Non‐local line method for notched elements with use of effective length calculated in an elasto‐plastic condition

The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 40; no. 1; pp. 89 - 102
Main Authors Krzyżak, D., Robak, G., Łagoda, T.
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM‐T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1 mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi‐linear hardening. Non‐local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined.
AbstractList Abstract The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM‐T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1 mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi‐linear hardening. Non‐local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined.
The paper presents a non-local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM-T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi-linear hardening. Non-local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined.
The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an effective length which determines the size of the equivalent fatigue zone. Effective values of normal stress calculated in the critical plane with a weight function were applied when determining the equivalent fatigue zone. Simulation studies were performed for two types of steel and two types of loading. Five different series of tests and simulations were used. Experimental studies were carried out for 40 HM‐T and EA4T steels. These materials are used in railway industry, including the manufacturing of coupling bars. The notched test specimens contained notches with a tip radius of 0.2, 0.5, 0.8 and 1 mm. Stress calculations were performed using the finite element method by adopting cyclic material properties described by the model of a multi‐linear hardening. Non‐local calculations were performed in a defined critical plane for normal stress distribution and a weight function. As a result, the function of variation of the effective length depending on the loading level and geometry of the notch has been determined.
Author Krzyżak, D.
Robak, G.
Łagoda, T.
Author_xml – sequence: 1
  givenname: D.
  surname: Krzyżak
  fullname: Krzyżak, D.
  organization: Opole University of Technology
– sequence: 2
  givenname: G.
  surname: Robak
  fullname: Robak, G.
  email: g.robak@po.opole.pl
  organization: Opole University of Technology
– sequence: 3
  givenname: T.
  surname: Łagoda
  fullname: Łagoda, T.
  organization: Opole University of Technology
BookMark eNp1kUtOHDEQhq2ISBlIFrmBJTZh0eDX-LFEiAlIiGwSKbuW213OGHnsoe0Omh1H4Iw5SQzDConaVKn0_X-Vqg7RQcoJEPpKySltceY9nFImlP6AFlRI0jFplgdoodVSdmqpf39Ch6XcEUKl4HyB5tuc_j0-xexsxDEkwBuo6zxinyeccnVrGDFE2ECqBT-EusZzAZw9hjbK1fAXcIT0p_Wbg5ujrU0QErapyWypublvn4vgsMtpDDXk9Bl99DYW-PKaj9Cv1eXPi6vu5sf364vzm85xTnQ3GM-oZFwTRcjoh4ELJ6WgIxs0H9TImVPCClBaCemJsMyIkTkqR2m5NYYfoW973-2U72cotd-E4iBGmyDPpadaGaONobyhx2_QuzxPqW3XKCG0Yi016mRPuSmXMoHvt1PY2GnXU9I_P6BvV-lfHtDYsz37ECLs3gf71epyr_gPnFmLNA
CitedBy_id crossref_primary_10_1111_ffe_13280
crossref_primary_10_1016_j_ijfatigue_2017_09_007
crossref_primary_10_1016_j_ijfatigue_2024_108239
crossref_primary_10_1016_j_ijfatigue_2018_04_003
crossref_primary_10_2478_pomr_2018_0015
crossref_primary_10_1016_j_ijfatigue_2020_105541
crossref_primary_10_1016_j_prostr_2019_07_043
crossref_primary_10_1111_ffe_13166
crossref_primary_10_1016_j_ijfatigue_2019_04_032
Cites_doi 10.1111/ffe.12231
10.1016/j.ijfatigue.2013.01.005
10.1016/j.engfracmech.2007.01.020
10.1007/s10704-013-9924-2
10.1016/S0142-1123(01)00051-2
10.1016/0013-7944(94)90158-9
10.1016/S0142-1123(99)00046-8
10.1016/j.matdes.2015.10.036
10.1016/j.ijfatigue.2011.05.003
10.1111/ffe.12216
10.1111/ffe.12307
10.4028/www.scientific.net/MSF.726.27
10.1016/j.engfailanal.2013.06.012
10.1111/ffe.12294
10.1111/ffe.12186
10.1016/j.matdes.2013.04.087
10.1016/j.engfracmech.2006.06.009
10.1016/j.ijfatigue.2011.01.012
10.1016/j.commatsci.2006.08.017
10.1016/S0142-1123(03)00143-9
10.1007/978-94-010-0880-8
10.1016/j.commatsci.2008.04.005
10.1111/ffe.12164
10.1016/0022-5096(73)90008-2
10.1111/j.1460-2695.2006.01084.x
10.1115/1.4011547
10.1016/j.engfracmech.2004.01.002
10.1111/ffe.12342
10.1111/ffe.12276
10.1111/ffe.12379
10.1007/978-3-642-30740-9
10.1016/j.ijfatigue.2013.12.004
10.1111/ffe.12272
10.1016/j.engfracmech.2006.12.004
ContentType Journal Article
Copyright 2016 Wiley Publishing Ltd.
2017 Wiley Publishing Ltd.
Copyright_xml – notice: 2016 Wiley Publishing Ltd.
– notice: 2017 Wiley Publishing Ltd.
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/ffe.12478
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 102
ExternalDocumentID 4266281981
10_1111_ffe_12478
FFE12478
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c3308-b9f2162380700dfbb34c6641d2b83b7d32c74a4e78746f04a294d2c16d6a3a993
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Fri Aug 16 00:19:20 EDT 2024
Thu Oct 10 20:21:09 EDT 2024
Fri Aug 23 01:45:23 EDT 2024
Sat Aug 24 00:51:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-b9f2162380700dfbb34c6641d2b83b7d32c74a4e78746f04a294d2c16d6a3a993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1844872184
PQPubID 45644
PageCount 14
ParticipantIDs proquest_miscellaneous_1879989913
proquest_journals_1844872184
crossref_primary_10_1111_ffe_12478
wiley_primary_10_1111_ffe_12478_FFE12478
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1968; 7
2007; 39
2015; 38
2012
2010
2004; 26
1952
2011; 33
1994; 47
1999; 21
2003
2007; 74
2008; 75
2007; 30
2016; 39
2001; 23
2014; 61
2004; 71
2001
1973; 21
2013; 35
2013; 51
2013; 52
2014; 37
2008; 44
2014
2013
2014; 187
2016; 89
1957; 24
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Pluvinage G. (e_1_2_8_12_1) 2003
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Karolczuk A. (e_1_2_8_15_1) 2013; 52
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
Neuber H. (e_1_2_8_14_1) 1968; 7
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Taylor D. (e_1_2_8_2_1) 2010
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – start-page: 27
  year: 2012
  end-page: 32
– volume: 30
  start-page: 95
  year: 2007
  end-page: 106
  article-title: Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V‐notched components
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 75
  start-page: 1804
  year: 2008
  end-page: 1814
  article-title: An implicit gradient application to fatigue of complex structures
  publication-title: Eng. Fract. Mech.
– volume: 71
  start-page: 2407
  year: 2004
  end-page: 2416
  article-title: Predicting the fracture strength of ceramic materials using the theory of critical distances
  publication-title: Eng. Fract. Mech.
– volume: 38
  start-page: 1419
  year: 2015
  end-page: 1431
  article-title: Fatigue strength assessment of partial and full‐penetration steel and aluminium butt‐welded joints according to the peak stress method
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 21
  start-page: 753
  year: 1999
  end-page: 760
  article-title: Application of a new model proposal for fatigue life prediction on notches and key‐seats
  publication-title: Intern. J. Fatigue
– volume: 21
  start-page: 395
  year: 1973
  end-page: 410
  article-title: On the relationship between critical tensile stress and fracture toughness in mild steel
  publication-title: J. Mech. Phys. Solids
– volume: 38
  start-page: 503
  year: 2015
  end-page: 517
  article-title: Fatigue strength of severely notched specimens made of Ti–6Al–4 V under multiaxial loading
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 61
  start-page: 59
  year: 2014
  end-page: 66
  article-title: Fatigue life estimation of notched elements with use of non‐local volumetric method
  publication-title: Intern. J. Fatigue
– volume: 38
  start-page: 2
  year: 2015
  end-page: 28
  article-title: State‐of‐the‐art review on the local strain energy density concept and its relation to the ‐integral and peak stress method
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– year: 2001
– volume: 75
  start-page: 1706
  year: 2008
  end-page: 1724
  article-title: The theory of critical distances: a review of its applications in fatigue
  publication-title: Eng. Fract. Mech.
– year: 2003
– volume: 24
  start-page: 361
  year: 1957
  end-page: 364
  article-title: Analysis of stresses and strains near the end of a crack traversing a plate
  publication-title: J. Appl. Mech.
– volume: 33
  start-page: 1376
  year: 2011
  end-page: 1383
  article-title: Fatigue life estimation under variable amplitude bending using the non‐local damage parameter and multisurface plasticity model
  publication-title: Intern. J. Fatigue
– volume: 37
  start-page: 740
  year: 2014
  end-page: 750
  article-title: Notch stress and fracture mechanics based assessment of fatigue of seam weld ends under shear loading
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 37
  start-page: 782
  issue: 7
  year: 2014
  end-page: 799
  article-title: Fatigue assessment of thin‐welded joints with pronounced terminations
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 33
  start-page: 900
  year: 2011
  end-page: 911
  article-title: The theory of critical distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading
  publication-title: Intern. J. Fatigue
– volume: 7
  start-page: 245
  year: 1968
  end-page: 251
  article-title: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen
  publication-title: Konstruktion im Maschinen‐Apparatte und Gerätebau, Heft
– volume: 38
  start-page: 860
  year: 2015
  end-page: 869
  article-title: Effect of vertex singularities on stress intensities near plate free surfaces
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 38
  start-page: 190
  year: 2015
  end-page: 199
  article-title: Implicit gradient and integral average effective stresses: relationships and numerical approximations
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 44
  start-page: 464
  year: 2008
  end-page: 475
  article-title: Non‐local stress gradient approach for multiaxial fatigue of defective material
  publication-title: Computat. Mater. Sci.
– volume: 187
  start-page: 187
  year: 2014
  end-page: 197
  article-title: On characteristic lengths used in notch fracture mechanics
  publication-title: Intern. J. Fract.
– volume: 38
  start-page: 693
  year: 2015
  end-page: 699
  article-title: Determining fatigue life of bent and tensioned elements with a notch, with use of fictitious radius
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– year: 1952
– year: 2014
– volume: 74
  start-page: 515
  year: 2007
  end-page: 526
  article-title: An implicit gradient application to fatigue of sharp notches and weldments
  publication-title: Eng. Fract. Mech.
– year: 2010
– volume: 89
  start-page: 913
  year: 2016
  end-page: 927
  article-title: Tilted lateral V‐notches with root hole subjected to in‐plane mixed mode loading: fictitious notch rounding concept
  publication-title: Mater. Design
– volume: 39
  start-page: 267
  year: 2016
  end-page: 291
  article-title: Brittle fracture assessment of engineering components in the presence of notches: a review
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 35
  start-page: 665
  year: 2013
  end-page: 677
  article-title: Application of the weakest link analysis to the area of fatigue design of steel welded joints
  publication-title: Eng. Failure Analy.
– volume: 23
  start-page: 903
  year: 2001
  end-page: 910
  article-title: Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading
  publication-title: Intern. J. Fatigue
– volume: 52
  start-page: 297
  year: 2013
  end-page: 311
  article-title: Modelling of stress gradient effect on fatigue life using Weibull based distribution function
  publication-title: J. Theor. Appl. Mech.
– volume: 26
  start-page: 265
  year: 2004
  end-page: 279
  article-title: Assessment of multiaxial fatigue behaviour of welded joints under combined bending and torsion by application of a fictitious notch radius
  publication-title: Intern. J. fatigue
– volume: 47
  start-page: 673
  year: 1994
  end-page: 681
  article-title: Brittle fracture criterion for structures with sharp notches
  publication-title: Eng. Fract. Mech.
– volume: 39
  start-page: 649
  year: 2007
  end-page: 663
  article-title: Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots
  publication-title: Computat. Mater. Sci.
– volume: 38
  start-page: 1118
  year: 2015
  end-page: 1135
  article-title: An extrapolation method to determine the effective notch stress in welded joints
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 51
  start-page: 105
  year: 2013
  end-page: 115
  article-title: Generalised Neuber concept of fictitious notch rounding
  publication-title: Intern. J. Fatigue
– year: 2013
– volume: 51
  start-page: 935
  year: 2013
  end-page: 942
  article-title: Fatigue life of steel notched elements including the complex stress state
  publication-title: Mater. Design
– ident: e_1_2_8_22_1
  doi: 10.1111/ffe.12231
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ijfatigue.2013.01.005
– ident: e_1_2_8_4_1
  doi: 10.1016/j.engfracmech.2007.01.020
– ident: e_1_2_8_35_1
  doi: 10.1007/s10704-013-9924-2
– volume: 7
  start-page: 245
  year: 1968
  ident: e_1_2_8_14_1
  article-title: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen
  publication-title: Konstruktion im Maschinen‐Apparatte und Gerätebau, Heft
  contributor:
    fullname: Neuber H.
– ident: e_1_2_8_38_1
  doi: 10.1016/S0142-1123(01)00051-2
– ident: e_1_2_8_32_1
  doi: 10.1016/0013-7944(94)90158-9
– ident: e_1_2_8_36_1
  doi: 10.1016/S0142-1123(99)00046-8
– ident: e_1_2_8_27_1
  doi: 10.1016/j.matdes.2015.10.036
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ijfatigue.2011.05.003
– ident: e_1_2_8_20_1
  doi: 10.1111/ffe.12216
– ident: e_1_2_8_21_1
  doi: 10.1111/ffe.12307
– ident: e_1_2_8_28_1
  doi: 10.4028/www.scientific.net/MSF.726.27
– ident: e_1_2_8_16_1
  doi: 10.1016/j.engfailanal.2013.06.012
– ident: e_1_2_8_19_1
  doi: 10.1111/ffe.12294
– ident: e_1_2_8_23_1
  doi: 10.1111/ffe.12186
– volume-title: The Theory of Critical Distances: A New Perspective in Fracture Mechanics
  year: 2010
  ident: e_1_2_8_2_1
  contributor:
    fullname: Taylor D.
– ident: e_1_2_8_40_1
  doi: 10.1016/j.matdes.2013.04.087
– ident: e_1_2_8_3_1
  doi: 10.1016/j.engfracmech.2006.06.009
– ident: e_1_2_8_5_1
– volume: 52
  start-page: 297
  year: 2013
  ident: e_1_2_8_15_1
  article-title: Modelling of stress gradient effect on fatigue life using Weibull based distribution function
  publication-title: J. Theor. Appl. Mech.
  contributor:
    fullname: Karolczuk A.
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ijfatigue.2011.01.012
– ident: e_1_2_8_37_1
  doi: 10.1016/j.commatsci.2006.08.017
– ident: e_1_2_8_18_1
  doi: 10.1016/S0142-1123(03)00143-9
– ident: e_1_2_8_30_1
  doi: 10.1007/978-94-010-0880-8
– ident: e_1_2_8_41_1
– ident: e_1_2_8_17_1
  doi: 10.1016/j.commatsci.2008.04.005
– ident: e_1_2_8_24_1
  doi: 10.1111/ffe.12164
– ident: e_1_2_8_31_1
  doi: 10.1016/0022-5096(73)90008-2
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1460-2695.2006.01084.x
– ident: e_1_2_8_34_1
  doi: 10.1115/1.4011547
– volume-title: Fracture and Fatigue Emanating from stress concentrators
  year: 2003
  ident: e_1_2_8_12_1
  contributor:
    fullname: Pluvinage G.
– ident: e_1_2_8_33_1
  doi: 10.1016/j.engfracmech.2004.01.002
– ident: e_1_2_8_11_1
  doi: 10.1111/ffe.12342
– ident: e_1_2_8_26_1
  doi: 10.1111/ffe.12276
– ident: e_1_2_8_9_1
  doi: 10.1111/ffe.12379
– ident: e_1_2_8_13_1
  doi: 10.1007/978-3-642-30740-9
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ijfatigue.2013.12.004
– ident: e_1_2_8_8_1
  doi: 10.1111/ffe.12272
– ident: e_1_2_8_6_1
  doi: 10.1016/j.engfracmech.2006.12.004
SSID ssj0016433
Score 2.249563
Snippet The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an...
Abstract The paper presents a non‐local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of...
The paper presents a non-local line method used to the fatigue life calculation of notched elements. The presented method is based on the concept of an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 89
SubjectTerms critical plane
effective length
effective stress distribution
Equivalence
Fatigue (materials)
Fatigue life
Finite element analysis
Mathematical models
non‐local methods
notch effect
Notches
Planes
Shear stress
Simulation
stress gradient
Structural steels
Weight function
Title Non‐local line method for notched elements with use of effective length calculated in an elasto‐plastic condition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.12478
https://www.proquest.com/docview/1844872184
https://search.proquest.com/docview/1879989913
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WT3rwLa4vonjw0qVN0qSLJ1GXRdCDKOxBKEmTgAituNuLJ3-Cv9Ff4iTdrqsgiLfS5tF0MpPvSyczAMeSC2p0mkbMORpxnhaRUiyJpNPIWYzoy5Bs4vpGDO_51SgddeC0PQvTxIeYbbh5zQj22iu40uM5JXfO9nBxkv6gb8Kkd-e6uJ2FjkIWENLIIxwXEWLi0TSqkPfimdX8vhZ9Acx5mBrWmcEKPLRv2LiXPPXqie4Vrz-CN_5zCKuwPMWf5KyZMGvQseU6LM1FJdyA-qYqP97ewypHfCekSTNNEN-SsvJiNsQ2budj4jdyST22pHKkcQ5B-0l8fha8jy14P1dEteSxJKrEagrRJrb-7C8eC4J03ASvsU24H1zenQ-jaXaGqGAsziLddzRB8JSh0YiN05rxQgieGKozpqVhtJBccYsWgQsXc0X73NAiEUYophAWbcFCWZV2G4hxCFxUFhtpkW8qrrI0xqllU21Taou0C0etnPLnJghH3pIXHFgevmEX9loJ5lM9HOfIX5GReRrbhcPZY9Qg_1tElbaqfRmJnBNxMuvCSRDX753kg8FluNj5e9FdWKQeC4R9mz1YmLzUdh-RzEQfhCn7CQnd8bw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwEB51u4fdPfCzgChbwCAOXFKltuOkEhcEVF1oe0Ag9bKK7NiWEFJSbZsLJx6BZ-RJduw0payEtNqblfgnjj0z3-dMZgBOYi6oVlEUMGtpwHmUBVKybhBbhZxFi17sk02MxmJwz68n0aQBZ_W_MFV8iOWBm5MMr6-dgLsD6RUpt9Z00DrFySf4jOLOXOKGy9tl8CjkAT6RPAJyESAqniziCjk_nmXT99boDWKuAlVvafrr8Kt-xsrB5LFTzlUne_orfOP_TmID1hYQlJxXe2YTGib_Dt9WAhNuQTku8tfnF2_oiBuFVJmmCUJckhdupTUxlef5jLizXFLODCksqfxDUIUSl6IFr2MPztUVgS15yInMsZlEwIm9T13hISPIyLV3HNuG-_7V3cUgWCRoCDLGwiRQPUu7iJ8S1BuhtkoxngnBu5qqhKlYM5rFXHKDSoELG3JJe1zTrCu0kEwiMtqBZl7kZheItohdZBLq2CDllFwmUYi7y0TKRNRkUQuO64VKp1UcjrTmLzix1L_DFrTrJUwXojhLkcIiKXNMtgVHy9soRO7LiMxNUbo6MdJOhMqsBad-vT4eJO33r3xh79-rHsKXwd1omA5_jm9-wFfqoIE_xmlDc_67NPsIbObqwO_fPw9q9dQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB62CZTmkCZtQp1sG7Xk0IsXryTLXnIqyZpNmy6lNLCHgJEsCULBXrLrS055hDxjnyQj2d5uA4HQm7D1Y3k0o--TxzMAxwkXVKs4Dpm1NOQ8LkIp2TBMrELOosUo8ckmvk_F5JJ_ncWzHpx0_8I08SFWB25OM7y9dgo-13ZNya01A9yckvQFbHKByNchop-r2FFIA3weecTjIkRQPGvDCjk3nlXTfzejvwhzHaf6jSZ7DVfdIzb-Jb8H9VINittH0Rv_cw47sN0CUPKlWTG70DPlG9haC0v4FuppVf65u_fbHHGDkCbPNEGAS8rKyVkT0_idL4g7ySX1wpDKksY7BA0ocQla8Dr24BxdEdaS65LIEptJhJvY-9wVrguCfFx7t7E9uMzGv04nYZueISwYi9JQjSwdInpK0WpE2irFeCEEH2qqUqYSzWiRcMkNmgQubMQlHXFNi6HQQjKJuGgfNsqqNO-AaIvIRaaRTgwSTsllGke4tkysTExNEQfwqZNTPm-icOQde8GJ5f4dBtDvJJi3irjIkcAiJXM8NoCPq9uoQu67iCxNVbs6CZJOBMosgM9eXE8PkmfZ2BcOnl_1CF7-OMvyi_Ppt0N4RR0u8Gc4fdhY3tTmPaKapfrgV-8DQ5n0gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-local+line+method+for+notched+elements+with+use+of+effective+length+calculated+in+an+elasto-plastic+condition&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Krzyak%2C+D&rft.au=Robak%2C+G&rft.au=agoda%2C+T&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=40&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1111%2Fffe.12478&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4266281981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon