS15yInMsZlEwIm9T13hISPIyLV3HNuG-_7V3cUgWCRoCDLGwiRQPUu7iJ8S1BuhtkoxngnBu5qqhKlYM5rFXHKDSoELG3JJe1zTrCu0kEwiMtqBZl7kZheItohdZBLq2CDllFwmUYi7y0TKRNRkUQuO64VKp1UcjrTmLzix1L_DFrTrJUwXojhLkcIiKXNMtgVHy9soRO7LiMxNUbo6MdJOhMqsBad-vT4eJO33r3xh79-rHsKXwd1omA5_jm9-wFfqoIE_xmlDc_67NPsIbObqwO_fPw9q9dQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB62CZTmkCZtQp1sG7Xk0IsXryTLXnIqyZpNmy6lNLCHgJEsCULBXrLrS055hDxjnyQj2d5uA4HQm7D1Y3k0o--TxzMAxwkXVKs4Dpm1NOQ8LkIp2TBMrELOosUo8ckmvk_F5JJ_ncWzHpx0_8I08SFWB25OM7y9dgo-13ZNya01A9yckvQFbHKByNchop-r2FFIA3weecTjIkRQPGvDCjk3nlXTfzejvwhzHaf6jSZ7DVfdIzb-Jb8H9VINittH0Rv_cw47sN0CUPKlWTG70DPlG9haC0v4FuppVf65u_fbHHGDkCbPNEGAS8rKyVkT0_idL4g7ySX1wpDKksY7BA0ocQla8Dr24BxdEdaS65LIEptJhJvY-9wVrguCfFx7t7E9uMzGv04nYZueISwYi9JQjSwdInpK0WpE2irFeCEEH2qqUqYSzWiRcMkNmgQubMQlHXFNi6HQQjKJuGgfNsqqNO-AaIvIRaaRTgwSTsllGke4tkysTExNEQfwqZNTPm-icOQde8GJ5f4dBtDvJJi3irjIkcAiJXM8NoCPq9uoQu67iCxNVbs6CZJOBMosgM9eXE8PkmfZ2BcOnl_1CF7-OMvyi_Ppt0N4RR0u8Gc4fdhY3tTmPaKapfrgV-8DQ5n0gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-local+line+method+for+notched+elements+with+use+of+effective+length+calculated+in+an+elasto-plastic+condition&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Krzyak%2C+D&rft.au=Robak%2C+G&rft.au=agoda%2C+T&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=40&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1111%2Fffe.12478&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4266281981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon |