Broad‐scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests

Aim Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nu...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 29; no. 12; pp. 2119 - 2130
Main Authors Zhao, Wenqiang, Kou, Yongping, Wang, Xiaohu, Wu, Yanhong, Bing, Haijian, Liu, Qing, Soininen, Janne
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients. Location China’s forests. Time period 2012−2013. Major taxa studied Diazotrophic communities. Methods We investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling. Results Overall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum. Main conclusions Our findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N2 fixation.
AbstractList AIM: Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients. LOCATION: China’s forests. TIME PERIOD: 2012−2013. MAJOR TAXA STUDIED: Diazotrophic communities. METHODS: We investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling. RESULTS: Overall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum. MAIN CONCLUSIONS: Our findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N₂ fixation.
Aim Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients. Location China’s forests. Time period 2012−2013. Major taxa studied Diazotrophic communities. Methods We investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling. Results Overall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum. Main conclusions Our findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N2 fixation.
AimMany studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong evidence for the relative importance of different drivers controlling broad‐scale biogeography of forest diazotrophs, especially for soil multi‐nutrients.LocationChina’s forests.Time period2012−2013.Major taxa studiedDiazotrophic communities.MethodsWe investigated the distribution of soil diazotrophic communities from 146 sites along a 3,900‐km south–north transect by sequencing N‐fixing nifH gene amplicons. The relative contributions of environmental variables were assessed using a combination of stepwise multiple regression, variation partitioning analysis, multiple regression on distance matrices and partial least squares path modelling.ResultsOverall, aridity index and temperature were the predominant parameters governing diazotrophic community diversity and structure, mainly through their indirect effects on soil pH, nutrient contents and plant productivity. Although soil multi‐nutrients (Ca, Mg, Fe, Mn, Na, Cu and Zn) were included in the statistical analysis, they still exhibited lower impacts on diazotrophic communities than climate. Intriguingly, the microelement Mo could not explain the diazotrophic community patterns, despite its significance in nitrogenase enzymes. This unexpected phenomenon was attributed to the relatively high Mo supply in our work. Moreover, the distinct responses of diazotroph taxa to climatic factors and large heterogeneity of diazotrophic diversity among forests in different climatic zones further support the dominant role of climatic variation. These results indicate the presence of differentiated climatic niches for diazotrophs, such as warm‐adapted Bradyrhizobium and cool‐adapted Azospirillum.Main conclusionsOur findings suggest for the first time that unlike prior studies, the key roles of soil nutrient limitation (even for Mo) and pH‐dependent mechanisms in small‐scale diazotrophic communities can be surpassed by large‐scale climatic gradients. Future changes in drought severity and temperature might greatly shape diazotrophic distribution and its potential function in forest N2 fixation.
Author Soininen, Janne
Wu, Yanhong
Zhao, Wenqiang
Bing, Haijian
Liu, Qing
Wang, Xiaohu
Kou, Yongping
Author_xml – sequence: 1
  givenname: Wenqiang
  orcidid: 0000-0002-7809-302X
  surname: Zhao
  fullname: Zhao, Wenqiang
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Yongping
  surname: Kou
  fullname: Kou, Yongping
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xiaohu
  surname: Wang
  fullname: Wang, Xiaohu
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yanhong
  surname: Wu
  fullname: Wu, Yanhong
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Haijian
  surname: Bing
  fullname: Bing, Haijian
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Qing
  orcidid: 0000-0002-7046-0307
  surname: Liu
  fullname: Liu, Qing
  email: liuqing@cib.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Janne
  surname: Soininen
  fullname: Soininen, Janne
BookMark eNp1kb1OHDEUhS1EJH6SIm9gKU1SLHh-7PWUgAggIdEEiW7kse-Ei2bsxfaQbCoegYYX5Em4u4tSoMSNbek75x777LFtHzww9rkQBwWtw5_QHRRVMddbbLeolZrpstLbf8_lzQ7bS-lOCCFrqXbZ83EMxr08PiVrBuAOU47YTRmD56Gnu_kTcgyLW7TchnGcPGaExDFxF_EBPB9DBN4tuYnoMC85ege_ufGOZxgXEE2eCMi3xq-oFHDgCzKEuPYxNoaU-AOpw5R4T2Ypp4_sQ2-GBJ_e9n12_f30x8n57PLq7OLk6HJmq0romYFSms7C3DqppO6tBqk6LbS2QikApStbGSFdI6EnqnfzogEt-1qWXUMe--zrxpcS3U80uR0xWRgG44HitGXd6FI3haoJ_fIOvQtT9JSOKFXqUs4rSdThhlo_K0LfWsxm9Zs5GhzaQrSrmlqqqV3XRIpv7xSLiKOJy3-yb-6_cIDl_8H27PR4o3gFgheo_Q
CitedBy_id crossref_primary_10_32604_phyton_2022_016117
crossref_primary_10_1002_imt2_81
crossref_primary_10_1007_s11104_023_06205_1
crossref_primary_10_1016_j_envres_2022_113033
crossref_primary_10_1016_j_geoderma_2023_116410
crossref_primary_10_1088_1748_9326_ad6ea6
crossref_primary_10_1128_msystems_01309_21
crossref_primary_10_1016_j_apsoil_2023_104860
crossref_primary_10_1016_j_apsoil_2024_105678
crossref_primary_10_3389_fmicb_2024_1414724
crossref_primary_10_1016_j_foreco_2021_119464
crossref_primary_10_1128_aem_01093_23
crossref_primary_10_1016_j_rhisph_2022_100483
crossref_primary_10_1016_j_scitotenv_2021_148848
crossref_primary_10_1016_j_catena_2024_108600
crossref_primary_10_1016_j_pedsph_2022_07_007
crossref_primary_10_1016_j_ejsobi_2023_103541
crossref_primary_10_1007_s11104_022_05813_7
crossref_primary_10_1111_1365_2435_14472
crossref_primary_10_1016_j_pedsph_2023_12_016
crossref_primary_10_3389_fpls_2023_1100235
crossref_primary_10_1111_geb_13362
crossref_primary_10_1128_msystems_01042_23
Cites_doi 10.1007/s11104-013-1902-y
10.1128/AEM.02362-13
10.1093/femsec/fiv052
10.1016/j.soilbio.2018.02.012
10.1146/annurev-ecolsys-102710-145034
10.3389/fmicb.2012.00150
10.1111/j.1462-2920.2006.00992.x
10.1111/nph.14606
10.1007/s11104-016-3077-9
10.1038/nmeth.f.303
10.1038/s41396-018-0259-x
10.1073/pnas.1913314116
10.1016/j.soilbio.2014.09.017
10.1016/j.soilbio.2017.09.024
10.1016/j.soilbio.2017.04.005
10.1111/j.1462-2920.2012.02844.x
10.1111/nph.15161
10.1128/AEM.02292-12
10.1111/j.1574-6976.2000.tb00552.x
10.1128/AEM.01250-10
10.1016/j.apsoil.2018.12.014
10.1038/ismej.2015.116
10.1111/1462-2920.12423
10.1016/j.soilbio.2012.01.019
10.1111/1365-2435.12952
10.1016/j.soilbio.2016.11.011
10.1016/j.scitotenv.2018.05.238
10.1111/gcb.12967
10.1073/pnas.0610671104
10.1007/s004420100716
10.1016/j.dsr2.2014.11.012
10.1007/s00253-018-9466-7
10.1111/mec.13651
10.1128/AEM.68.10.5181-5185.2002
10.1038/ngeo366
10.1371/journal.pone.0033710
10.1093/femsec/fiz113
10.1098/rstb.2013.0119
10.1007/s10533-017-0341-x
10.1038/ismej.2016.17
10.1111/geb.12917
10.1890/08-0575.1
10.1111/nph.15355
10.1007/s00442-010-1649-6
10.3389/fmicb.2015.01097
10.1111/j.1462-2920.2011.02488.x
10.1016/j.soilbio.2010.06.015
10.1016/j.soilbio.2018.08.021
10.1038/s41396-018-0103-3
10.1016/j.agee.2017.06.009
10.1073/pnas.1016308108
10.1111/nph.14905
10.1038/ismej.2008.82
10.1016/j.foreco.2007.10.026
10.1111/ele.12240
10.1007/s10533-020-00666-7
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/geb.13178
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
EndPage 2130
ExternalDocumentID 10_1111_geb_13178
GEB13178
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31870607
– fundername: National Key Research and Development Program of China
  funderid: 2017YFC0505000
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2019363; 2017424
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA20020401
– fundername: Sichuan Science and Technology Program
  funderid: 2018SZ0330; 18ZDYF0307
– fundername: West Light Foundation of the Chinese Academy of Sciences
  funderid: Y8C2041100
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
AAYXX
ABSQW
AEYWJ
AGHNM
AGQPQ
AGUYK
AGYGG
CITATION
7QG
7SN
7SS
7ST
7U6
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
7S9
L.6
ID FETCH-LOGICAL-c3308-ae25abce7cd5658fc8e56b8088c066ee683c3a05d95efe7cfd719e85f452b9c33
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 18:36:41 EDT 2025
Fri Jul 25 22:35:24 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
Tue Jul 01 02:37:34 EDT 2025
Wed Jan 22 16:31:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-ae25abce7cd5658fc8e56b8088c066ee683c3a05d95efe7cfd719e85f452b9c33
Notes Wenqiang Zhao and Yongping Kou contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7809-302X
0000-0002-7046-0307
PQID 2462825735
PQPubID 1066347
PageCount 12
ParticipantIDs proquest_miscellaneous_2498289164
proquest_journals_2462825735
crossref_citationtrail_10_1111_geb_13178
crossref_primary_10_1111_geb_13178
wiley_primary_10_1111_geb_13178_GEB13178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2007; 104
2019; 95
2019; 13
2013; 368
2018; 126
2011; 13
2015; 80
2017; 111
2014; 374
2017; 115
2013; 15
2018; 217
2009; 90
2014; 16
2019; 28
2019; 116
2018; 219
1982
2015; 91
2014; 17
2018; 32
2010; 7
2017; 247
2015; 6
2006; 55
2000; 24
2016; 10
2020; 149
2006; 8
2011; 77
2019; 103
2010; 164
2001; 129
2017; 134
2017; 412
2019; 221
2017; 215
2017; 109
2010; 42
2011; 108
2014; 80
2012; 3
2015; 116
2013; 79
2002; 68
2011; 42
2019; 136
2018; 639
2012; 48
2013
2009; 3
2018; 12
2008; 255
2009; 2
2012; 7
2016; 25
2016; 22
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Sanchez G. (e_1_2_9_45_1) 2013
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
Pandey M. (e_1_2_9_36_1) 2006; 55
e_1_2_9_53_1
Postgate J. R. (e_1_2_9_39_1) 1982
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 79
  start-page: 701
  year: 2013
  end-page: 706
  article-title: Environmental transcription of by methane‐oxidizing in a subarctic Palsa peatland
  publication-title: Applied and Environmental Microbiology
– volume: 126
  start-page: 151
  year: 2018
  end-page: 158
  article-title: Long‐term fertilization influences community assembly processes of soil diazotrophs
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 1790
  year: 2011
  end-page: 1799
  article-title: A global census of nitrogenase diversity
  publication-title: Environmental Microbiology
– volume: 120
  start-page: 230
  year: 2018
  end-page: 232
  article-title: Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs
  publication-title: Soil Biology and Biochemistry
– volume: 104
  start-page: 2761
  year: 2007
  end-page: 2766
  article-title: Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 115
  start-page: 547
  year: 2017
  end-page: 555
  article-title: Soil pH is a major driver of soil diazotrophic community assembly in Qinghai‐Tibet alpine meadows
  publication-title: Soil Biology and Biochemistry
– volume: 149
  start-page: 53
  year: 2020
  end-page: 73
  article-title: Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review
  publication-title: Biogeochemistry
– volume: 10
  start-page: 2198
  year: 2016
  end-page: 2208
  article-title: Seasonal variation in abundance and expression of cyanobacterial communities associated with boreal feather mosses
  publication-title: The ISME Journal
– volume: 215
  start-page: 756
  year: 2017
  end-page: 765
  article-title: Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity
  publication-title: New Phytologist
– volume: 17
  start-page: 401
  year: 2014
  end-page: 413
  article-title: When should species richness be energy limited, and how would we know?
  publication-title: Ecology Letters
– volume: 164
  start-page: 521
  year: 2010
  end-page: 531
  article-title: Microbial community shifts influence patterns in tropical forest nitrogen fixation
  publication-title: Oecologia
– volume: 116
  start-page: 24682
  year: 2019
  end-page: 24688
  article-title: Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 10
  start-page: 346
  year: 2016
  end-page: 362
  article-title: Tree diversity and species identity effects on soil fungi, protists and animals are context dependent
  publication-title: The ISME Journal
– volume: 217
  start-page: 1050
  year: 2018
  end-page: 1061
  article-title: Nutrient limitation of terrestrial free‐living nitrogen fixation
  publication-title: New Phytologist
– volume: 13
  start-page: 170
  year: 2019
  end-page: 182
  article-title: Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre
  publication-title: The ISME Journal
– volume: 368
  start-page: 20130119
  year: 2013
  article-title: Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems
  publication-title: Philosophical Transactions of The Royal Society B: Biological Sciences
– volume: 22
  start-page: 164
  year: 2016
  end-page: 179
  article-title: Impact of nitrogen deposition on forest and lake food webs in nitrogen‐limited environments
  publication-title: Global Change Biology
– volume: 134
  start-page: 41
  year: 2017
  end-page: 55
  article-title: Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests
  publication-title: Biogeochemistry
– volume: 6
  start-page: 1097
  year: 2015
  article-title: Nutrient‐cycling microbes in coastal Douglas‐fir forests: regional‐scale correlation between communities, climate, and other factors
  publication-title: Frontiers of Microbiology
– year: 1982
– volume: 7
  year: 2012
  article-title: Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests
  publication-title: PLoS ONE
– volume: 12
  start-page: 1404
  year: 2018
  end-page: 1413
  article-title: Why do microbes exhibit weak biogeographic patterns?
  publication-title: The ISME Journal
– volume: 221
  start-page: 123
  year: 2019
  end-page: 141
  article-title: Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient
  publication-title: New Phytologist
– volume: 412
  start-page: 345
  year: 2017
  end-page: 355
  article-title: Controls over leaf litter decomposition in a mixed evergreen and deciduous broad‐leaved forest, Central China
  publication-title: Plant and Soil
– volume: 129
  start-page: 271
  year: 2001
  end-page: 280
  article-title: Ecologically meaningful transformations for ordination of species data
  publication-title: Oecologia
– volume: 255
  start-page: 1210
  year: 2008
  end-page: 1218
  article-title: Comparisons of litterfall, litter decomposition and nutrient return in a monoculture and a mixed stand in southern China
  publication-title: Forest Ecology and Management
– volume: 77
  start-page: 911
  year: 2011
  end-page: 919
  article-title: Diversity and activity of free‐living nitrogen‐fixing bacteria and total bacteria in organic and conventionally managed soils
  publication-title: Applied and Environmental Microbiology
– volume: 3
  start-page: 124
  year: 2009
  end-page: 136
  article-title: Evidence for the functional significance of diazotroph community structure in soil
  publication-title: The ISME Journal
– volume: 3
  start-page: 150
  year: 2012
  article-title: The unique biogeochemical signature of the marine diazotroph
  publication-title: Frontiers of Microbiology
– volume: 28
  start-page: 1093
  year: 2019
  end-page: 1105
  article-title: The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil
  publication-title: Global Ecology and Biogeography
– volume: 109
  start-page: 214
  year: 2017
  end-page: 226
  article-title: Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil
  publication-title: Soil Biology and Biochemistry
– volume: 24
  start-page: 487
  year: 2000
  end-page: 506
  article-title: , a free‐living nitrogen‐fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects
  publication-title: FEMS Microbiology Reviews
– volume: 42
  start-page: 1774
  year: 2010
  end-page: 1783
  article-title: The abundance of nitrogen cycle genes amoA and nifH depends on land‐uses and soil types in South‐Eastern Australia
  publication-title: Soil Biology and Biochemistry
– volume: 68
  start-page: 5181
  year: 2002
  end-page: 5185
  article-title: Free‐living heterotrophic nitrogen‐fixing bacteria isolated from fuel‐contaminated Antarctic soils
  publication-title: Applied and Environmental Microbiology
– volume: 219
  start-page: 574
  year: 2018
  end-page: 587
  article-title: Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe
  publication-title: New Phytologist
– volume: 247
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Impact of fertilization regimes on diazotroph community compositions and N ‐fixation activity in paddy soil
  publication-title: Agriculture, Ecosystems and Environment
– volume: 15
  start-page: 928
  year: 2013
  end-page: 942
  article-title: Impact of different bioenergy crops on N‐cycling bacterial and archaeal communities in soil
  publication-title: Environmental Microbiology
– volume: 108
  start-page: 7850
  year: 2011
  end-page: 7854
  article-title: Drivers of bacterial β‐diversity depend on spatial scale
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 80
  start-page: 281
  year: 2014
  end-page: 288
  article-title: Response of free‐living nitrogen‐fixing microorganisms to land use change in the Amazon rainforest
  publication-title: Applied and Environmental Microbiology
– volume: 32
  start-page: 61
  year: 2018
  end-page: 70
  article-title: Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold‐temperate forests
  publication-title: Functional Ecology
– volume: 90
  start-page: 1095
  year: 2009
  end-page: 1105
  article-title: Species‐energy theory, pulsed resources, and regulation of avian richness during a mountain pine beetle outbreak
  publication-title: Ecology
– volume: 2
  start-page: 42
  year: 2009
  end-page: 45
  article-title: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils
  publication-title: Nature Geoscience
– volume: 91
  start-page: fiv052
  year: 2015
  article-title: Environmental drivers of the distribution of nitrogen functional genes at a watershed scale
  publication-title: FEMS Microbiology Ecology
– volume: 55
  start-page: 53
  year: 2006
  end-page: 62
  article-title: Nutrient modulated alkaline phosphatase and associated processes in diazotrophic cyanobacteria
  publication-title: Polish Journal of Microbiology
– volume: 639
  start-page: 997
  year: 2018
  end-page: 1006
  article-title: Autotrophic and symbiotic diazotrophs dominate nitrogen‐fixing communities in Tibetan grassland soils
  publication-title: Science of the Total Environment
– volume: 25
  start-page: 2937
  year: 2016
  end-page: 2948
  article-title: Biogeographic patterns of soil diazotrophic communities across six forests in the North America
  publication-title: Molecular Ecology
– volume: 95
  start-page: fiz113
  year: 2019
  article-title: Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China
  publication-title: FEMS Microbiology Ecology
– volume: 48
  start-page: 135
  year: 2012
  end-page: 141
  article-title: Laboratory prescreening of for low pH, Al and Mn tolerance can be used to predict their survival in acid soils
  publication-title: Soil Biology and Biochemistry
– volume: 80
  start-page: 1
  year: 2015
  end-page: 8
  article-title: Variation in diazotrophic community structure in forest soils reflects land use history
  publication-title: Soil Biology and Biochemistry
– volume: 16
  start-page: 3211
  year: 2014
  end-page: 3223
  article-title: pyrosequencing reveals the potential for location‐specific soil chemistry to influence N ‐fixing community dynamics
  publication-title: Environmental Microbiology
– volume: 374
  start-page: 677
  year: 2014
  end-page: 688
  article-title: Effects of litter types, microsite and root diameters on litter decomposition in plantations of northern China
  publication-title: Plant and Soil
– volume: 8
  start-page: 1005
  year: 2006
  end-page: 1016
  article-title: Effects of management regime and plant species on the enzyme activity and genetic structure of N‐fixing, denitrifying and nitrifying bacterial communities in grassland soils
  publication-title: Environmental Microbiology
– volume: 111
  start-page: 104
  year: 2017
  end-page: 114
  article-title: Scale‐dependent key drivers controlling methane oxidation potential in Chinese grassland soils
  publication-title: Soil Biology and Biochemistry
– volume: 103
  start-page: 995
  year: 2019
  end-page: 1005
  article-title: Diazotrophic microbial community and abundance in acidic subtropical natural and re‐vegetated forest soils revealed by high‐throughput sequencing of gene
  publication-title: Applied Microbiology and Biotechnology
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nature Methods
– volume: 42
  start-page: 489
  year: 2011
  end-page: 512
  article-title: Functional ecology of free‐living nitrogen fixation: a contemporary perspective
  publication-title: Annual Review of Ecology, Evolution and Systematics
– volume: 136
  start-page: 21
  year: 2019
  end-page: 29
  article-title: Different strategies for regulating free‐living N fixation in nutrient‐amended subtropical and temperate forest soils
  publication-title: Applied Soil Ecology
– volume: 116
  start-page: 332
  year: 2015
  end-page: 341
  article-title: Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic
  publication-title: Deep Sea Research II: Topical Studies in Oceanography
– year: 2013
– ident: e_1_2_9_56_1
  doi: 10.1007/s11104-013-1902-y
– ident: e_1_2_9_32_1
  doi: 10.1128/AEM.02362-13
– volume-title: The fundamentals of nitrogen fixation
  year: 1982
  ident: e_1_2_9_39_1
– ident: e_1_2_9_52_1
  doi: 10.1093/femsec/fiv052
– ident: e_1_2_9_26_1
  doi: 10.1016/j.soilbio.2018.02.012
– ident: e_1_2_9_42_1
  doi: 10.1146/annurev-ecolsys-102710-145034
– ident: e_1_2_9_34_1
  doi: 10.3389/fmicb.2012.00150
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1462-2920.2006.00992.x
– ident: e_1_2_9_60_1
  doi: 10.1111/nph.14606
– ident: e_1_2_9_16_1
  doi: 10.1007/s11104-016-3077-9
– ident: e_1_2_9_4_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_9_12_1
  doi: 10.1038/s41396-018-0259-x
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1913314116
– ident: e_1_2_9_22_1
  doi: 10.1016/j.soilbio.2014.09.017
– ident: e_1_2_9_57_1
  doi: 10.1016/j.soilbio.2017.09.024
– ident: e_1_2_9_23_1
  doi: 10.1016/j.soilbio.2017.04.005
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1462-2920.2012.02844.x
– ident: e_1_2_9_8_1
  doi: 10.1111/nph.15161
– ident: e_1_2_9_25_1
  doi: 10.1128/AEM.02292-12
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1574-6976.2000.tb00552.x
– ident: e_1_2_9_35_1
  doi: 10.1128/AEM.01250-10
– ident: e_1_2_9_48_1
  doi: 10.1016/j.apsoil.2018.12.014
– ident: e_1_2_9_50_1
  doi: 10.1038/ismej.2015.116
– ident: e_1_2_9_6_1
  doi: 10.1111/1462-2920.12423
– ident: e_1_2_9_21_1
  doi: 10.1016/j.soilbio.2012.01.019
– volume-title: PLS path modeling with R
  year: 2013
  ident: e_1_2_9_45_1
– ident: e_1_2_9_51_1
  doi: 10.1111/1365-2435.12952
– ident: e_1_2_9_44_1
  doi: 10.1016/j.soilbio.2016.11.011
– ident: e_1_2_9_5_1
  doi: 10.1016/j.scitotenv.2018.05.238
– ident: e_1_2_9_30_1
  doi: 10.1111/gcb.12967
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.0610671104
– ident: e_1_2_9_24_1
  doi: 10.1007/s004420100716
– ident: e_1_2_9_41_1
  doi: 10.1016/j.dsr2.2014.11.012
– ident: e_1_2_9_29_1
  doi: 10.1007/s00253-018-9466-7
– ident: e_1_2_9_53_1
  doi: 10.1111/mec.13651
– ident: e_1_2_9_11_1
  doi: 10.1128/AEM.68.10.5181-5185.2002
– ident: e_1_2_9_2_1
  doi: 10.1038/ngeo366
– ident: e_1_2_9_59_1
  doi: 10.1371/journal.pone.0033710
– ident: e_1_2_9_17_1
  doi: 10.1093/femsec/fiz113
– ident: e_1_2_9_54_1
  doi: 10.1098/rstb.2013.0119
– ident: e_1_2_9_38_1
  doi: 10.1007/s10533-017-0341-x
– ident: e_1_2_9_58_1
  doi: 10.1038/ismej.2016.17
– ident: e_1_2_9_15_1
  doi: 10.1111/geb.12917
– ident: e_1_2_9_9_1
  doi: 10.1890/08-0575.1
– ident: e_1_2_9_33_1
  doi: 10.1111/nph.15355
– ident: e_1_2_9_43_1
  doi: 10.1007/s00442-010-1649-6
– ident: e_1_2_9_46_1
  doi: 10.3389/fmicb.2015.01097
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1462-2920.2011.02488.x
– ident: e_1_2_9_18_1
  doi: 10.1016/j.soilbio.2010.06.015
– ident: e_1_2_9_13_1
  doi: 10.1016/j.soilbio.2018.08.021
– volume: 55
  start-page: 53
  year: 2006
  ident: e_1_2_9_36_1
  article-title: Nutrient modulated alkaline phosphatase and associated processes in diazotrophic cyanobacteria
  publication-title: Polish Journal of Microbiology
– ident: e_1_2_9_31_1
  doi: 10.1038/s41396-018-0103-3
– ident: e_1_2_9_49_1
  doi: 10.1016/j.agee.2017.06.009
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.1016308108
– ident: e_1_2_9_10_1
  doi: 10.1111/nph.14905
– ident: e_1_2_9_19_1
  doi: 10.1038/ismej.2008.82
– ident: e_1_2_9_55_1
  doi: 10.1016/j.foreco.2007.10.026
– ident: e_1_2_9_20_1
  doi: 10.1111/ele.12240
– ident: e_1_2_9_3_1
  doi: 10.1007/s10533-020-00666-7
SSID ssj0005456
Score 2.4360297
Snippet Aim Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong...
AimMany studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong...
AIM: Many studies have found that diazotrophic distribution is mainly determined by soil properties from field to regional scales. However, we lack strong...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2119
SubjectTerms Aridity
Azospirillum
bacterial communities
Biogeography
Bradyrhizobium
calcium
China
climatic factors
Climatic zones
community structure
Copper
Drought
dry environmental conditions
environmental variable
forest soils
forest type
forest types
Forests
Heterogeneity
iron
least squares
Magnesium
Manganese
molybdenum
multi‐nutrients
Niches
nifH diversity
NifH gene
Nitrogen fixation
nitrogen-fixing bacteria
nitrogen-fixing cyanobacteria
Nitrogenase
Nitrogenation
nucleotide sequences
nutrient content
Nutrients
pH effects
Regression analysis
sodium
soil bacteria
Soil chemistry
soil diazotrophs
Soil investigations
soil nutrient dynamics
Soil nutrients
Soil pH
Soil properties
Soil temperature
Soils
species diversity
Statistical analysis
Trace elements
Zinc
Title Broad‐scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13178
https://www.proquest.com/docview/2462825735
https://www.proquest.com/docview/2498289164
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEB5CINBLm6QNcZuUaekhF5lYP9aKnJLgNBTaQ2nAh4LY39YkSMayA_Ypj5BLXjBPkpmVZCelgdKbhEbSarSz883uzLcAn5whnyxUFvBqYRD3Qh0IkgzSKNME0MnlSZ6H_Pqtf34RfxkmwzU4amthan6I5YQbW4Yfr9nApaoeGfkvq7o98n5c6Mu5WgyIvq-ooxgZ1JVF_YCc4LBhFeIsnuWdT33RCmA-hqnez5y9gp9tC-v0ksvubKq6evEHeeN_fsImvGzwJx7XHWYL1myxDRsDz10934adwarwjcQay69ewx3F69Lc39xW9FMtGubbbbbKwtLRuVyU00k5_j3SqOuiE6ZqxVGFZsIjKnJGL6o5UnBuCPqj52lEWRhkeqyG2xl5Jp-lqnJ0hWNeKZj450ivQrymu8tZhQS1SYfVG7g4G_w4PQ-aLR0CHUWHIpA2TKTSNtWGkKRwWtikrwQNdZqwj7V9EelIHiYmS6wjKWfSXmZF4uIkVBk9YwfWi7Kwu4CC5JUmxJOmNibcq5x1BEddnEkpjXUdOGh_bq4bvnPeduMqb-MeUn_u1d-Bj0vRcU3y8TehvbaH5I2dV3nIpb006kVJBz4sL5OF8rKLLCxphGQyDmspLqUm-e7w_Evyz4MTf_D230XfwYuQJwF8js0erE8nM7tPSGmq3nuTeACoFBTG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VRQguQAsVKYUuCCQujhrHjtcHDpSmpPTngFopN7O_ELWyIzuhSk99BC68Ba_CS_AkzKzXSUEgcemBW6JMEmvn75vZnW8BnluNOZnLNKDdwiDqhCrgKBkk3VQhQMeUJ6gPeXjUG5xE74bxcAm-NbMwNT_EvOFGnuHiNTk4NaSvePlHI9sdTH_cH6ncN7NzLNiqV3s7qN0XYbjbP34zCPydAoHCyp0HwoSxkMokSiOU4VZxE_ckR19TmHyN6fGu6oqtWKexsShlddJJDY9tFIcyVdT-xIB_g24QJ6b-nfcLsirCIvUsUy_AtDv0PEZ0bmj-qL9mvwWkvQqMXWbbvQvfmzWpD7SctqcT2VYXv9FF_i-Ldg_ueIjNXtc-sQJLJl-Fm31Hzz1bhbX-YrYPxXxwq-7D1-2yEPrH5ZcK7dYwTZTC_jYwVlh8Ly6KSVmMP40UU_VcDbHRslHFdElJg9GhZSZnTJQjjdUNc1SUTOSaEQOYp69mtFlBUlUxOmNj2gwp3e8IpzP2Gb9dTCuG1QQqrXoAJ9eyWGuwnBe5eQiMo7xUCOqSxEQI7aU1FhG3jVIhhDa2BS8ba8qUp3Snm0XOsqa0Q3VnTt0teDYXHdc8Jn8S2mhMMvOhrMpCml7GwN6NW_B0_jEGIdpZErnBFUGZlCp3LL3xkZz9_f1Psrf9bfdi_d9FN-HW4PjwIDvYO9p_BLdD6nm4I0UbsDwpp-YxAsOJfOL8kcGH67bln4okdKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VRSAu_BQqUgosCCQujhrHP-sDB0oSWgoVQlTKzewvRK3syE5A6YlH4MJT8Co8BU_CzHqdFAQSlx64JcoksXb-vtmd-RbgodWYk7nMAjotDKJeqAKOkkHazxQCdEx5gvYhXx0me0fRi3E8XoNv7SxMww-x3HAjz3Dxmhx8qu0ZJ39vZLeH2Y_7jsoDs_iE9Vr9ZH-Ayn0UhqPh22d7gb9SIFBYuPNAmDAWUplUaUQy3Cpu4kRydDWFudeYhPdVX-zEOouNRSmr015meGyjOJSZot1PjPcXomQno3siBm9WXFUERZpRpiTArDv2NEbUNrR81F-T3wrRnsXFLrGNrsL3dkmafpbj7nwmu-r0N7bI_2TNrsEVD7DZ08YjrsOaKTbg4tCRcy82YHO4muxDMR_a6hvwdbcqhf7x-UuNVmuYJkJhfxcYKy2-F6flrCqnHyaKqWaqhrho2aRmuqKUwahlmckFE9VEY23DHBElE4VmxP_lyasZHVWQVF1OTtiUjkIq9zvCqYx9xG-X85phLYE6q2_C0bks1iasF2VhbgHjKC8VQro0NRECe2mNRbxto0wIoY3twOPWmHLlCd3pXpGTvC3sUN25U3cHHixFpw2LyZ-EtluLzH0gq_OQZpcxrPfjDtxffowhiM6VRGFwRVAmo7odC298JGd-f_-T_Plw173Y-nfRe3Dp9WCUv9w_PLgNl0Pa8HD9RNuwPqvm5g6iwpm867yRwbvzNuWfuhpzWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broad%E2%80%90scale+distribution+of+diazotrophic+communities+is+driven+more+by+aridity+index+and+temperature+than+by+soil+properties+across+various+forests&rft.jtitle=Global+ecology+and+biogeography&rft.au=Zhao%2C+Wenqiang&rft.au=Kou%2C+Yongping&rft.au=Wang%2C+Xiaohu&rft.au=Wu%2C+Yanhong&rft.date=2020-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=29&rft.issue=12&rft.spage=2119&rft.epage=2130&rft_id=info:doi/10.1111%2Fgeb.13178&rft.externalDBID=10.1111%252Fgeb.13178&rft.externalDocID=GEB13178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon