Observation of fractionally quantized anomalous Hall effect
The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field 1 – 3 . This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the prese...
Saved in:
Published in | Nature (London) Vol. 622; no. 7981; pp. 74 - 79 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.10.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field
1
–
3
. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect
4
–
7
, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe
2
. At zero magnetic field, near filling factor
ν
= −1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance
R
xy
quantized to
h
/
e
2
± 0.1%, whereas the longitudinal resistance
R
xx
vanishes. Remarkably, at
ν
= −2/3 and −3/5, we see plateau features in
R
xy
at
3
2
h
/
e
2
±
1
%
and
5
3
h
/
e
2
±
3
%
, respectively, whereas
R
xx
remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers −1, −2/3 and −3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field,
R
xy
is approximately 2
h
/
e
2
near half-filling (
ν
= −1/2) and varies linearly as
ν
is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field
8
–
14
. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field.
Transport measurements in twisted bilayer MoTe
2
reveal quantized Hall resistance plateaus and composite Fermi liquid-like behaviour under zero magnetic field, constituting a direct observation of integer and fractional quantum anomalous Hall effects. |
---|---|
AbstractList | Not provided. The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field 1 – 3 . This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect 4 – 7 , would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe 2 . At zero magnetic field, near filling factor ν = −1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance R xy quantized to h / e 2 ± 0.1%, whereas the longitudinal resistance R xx vanishes. Remarkably, at ν = −2/3 and −3/5, we see plateau features in R xy at 3 2 h / e 2 ± 1 % and 5 3 h / e 2 ± 3 % , respectively, whereas R xx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers −1, −2/3 and −3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, R xy is approximately 2 h / e 2 near half-filling ( ν = −1/2) and varies linearly as ν is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field 8 – 14 . Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field. Transport measurements in twisted bilayer MoTe 2 reveal quantized Hall resistance plateaus and composite Fermi liquid-like behaviour under zero magnetic field, constituting a direct observation of integer and fractional quantum anomalous Hall effects. The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic field, near filling factor ν = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at ν = -2/3 and -3/5, we see plateau features in Rxy at [Formula: see text] and [Formula: see text], respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, Rxy is approximately 2h/e2 near half-filling (ν = -1/2) and varies linearly as ν is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field8-14. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field.The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic field, near filling factor ν = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at ν = -2/3 and -3/5, we see plateau features in Rxy at [Formula: see text] and [Formula: see text], respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, Rxy is approximately 2h/e2 near half-filling (ν = -1/2) and varies linearly as ν is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field8-14. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field. The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic held13. This phenomenon occurs in systems with topologically non-trivial bandsand spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic held, near filling factor v = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy to quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at v = -2/3 and -3/5, we see plateau features in Rxy at 3/2h/e2 ± 1% and 5/3 h/e2 ±3%, respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic held with slopes matchingthe corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic held, Rxy is approximately 2h/e2 near half-filling (v = -1/2) and varies linearly as v is tuned. This behaviour resemblesthat ofthe composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic held8-14. Direct observation ofthe fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic held. |
Author | Liu, Xiaoyu Cobden, David Taniguchi, Takashi Liu, Zhaoyu Cai, Jiaqi Holtzmann, William Zhu, Jiayi Yao, Wang Xiao, Di Chu, Jiun-Haw Park, Heonjoon Wang, Chong Hu, Chaowei Fu, Liang Zhang, Yinong Watanabe, Kenji Cao, Ting Anderson, Eric Xu, Xiaodong Chang, Cui-Zu |
Author_xml | – sequence: 1 givenname: Heonjoon surname: Park fullname: Park, Heonjoon organization: Department of Physics, University of Washington – sequence: 2 givenname: Jiaqi orcidid: 0000-0002-7829-9554 surname: Cai fullname: Cai, Jiaqi organization: Department of Physics, University of Washington – sequence: 3 givenname: Eric orcidid: 0000-0002-1357-6645 surname: Anderson fullname: Anderson, Eric organization: Department of Physics, University of Washington – sequence: 4 givenname: Yinong surname: Zhang fullname: Zhang, Yinong organization: Department of Physics, University of Washington – sequence: 5 givenname: Jiayi surname: Zhu fullname: Zhu, Jiayi organization: Department of Physics, University of Washington – sequence: 6 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu organization: Department of Materials Science and Engineering, University of Washington – sequence: 7 givenname: Chong orcidid: 0000-0002-8646-3529 surname: Wang fullname: Wang, Chong organization: Department of Materials Science and Engineering, University of Washington – sequence: 8 givenname: William surname: Holtzmann fullname: Holtzmann, William organization: Department of Physics, University of Washington – sequence: 9 givenname: Chaowei surname: Hu fullname: Hu, Chaowei organization: Department of Physics, University of Washington – sequence: 10 givenname: Zhaoyu orcidid: 0000-0002-9894-9622 surname: Liu fullname: Liu, Zhaoyu organization: Department of Physics, University of Washington – sequence: 11 givenname: Takashi orcidid: 0000-0002-1467-3105 surname: Taniguchi fullname: Taniguchi, Takashi organization: Research Center for Materials Nanoarchitectonics, National Institute for Materials Science – sequence: 12 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: Research Center for Electronic and Optical Materials, National Institute for Materials Science – sequence: 13 givenname: Jiun-Haw orcidid: 0000-0001-6222-1210 surname: Chu fullname: Chu, Jiun-Haw organization: Department of Physics, University of Washington – sequence: 14 givenname: Ting orcidid: 0000-0003-1300-6084 surname: Cao fullname: Cao, Ting organization: Department of Materials Science and Engineering, University of Washington – sequence: 15 givenname: Liang orcidid: 0000-0002-8803-1017 surname: Fu fullname: Fu, Liang organization: Department of Physics, Massachusetts Institute of Technology – sequence: 16 givenname: Wang orcidid: 0000-0003-2883-4528 surname: Yao fullname: Yao, Wang organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics, University of Hong Kong – sequence: 17 givenname: Cui-Zu orcidid: 0000-0003-3515-2955 surname: Chang fullname: Chang, Cui-Zu organization: Department of Physics, The Pennsylvania State University – sequence: 18 givenname: David orcidid: 0000-0002-7254-2728 surname: Cobden fullname: Cobden, David organization: Department of Physics, University of Washington – sequence: 19 givenname: Di orcidid: 0000-0003-0165-6848 surname: Xiao fullname: Xiao, Di organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington – sequence: 20 givenname: Xiaodong orcidid: 0000-0003-0348-2095 surname: Xu fullname: Xu, Xiaodong email: xuxd@uw.edu organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington |
BackLink | https://www.osti.gov/biblio/2578130$$D View this record in Osti.gov |
BookMark | eNp9kE1LxDAQhoMouH78AU9FL16qSadpUzyJ-AXCXvQcpulEK91Ek66gv950KwgePGUgz5s88-6xbecdMXYk-JngoM5jKaSqcl5AzisJadpiC1HWVV5Wqt5mC84LlXMF1S7bi_GVcy5FXS7YxbKNFD5w7L3LvM1sQDPNOAyf2fsa3dh_UZeh8ysc_Dpmd-kmI2vJjAdsx-IQ6fDn3GdPN9ePV3f5w_L2_uryITcAXOVgBbSNAbJCyFbapiSLBpUpUSbpTqKsRGOwBYnYCISOmrbpjAVD1EkO--x4ftfHsdfR9COZF-OdSw66kLUSMEGnM_QW_Pua4qhXfTQ0DOgoeetCSWhKAVIm9OQP-urXIa08UXVVl7JQkCg1Uyb4GANZnT7e9DQG7ActuJ6q13P1OlWvN9XryaX4E30L_QrD5_8hmEMxwe6Zwq_VP6lvneGYEw |
CitedBy_id | crossref_primary_10_1038_s41586_024_07201_w crossref_primary_10_1002_qute_202300356 crossref_primary_10_1016_j_mtquan_2024_100015 crossref_primary_10_1103_PhysRevResearch_6_L032063 crossref_primary_10_1103_PhysRevB_110_155102 crossref_primary_10_1103_PhysRevB_110_L161109 crossref_primary_10_1021_acs_nanolett_4c04137 crossref_primary_10_1038_s41467_025_56919_2 crossref_primary_10_1038_s41567_024_02731_6 crossref_primary_10_1103_PhysRevB_110_205130 crossref_primary_10_1103_PhysRevB_109_245125 crossref_primary_10_1103_PhysRevLett_132_096602 crossref_primary_10_1103_PhysRevB_109_L041103 crossref_primary_10_1038_s41578_024_00671_4 crossref_primary_10_1103_PhysRevB_109_L121104 crossref_primary_10_1021_acs_nanolett_4c03969 crossref_primary_10_1002_adfm_202314439 crossref_primary_10_1103_PhysRevB_109_L121107 crossref_primary_10_1103_PhysRevB_110_085157 crossref_primary_10_1088_1742_6596_2843_1_012002 crossref_primary_10_1103_PhysRevB_109_L041106 crossref_primary_10_1103_PhysRevB_111_125410 crossref_primary_10_1103_PhysRevResearch_6_033238 crossref_primary_10_1103_PhysRevB_110_245135 crossref_primary_10_1021_acs_nanolett_4c01313 crossref_primary_10_1007_s44214_024_00063_3 crossref_primary_10_1103_PhysRevX_14_021051 crossref_primary_10_1103_PhysRevB_110_155117 crossref_primary_10_1103_PhysRevB_110_L081103 crossref_primary_10_1103_PhysRevB_110_094426 crossref_primary_10_1103_PhysRevResearch_6_033127 crossref_primary_10_1103_PhysRevB_110_205144 crossref_primary_10_1103_PhysRevB_109_245131 crossref_primary_10_1103_PhysRevLett_133_206502 crossref_primary_10_1038_s41586_024_08239_6 crossref_primary_10_1103_PhysRevB_110_165142 crossref_primary_10_1103_PhysRevLett_133_206504 crossref_primary_10_1103_PhysRevLett_133_206503 crossref_primary_10_1021_acs_nanolett_3c05131 crossref_primary_10_1103_Physics_16_163 crossref_primary_10_1103_PhysRevLett_133_166503 crossref_primary_10_1088_2053_1583_ad690f crossref_primary_10_1038_s41565_024_01702_5 crossref_primary_10_1103_PhysRevB_110_115109 crossref_primary_10_1103_PhysRevB_110_L041118 crossref_primary_10_1021_acs_jpcc_4c08418 crossref_primary_10_1038_s41586_025_08621_y crossref_primary_10_1103_PhysRevB_109_115417 crossref_primary_10_1103_PhysRevLett_134_066601 crossref_primary_10_1103_PhysRevB_110_205115 crossref_primary_10_1103_PhysRevLett_132_146401 crossref_primary_10_1038_s41586_024_08116_2 crossref_primary_10_1103_PhysRevLett_134_106502 crossref_primary_10_3390_sym16111524 crossref_primary_10_1021_acs_nanolett_3c05145 crossref_primary_10_1080_08940886_2024_2391251 crossref_primary_10_1103_PhysRevResearch_6_023306 crossref_primary_10_1103_PhysRevB_109_L241113 crossref_primary_10_1103_PhysRevB_110_245115 crossref_primary_10_1103_PhysRevLett_133_246501 crossref_primary_10_3390_nano13192655 crossref_primary_10_1103_PhysRevB_109_L241115 crossref_primary_10_1016_j_cpc_2025_109510 crossref_primary_10_1063_5_0222102 crossref_primary_10_1038_d41586_024_00832_z crossref_primary_10_1016_j_newton_2025_100013 crossref_primary_10_1038_s42005_024_01759_7 crossref_primary_10_1103_PhysRevB_110_115114 crossref_primary_10_1103_PhysRevB_111_064514 crossref_primary_10_1038_s41467_024_48385_z crossref_primary_10_1103_PhysRevB_110_245112 crossref_primary_10_1039_D5NA00112A crossref_primary_10_7498_aps_73_20241029 crossref_primary_10_1103_PhysRevApplied_21_054036 crossref_primary_10_1021_acs_nanolett_3c04866 crossref_primary_10_1103_PhysRevB_109_075424 crossref_primary_10_1002_aelm_202300733 crossref_primary_10_1063_5_0219292 crossref_primary_10_1103_PhysRevB_110_075105 crossref_primary_10_1103_PhysRevB_110_125142 crossref_primary_10_1103_PhysRevB_110_165126 crossref_primary_10_1103_PhysRevB_110_075109 crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_1103_PhysRevB_110_144444 crossref_primary_10_1103_PhysRevB_110_165128 crossref_primary_10_1088_0256_307X_41_4_047403 crossref_primary_10_1016_j_micron_2024_103776 crossref_primary_10_1126_science_adi4728 crossref_primary_10_1103_PhysRevB_109_115111 crossref_primary_10_1103_PhysRevB_111_085107 crossref_primary_10_1103_PhysRevB_109_115116 crossref_primary_10_1038_s41586_024_08134_0 crossref_primary_10_1103_PhysRevLett_132_236502 crossref_primary_10_1088_1361_6633_ad77f0 crossref_primary_10_1103_PhysRevB_110_035130 crossref_primary_10_1103_PhysRevB_111_035134 crossref_primary_10_1126_science_adk9749 crossref_primary_10_1103_PhysRevLett_133_186602 crossref_primary_10_1038_s41586_023_06452_3 crossref_primary_10_1126_science_adk1348 crossref_primary_10_1038_s41586_024_07214_5 crossref_primary_10_1103_PhysRevX_14_041040 crossref_primary_10_1038_s42254_024_00718_z crossref_primary_10_1103_PhysRevLett_133_246602 crossref_primary_10_1038_s41563_025_02131_y crossref_primary_10_1103_PhysRevLett_134_116501 crossref_primary_10_1103_PhysRevLett_133_156504 crossref_primary_10_1103_PhysRevLett_133_156501 crossref_primary_10_1002_adma_202313511 crossref_primary_10_1063_5_0211557 crossref_primary_10_1557_s43577_024_00668_y crossref_primary_10_1021_acs_nanolett_4c00948 crossref_primary_10_1103_PhysRevLett_134_076902 crossref_primary_10_1038_s41467_025_57326_3 crossref_primary_10_1038_s41535_024_00685_9 crossref_primary_10_1103_PhysRevB_110_235133 crossref_primary_10_1038_s41565_024_01704_3 crossref_primary_10_1021_acsnano_4c04271 crossref_primary_10_1021_acs_nanolett_4c04196 crossref_primary_10_1021_acsnano_4c03736 crossref_primary_10_3390_nano14211759 crossref_primary_10_1103_PhysRevLett_133_106502 crossref_primary_10_21468_SciPostPhys_17_5_137 crossref_primary_10_1002_smtd_202301524 crossref_primary_10_1038_s41578_024_00694_x crossref_primary_10_1103_PhysRevB_111_035116 crossref_primary_10_1126_science_adr5234 crossref_primary_10_1088_1361_648X_ad9723 crossref_primary_10_1038_d41586_023_02941_7 crossref_primary_10_1088_2053_1583_ada043 crossref_primary_10_1002_adma_202414966 crossref_primary_10_1103_PhysRevB_110_155410 crossref_primary_10_1103_PhysRevLett_133_086501 crossref_primary_10_1038_s42005_024_01754_y crossref_primary_10_1103_PhysRevB_111_085116 crossref_primary_10_1103_PhysRevLett_131_240001 crossref_primary_10_1103_PhysRevB_111_L121104 crossref_primary_10_1134_S0021364024601532 crossref_primary_10_1103_PhysRevB_111_L121102 crossref_primary_10_1007_s40042_024_01177_6 crossref_primary_10_1088_0256_307X_41_3_037401 crossref_primary_10_1093_nsr_nwae334 crossref_primary_10_1038_s41578_024_00682_1 crossref_primary_10_1038_d41586_024_00067_y crossref_primary_10_1103_PhysRevB_110_L201107 crossref_primary_10_1038_s41467_025_57035_x crossref_primary_10_1103_PhysRevLett_133_206601 crossref_primary_10_1103_PhysRevB_111_125407 crossref_primary_10_1103_PhysRevLett_133_206602 crossref_primary_10_1021_acsnano_4c18675 crossref_primary_10_1103_PhysRevB_110_L201105 crossref_primary_10_1002_piuz_202470205 crossref_primary_10_1039_D4NR03398A crossref_primary_10_1103_PhysRevLett_133_163401 crossref_primary_10_1038_s41467_024_48522_8 crossref_primary_10_1007_s12274_024_6984_8 crossref_primary_10_1088_1674_1056_ad9ffc crossref_primary_10_1038_s41467_024_47768_6 crossref_primary_10_1103_PhysRevB_111_014508 crossref_primary_10_1088_1674_1056_ad9ffa crossref_primary_10_1103_PhysRevB_111_045136 crossref_primary_10_1103_PhysRevB_110_085429 crossref_primary_10_1103_PhysRevLett_134_046504 crossref_primary_10_1002_smll_202412737 crossref_primary_10_1103_PhysRevB_110_045412 crossref_primary_10_1038_s41586_024_08381_1 crossref_primary_10_1021_acs_nanolett_4c00619 crossref_primary_10_1103_PhysRevLett_133_146503 crossref_primary_10_1103_PhysRevB_111_125131 crossref_primary_10_3390_mi15050591 crossref_primary_10_1038_s41928_024_01274_1 crossref_primary_10_1021_acs_nanolett_4c03574 crossref_primary_10_1038_s41467_024_55001_7 crossref_primary_10_1038_s41563_023_01751_6 crossref_primary_10_1103_PhysRevLett_132_246501 crossref_primary_10_1021_acs_nanolett_4c05870 crossref_primary_10_1103_PhysRevB_109_155159 crossref_primary_10_1038_s41586_024_08091_8 crossref_primary_10_1103_PhysRevResearch_6_013219 crossref_primary_10_1103_PhysRevB_111_075108 crossref_primary_10_1103_PhysRevB_111_125143 crossref_primary_10_1088_1361_6633_ad7640 crossref_primary_10_1038_s41563_024_01951_8 crossref_primary_10_1007_s44214_025_00075_7 crossref_primary_10_1103_PhysRevB_111_045110 crossref_primary_10_1103_PhysRevB_111_045113 crossref_primary_10_1103_PhysRevX_15_011045 crossref_primary_10_1103_PhysRevB_109_195406 crossref_primary_10_1109_ACCESS_2025_3541825 crossref_primary_10_1038_s41467_024_54886_8 crossref_primary_10_1073_pnas_2410703121 crossref_primary_10_1103_PhysRevLett_133_066601 crossref_primary_10_1038_s41567_025_02837_5 crossref_primary_10_1016_j_ultramic_2024_113960 crossref_primary_10_1103_PhysRevB_111_125154 crossref_primary_10_1103_PhysRevX_15_011052 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1103_Physics_17_100 crossref_primary_10_7498_aps_73_20240222 crossref_primary_10_1038_s41467_024_48725_z crossref_primary_10_1038_s41567_024_02397_0 crossref_primary_10_1103_PhysRevB_111_045108 crossref_primary_10_1103_PhysRevB_110_125301 crossref_primary_10_1063_5_0230231 crossref_primary_10_1103_PhysRevB_109_245431 crossref_primary_10_1103_PhysRevLett_134_026904 crossref_primary_10_1103_PhysRevLett_131_256502 crossref_primary_10_1103_PhysRevResearch_5_043084 crossref_primary_10_1103_PhysRevB_110_165401 crossref_primary_10_1103_PhysRevB_108_L241302 crossref_primary_10_1103_PhysRevB_111_075148 crossref_primary_10_1103_PhysRevResearch_6_043240 crossref_primary_10_1021_acs_nanolett_4c03129 crossref_primary_10_1021_acs_nanolett_4c05308 crossref_primary_10_1103_PhysRevLett_131_136502 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_1021_acs_nanolett_4c05666 crossref_primary_10_1038_s42005_024_01926_w crossref_primary_10_1103_PhysRevB_110_115125 crossref_primary_10_1021_acsaelm_3c01328 crossref_primary_10_1038_s41699_025_00536_6 crossref_primary_10_1103_PhysRevLett_133_066302 crossref_primary_10_1103_PhysRevX_14_010001 crossref_primary_10_1038_s41467_025_57235_5 crossref_primary_10_1103_PhysRevB_111_L060501 crossref_primary_10_1103_PhysRevB_109_045147 crossref_primary_10_1103_PhysRevMaterials_8_044407 crossref_primary_10_1103_PhysRevB_111_115115 crossref_primary_10_1016_j_pquantelec_2024_100498 crossref_primary_10_1073_pnas_2316749121 crossref_primary_10_1103_PhysRevB_108_245159 crossref_primary_10_1103_PhysRevB_110_L201406 crossref_primary_10_1103_PhysRevB_110_085120 crossref_primary_10_1007_s44214_024_00059_z crossref_primary_10_1038_s41567_024_02444_w crossref_primary_10_1103_PhysRevX_13_041026 crossref_primary_10_1038_s41563_024_02067_9 crossref_primary_10_1103_PhysRevLett_134_076503 crossref_primary_10_1038_s41467_024_55432_2 crossref_primary_10_1038_s41567_025_02803_1 crossref_primary_10_1103_PhysRevLett_133_056601 crossref_primary_10_1021_acs_nanolett_5c00201 crossref_primary_10_31857_S1234567824120061 crossref_primary_10_1103_PhysRevLett_133_226602 crossref_primary_10_1103_PhysRevB_111_L081111 crossref_primary_10_1002_adfm_202419321 crossref_primary_10_1088_1361_648X_ad2bda crossref_primary_10_1103_PhysRevB_110_115146 crossref_primary_10_1103_PhysRevLett_133_136403 crossref_primary_10_1103_PhysRevB_111_115102 crossref_primary_10_1016_j_micron_2024_103719 crossref_primary_10_1103_PhysRevResearch_6_023180 crossref_primary_10_1103_PhysRevB_110_045116 crossref_primary_10_1038_s41586_024_08153_x crossref_primary_10_1088_1674_1056_ad5534 crossref_primary_10_1103_PhysRevB_110_045114 crossref_primary_10_1016_j_carbon_2025_120131 crossref_primary_10_1088_1674_1056_ad9456 crossref_primary_10_1103_PhysRevB_109_L041403 crossref_primary_10_1038_s41586_024_07211_8 crossref_primary_10_1103_PhysRevB_109_205121 crossref_primary_10_1038_s41586_024_08470_1 crossref_primary_10_1038_s41467_024_48511_x crossref_primary_10_1103_PhysRevLett_134_076601 crossref_primary_10_1038_s41578_023_00644_z crossref_primary_10_1126_sciadv_adq5712 crossref_primary_10_1038_s41563_025_02135_8 crossref_primary_10_1038_s41586_024_08092_7 crossref_primary_10_1103_PhysRevB_109_205122 crossref_primary_10_1103_PhysRevB_110_165162 crossref_primary_10_1103_PhysRevB_110_195113 crossref_primary_10_1038_s41566_024_01545_5 crossref_primary_10_1038_s41467_024_52314_5 crossref_primary_10_1038_s41567_025_02804_0 crossref_primary_10_1103_PhysRevB_111_125122 crossref_primary_10_1038_d41586_024_03311_7 crossref_primary_10_1103_PhysRevB_109_085143 |
Cites_doi | 10.1103/PhysRevLett.122.086402 10.1103/PhysRevB.107.L201109 10.1103/PhysRevLett.62.82 10.1103/PhysRevLett.71.3846 10.1103/PhysRevLett.62.1177 10.1126/science.aax8156 10.1038/ncomms1380 10.1103/PhysRevLett.50.1395 10.1103/PhysRevLett.66.802 10.1103/PhysRevB.99.075127 10.1038/s41467-021-27042-9 10.1126/science.aaz5601 10.1103/PhysRevLett.106.236802 10.1038/s41586-021-04171-1 10.1038/s41586-021-03815-6 10.1103/PhysRevLett.48.1559 10.1126/science.aan8458 10.1126/science.1234414 10.1103/RevModPhys.95.011002 10.1126/science.aaw3780 10.1126/science.adg4268 10.1103/PhysRevLett.63.199 10.1103/PhysRevLett.72.2065 10.1103/PhysRevLett.117.126802 10.1103/PhysRevB.32.7016 10.1016/0550-3213(91)90407-O 10.1126/science.aay5533 10.1103/PhysRevResearch.3.L032070 10.1103/PhysRevLett.59.1776 10.1103/PhysRevLett.71.3850 10.1038/s41586-021-04002-3 10.1103/PhysRevLett.52.1583 10.1093/nsr/nwz117 10.1103/PhysRevLett.53.722 10.1103/PhysRevLett.74.4511 10.1103/PhysRevB.47.7312 10.1103/PhysRevLett.106.236804 10.1103/PhysRevLett.49.405 10.1038/s41586-023-06289-w 10.1038/s41586-023-06452-3 10.1103/PhysRevLett.95.146802 10.1038/s41567-020-1019-1 10.1103/PhysRevLett.45.494 10.1103/PhysRevLett.61.2015 10.1038/s41563-020-0708-6 10.1142/11751 10.1103/PhysRevB.108.085117 10.48550/arXiv.2304.11864 10.48550/arXiv.2304.09808 10.48550/arXiv.2306.02501 10.1103/PhysRevLett.131.136501 10.48550/arXiv.2306.01719 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Nature Publishing Group Oct 5, 2023 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Nature Publishing Group Oct 5, 2023 – notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) Columbia Univ., New York, NY (United States) |
CorporateAuthor_xml | – name: Columbia Univ., New York, NY (United States) – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OTOTI |
DOI | 10.1038/s41586-023-06536-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials Biological Science Collection ProQuest eLibrary (NC LIVE) ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection (ProQuest) Environmental Science Collection (ProQuest) ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 79 |
ExternalDocumentID | 2578130 10_1038_s41586_023_06536_0 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NADUK NAPCQ NEPJS NXXTH O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 SOI TUS 7X8 OTOTI PUEGO |
ID | FETCH-LOGICAL-c3308-3f13b9c3ef115b5f94efaca8c4a5586d5a5619cab35aa91a3de9b9dcf3ceed503 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Aug 25 02:21:00 EDT 2025 Fri Jul 11 09:01:44 EDT 2025 Sat Aug 23 12:37:04 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Tue Jul 01 02:58:44 EDT 2025 Fri Feb 21 02:39:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7981 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3308-3f13b9c3ef115b5f94efaca8c4a5586d5a5619cab35aa91a3de9b9dcf3ceed503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 None USDOE Office of Science (SC) SC0019443; SC0018171 |
ORCID | 0000-0003-2883-4528 0000-0002-9894-9622 0000-0001-6222-1210 0000-0002-1357-6645 0000-0003-3515-2955 0000-0002-1467-3105 0000-0003-1300-6084 0000-0002-7254-2728 0000-0003-0165-6848 0000-0002-8646-3529 0000-0003-3701-8119 0000-0002-7829-9554 0000-0002-8803-1017 0000-0003-0348-2095 0000000272542728 0000000213576645 0000000288031017 0000000328834528 0000000298949622 0000000303482095 0000000313006084 0000000286463529 0000000337018119 0000000335152955 0000000214673105 0000000162221210 0000000301656848 0000000278299554 |
PQID | 2876745283 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_2578130 proquest_miscellaneous_2853941355 proquest_journals_2876745283 crossref_citationtrail_10_1038_s41586_023_06536_0 crossref_primary_10_1038_s41586_023_06536_0 springer_journals_10_1038_s41586_023_06536_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-05 |
PublicationDateYYYYMMDD | 2023-10-05 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Arovas, Schrieffer, Wilczek (CR20) 1984; 53 Spanton (CR33) 2018; 360 Tang, Mei, Wen (CR6) 2011; 106 CR36 Devakul, Crépel, Zhang, Fu (CR41) 2021; 12 CR31 Yu, Chen, Yao (CR39) 2020; 7 Regnault, Bernevig (CR7) 2011; 1 Goldman, Su, Jain (CR13) 1994; 72 Serlin (CR28) 2020; 367 Wu, Lovorn, Tutuc, Martin, MacDonald (CR38) 2019; 122 Wen (CR23) 1991; 66 Kane, Mele (CR53) 2005; 95 Sharpe (CR27) 2019; 365 Halperin, Lee, Read (CR10) 1993; 47 CR49 Chang, Liu, MacDonald (CR1) 2023; 95 Halperin (CR19) 1984; 52 Zhang, Hansson, Kivelson (CR21) 1989; 62 Haldane (CR3) 1988; 61 Wang (CR52) 2020; 19 CR45 CR44 CR42 Moore, Read (CR22) 1991; 360 Wei, Chang, Tsui, Razeghi (CR46) 1985; 32 Klitzing, Dorda, Pepper (CR15) 1980; 45 Anderson (CR34) 2023; 381 Shahar, Tsui, Shayegan, Bhatt, Cunningham (CR47) 1995; 74 Chang (CR2) 2013; 340 Kang, Stormer, Pfeiffer, Baldwin, West (CR12) 1993; 71 Crépel, Fu (CR43) 2022; 107 CR14 Ghiotto (CR51) 2021; 597 Tsui, Stormer, Gossard (CR17) 1982; 48 Thouless, Kohmoto, Nightingale, den Nijs (CR16) 1982; 49 Li (CR29) 2021; 600 Willett (CR8) 1987; 59 Xie (CR32) 2021; 600 Neupert, Santos, Chamon, Mudry (CR5) 2011; 106 Laughlin (CR18) 1983; 50 Li, Kumar, Sun, Lin (CR37) 2021; 3 Zhang, Mao, Cao, Jarillo-Herrero, Senthil (CR40) 2019; 99 Deng (CR26) 2020; 367 Sheng, Gu, Sun, Sheng (CR4) 2011; 2 Willett, Ruel, West, Pfeiffer (CR11) 1993; 71 Jain (CR9) 1989; 63 Cai (CR30) 2023 Nakamura, Liang, Gardner, Manfra (CR24) 2020; 16 Chang (CR48) 2016; 117 Bartolomei (CR25) 2020; 368 Winkler, Kotthaus, Ploog (CR50) 1989; 62 Zeng (CR35) 2023 6536_CR42 L Wang (6536_CR52) 2020; 19 XG Wen (6536_CR23) 1991; 66 6536_CR45 C-Z Chang (6536_CR2) 2013; 340 6536_CR44 V Crépel (6536_CR43) 2022; 107 R Willett (6536_CR8) 1987; 59 DC Tsui (6536_CR17) 1982; 48 W Kang (6536_CR12) 1993; 71 T Neupert (6536_CR5) 2011; 106 G Moore (6536_CR22) 1991; 360 6536_CR49 Y-H Zhang (6536_CR40) 2019; 99 6536_CR31 HP Wei (6536_CR46) 1985; 32 FDM Haldane (6536_CR3) 1988; 61 6536_CR36 D Arovas (6536_CR20) 1984; 53 D Sheng (6536_CR4) 2011; 2 N Regnault (6536_CR7) 2011; 1 DJ Thouless (6536_CR16) 1982; 49 JK Jain (6536_CR9) 1989; 63 R Winkler (6536_CR50) 1989; 62 E Anderson (6536_CR34) 2023; 381 F Wu (6536_CR38) 2019; 122 Y Zeng (6536_CR35) 2023 J Nakamura (6536_CR24) 2020; 16 EM Spanton (6536_CR33) 2018; 360 T Li (6536_CR29) 2021; 600 BI Halperin (6536_CR10) 1993; 47 Y Xie (6536_CR32) 2021; 600 E Tang (6536_CR6) 2011; 106 KV Klitzing (6536_CR15) 1980; 45 H Yu (6536_CR39) 2020; 7 J Cai (6536_CR30) 2023 VJ Goldman (6536_CR13) 1994; 72 C-Z Chang (6536_CR1) 2023; 95 T Devakul (6536_CR41) 2021; 12 RL Willett (6536_CR11) 1993; 71 H Bartolomei (6536_CR25) 2020; 368 C-Z Chang (6536_CR48) 2016; 117 BI Halperin (6536_CR19) 1984; 52 M Serlin (6536_CR28) 2020; 367 6536_CR14 A Ghiotto (6536_CR51) 2021; 597 D Shahar (6536_CR47) 1995; 74 Y Deng (6536_CR26) 2020; 367 CL Kane (6536_CR53) 2005; 95 SC Zhang (6536_CR21) 1989; 62 AL Sharpe (6536_CR27) 2019; 365 RB Laughlin (6536_CR18) 1983; 50 H Li (6536_CR37) 2021; 3 |
References_xml | – ident: CR45 – volume: 122 start-page: 086402 year: 2019 ident: CR38 article-title: Topological insulators in twisted transition metal dichalcogenide homobilayers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.086402 – volume: 107 start-page: L201109 year: 2022 ident: CR43 article-title: Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.L201109 – volume: 62 start-page: 82 year: 1989 end-page: 85 ident: CR21 article-title: Effective-field-theory model for the fractional quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.82 – volume: 71 start-page: 3846 year: 1993 end-page: 3849 ident: CR11 article-title: Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3846 – ident: CR49 – volume: 62 start-page: 1177 year: 1989 ident: CR50 article-title: Landau band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.1177 – volume: 367 start-page: 895 year: 2020 end-page: 900 ident: CR26 article-title: Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi Te publication-title: Science doi: 10.1126/science.aax8156 – volume: 2 year: 2011 ident: CR4 article-title: Fractional quantum Hall effect in the absence of Landau levels publication-title: Nat. Commun. doi: 10.1038/ncomms1380 – volume: 50 start-page: 1395 year: 1983 ident: CR18 article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1395 – volume: 66 start-page: 802 year: 1991 end-page: 805 ident: CR23 article-title: Non-Abelian statistics in the fractional quantum Hall states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.802 – ident: CR42 – volume: 99 start-page: 075127 year: 2019 ident: CR40 article-title: Nearly flat Chern bands in moiré superlattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.075127 – volume: 12 year: 2021 ident: CR41 article-title: Magic in twisted transition metal dichalcogenide bilayers publication-title: Nat. Commun. doi: 10.1038/s41467-021-27042-9 – volume: 368 start-page: 173 year: 2020 end-page: 177 ident: CR25 article-title: Fractional statistics in anyon collisions publication-title: Science doi: 10.1126/science.aaz5601 – volume: 106 start-page: 236802 year: 2011 ident: CR6 article-title: High-temperature fractional quantum Hall states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.236802 – volume: 600 start-page: 641 year: 2021 end-page: 646 ident: CR29 article-title: Quantum anomalous Hall effect from intertwined moiré bands publication-title: Nature doi: 10.1038/s41586-021-04171-1 – volume: 597 start-page: 345 year: 2021 end-page: 349 ident: CR51 article-title: Quantum criticality in twisted transition metal dichalcogenides publication-title: Nature doi: 10.1038/s41586-021-03815-6 – volume: 48 start-page: 1559 year: 1982 ident: CR17 article-title: Two-dimensional magnetotransport in the extreme quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 360 start-page: 62 year: 2018 end-page: 66 ident: CR33 article-title: Observation of fractional Chern insulators in a van der Waals heterostructure publication-title: Science doi: 10.1126/science.aan8458 – volume: 340 start-page: 167 year: 2013 end-page: 170 ident: CR2 article-title: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator publication-title: Science doi: 10.1126/science.1234414 – volume: 95 start-page: 011002 year: 2023 ident: CR1 article-title: Colloquium: quantum anomalous Hall effect publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.95.011002 – ident: CR36 – volume: 365 start-page: 605 year: 2019 end-page: 608 ident: CR27 article-title: Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene publication-title: Science doi: 10.1126/science.aaw3780 – volume: 381 start-page: 325 year: 2023 end-page: 330 ident: CR34 article-title: Programming correlated magnetic states with gate-controlled moiré geometry publication-title: Science doi: 10.1126/science.adg4268 – volume: 1 start-page: 021014 year: 2011 ident: CR7 article-title: Fractional Chern insulator publication-title: Phys. Rev. X – volume: 63 start-page: 199 year: 1989 end-page: 202 ident: CR9 article-title: Composite-fermion approach for the fractional quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.199 – volume: 72 start-page: 2065 year: 1994 end-page: 2068 ident: CR13 article-title: Detection of composite fermions by magnetic focusing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2065 – volume: 117 start-page: 126802 year: 2016 ident: CR48 article-title: Observation of the quantum anomalous Hall insulator to Anderson insulator quantum phase transition and its scaling behavior publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.126802 – volume: 32 start-page: 7016 year: 1985 end-page: 7019 ident: CR46 article-title: Temperature dependence of the quantized Hall effect publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.32.7016 – ident: CR14 – volume: 360 start-page: 362 year: 1991 end-page: 396 ident: CR22 article-title: Nonabelions in the fractional quantum Hall effect publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90407-O – volume: 367 start-page: 900 year: 2020 end-page: 903 ident: CR28 article-title: Intrinsic quantized anomalous Hall effect in a moiré heterostructure publication-title: Science doi: 10.1126/science.aay5533 – volume: 3 start-page: L032070 year: 2021 ident: CR37 article-title: Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L032070 – volume: 59 start-page: 1776 year: 1987 ident: CR8 article-title: Observation of an even-denominator quantum number in the fractional quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.1776 – volume: 71 start-page: 3850 year: 1993 end-page: 3853 ident: CR12 article-title: How real are composite fermions? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3850 – volume: 600 start-page: 439 year: 2021 end-page: 443 ident: CR32 article-title: Fractional Chern insulators in magic-angle twisted bilayer graphene publication-title: Nature doi: 10.1038/s41586-021-04002-3 – volume: 52 start-page: 1583 year: 1984 end-page: 1586 ident: CR19 article-title: Statistics of quasiparticles and the hierarchy of fractional quantized Hall states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.1583 – volume: 7 start-page: 12 year: 2020 end-page: 20 ident: CR39 article-title: Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz117 – volume: 53 start-page: 722 year: 1984 end-page: 723 ident: CR20 article-title: Fractional statistics and the quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.722 – ident: CR44 – volume: 74 start-page: 4511 year: 1995 end-page: 4514 ident: CR47 article-title: Universal conductivity at the quantum Hall liquid to insulator transition publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4511 – volume: 47 start-page: 7312 year: 1993 ident: CR10 article-title: Theory of the half-filled Landau level publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.7312 – volume: 106 start-page: 236804 year: 2011 ident: CR5 article-title: Fractional quantum Hall states at zero magnetic field publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.236804 – volume: 49 start-page: 405 year: 1982 end-page: 408 ident: CR16 article-title: Quantized Hall conductance in a two-dimensional periodic potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – year: 2023 ident: CR30 article-title: Signatures of fractional quantum anomalous Hall states in twisted MoTe publication-title: Nature doi: 10.1038/s41586-023-06289-w – ident: CR31 – year: 2023 ident: CR35 article-title: Thermodynamic evidence of fractional Chern insulator in moiré MoTe publication-title: Nature doi: 10.1038/s41586-023-06452-3 – volume: 95 start-page: 146802 year: 2005 ident: CR53 article-title: Topological order and the quantum spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.146802 – volume: 16 start-page: 931 year: 2020 end-page: 936 ident: CR24 article-title: Direct observation of anyonic braiding statistics publication-title: Nat. Phys. doi: 10.1038/s41567-020-1019-1 – volume: 45 start-page: 494 year: 1980 end-page: 497 ident: CR15 article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 61 start-page: 2015 year: 1988 end-page: 2018 ident: CR3 article-title: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly” publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2015 – volume: 19 start-page: 861 year: 2020 end-page: 866 ident: CR52 article-title: Correlated electronic phases in twisted bilayer transition metal dichalcogenides publication-title: Nat. Mater. doi: 10.1038/s41563-020-0708-6 – ident: 6536_CR14 doi: 10.1142/11751 – volume: 3 start-page: L032070 year: 2021 ident: 6536_CR37 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L032070 – volume: 95 start-page: 146802 year: 2005 ident: 6536_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.146802 – volume: 32 start-page: 7016 year: 1985 ident: 6536_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.32.7016 – year: 2023 ident: 6536_CR30 publication-title: Nature doi: 10.1038/s41586-023-06289-w – volume: 1 start-page: 021014 year: 2011 ident: 6536_CR7 publication-title: Phys. Rev. X – volume: 52 start-page: 1583 year: 1984 ident: 6536_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.1583 – volume: 62 start-page: 1177 year: 1989 ident: 6536_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.1177 – volume: 63 start-page: 199 year: 1989 ident: 6536_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.199 – volume: 122 start-page: 086402 year: 2019 ident: 6536_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.086402 – volume: 365 start-page: 605 year: 2019 ident: 6536_CR27 publication-title: Science doi: 10.1126/science.aaw3780 – volume: 367 start-page: 900 year: 2020 ident: 6536_CR28 publication-title: Science doi: 10.1126/science.aay5533 – volume: 48 start-page: 1559 year: 1982 ident: 6536_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 600 start-page: 641 year: 2021 ident: 6536_CR29 publication-title: Nature doi: 10.1038/s41586-021-04171-1 – ident: 6536_CR42 doi: 10.1103/PhysRevB.108.085117 – ident: 6536_CR36 doi: 10.48550/arXiv.2304.11864 – volume: 7 start-page: 12 year: 2020 ident: 6536_CR39 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz117 – ident: 6536_CR31 doi: 10.48550/arXiv.2304.09808 – volume: 381 start-page: 325 year: 2023 ident: 6536_CR34 publication-title: Science doi: 10.1126/science.adg4268 – volume: 597 start-page: 345 year: 2021 ident: 6536_CR51 publication-title: Nature doi: 10.1038/s41586-021-03815-6 – volume: 71 start-page: 3850 year: 1993 ident: 6536_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3850 – volume: 95 start-page: 011002 year: 2023 ident: 6536_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.95.011002 – volume: 16 start-page: 931 year: 2020 ident: 6536_CR24 publication-title: Nat. Phys. doi: 10.1038/s41567-020-1019-1 – volume: 59 start-page: 1776 year: 1987 ident: 6536_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.1776 – volume: 62 start-page: 82 year: 1989 ident: 6536_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.82 – volume: 49 start-page: 405 year: 1982 ident: 6536_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – volume: 12 year: 2021 ident: 6536_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27042-9 – volume: 107 start-page: L201109 year: 2022 ident: 6536_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.L201109 – volume: 74 start-page: 4511 year: 1995 ident: 6536_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4511 – volume: 99 start-page: 075127 year: 2019 ident: 6536_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.075127 – volume: 106 start-page: 236802 year: 2011 ident: 6536_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.236802 – volume: 50 start-page: 1395 year: 1983 ident: 6536_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1395 – year: 2023 ident: 6536_CR35 publication-title: Nature doi: 10.1038/s41586-023-06452-3 – volume: 2 year: 2011 ident: 6536_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms1380 – volume: 47 start-page: 7312 year: 1993 ident: 6536_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.7312 – volume: 66 start-page: 802 year: 1991 ident: 6536_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.802 – volume: 117 start-page: 126802 year: 2016 ident: 6536_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.126802 – volume: 72 start-page: 2065 year: 1994 ident: 6536_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2065 – volume: 368 start-page: 173 year: 2020 ident: 6536_CR25 publication-title: Science doi: 10.1126/science.aaz5601 – volume: 360 start-page: 362 year: 1991 ident: 6536_CR22 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90407-O – volume: 19 start-page: 861 year: 2020 ident: 6536_CR52 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0708-6 – volume: 45 start-page: 494 year: 1980 ident: 6536_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 340 start-page: 167 year: 2013 ident: 6536_CR2 publication-title: Science doi: 10.1126/science.1234414 – volume: 53 start-page: 722 year: 1984 ident: 6536_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.722 – volume: 106 start-page: 236804 year: 2011 ident: 6536_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.236804 – volume: 367 start-page: 895 year: 2020 ident: 6536_CR26 publication-title: Science doi: 10.1126/science.aax8156 – ident: 6536_CR45 doi: 10.48550/arXiv.2306.02501 – volume: 71 start-page: 3846 year: 1993 ident: 6536_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3846 – volume: 360 start-page: 62 year: 2018 ident: 6536_CR33 publication-title: Science doi: 10.1126/science.aan8458 – volume: 600 start-page: 439 year: 2021 ident: 6536_CR32 publication-title: Nature doi: 10.1038/s41586-021-04002-3 – ident: 6536_CR49 doi: 10.1103/PhysRevLett.131.136501 – volume: 61 start-page: 2015 year: 1988 ident: 6536_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2015 – ident: 6536_CR44 doi: 10.48550/arXiv.2306.01719 |
SSID | ssj0005174 |
Score | 2.7529233 |
Snippet | The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field
1
–
3
. This phenomenon occurs in... The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic held13. This phenomenon occurs in systems... The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 74 |
SubjectTerms | 140/125 142/126 639/766/119/2792/4128 639/766/119/2793 639/766/119/2794 639/766/119/2795 Broken symmetry Coagulation factors Condensed matter physics Electric fields Electrical measurement Electromagnetism Electron gas Electrons Factor V Fermi liquids Hall effect Humanities and Social Sciences Integers Magnetic fields multidisciplinary Phase transitions Quantum Hall effect Science Science & Technology - Other Topics Science (multidisciplinary) Symmetry Unit cell |
Title | Observation of fractionally quantized anomalous Hall effect |
URI | https://link.springer.com/article/10.1038/s41586-023-06536-0 https://www.proquest.com/docview/2876745283 https://www.proquest.com/docview/2853941355 https://www.osti.gov/biblio/2578130 |
Volume | 622 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB90RfDl8Ou4-kUEH5S74tY03QYfRMV1EfzgOGHfQpoPENZW7e7D3V9_M212FwWlEApJ03YmyUxmfpkBOMgTX-BI8rF3Wsbpic9iaXUaay6tyYzFizaKt3fZ4DG9GYphMLjVAVY5XRObhdpWhmzkx6jZZ72UQpGcvbzGlDWKvKshhcYiLFHoMoJ09Ya9OcTjQxTmcGimy_PjGgVXTvBbym0gON69E0ydCifYO6Xzg5-0ET_9VfgW9EZ23jJ6DRZcuQ7LDX7T1OuwFuZozQ5DIOmjDTi9L2Y2V1Z55t_aUwx6NPrLXidI06d_zjJdVs96VE1qNsAa1iI8NuGxf_XnchCHZAmx4ZxsnD7hhTTcedTxCuFl6rw2OjepFvinVmjUlKTRBRday0Rz62SB_PCcxKTo8u_QKavS_QAmBU9513rheYbbS-zqxPYSr51DdQfpHEEypZQyIZI4JbQYqcajzXPVUlchdVVDXdWN4OfsmZc2jsaXrbeJAQq1AAplawjzY8aKlheUuRHsTPmiwoyr1Xx8RLA_q8a5Qg4QXTqkIrYRXKLUFiKCX1N-zrv4_Hu2vn7jNqxQFvoG4yd2oDN-m7hd1FXGxV4zILHMLxMq-9d7sHRxdffw-z8xfua2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qieiL2Ko0tuoWWlA0NMlmc1lERNRy_fSlhXvbbvYDCmfSNndI_aP6N3YmH3e0YN9KXgK72SzzsfOb3dkZgM089gVKkg-90zJME5-F0uo01FxakxmLDzmKh0fZ6CTdG4vxElz3d2EorLJfE5uF2laG9si3Edlnw5RSkXw7vwipahSdrvYlNFqx2HdXf9Flq7_u_kT-biXJzq_jH6OwqyoQGvTd85D7mBfScOcRDBXCy9R5bXRuUi1EnlmhEVJIowsutJax5tbJAifuOdkTEXEc9xE8RsMbkUYNx8NFSMmdrM_dJZ2I59s1Gsqcwn2ploLg-HbLEA4qVOhbIPfOuWxj7nZewPMOp7LvrWAtw5IrV-BJEy9q6hVY7taEmn3oEld_fAlffhfzPV5WeeYv21sTejK5Yhcz5OHZP2eZLqs_elLNajbCFtZGlLyCkwch42sYlFXpVoFJwVMeWS88z9CdxaESO4y9dg7hVRzLAOKeUsp0mcupgMZENSfoPFctdRVSVzXUVVEAn-bfnLd5O-7tvUYMUIg6KHWuoRgjM1W0nKGND2C954vqNLxWC3kMYGPejLpJBy66dEhF7CO4RJQgRACfe34uhvj_fN7c_8f38HR0fHigDnaP9tfgWUJS1cQ0rMNgejlzbxEnTYt3jXAyOH1obbgB3ToijQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qieKLtFUxba0rKCga7pLNJllKEbEeV6vVBwv3tm72A4Rr0jZ3SP3T_OucyccdLdi3kpfAbjbJfOz8Znd2BuBlHvkCJcmH3mkZJrFPQ2l1EmourUmNxYscxa_H6eQk-TwV0zX425-FobDKfk5sJmpbGVojHyKyT7OEUpEMfRcW8f1g_P7sPKQKUrTT2pfTaEXkyF3-Rvet3j88QF6_iuPxpx8fJ2FXYSA06MfnIfcRL6ThziMwKoSXifPa6NwkWog8tUIjvJBGF1xoLSPNrZMF_oTnZFvEiOO4d-BuxkVEOpZNs1V4ybUM0N2BnRHPhzUazZxCf6muguB4d8UoDipU7iuA99oebWP6xuvwsMOs7EMrZBuw5spNuNfEjpp6Eza6-aFmr7sk1m8ewd63YrneyyrP_EV7gkLPZpfsfIH8_PXHWabL6lTPqkXNJtjC2uiSx3ByK2R8AoOyKt1TYFLwhI-sF56n6NriULHNIq-dQ6gVRTKAqKeUMl0WcyqmMVPNbjrPVUtdhdRVDXXVKIC3y2fO2hweN_beJgYoRCCURtdQvJGZK5ra0N4HsNPzRXXaXquVbAbwYtmMekqbL7p0SEXsI7hExCBEAO96fq6G-P_3bN38xudwH_VAfTk8PtqGBzEJVRPesAOD-cXCPUPINC92G9lk8PO2leEfbPAmww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+fractionally+quantized+anomalous+Hall+effect&rft.jtitle=Nature+%28London%29&rft.au=Park%2C+Heonjoon&rft.au=Cai%2C+Jiaqi&rft.au=Anderson%2C+Eric&rft.au=Zhang%2C+Yinong&rft.date=2023-10-05&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=622&rft.issue=7981&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1038%2Fs41586-023-06536-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_023_06536_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |