Broad‐scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests
Aim Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nu...
Saved in:
Published in | Global ecology and biogeography Vol. 29; no. 12; pp. 2119 - 2130 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim
Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients.
Location
China’s forests.
Time period
2012−2013.
Major taxa studied
Diazotrophic communities.
Methods
We investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling.
Results
Overall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum.
Main conclusions
Our findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N2 fixation. |
---|---|
AbstractList | AIM: Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients. LOCATION: China’s forests. TIME PERIOD: 2012−2013. MAJOR TAXA STUDIED: Diazotrophic communities. METHODS: We investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling. RESULTS: Overall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum. MAIN CONCLUSIONS: Our findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N₂ fixation. Aim Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients. Location China’s forests. Time period 2012−2013. Major taxa studied Diazotrophic communities. Methods We investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling. Results Overall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum. Main conclusions Our findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N2 fixation. AimMany studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients.LocationChina’s forests.Time period2012−2013.Major taxa studiedDiazotrophic communities.MethodsWe investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling.ResultsOverall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum.Main conclusionsOur findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N2 fixation. |
Author | Soininen, Janne Wu, Yanhong Zhao, Wenqiang Bing, Haijian Liu, Qing Wang, Xiaohu Kou, Yongping |
Author_xml | – sequence: 1 givenname: Wenqiang orcidid: 0000-0002-7809-302X surname: Zhao fullname: Zhao, Wenqiang organization: Chinese Academy of Sciences – sequence: 2 givenname: Yongping surname: Kou fullname: Kou, Yongping organization: Chinese Academy of Sciences – sequence: 3 givenname: Xiaohu surname: Wang fullname: Wang, Xiaohu organization: Chinese Academy of Sciences – sequence: 4 givenname: Yanhong surname: Wu fullname: Wu, Yanhong organization: Chinese Academy of Sciences – sequence: 5 givenname: Haijian surname: Bing fullname: Bing, Haijian organization: Chinese Academy of Sciences – sequence: 6 givenname: Qing orcidid: 0000-0002-7046-0307 surname: Liu fullname: Liu, Qing email: liuqing@cib.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Janne surname: Soininen fullname: Soininen, Janne |
BookMark | eNp1kb1OHDEUhS1EJH6SIm9gKU1SLHh-7PWUgAggIdEEiW7kse-Ei2bsxfaQbCoegYYX5Em4u4tSoMSNbek75x777LFtHzww9rkQBwWtw5_QHRRVMddbbLeolZrpstLbf8_lzQ7bS-lOCCFrqXbZ83EMxr08PiVrBuAOU47YTRmD56Gnu_kTcgyLW7TchnGcPGaExDFxF_EBPB9DBN4tuYnoMC85ege_ufGOZxgXEE2eCMi3xq-oFHDgCzKEuPYxNoaU-AOpw5R4T2Ypp4_sQ2-GBJ_e9n12_f30x8n57PLq7OLk6HJmq0romYFSms7C3DqppO6tBqk6LbS2QikApStbGSFdI6EnqnfzogEt-1qWXUMe--zrxpcS3U80uR0xWRgG44HitGXd6FI3haoJ_fIOvQtT9JSOKFXqUs4rSdThhlo_K0LfWsxm9Zs5GhzaQrSrmlqqqV3XRIpv7xSLiKOJy3-yb-6_cIDl_8H27PR4o3gFgheo_Q |
CitedBy_id | crossref_primary_10_32604_phyton_2022_016117 crossref_primary_10_1002_imt2_81 crossref_primary_10_1007_s11104_023_06205_1 crossref_primary_10_1016_j_envres_2022_113033 crossref_primary_10_1016_j_geoderma_2023_116410 crossref_primary_10_1088_1748_9326_ad6ea6 crossref_primary_10_1128_msystems_01309_21 crossref_primary_10_1016_j_apsoil_2023_104860 crossref_primary_10_1016_j_apsoil_2024_105678 crossref_primary_10_3389_fmicb_2024_1414724 crossref_primary_10_1016_j_foreco_2021_119464 crossref_primary_10_1128_aem_01093_23 crossref_primary_10_1016_j_rhisph_2022_100483 crossref_primary_10_1016_j_scitotenv_2021_148848 crossref_primary_10_1016_j_catena_2024_108600 crossref_primary_10_1016_j_pedsph_2022_07_007 crossref_primary_10_1016_j_ejsobi_2023_103541 crossref_primary_10_1007_s11104_022_05813_7 crossref_primary_10_1111_1365_2435_14472 crossref_primary_10_1016_j_pedsph_2023_12_016 crossref_primary_10_3389_fpls_2023_1100235 crossref_primary_10_1111_geb_13362 crossref_primary_10_1128_msystems_01042_23 |
Cites_doi | 10.1007/s11104-013-1902-y 10.1128/AEM.02362-13 10.1093/femsec/fiv052 10.1016/j.soilbio.2018.02.012 10.1146/annurev-ecolsys-102710-145034 10.3389/fmicb.2012.00150 10.1111/j.1462-2920.2006.00992.x 10.1111/nph.14606 10.1007/s11104-016-3077-9 10.1038/nmeth.f.303 10.1038/s41396-018-0259-x 10.1073/pnas.1913314116 10.1016/j.soilbio.2014.09.017 10.1016/j.soilbio.2017.09.024 10.1016/j.soilbio.2017.04.005 10.1111/j.1462-2920.2012.02844.x 10.1111/nph.15161 10.1128/AEM.02292-12 10.1111/j.1574-6976.2000.tb00552.x 10.1128/AEM.01250-10 10.1016/j.apsoil.2018.12.014 10.1038/ismej.2015.116 10.1111/1462-2920.12423 10.1016/j.soilbio.2012.01.019 10.1111/1365-2435.12952 10.1016/j.soilbio.2016.11.011 10.1016/j.scitotenv.2018.05.238 10.1111/gcb.12967 10.1073/pnas.0610671104 10.1007/s004420100716 10.1016/j.dsr2.2014.11.012 10.1007/s00253-018-9466-7 10.1111/mec.13651 10.1128/AEM.68.10.5181-5185.2002 10.1038/ngeo366 10.1371/journal.pone.0033710 10.1093/femsec/fiz113 10.1098/rstb.2013.0119 10.1007/s10533-017-0341-x 10.1038/ismej.2016.17 10.1111/geb.12917 10.1890/08-0575.1 10.1111/nph.15355 10.1007/s00442-010-1649-6 10.3389/fmicb.2015.01097 10.1111/j.1462-2920.2011.02488.x 10.1016/j.soilbio.2010.06.015 10.1016/j.soilbio.2018.08.021 10.1038/s41396-018-0103-3 10.1016/j.agee.2017.06.009 10.1073/pnas.1016308108 10.1111/nph.14905 10.1038/ismej.2008.82 10.1016/j.foreco.2007.10.026 10.1111/ele.12240 10.1007/s10533-020-00666-7 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.13178 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 2130 |
ExternalDocumentID | 10_1111_geb_13178 GEB13178 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31870607 – fundername: National Key Research and Development Program of China funderid: 2017YFC0505000 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2019363; 2017424 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA20020401 – fundername: Sichuan Science and Technology Program funderid: 2018SZ0330; 18ZDYF0307 – fundername: West Light Foundation of the Chinese Academy of Sciences funderid: Y8C2041100 |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAYXX ABSQW AEYWJ AGHNM AGQPQ AGUYK AGYGG CITATION 7QG 7SN 7SS 7ST 7U6 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c3308-ae25abce7cd5658fc8e56b8088c066ee683c3a05d95efe7cfd719e85f452b9c33 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:36:41 EDT 2025 Fri Jul 25 22:35:24 EDT 2025 Thu Apr 24 23:08:51 EDT 2025 Tue Jul 01 02:37:34 EDT 2025 Wed Jan 22 16:31:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3308-ae25abce7cd5658fc8e56b8088c066ee683c3a05d95efe7cfd719e85f452b9c33 |
Notes | Wenqiang Zhao and Yongping Kou contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7809-302X 0000-0002-7046-0307 |
PQID | 2462825735 |
PQPubID | 1066347 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2498289164 proquest_journals_2462825735 crossref_citationtrail_10_1111_geb_13178 crossref_primary_10_1111_geb_13178 wiley_primary_10_1111_geb_13178_GEB13178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2007; 104 2019; 95 2019; 13 2013; 368 2018; 126 2011; 13 2015; 80 2017; 111 2014; 374 2017; 115 2013; 15 2018; 217 2009; 90 2014; 16 2019; 28 2019; 116 2018; 219 1982 2015; 91 2014; 17 2018; 32 2010; 7 2017; 247 2015; 6 2006; 55 2000; 24 2016; 10 2020; 149 2006; 8 2011; 77 2019; 103 2010; 164 2001; 129 2017; 134 2017; 412 2019; 221 2017; 215 2017; 109 2010; 42 2011; 108 2014; 80 2012; 3 2015; 116 2013; 79 2002; 68 2011; 42 2019; 136 2018; 639 2012; 48 2013 2009; 3 2018; 12 2008; 255 2009; 2 2012; 7 2016; 25 2016; 22 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Sanchez G. (e_1_2_9_45_1) 2013 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 Pandey M. (e_1_2_9_36_1) 2006; 55 e_1_2_9_53_1 Postgate J. R. (e_1_2_9_39_1) 1982 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 79 start-page: 701 year: 2013 end-page: 706 article-title: Environmental transcription of by methane‐oxidizing in a subarctic Palsa peatland publication-title: Applied and Environmental Microbiology – volume: 126 start-page: 151 year: 2018 end-page: 158 article-title: Long‐term fertilization influences community assembly processes of soil diazotrophs publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 1790 year: 2011 end-page: 1799 article-title: A global census of nitrogenase diversity publication-title: Environmental Microbiology – volume: 120 start-page: 230 year: 2018 end-page: 232 article-title: Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs publication-title: Soil Biology and Biochemistry – volume: 104 start-page: 2761 year: 2007 end-page: 2766 article-title: Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem publication-title: Proceedings of the National Academy of Sciences USA – volume: 115 start-page: 547 year: 2017 end-page: 555 article-title: Soil pH is a major driver of soil diazotrophic community assembly in Qinghai‐Tibet alpine meadows publication-title: Soil Biology and Biochemistry – volume: 149 start-page: 53 year: 2020 end-page: 73 article-title: Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review publication-title: Biogeochemistry – volume: 10 start-page: 2198 year: 2016 end-page: 2208 article-title: Seasonal variation in abundance and expression of cyanobacterial communities associated with boreal feather mosses publication-title: The ISME Journal – volume: 215 start-page: 756 year: 2017 end-page: 765 article-title: Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity publication-title: New Phytologist – volume: 17 start-page: 401 year: 2014 end-page: 413 article-title: When should species richness be energy limited, and how would we know? publication-title: Ecology Letters – volume: 164 start-page: 521 year: 2010 end-page: 531 article-title: Microbial community shifts influence patterns in tropical forest nitrogen fixation publication-title: Oecologia – volume: 116 start-page: 24682 year: 2019 end-page: 24688 article-title: Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests publication-title: Proceedings of the National Academy of Sciences USA – volume: 10 start-page: 346 year: 2016 end-page: 362 article-title: Tree diversity and species identity effects on soil fungi, protists and animals are context dependent publication-title: The ISME Journal – volume: 217 start-page: 1050 year: 2018 end-page: 1061 article-title: Nutrient limitation of terrestrial free‐living nitrogen fixation publication-title: New Phytologist – volume: 13 start-page: 170 year: 2019 end-page: 182 article-title: Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre publication-title: The ISME Journal – volume: 368 start-page: 20130119 year: 2013 article-title: Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems publication-title: Philosophical Transactions of The Royal Society B: Biological Sciences – volume: 22 start-page: 164 year: 2016 end-page: 179 article-title: Impact of nitrogen deposition on forest and lake food webs in nitrogen‐limited environments publication-title: Global Change Biology – volume: 134 start-page: 41 year: 2017 end-page: 55 article-title: Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests publication-title: Biogeochemistry – volume: 6 start-page: 1097 year: 2015 article-title: Nutrient‐cycling microbes in coastal Douglas‐fir forests: regional‐scale correlation between communities, climate, and other factors publication-title: Frontiers of Microbiology – year: 1982 – volume: 7 year: 2012 article-title: Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests publication-title: PLoS ONE – volume: 12 start-page: 1404 year: 2018 end-page: 1413 article-title: Why do microbes exhibit weak biogeographic patterns? publication-title: The ISME Journal – volume: 221 start-page: 123 year: 2019 end-page: 141 article-title: Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient publication-title: New Phytologist – volume: 412 start-page: 345 year: 2017 end-page: 355 article-title: Controls over leaf litter decomposition in a mixed evergreen and deciduous broad‐leaved forest, Central China publication-title: Plant and Soil – volume: 129 start-page: 271 year: 2001 end-page: 280 article-title: Ecologically meaningful transformations for ordination of species data publication-title: Oecologia – volume: 255 start-page: 1210 year: 2008 end-page: 1218 article-title: Comparisons of litterfall, litter decomposition and nutrient return in a monoculture and a mixed stand in southern China publication-title: Forest Ecology and Management – volume: 77 start-page: 911 year: 2011 end-page: 919 article-title: Diversity and activity of free‐living nitrogen‐fixing bacteria and total bacteria in organic and conventionally managed soils publication-title: Applied and Environmental Microbiology – volume: 3 start-page: 124 year: 2009 end-page: 136 article-title: Evidence for the functional significance of diazotroph community structure in soil publication-title: The ISME Journal – volume: 3 start-page: 150 year: 2012 article-title: The unique biogeochemical signature of the marine diazotroph publication-title: Frontiers of Microbiology – volume: 28 start-page: 1093 year: 2019 end-page: 1105 article-title: The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil publication-title: Global Ecology and Biogeography – volume: 109 start-page: 214 year: 2017 end-page: 226 article-title: Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil publication-title: Soil Biology and Biochemistry – volume: 24 start-page: 487 year: 2000 end-page: 506 article-title: , a free‐living nitrogen‐fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects publication-title: FEMS Microbiology Reviews – volume: 42 start-page: 1774 year: 2010 end-page: 1783 article-title: The abundance of nitrogen cycle genes amoA and nifH depends on land‐uses and soil types in South‐Eastern Australia publication-title: Soil Biology and Biochemistry – volume: 68 start-page: 5181 year: 2002 end-page: 5185 article-title: Free‐living heterotrophic nitrogen‐fixing bacteria isolated from fuel‐contaminated Antarctic soils publication-title: Applied and Environmental Microbiology – volume: 219 start-page: 574 year: 2018 end-page: 587 article-title: Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe publication-title: New Phytologist – volume: 247 start-page: 1 year: 2017 end-page: 8 article-title: Impact of fertilization regimes on diazotroph community compositions and N ‐fixation activity in paddy soil publication-title: Agriculture, Ecosystems and Environment – volume: 15 start-page: 928 year: 2013 end-page: 942 article-title: Impact of different bioenergy crops on N‐cycling bacterial and archaeal communities in soil publication-title: Environmental Microbiology – volume: 108 start-page: 7850 year: 2011 end-page: 7854 article-title: Drivers of bacterial β‐diversity depend on spatial scale publication-title: Proceedings of the National Academy of Sciences USA – volume: 80 start-page: 281 year: 2014 end-page: 288 article-title: Response of free‐living nitrogen‐fixing microorganisms to land use change in the Amazon rainforest publication-title: Applied and Environmental Microbiology – volume: 32 start-page: 61 year: 2018 end-page: 70 article-title: Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold‐temperate forests publication-title: Functional Ecology – volume: 90 start-page: 1095 year: 2009 end-page: 1105 article-title: Species‐energy theory, pulsed resources, and regulation of avian richness during a mountain pine beetle outbreak publication-title: Ecology – volume: 2 start-page: 42 year: 2009 end-page: 45 article-title: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils publication-title: Nature Geoscience – volume: 91 start-page: fiv052 year: 2015 article-title: Environmental drivers of the distribution of nitrogen functional genes at a watershed scale publication-title: FEMS Microbiology Ecology – volume: 55 start-page: 53 year: 2006 end-page: 62 article-title: Nutrient modulated alkaline phosphatase and associated processes in diazotrophic cyanobacteria publication-title: Polish Journal of Microbiology – volume: 639 start-page: 997 year: 2018 end-page: 1006 article-title: Autotrophic and symbiotic diazotrophs dominate nitrogen‐fixing communities in Tibetan grassland soils publication-title: Science of the Total Environment – volume: 25 start-page: 2937 year: 2016 end-page: 2948 article-title: Biogeographic patterns of soil diazotrophic communities across six forests in the North America publication-title: Molecular Ecology – volume: 95 start-page: fiz113 year: 2019 article-title: Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China publication-title: FEMS Microbiology Ecology – volume: 48 start-page: 135 year: 2012 end-page: 141 article-title: Laboratory prescreening of for low pH, Al and Mn tolerance can be used to predict their survival in acid soils publication-title: Soil Biology and Biochemistry – volume: 80 start-page: 1 year: 2015 end-page: 8 article-title: Variation in diazotrophic community structure in forest soils reflects land use history publication-title: Soil Biology and Biochemistry – volume: 16 start-page: 3211 year: 2014 end-page: 3223 article-title: pyrosequencing reveals the potential for location‐specific soil chemistry to influence N ‐fixing community dynamics publication-title: Environmental Microbiology – volume: 374 start-page: 677 year: 2014 end-page: 688 article-title: Effects of litter types, microsite and root diameters on litter decomposition in plantations of northern China publication-title: Plant and Soil – volume: 8 start-page: 1005 year: 2006 end-page: 1016 article-title: Effects of management regime and plant species on the enzyme activity and genetic structure of N‐fixing, denitrifying and nitrifying bacterial communities in grassland soils publication-title: Environmental Microbiology – volume: 111 start-page: 104 year: 2017 end-page: 114 article-title: Scale‐dependent key drivers controlling methane oxidation potential in Chinese grassland soils publication-title: Soil Biology and Biochemistry – volume: 103 start-page: 995 year: 2019 end-page: 1005 article-title: Diazotrophic microbial community and abundance in acidic subtropical natural and re‐vegetated forest soils revealed by high‐throughput sequencing of gene publication-title: Applied Microbiology and Biotechnology – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nature Methods – volume: 42 start-page: 489 year: 2011 end-page: 512 article-title: Functional ecology of free‐living nitrogen fixation: a contemporary perspective publication-title: Annual Review of Ecology, Evolution and Systematics – volume: 136 start-page: 21 year: 2019 end-page: 29 article-title: Different strategies for regulating free‐living N fixation in nutrient‐amended subtropical and temperate forest soils publication-title: Applied Soil Ecology – volume: 116 start-page: 332 year: 2015 end-page: 341 article-title: Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic publication-title: Deep Sea Research II: Topical Studies in Oceanography – year: 2013 – ident: e_1_2_9_56_1 doi: 10.1007/s11104-013-1902-y – ident: e_1_2_9_32_1 doi: 10.1128/AEM.02362-13 – volume-title: The fundamentals of nitrogen fixation year: 1982 ident: e_1_2_9_39_1 – ident: e_1_2_9_52_1 doi: 10.1093/femsec/fiv052 – ident: e_1_2_9_26_1 doi: 10.1016/j.soilbio.2018.02.012 – ident: e_1_2_9_42_1 doi: 10.1146/annurev-ecolsys-102710-145034 – ident: e_1_2_9_34_1 doi: 10.3389/fmicb.2012.00150 – ident: e_1_2_9_37_1 doi: 10.1111/j.1462-2920.2006.00992.x – ident: e_1_2_9_60_1 doi: 10.1111/nph.14606 – ident: e_1_2_9_16_1 doi: 10.1007/s11104-016-3077-9 – ident: e_1_2_9_4_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_9_12_1 doi: 10.1038/s41396-018-0259-x – ident: e_1_2_9_7_1 doi: 10.1073/pnas.1913314116 – ident: e_1_2_9_22_1 doi: 10.1016/j.soilbio.2014.09.017 – ident: e_1_2_9_57_1 doi: 10.1016/j.soilbio.2017.09.024 – ident: e_1_2_9_23_1 doi: 10.1016/j.soilbio.2017.04.005 – ident: e_1_2_9_27_1 doi: 10.1111/j.1462-2920.2012.02844.x – ident: e_1_2_9_8_1 doi: 10.1111/nph.15161 – ident: e_1_2_9_25_1 doi: 10.1128/AEM.02292-12 – ident: e_1_2_9_47_1 doi: 10.1111/j.1574-6976.2000.tb00552.x – ident: e_1_2_9_35_1 doi: 10.1128/AEM.01250-10 – ident: e_1_2_9_48_1 doi: 10.1016/j.apsoil.2018.12.014 – ident: e_1_2_9_50_1 doi: 10.1038/ismej.2015.116 – ident: e_1_2_9_6_1 doi: 10.1111/1462-2920.12423 – ident: e_1_2_9_21_1 doi: 10.1016/j.soilbio.2012.01.019 – volume-title: PLS path modeling with R year: 2013 ident: e_1_2_9_45_1 – ident: e_1_2_9_51_1 doi: 10.1111/1365-2435.12952 – ident: e_1_2_9_44_1 doi: 10.1016/j.soilbio.2016.11.011 – ident: e_1_2_9_5_1 doi: 10.1016/j.scitotenv.2018.05.238 – ident: e_1_2_9_30_1 doi: 10.1111/gcb.12967 – ident: e_1_2_9_40_1 doi: 10.1073/pnas.0610671104 – ident: e_1_2_9_24_1 doi: 10.1007/s004420100716 – ident: e_1_2_9_41_1 doi: 10.1016/j.dsr2.2014.11.012 – ident: e_1_2_9_29_1 doi: 10.1007/s00253-018-9466-7 – ident: e_1_2_9_53_1 doi: 10.1111/mec.13651 – ident: e_1_2_9_11_1 doi: 10.1128/AEM.68.10.5181-5185.2002 – ident: e_1_2_9_2_1 doi: 10.1038/ngeo366 – ident: e_1_2_9_59_1 doi: 10.1371/journal.pone.0033710 – ident: e_1_2_9_17_1 doi: 10.1093/femsec/fiz113 – ident: e_1_2_9_54_1 doi: 10.1098/rstb.2013.0119 – ident: e_1_2_9_38_1 doi: 10.1007/s10533-017-0341-x – ident: e_1_2_9_58_1 doi: 10.1038/ismej.2016.17 – ident: e_1_2_9_15_1 doi: 10.1111/geb.12917 – ident: e_1_2_9_9_1 doi: 10.1890/08-0575.1 – ident: e_1_2_9_33_1 doi: 10.1111/nph.15355 – ident: e_1_2_9_43_1 doi: 10.1007/s00442-010-1649-6 – ident: e_1_2_9_46_1 doi: 10.3389/fmicb.2015.01097 – ident: e_1_2_9_14_1 doi: 10.1111/j.1462-2920.2011.02488.x – ident: e_1_2_9_18_1 doi: 10.1016/j.soilbio.2010.06.015 – ident: e_1_2_9_13_1 doi: 10.1016/j.soilbio.2018.08.021 – volume: 55 start-page: 53 year: 2006 ident: e_1_2_9_36_1 article-title: Nutrient modulated alkaline phosphatase and associated processes in diazotrophic cyanobacteria publication-title: Polish Journal of Microbiology – ident: e_1_2_9_31_1 doi: 10.1038/s41396-018-0103-3 – ident: e_1_2_9_49_1 doi: 10.1016/j.agee.2017.06.009 – ident: e_1_2_9_28_1 doi: 10.1073/pnas.1016308108 – ident: e_1_2_9_10_1 doi: 10.1111/nph.14905 – ident: e_1_2_9_19_1 doi: 10.1038/ismej.2008.82 – ident: e_1_2_9_55_1 doi: 10.1016/j.foreco.2007.10.026 – ident: e_1_2_9_20_1 doi: 10.1111/ele.12240 – ident: e_1_2_9_3_1 doi: 10.1007/s10533-020-00666-7 |
SSID | ssj0005456 |
Score | 2.4360297 |
Snippet | Aim
Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong... AimMany studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong... AIM: Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2119 |
SubjectTerms | Aridity Azospirillum bacterial communities Biogeography Bradyrhizobium calcium China climatic factors Climatic zones community structure Copper Drought dry environmental conditions environmental variable forest soils forest type forest types Forests Heterogeneity iron least squares Magnesium Manganese molybdenum multi‐nutrients Niches nifH diversity NifH gene Nitrogen fixation nitrogen-fixing bacteria nitrogen-fixing cyanobacteria Nitrogenase Nitrogenation nucleotide sequences nutrient content Nutrients pH effects Regression analysis sodium soil bacteria Soil chemistry soil diazotrophs Soil investigations soil nutrient dynamics Soil nutrients Soil pH Soil properties Soil temperature Soils species diversity Statistical analysis Trace elements Zinc |
Title | Broad‐scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13178 https://www.proquest.com/docview/2462825735 https://www.proquest.com/docview/2498289164 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEB5CINBLm6QNcZuUaekhF5lYP9aKnJLgNBTaQ2nAh4LY39YkSMayA_Ypj5BLXjBPkpmVZCelgdKbhEbSarSz883uzLcAn5whnyxUFvBqYRD3Qh0IkgzSKNME0MnlSZ6H_Pqtf34RfxkmwzU4amthan6I5YQbW4Yfr9nApaoeGfkvq7o98n5c6Mu5WgyIvq-ooxgZ1JVF_YCc4LBhFeIsnuWdT33RCmA-hqnez5y9gp9tC-v0ksvubKq6evEHeeN_fsImvGzwJx7XHWYL1myxDRsDz10934adwarwjcQay69ewx3F69Lc39xW9FMtGubbbbbKwtLRuVyU00k5_j3SqOuiE6ZqxVGFZsIjKnJGL6o5UnBuCPqj52lEWRhkeqyG2xl5Jp-lqnJ0hWNeKZj450ivQrymu8tZhQS1SYfVG7g4G_w4PQ-aLR0CHUWHIpA2TKTSNtWGkKRwWtikrwQNdZqwj7V9EelIHiYmS6wjKWfSXmZF4uIkVBk9YwfWi7Kwu4CC5JUmxJOmNibcq5x1BEddnEkpjXUdOGh_bq4bvnPeduMqb-MeUn_u1d-Bj0vRcU3y8TehvbaH5I2dV3nIpb006kVJBz4sL5OF8rKLLCxphGQyDmspLqUm-e7w_Evyz4MTf_D230XfwYuQJwF8js0erE8nM7tPSGmq3nuTeACoFBTG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VRQguQAsVKYUuCCQujhrHjtcHDpSmpPTngFopN7O_ELWyIzuhSk99BC68Ba_CS_AkzKzXSUEgcemBW6JMEmvn75vZnW8BnluNOZnLNKDdwiDqhCrgKBkk3VQhQMeUJ6gPeXjUG5xE74bxcAm-NbMwNT_EvOFGnuHiNTk4NaSvePlHI9sdTH_cH6ncN7NzLNiqV3s7qN0XYbjbP34zCPydAoHCyp0HwoSxkMokSiOU4VZxE_ckR19TmHyN6fGu6oqtWKexsShlddJJDY9tFIcyVdT-xIB_g24QJ6b-nfcLsirCIvUsUy_AtDv0PEZ0bmj-qL9mvwWkvQqMXWbbvQvfmzWpD7SctqcT2VYXv9FF_i-Ldg_ueIjNXtc-sQJLJl-Fm31Hzz1bhbX-YrYPxXxwq-7D1-2yEPrH5ZcK7dYwTZTC_jYwVlh8Ly6KSVmMP40UU_VcDbHRslHFdElJg9GhZSZnTJQjjdUNc1SUTOSaEQOYp69mtFlBUlUxOmNj2gwp3e8IpzP2Gb9dTCuG1QQqrXoAJ9eyWGuwnBe5eQiMo7xUCOqSxEQI7aU1FhG3jVIhhDa2BS8ba8qUp3Snm0XOsqa0Q3VnTt0teDYXHdc8Jn8S2mhMMvOhrMpCml7GwN6NW_B0_jEGIdpZErnBFUGZlCp3LL3xkZz9_f1Psrf9bfdi_d9FN-HW4PjwIDvYO9p_BLdD6nm4I0UbsDwpp-YxAsOJfOL8kcGH67bln4okdKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VRSAu_BQqUgosCCQujhrHP-sDB0oSWgoVQlTKzewvRK3syE5A6YlH4MJT8Co8BU_CzHqdFAQSlx64JcoksXb-vtmd-RbgodWYk7nMAjotDKJeqAKOkkHazxQCdEx5gvYhXx0me0fRi3E8XoNv7SxMww-x3HAjz3Dxmhx8qu0ZJ39vZLeH2Y_7jsoDs_iE9Vr9ZH-Ayn0UhqPh22d7gb9SIFBYuPNAmDAWUplUaUQy3Cpu4kRydDWFudeYhPdVX-zEOouNRSmr015meGyjOJSZot1PjPcXomQno3siBm9WXFUERZpRpiTArDv2NEbUNrR81F-T3wrRnsXFLrGNrsL3dkmafpbj7nwmu-r0N7bI_2TNrsEVD7DZ08YjrsOaKTbg4tCRcy82YHO4muxDMR_a6hvwdbcqhf7x-UuNVmuYJkJhfxcYKy2-F6flrCqnHyaKqWaqhrho2aRmuqKUwahlmckFE9VEY23DHBElE4VmxP_lyasZHVWQVF1OTtiUjkIq9zvCqYx9xG-X85phLYE6q2_C0bks1iasF2VhbgHjKC8VQro0NRECe2mNRbxto0wIoY3twOPWmHLlCd3pXpGTvC3sUN25U3cHHixFpw2LyZ-EtluLzH0gq_OQZpcxrPfjDtxffowhiM6VRGFwRVAmo7odC298JGd-f_-T_Plw173Y-nfRe3Dp9WCUv9w_PLgNl0Pa8HD9RNuwPqvm5g6iwpm867yRwbvzNuWfuhpzWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broad%E2%80%90scale+distribution+of+diazotrophic+communities+is+driven+more+by+aridity+index+and+temperature+than+by+soil+properties+across+various+forests&rft.jtitle=Global+ecology+and+biogeography&rft.au=Zhao%2C+Wenqiang&rft.au=Kou%2C+Yongping&rft.au=Wang%2C+Xiaohu&rft.au=Wu%2C+Yanhong&rft.date=2020-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=29&rft.issue=12&rft.spage=2119&rft.epage=2130&rft_id=info:doi/10.1111%2Fgeb.13178&rft.externalDBID=10.1111%252Fgeb.13178&rft.externalDocID=GEB13178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |