Observation of fractionally quantized anomalous Hall effect

The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field 1 – 3 . This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the prese...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 622; no. 7981; pp. 74 - 79
Main Authors Park, Heonjoon, Cai, Jiaqi, Anderson, Eric, Zhang, Yinong, Zhu, Jiayi, Liu, Xiaoyu, Wang, Chong, Holtzmann, William, Hu, Chaowei, Liu, Zhaoyu, Taniguchi, Takashi, Watanabe, Kenji, Chu, Jiun-Haw, Cao, Ting, Fu, Liang, Yao, Wang, Chang, Cui-Zu, Cobden, David, Xiao, Di, Xu, Xiaodong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.10.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field 1 – 3 . This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect 4 – 7 , would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe 2 . At zero magnetic field, near filling factor ν  = −1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance R xy quantized to h / e 2  ± 0.1%, whereas the longitudinal resistance R xx vanishes. Remarkably, at ν   =  −2/3 and −3/5, we see plateau features in R xy at 3 2 h / e 2 ± 1 % and 5 3 h / e 2 ± 3 % , respectively, whereas R xx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers −1, −2/3 and −3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, R xy is approximately 2 h / e 2 near half-filling ( ν   = −1/2) and varies linearly as ν   is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field 8 – 14 . Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field. Transport measurements in twisted bilayer MoTe 2 reveal quantized Hall resistance plateaus and composite Fermi liquid-like behaviour under zero magnetic field, constituting a direct observation of integer and fractional quantum anomalous Hall effects.
AbstractList Not provided.
The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field 1 – 3 . This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect 4 – 7 , would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe 2 . At zero magnetic field, near filling factor ν  = −1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance R xy quantized to h / e 2  ± 0.1%, whereas the longitudinal resistance R xx vanishes. Remarkably, at ν   =  −2/3 and −3/5, we see plateau features in R xy at 3 2 h / e 2 ± 1 % and 5 3 h / e 2 ± 3 % , respectively, whereas R xx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers −1, −2/3 and −3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, R xy is approximately 2 h / e 2 near half-filling ( ν   = −1/2) and varies linearly as ν   is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field 8 – 14 . Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field. Transport measurements in twisted bilayer MoTe 2 reveal quantized Hall resistance plateaus and composite Fermi liquid-like behaviour under zero magnetic field, constituting a direct observation of integer and fractional quantum anomalous Hall effects.
The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic field, near filling factor ν = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at ν  =  -2/3 and -3/5, we see plateau features in Rxy at [Formula: see text] and [Formula: see text], respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, Rxy is approximately 2h/e2 near half-filling (ν  = -1/2) and varies linearly as ν  is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field8-14. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field.The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic field, near filling factor ν = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at ν  =  -2/3 and -3/5, we see plateau features in Rxy at [Formula: see text] and [Formula: see text], respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, Rxy is approximately 2h/e2 near half-filling (ν  = -1/2) and varies linearly as ν  is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field8-14. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field.
The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic held13. This phenomenon occurs in systems with topologically non-trivial bandsand spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic held, near filling factor v = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy to quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at v = -2/3 and -3/5, we see plateau features in Rxy at 3/2h/e2 ± 1% and 5/3 h/e2 ±3%, respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic held with slopes matchingthe corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic held, Rxy is approximately 2h/e2 near half-filling (v = -1/2) and varies linearly as v is tuned. This behaviour resemblesthat ofthe composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic held8-14. Direct observation ofthe fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic held.
Author Liu, Xiaoyu
Cobden, David
Taniguchi, Takashi
Liu, Zhaoyu
Cai, Jiaqi
Holtzmann, William
Zhu, Jiayi
Yao, Wang
Xiao, Di
Chu, Jiun-Haw
Park, Heonjoon
Wang, Chong
Hu, Chaowei
Fu, Liang
Zhang, Yinong
Watanabe, Kenji
Cao, Ting
Anderson, Eric
Xu, Xiaodong
Chang, Cui-Zu
Author_xml – sequence: 1
  givenname: Heonjoon
  surname: Park
  fullname: Park, Heonjoon
  organization: Department of Physics, University of Washington
– sequence: 2
  givenname: Jiaqi
  orcidid: 0000-0002-7829-9554
  surname: Cai
  fullname: Cai, Jiaqi
  organization: Department of Physics, University of Washington
– sequence: 3
  givenname: Eric
  orcidid: 0000-0002-1357-6645
  surname: Anderson
  fullname: Anderson, Eric
  organization: Department of Physics, University of Washington
– sequence: 4
  givenname: Yinong
  surname: Zhang
  fullname: Zhang, Yinong
  organization: Department of Physics, University of Washington
– sequence: 5
  givenname: Jiayi
  surname: Zhu
  fullname: Zhu, Jiayi
  organization: Department of Physics, University of Washington
– sequence: 6
  givenname: Xiaoyu
  surname: Liu
  fullname: Liu, Xiaoyu
  organization: Department of Materials Science and Engineering, University of Washington
– sequence: 7
  givenname: Chong
  orcidid: 0000-0002-8646-3529
  surname: Wang
  fullname: Wang, Chong
  organization: Department of Materials Science and Engineering, University of Washington
– sequence: 8
  givenname: William
  surname: Holtzmann
  fullname: Holtzmann, William
  organization: Department of Physics, University of Washington
– sequence: 9
  givenname: Chaowei
  surname: Hu
  fullname: Hu, Chaowei
  organization: Department of Physics, University of Washington
– sequence: 10
  givenname: Zhaoyu
  orcidid: 0000-0002-9894-9622
  surname: Liu
  fullname: Liu, Zhaoyu
  organization: Department of Physics, University of Washington
– sequence: 11
  givenname: Takashi
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: Research Center for Materials Nanoarchitectonics, National Institute for Materials Science
– sequence: 12
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: Research Center for Electronic and Optical Materials, National Institute for Materials Science
– sequence: 13
  givenname: Jiun-Haw
  orcidid: 0000-0001-6222-1210
  surname: Chu
  fullname: Chu, Jiun-Haw
  organization: Department of Physics, University of Washington
– sequence: 14
  givenname: Ting
  orcidid: 0000-0003-1300-6084
  surname: Cao
  fullname: Cao, Ting
  organization: Department of Materials Science and Engineering, University of Washington
– sequence: 15
  givenname: Liang
  orcidid: 0000-0002-8803-1017
  surname: Fu
  fullname: Fu, Liang
  organization: Department of Physics, Massachusetts Institute of Technology
– sequence: 16
  givenname: Wang
  orcidid: 0000-0003-2883-4528
  surname: Yao
  fullname: Yao, Wang
  organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics, University of Hong Kong
– sequence: 17
  givenname: Cui-Zu
  orcidid: 0000-0003-3515-2955
  surname: Chang
  fullname: Chang, Cui-Zu
  organization: Department of Physics, The Pennsylvania State University
– sequence: 18
  givenname: David
  orcidid: 0000-0002-7254-2728
  surname: Cobden
  fullname: Cobden, David
  organization: Department of Physics, University of Washington
– sequence: 19
  givenname: Di
  orcidid: 0000-0003-0165-6848
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington
– sequence: 20
  givenname: Xiaodong
  orcidid: 0000-0003-0348-2095
  surname: Xu
  fullname: Xu, Xiaodong
  email: xuxd@uw.edu
  organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington
BackLink https://www.osti.gov/biblio/2578130$$D View this record in Osti.gov
BookMark eNp9kE1LxDAQhoMouH78AU9FL16qSadpUzyJ-AXCXvQcpulEK91Ek66gv950KwgePGUgz5s88-6xbecdMXYk-JngoM5jKaSqcl5AzisJadpiC1HWVV5Wqt5mC84LlXMF1S7bi_GVcy5FXS7YxbKNFD5w7L3LvM1sQDPNOAyf2fsa3dh_UZeh8ysc_Dpmd-kmI2vJjAdsx-IQ6fDn3GdPN9ePV3f5w_L2_uryITcAXOVgBbSNAbJCyFbapiSLBpUpUSbpTqKsRGOwBYnYCISOmrbpjAVD1EkO--x4ftfHsdfR9COZF-OdSw66kLUSMEGnM_QW_Pua4qhXfTQ0DOgoeetCSWhKAVIm9OQP-urXIa08UXVVl7JQkCg1Uyb4GANZnT7e9DQG7ActuJ6q13P1OlWvN9XryaX4E30L_QrD5_8hmEMxwe6Zwq_VP6lvneGYEw
CitedBy_id crossref_primary_10_1038_s41586_024_07201_w
crossref_primary_10_1002_qute_202300356
crossref_primary_10_1016_j_mtquan_2024_100015
crossref_primary_10_1103_PhysRevResearch_6_L032063
crossref_primary_10_1103_PhysRevB_110_155102
crossref_primary_10_1103_PhysRevB_110_L161109
crossref_primary_10_1021_acs_nanolett_4c04137
crossref_primary_10_1038_s41467_025_56919_2
crossref_primary_10_1038_s41567_024_02731_6
crossref_primary_10_1103_PhysRevB_110_205130
crossref_primary_10_1103_PhysRevB_109_245125
crossref_primary_10_1103_PhysRevLett_132_096602
crossref_primary_10_1103_PhysRevB_109_L041103
crossref_primary_10_1038_s41578_024_00671_4
crossref_primary_10_1103_PhysRevB_109_L121104
crossref_primary_10_1021_acs_nanolett_4c03969
crossref_primary_10_1002_adfm_202314439
crossref_primary_10_1103_PhysRevB_109_L121107
crossref_primary_10_1103_PhysRevB_110_085157
crossref_primary_10_1088_1742_6596_2843_1_012002
crossref_primary_10_1103_PhysRevB_109_L041106
crossref_primary_10_1103_PhysRevB_111_125410
crossref_primary_10_1103_PhysRevResearch_6_033238
crossref_primary_10_1103_PhysRevB_110_245135
crossref_primary_10_1021_acs_nanolett_4c01313
crossref_primary_10_1007_s44214_024_00063_3
crossref_primary_10_1103_PhysRevX_14_021051
crossref_primary_10_1103_PhysRevB_110_155117
crossref_primary_10_1103_PhysRevB_110_L081103
crossref_primary_10_1103_PhysRevB_110_094426
crossref_primary_10_1103_PhysRevResearch_6_033127
crossref_primary_10_1103_PhysRevB_110_205144
crossref_primary_10_1103_PhysRevB_109_245131
crossref_primary_10_1103_PhysRevLett_133_206502
crossref_primary_10_1038_s41586_024_08239_6
crossref_primary_10_1103_PhysRevB_110_165142
crossref_primary_10_1103_PhysRevLett_133_206504
crossref_primary_10_1103_PhysRevLett_133_206503
crossref_primary_10_1021_acs_nanolett_3c05131
crossref_primary_10_1103_Physics_16_163
crossref_primary_10_1103_PhysRevLett_133_166503
crossref_primary_10_1088_2053_1583_ad690f
crossref_primary_10_1038_s41565_024_01702_5
crossref_primary_10_1103_PhysRevB_110_115109
crossref_primary_10_1103_PhysRevB_110_L041118
crossref_primary_10_1021_acs_jpcc_4c08418
crossref_primary_10_1038_s41586_025_08621_y
crossref_primary_10_1103_PhysRevB_109_115417
crossref_primary_10_1103_PhysRevLett_134_066601
crossref_primary_10_1103_PhysRevB_110_205115
crossref_primary_10_1103_PhysRevLett_132_146401
crossref_primary_10_1038_s41586_024_08116_2
crossref_primary_10_1103_PhysRevLett_134_106502
crossref_primary_10_3390_sym16111524
crossref_primary_10_1021_acs_nanolett_3c05145
crossref_primary_10_1080_08940886_2024_2391251
crossref_primary_10_1103_PhysRevResearch_6_023306
crossref_primary_10_1103_PhysRevB_109_L241113
crossref_primary_10_1103_PhysRevB_110_245115
crossref_primary_10_1103_PhysRevLett_133_246501
crossref_primary_10_3390_nano13192655
crossref_primary_10_1103_PhysRevB_109_L241115
crossref_primary_10_1016_j_cpc_2025_109510
crossref_primary_10_1063_5_0222102
crossref_primary_10_1038_d41586_024_00832_z
crossref_primary_10_1016_j_newton_2025_100013
crossref_primary_10_1038_s42005_024_01759_7
crossref_primary_10_1103_PhysRevB_110_115114
crossref_primary_10_1103_PhysRevB_111_064514
crossref_primary_10_1038_s41467_024_48385_z
crossref_primary_10_1103_PhysRevB_110_245112
crossref_primary_10_1039_D5NA00112A
crossref_primary_10_7498_aps_73_20241029
crossref_primary_10_1103_PhysRevApplied_21_054036
crossref_primary_10_1021_acs_nanolett_3c04866
crossref_primary_10_1103_PhysRevB_109_075424
crossref_primary_10_1002_aelm_202300733
crossref_primary_10_1063_5_0219292
crossref_primary_10_1103_PhysRevB_110_075105
crossref_primary_10_1103_PhysRevB_110_125142
crossref_primary_10_1103_PhysRevB_110_165126
crossref_primary_10_1103_PhysRevB_110_075109
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_1103_PhysRevB_110_144444
crossref_primary_10_1103_PhysRevB_110_165128
crossref_primary_10_1088_0256_307X_41_4_047403
crossref_primary_10_1016_j_micron_2024_103776
crossref_primary_10_1126_science_adi4728
crossref_primary_10_1103_PhysRevB_109_115111
crossref_primary_10_1103_PhysRevB_111_085107
crossref_primary_10_1103_PhysRevB_109_115116
crossref_primary_10_1038_s41586_024_08134_0
crossref_primary_10_1103_PhysRevLett_132_236502
crossref_primary_10_1088_1361_6633_ad77f0
crossref_primary_10_1103_PhysRevB_110_035130
crossref_primary_10_1103_PhysRevB_111_035134
crossref_primary_10_1126_science_adk9749
crossref_primary_10_1103_PhysRevLett_133_186602
crossref_primary_10_1038_s41586_023_06452_3
crossref_primary_10_1126_science_adk1348
crossref_primary_10_1038_s41586_024_07214_5
crossref_primary_10_1103_PhysRevX_14_041040
crossref_primary_10_1038_s42254_024_00718_z
crossref_primary_10_1103_PhysRevLett_133_246602
crossref_primary_10_1038_s41563_025_02131_y
crossref_primary_10_1103_PhysRevLett_134_116501
crossref_primary_10_1103_PhysRevLett_133_156504
crossref_primary_10_1103_PhysRevLett_133_156501
crossref_primary_10_1002_adma_202313511
crossref_primary_10_1063_5_0211557
crossref_primary_10_1557_s43577_024_00668_y
crossref_primary_10_1021_acs_nanolett_4c00948
crossref_primary_10_1103_PhysRevLett_134_076902
crossref_primary_10_1038_s41467_025_57326_3
crossref_primary_10_1038_s41535_024_00685_9
crossref_primary_10_1103_PhysRevB_110_235133
crossref_primary_10_1038_s41565_024_01704_3
crossref_primary_10_1021_acsnano_4c04271
crossref_primary_10_1021_acs_nanolett_4c04196
crossref_primary_10_1021_acsnano_4c03736
crossref_primary_10_3390_nano14211759
crossref_primary_10_1103_PhysRevLett_133_106502
crossref_primary_10_21468_SciPostPhys_17_5_137
crossref_primary_10_1002_smtd_202301524
crossref_primary_10_1038_s41578_024_00694_x
crossref_primary_10_1103_PhysRevB_111_035116
crossref_primary_10_1126_science_adr5234
crossref_primary_10_1088_1361_648X_ad9723
crossref_primary_10_1038_d41586_023_02941_7
crossref_primary_10_1088_2053_1583_ada043
crossref_primary_10_1002_adma_202414966
crossref_primary_10_1103_PhysRevB_110_155410
crossref_primary_10_1103_PhysRevLett_133_086501
crossref_primary_10_1038_s42005_024_01754_y
crossref_primary_10_1103_PhysRevB_111_085116
crossref_primary_10_1103_PhysRevLett_131_240001
crossref_primary_10_1103_PhysRevB_111_L121104
crossref_primary_10_1134_S0021364024601532
crossref_primary_10_1103_PhysRevB_111_L121102
crossref_primary_10_1007_s40042_024_01177_6
crossref_primary_10_1088_0256_307X_41_3_037401
crossref_primary_10_1093_nsr_nwae334
crossref_primary_10_1038_s41578_024_00682_1
crossref_primary_10_1038_d41586_024_00067_y
crossref_primary_10_1103_PhysRevB_110_L201107
crossref_primary_10_1038_s41467_025_57035_x
crossref_primary_10_1103_PhysRevLett_133_206601
crossref_primary_10_1103_PhysRevB_111_125407
crossref_primary_10_1103_PhysRevLett_133_206602
crossref_primary_10_1021_acsnano_4c18675
crossref_primary_10_1103_PhysRevB_110_L201105
crossref_primary_10_1002_piuz_202470205
crossref_primary_10_1039_D4NR03398A
crossref_primary_10_1103_PhysRevLett_133_163401
crossref_primary_10_1038_s41467_024_48522_8
crossref_primary_10_1007_s12274_024_6984_8
crossref_primary_10_1088_1674_1056_ad9ffc
crossref_primary_10_1038_s41467_024_47768_6
crossref_primary_10_1103_PhysRevB_111_014508
crossref_primary_10_1088_1674_1056_ad9ffa
crossref_primary_10_1103_PhysRevB_111_045136
crossref_primary_10_1103_PhysRevB_110_085429
crossref_primary_10_1103_PhysRevLett_134_046504
crossref_primary_10_1002_smll_202412737
crossref_primary_10_1103_PhysRevB_110_045412
crossref_primary_10_1038_s41586_024_08381_1
crossref_primary_10_1021_acs_nanolett_4c00619
crossref_primary_10_1103_PhysRevLett_133_146503
crossref_primary_10_1103_PhysRevB_111_125131
crossref_primary_10_3390_mi15050591
crossref_primary_10_1038_s41928_024_01274_1
crossref_primary_10_1021_acs_nanolett_4c03574
crossref_primary_10_1038_s41467_024_55001_7
crossref_primary_10_1038_s41563_023_01751_6
crossref_primary_10_1103_PhysRevLett_132_246501
crossref_primary_10_1021_acs_nanolett_4c05870
crossref_primary_10_1103_PhysRevB_109_155159
crossref_primary_10_1038_s41586_024_08091_8
crossref_primary_10_1103_PhysRevResearch_6_013219
crossref_primary_10_1103_PhysRevB_111_075108
crossref_primary_10_1103_PhysRevB_111_125143
crossref_primary_10_1088_1361_6633_ad7640
crossref_primary_10_1038_s41563_024_01951_8
crossref_primary_10_1007_s44214_025_00075_7
crossref_primary_10_1103_PhysRevB_111_045110
crossref_primary_10_1103_PhysRevB_111_045113
crossref_primary_10_1103_PhysRevX_15_011045
crossref_primary_10_1103_PhysRevB_109_195406
crossref_primary_10_1109_ACCESS_2025_3541825
crossref_primary_10_1038_s41467_024_54886_8
crossref_primary_10_1073_pnas_2410703121
crossref_primary_10_1103_PhysRevLett_133_066601
crossref_primary_10_1038_s41567_025_02837_5
crossref_primary_10_1016_j_ultramic_2024_113960
crossref_primary_10_1103_PhysRevB_111_125154
crossref_primary_10_1103_PhysRevX_15_011052
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1103_Physics_17_100
crossref_primary_10_7498_aps_73_20240222
crossref_primary_10_1038_s41467_024_48725_z
crossref_primary_10_1038_s41567_024_02397_0
crossref_primary_10_1103_PhysRevB_111_045108
crossref_primary_10_1103_PhysRevB_110_125301
crossref_primary_10_1063_5_0230231
crossref_primary_10_1103_PhysRevB_109_245431
crossref_primary_10_1103_PhysRevLett_134_026904
crossref_primary_10_1103_PhysRevLett_131_256502
crossref_primary_10_1103_PhysRevResearch_5_043084
crossref_primary_10_1103_PhysRevB_110_165401
crossref_primary_10_1103_PhysRevB_108_L241302
crossref_primary_10_1103_PhysRevB_111_075148
crossref_primary_10_1103_PhysRevResearch_6_043240
crossref_primary_10_1021_acs_nanolett_4c03129
crossref_primary_10_1021_acs_nanolett_4c05308
crossref_primary_10_1103_PhysRevLett_131_136502
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_1021_acs_nanolett_4c05666
crossref_primary_10_1038_s42005_024_01926_w
crossref_primary_10_1103_PhysRevB_110_115125
crossref_primary_10_1021_acsaelm_3c01328
crossref_primary_10_1038_s41699_025_00536_6
crossref_primary_10_1103_PhysRevLett_133_066302
crossref_primary_10_1103_PhysRevX_14_010001
crossref_primary_10_1038_s41467_025_57235_5
crossref_primary_10_1103_PhysRevB_111_L060501
crossref_primary_10_1103_PhysRevB_109_045147
crossref_primary_10_1103_PhysRevMaterials_8_044407
crossref_primary_10_1103_PhysRevB_111_115115
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1073_pnas_2316749121
crossref_primary_10_1103_PhysRevB_108_245159
crossref_primary_10_1103_PhysRevB_110_L201406
crossref_primary_10_1103_PhysRevB_110_085120
crossref_primary_10_1007_s44214_024_00059_z
crossref_primary_10_1038_s41567_024_02444_w
crossref_primary_10_1103_PhysRevX_13_041026
crossref_primary_10_1038_s41563_024_02067_9
crossref_primary_10_1103_PhysRevLett_134_076503
crossref_primary_10_1038_s41467_024_55432_2
crossref_primary_10_1038_s41567_025_02803_1
crossref_primary_10_1103_PhysRevLett_133_056601
crossref_primary_10_1021_acs_nanolett_5c00201
crossref_primary_10_31857_S1234567824120061
crossref_primary_10_1103_PhysRevLett_133_226602
crossref_primary_10_1103_PhysRevB_111_L081111
crossref_primary_10_1002_adfm_202419321
crossref_primary_10_1088_1361_648X_ad2bda
crossref_primary_10_1103_PhysRevB_110_115146
crossref_primary_10_1103_PhysRevLett_133_136403
crossref_primary_10_1103_PhysRevB_111_115102
crossref_primary_10_1016_j_micron_2024_103719
crossref_primary_10_1103_PhysRevResearch_6_023180
crossref_primary_10_1103_PhysRevB_110_045116
crossref_primary_10_1038_s41586_024_08153_x
crossref_primary_10_1088_1674_1056_ad5534
crossref_primary_10_1103_PhysRevB_110_045114
crossref_primary_10_1016_j_carbon_2025_120131
crossref_primary_10_1088_1674_1056_ad9456
crossref_primary_10_1103_PhysRevB_109_L041403
crossref_primary_10_1038_s41586_024_07211_8
crossref_primary_10_1103_PhysRevB_109_205121
crossref_primary_10_1038_s41586_024_08470_1
crossref_primary_10_1038_s41467_024_48511_x
crossref_primary_10_1103_PhysRevLett_134_076601
crossref_primary_10_1038_s41578_023_00644_z
crossref_primary_10_1126_sciadv_adq5712
crossref_primary_10_1038_s41563_025_02135_8
crossref_primary_10_1038_s41586_024_08092_7
crossref_primary_10_1103_PhysRevB_109_205122
crossref_primary_10_1103_PhysRevB_110_165162
crossref_primary_10_1103_PhysRevB_110_195113
crossref_primary_10_1038_s41566_024_01545_5
crossref_primary_10_1038_s41467_024_52314_5
crossref_primary_10_1038_s41567_025_02804_0
crossref_primary_10_1103_PhysRevB_111_125122
crossref_primary_10_1038_d41586_024_03311_7
crossref_primary_10_1103_PhysRevB_109_085143
Cites_doi 10.1103/PhysRevLett.122.086402
10.1103/PhysRevB.107.L201109
10.1103/PhysRevLett.62.82
10.1103/PhysRevLett.71.3846
10.1103/PhysRevLett.62.1177
10.1126/science.aax8156
10.1038/ncomms1380
10.1103/PhysRevLett.50.1395
10.1103/PhysRevLett.66.802
10.1103/PhysRevB.99.075127
10.1038/s41467-021-27042-9
10.1126/science.aaz5601
10.1103/PhysRevLett.106.236802
10.1038/s41586-021-04171-1
10.1038/s41586-021-03815-6
10.1103/PhysRevLett.48.1559
10.1126/science.aan8458
10.1126/science.1234414
10.1103/RevModPhys.95.011002
10.1126/science.aaw3780
10.1126/science.adg4268
10.1103/PhysRevLett.63.199
10.1103/PhysRevLett.72.2065
10.1103/PhysRevLett.117.126802
10.1103/PhysRevB.32.7016
10.1016/0550-3213(91)90407-O
10.1126/science.aay5533
10.1103/PhysRevResearch.3.L032070
10.1103/PhysRevLett.59.1776
10.1103/PhysRevLett.71.3850
10.1038/s41586-021-04002-3
10.1103/PhysRevLett.52.1583
10.1093/nsr/nwz117
10.1103/PhysRevLett.53.722
10.1103/PhysRevLett.74.4511
10.1103/PhysRevB.47.7312
10.1103/PhysRevLett.106.236804
10.1103/PhysRevLett.49.405
10.1038/s41586-023-06289-w
10.1038/s41586-023-06452-3
10.1103/PhysRevLett.95.146802
10.1038/s41567-020-1019-1
10.1103/PhysRevLett.45.494
10.1103/PhysRevLett.61.2015
10.1038/s41563-020-0708-6
10.1142/11751
10.1103/PhysRevB.108.085117
10.48550/arXiv.2304.11864
10.48550/arXiv.2304.09808
10.48550/arXiv.2306.02501
10.1103/PhysRevLett.131.136501
10.48550/arXiv.2306.01719
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Nature Publishing Group Oct 5, 2023
2023. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Nature Publishing Group Oct 5, 2023
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited.
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
Columbia Univ., New York, NY (United States)
CorporateAuthor_xml – name: Columbia Univ., New York, NY (United States)
– name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OTOTI
DOI 10.1038/s41586-023-06536-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
Biological Science Collection
ProQuest eLibrary (NC LIVE)
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection (ProQuest)
Environmental Science Collection (ProQuest)
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 79
ExternalDocumentID 2578130
10_1038_s41586_023_06536_0
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LGEZI
LK5
LK8
LOTEE
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NADUK
NAPCQ
NEPJS
NXXTH
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
TUS
7X8
OTOTI
PUEGO
ID FETCH-LOGICAL-c3308-3f13b9c3ef115b5f94efaca8c4a5586d5a5619cab35aa91a3de9b9dcf3ceed503
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Mon Aug 25 02:21:00 EDT 2025
Fri Jul 11 09:01:44 EDT 2025
Sat Aug 23 12:37:04 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Tue Jul 01 02:58:44 EDT 2025
Fri Feb 21 02:39:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7981
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-3f13b9c3ef115b5f94efaca8c4a5586d5a5619cab35aa91a3de9b9dcf3ceed503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
None
USDOE Office of Science (SC)
SC0019443; SC0018171
ORCID 0000-0003-2883-4528
0000-0002-9894-9622
0000-0001-6222-1210
0000-0002-1357-6645
0000-0003-3515-2955
0000-0002-1467-3105
0000-0003-1300-6084
0000-0002-7254-2728
0000-0003-0165-6848
0000-0002-8646-3529
0000-0003-3701-8119
0000-0002-7829-9554
0000-0002-8803-1017
0000-0003-0348-2095
0000000272542728
0000000213576645
0000000288031017
0000000328834528
0000000298949622
0000000303482095
0000000313006084
0000000286463529
0000000337018119
0000000335152955
0000000214673105
0000000162221210
0000000301656848
0000000278299554
PQID 2876745283
PQPubID 40569
PageCount 6
ParticipantIDs osti_scitechconnect_2578130
proquest_miscellaneous_2853941355
proquest_journals_2876745283
crossref_citationtrail_10_1038_s41586_023_06536_0
crossref_primary_10_1038_s41586_023_06536_0
springer_journals_10_1038_s41586_023_06536_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-05
PublicationDateYYYYMMDD 2023-10-05
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Arovas, Schrieffer, Wilczek (CR20) 1984; 53
Spanton (CR33) 2018; 360
Tang, Mei, Wen (CR6) 2011; 106
CR36
Devakul, Crépel, Zhang, Fu (CR41) 2021; 12
CR31
Yu, Chen, Yao (CR39) 2020; 7
Regnault, Bernevig (CR7) 2011; 1
Goldman, Su, Jain (CR13) 1994; 72
Serlin (CR28) 2020; 367
Wu, Lovorn, Tutuc, Martin, MacDonald (CR38) 2019; 122
Wen (CR23) 1991; 66
Kane, Mele (CR53) 2005; 95
Sharpe (CR27) 2019; 365
Halperin, Lee, Read (CR10) 1993; 47
CR49
Chang, Liu, MacDonald (CR1) 2023; 95
Halperin (CR19) 1984; 52
Zhang, Hansson, Kivelson (CR21) 1989; 62
Haldane (CR3) 1988; 61
Wang (CR52) 2020; 19
CR45
CR44
CR42
Moore, Read (CR22) 1991; 360
Wei, Chang, Tsui, Razeghi (CR46) 1985; 32
Klitzing, Dorda, Pepper (CR15) 1980; 45
Anderson (CR34) 2023; 381
Shahar, Tsui, Shayegan, Bhatt, Cunningham (CR47) 1995; 74
Chang (CR2) 2013; 340
Kang, Stormer, Pfeiffer, Baldwin, West (CR12) 1993; 71
Crépel, Fu (CR43) 2022; 107
CR14
Ghiotto (CR51) 2021; 597
Tsui, Stormer, Gossard (CR17) 1982; 48
Thouless, Kohmoto, Nightingale, den Nijs (CR16) 1982; 49
Li (CR29) 2021; 600
Willett (CR8) 1987; 59
Xie (CR32) 2021; 600
Neupert, Santos, Chamon, Mudry (CR5) 2011; 106
Laughlin (CR18) 1983; 50
Li, Kumar, Sun, Lin (CR37) 2021; 3
Zhang, Mao, Cao, Jarillo-Herrero, Senthil (CR40) 2019; 99
Deng (CR26) 2020; 367
Sheng, Gu, Sun, Sheng (CR4) 2011; 2
Willett, Ruel, West, Pfeiffer (CR11) 1993; 71
Jain (CR9) 1989; 63
Cai (CR30) 2023
Nakamura, Liang, Gardner, Manfra (CR24) 2020; 16
Chang (CR48) 2016; 117
Bartolomei (CR25) 2020; 368
Winkler, Kotthaus, Ploog (CR50) 1989; 62
Zeng (CR35) 2023
6536_CR42
L Wang (6536_CR52) 2020; 19
XG Wen (6536_CR23) 1991; 66
6536_CR45
C-Z Chang (6536_CR2) 2013; 340
6536_CR44
V Crépel (6536_CR43) 2022; 107
R Willett (6536_CR8) 1987; 59
DC Tsui (6536_CR17) 1982; 48
W Kang (6536_CR12) 1993; 71
T Neupert (6536_CR5) 2011; 106
G Moore (6536_CR22) 1991; 360
6536_CR49
Y-H Zhang (6536_CR40) 2019; 99
6536_CR31
HP Wei (6536_CR46) 1985; 32
FDM Haldane (6536_CR3) 1988; 61
6536_CR36
D Arovas (6536_CR20) 1984; 53
D Sheng (6536_CR4) 2011; 2
N Regnault (6536_CR7) 2011; 1
DJ Thouless (6536_CR16) 1982; 49
JK Jain (6536_CR9) 1989; 63
R Winkler (6536_CR50) 1989; 62
E Anderson (6536_CR34) 2023; 381
F Wu (6536_CR38) 2019; 122
Y Zeng (6536_CR35) 2023
J Nakamura (6536_CR24) 2020; 16
EM Spanton (6536_CR33) 2018; 360
T Li (6536_CR29) 2021; 600
BI Halperin (6536_CR10) 1993; 47
Y Xie (6536_CR32) 2021; 600
E Tang (6536_CR6) 2011; 106
KV Klitzing (6536_CR15) 1980; 45
H Yu (6536_CR39) 2020; 7
J Cai (6536_CR30) 2023
VJ Goldman (6536_CR13) 1994; 72
C-Z Chang (6536_CR1) 2023; 95
T Devakul (6536_CR41) 2021; 12
RL Willett (6536_CR11) 1993; 71
H Bartolomei (6536_CR25) 2020; 368
C-Z Chang (6536_CR48) 2016; 117
BI Halperin (6536_CR19) 1984; 52
M Serlin (6536_CR28) 2020; 367
6536_CR14
A Ghiotto (6536_CR51) 2021; 597
D Shahar (6536_CR47) 1995; 74
Y Deng (6536_CR26) 2020; 367
CL Kane (6536_CR53) 2005; 95
SC Zhang (6536_CR21) 1989; 62
AL Sharpe (6536_CR27) 2019; 365
RB Laughlin (6536_CR18) 1983; 50
H Li (6536_CR37) 2021; 3
References_xml – ident: CR45
– volume: 122
  start-page: 086402
  year: 2019
  ident: CR38
  article-title: Topological insulators in twisted transition metal dichalcogenide homobilayers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.086402
– volume: 107
  start-page: L201109
  year: 2022
  ident: CR43
  article-title: Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.L201109
– volume: 62
  start-page: 82
  year: 1989
  end-page: 85
  ident: CR21
  article-title: Effective-field-theory model for the fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.82
– volume: 71
  start-page: 3846
  year: 1993
  end-page: 3849
  ident: CR11
  article-title: Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3846
– ident: CR49
– volume: 62
  start-page: 1177
  year: 1989
  ident: CR50
  article-title: Landau band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1177
– volume: 367
  start-page: 895
  year: 2020
  end-page: 900
  ident: CR26
  article-title: Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi Te
  publication-title: Science
  doi: 10.1126/science.aax8156
– volume: 2
  year: 2011
  ident: CR4
  article-title: Fractional quantum Hall effect in the absence of Landau levels
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1380
– volume: 50
  start-page: 1395
  year: 1983
  ident: CR18
  article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1395
– volume: 66
  start-page: 802
  year: 1991
  end-page: 805
  ident: CR23
  article-title: Non-Abelian statistics in the fractional quantum Hall states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.802
– ident: CR42
– volume: 99
  start-page: 075127
  year: 2019
  ident: CR40
  article-title: Nearly flat Chern bands in moiré superlattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.075127
– volume: 12
  year: 2021
  ident: CR41
  article-title: Magic in twisted transition metal dichalcogenide bilayers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27042-9
– volume: 368
  start-page: 173
  year: 2020
  end-page: 177
  ident: CR25
  article-title: Fractional statistics in anyon collisions
  publication-title: Science
  doi: 10.1126/science.aaz5601
– volume: 106
  start-page: 236802
  year: 2011
  ident: CR6
  article-title: High-temperature fractional quantum Hall states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.236802
– volume: 600
  start-page: 641
  year: 2021
  end-page: 646
  ident: CR29
  article-title: Quantum anomalous Hall effect from intertwined moiré bands
  publication-title: Nature
  doi: 10.1038/s41586-021-04171-1
– volume: 597
  start-page: 345
  year: 2021
  end-page: 349
  ident: CR51
  article-title: Quantum criticality in twisted transition metal dichalcogenides
  publication-title: Nature
  doi: 10.1038/s41586-021-03815-6
– volume: 48
  start-page: 1559
  year: 1982
  ident: CR17
  article-title: Two-dimensional magnetotransport in the extreme quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 360
  start-page: 62
  year: 2018
  end-page: 66
  ident: CR33
  article-title: Observation of fractional Chern insulators in a van der Waals heterostructure
  publication-title: Science
  doi: 10.1126/science.aan8458
– volume: 340
  start-page: 167
  year: 2013
  end-page: 170
  ident: CR2
  article-title: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
  publication-title: Science
  doi: 10.1126/science.1234414
– volume: 95
  start-page: 011002
  year: 2023
  ident: CR1
  article-title: Colloquium: quantum anomalous Hall effect
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.95.011002
– ident: CR36
– volume: 365
  start-page: 605
  year: 2019
  end-page: 608
  ident: CR27
  article-title: Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
  publication-title: Science
  doi: 10.1126/science.aaw3780
– volume: 381
  start-page: 325
  year: 2023
  end-page: 330
  ident: CR34
  article-title: Programming correlated magnetic states with gate-controlled moiré geometry
  publication-title: Science
  doi: 10.1126/science.adg4268
– volume: 1
  start-page: 021014
  year: 2011
  ident: CR7
  article-title: Fractional Chern insulator
  publication-title: Phys. Rev. X
– volume: 63
  start-page: 199
  year: 1989
  end-page: 202
  ident: CR9
  article-title: Composite-fermion approach for the fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.199
– volume: 72
  start-page: 2065
  year: 1994
  end-page: 2068
  ident: CR13
  article-title: Detection of composite fermions by magnetic focusing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2065
– volume: 117
  start-page: 126802
  year: 2016
  ident: CR48
  article-title: Observation of the quantum anomalous Hall insulator to Anderson insulator quantum phase transition and its scaling behavior
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.126802
– volume: 32
  start-page: 7016
  year: 1985
  end-page: 7019
  ident: CR46
  article-title: Temperature dependence of the quantized Hall effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.32.7016
– ident: CR14
– volume: 360
  start-page: 362
  year: 1991
  end-page: 396
  ident: CR22
  article-title: Nonabelions in the fractional quantum Hall effect
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90407-O
– volume: 367
  start-page: 900
  year: 2020
  end-page: 903
  ident: CR28
  article-title: Intrinsic quantized anomalous Hall effect in a moiré heterostructure
  publication-title: Science
  doi: 10.1126/science.aay5533
– volume: 3
  start-page: L032070
  year: 2021
  ident: CR37
  article-title: Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L032070
– volume: 59
  start-page: 1776
  year: 1987
  ident: CR8
  article-title: Observation of an even-denominator quantum number in the fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.1776
– volume: 71
  start-page: 3850
  year: 1993
  end-page: 3853
  ident: CR12
  article-title: How real are composite fermions?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3850
– volume: 600
  start-page: 439
  year: 2021
  end-page: 443
  ident: CR32
  article-title: Fractional Chern insulators in magic-angle twisted bilayer graphene
  publication-title: Nature
  doi: 10.1038/s41586-021-04002-3
– volume: 52
  start-page: 1583
  year: 1984
  end-page: 1586
  ident: CR19
  article-title: Statistics of quasiparticles and the hierarchy of fractional quantized Hall states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.1583
– volume: 7
  start-page: 12
  year: 2020
  end-page: 20
  ident: CR39
  article-title: Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz117
– volume: 53
  start-page: 722
  year: 1984
  end-page: 723
  ident: CR20
  article-title: Fractional statistics and the quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.722
– ident: CR44
– volume: 74
  start-page: 4511
  year: 1995
  end-page: 4514
  ident: CR47
  article-title: Universal conductivity at the quantum Hall liquid to insulator transition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.4511
– volume: 47
  start-page: 7312
  year: 1993
  ident: CR10
  article-title: Theory of the half-filled Landau level
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.7312
– volume: 106
  start-page: 236804
  year: 2011
  ident: CR5
  article-title: Fractional quantum Hall states at zero magnetic field
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.236804
– volume: 49
  start-page: 405
  year: 1982
  end-page: 408
  ident: CR16
  article-title: Quantized Hall conductance in a two-dimensional periodic potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– year: 2023
  ident: CR30
  article-title: Signatures of fractional quantum anomalous Hall states in twisted MoTe
  publication-title: Nature
  doi: 10.1038/s41586-023-06289-w
– ident: CR31
– year: 2023
  ident: CR35
  article-title: Thermodynamic evidence of fractional Chern insulator in moiré MoTe
  publication-title: Nature
  doi: 10.1038/s41586-023-06452-3
– volume: 95
  start-page: 146802
  year: 2005
  ident: CR53
  article-title: Topological order and the quantum spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146802
– volume: 16
  start-page: 931
  year: 2020
  end-page: 936
  ident: CR24
  article-title: Direct observation of anyonic braiding statistics
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-1019-1
– volume: 45
  start-page: 494
  year: 1980
  end-page: 497
  ident: CR15
  article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 61
  start-page: 2015
  year: 1988
  end-page: 2018
  ident: CR3
  article-title: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
– volume: 19
  start-page: 861
  year: 2020
  end-page: 866
  ident: CR52
  article-title: Correlated electronic phases in twisted bilayer transition metal dichalcogenides
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0708-6
– ident: 6536_CR14
  doi: 10.1142/11751
– volume: 3
  start-page: L032070
  year: 2021
  ident: 6536_CR37
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L032070
– volume: 95
  start-page: 146802
  year: 2005
  ident: 6536_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146802
– volume: 32
  start-page: 7016
  year: 1985
  ident: 6536_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.32.7016
– year: 2023
  ident: 6536_CR30
  publication-title: Nature
  doi: 10.1038/s41586-023-06289-w
– volume: 1
  start-page: 021014
  year: 2011
  ident: 6536_CR7
  publication-title: Phys. Rev. X
– volume: 52
  start-page: 1583
  year: 1984
  ident: 6536_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.1583
– volume: 62
  start-page: 1177
  year: 1989
  ident: 6536_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1177
– volume: 63
  start-page: 199
  year: 1989
  ident: 6536_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.199
– volume: 122
  start-page: 086402
  year: 2019
  ident: 6536_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.086402
– volume: 365
  start-page: 605
  year: 2019
  ident: 6536_CR27
  publication-title: Science
  doi: 10.1126/science.aaw3780
– volume: 367
  start-page: 900
  year: 2020
  ident: 6536_CR28
  publication-title: Science
  doi: 10.1126/science.aay5533
– volume: 48
  start-page: 1559
  year: 1982
  ident: 6536_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 600
  start-page: 641
  year: 2021
  ident: 6536_CR29
  publication-title: Nature
  doi: 10.1038/s41586-021-04171-1
– ident: 6536_CR42
  doi: 10.1103/PhysRevB.108.085117
– ident: 6536_CR36
  doi: 10.48550/arXiv.2304.11864
– volume: 7
  start-page: 12
  year: 2020
  ident: 6536_CR39
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz117
– ident: 6536_CR31
  doi: 10.48550/arXiv.2304.09808
– volume: 381
  start-page: 325
  year: 2023
  ident: 6536_CR34
  publication-title: Science
  doi: 10.1126/science.adg4268
– volume: 597
  start-page: 345
  year: 2021
  ident: 6536_CR51
  publication-title: Nature
  doi: 10.1038/s41586-021-03815-6
– volume: 71
  start-page: 3850
  year: 1993
  ident: 6536_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3850
– volume: 95
  start-page: 011002
  year: 2023
  ident: 6536_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.95.011002
– volume: 16
  start-page: 931
  year: 2020
  ident: 6536_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-1019-1
– volume: 59
  start-page: 1776
  year: 1987
  ident: 6536_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.1776
– volume: 62
  start-page: 82
  year: 1989
  ident: 6536_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.82
– volume: 49
  start-page: 405
  year: 1982
  ident: 6536_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 12
  year: 2021
  ident: 6536_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27042-9
– volume: 107
  start-page: L201109
  year: 2022
  ident: 6536_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.L201109
– volume: 74
  start-page: 4511
  year: 1995
  ident: 6536_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.4511
– volume: 99
  start-page: 075127
  year: 2019
  ident: 6536_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.075127
– volume: 106
  start-page: 236802
  year: 2011
  ident: 6536_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.236802
– volume: 50
  start-page: 1395
  year: 1983
  ident: 6536_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1395
– year: 2023
  ident: 6536_CR35
  publication-title: Nature
  doi: 10.1038/s41586-023-06452-3
– volume: 2
  year: 2011
  ident: 6536_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1380
– volume: 47
  start-page: 7312
  year: 1993
  ident: 6536_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.7312
– volume: 66
  start-page: 802
  year: 1991
  ident: 6536_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.802
– volume: 117
  start-page: 126802
  year: 2016
  ident: 6536_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.126802
– volume: 72
  start-page: 2065
  year: 1994
  ident: 6536_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2065
– volume: 368
  start-page: 173
  year: 2020
  ident: 6536_CR25
  publication-title: Science
  doi: 10.1126/science.aaz5601
– volume: 360
  start-page: 362
  year: 1991
  ident: 6536_CR22
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90407-O
– volume: 19
  start-page: 861
  year: 2020
  ident: 6536_CR52
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0708-6
– volume: 45
  start-page: 494
  year: 1980
  ident: 6536_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 340
  start-page: 167
  year: 2013
  ident: 6536_CR2
  publication-title: Science
  doi: 10.1126/science.1234414
– volume: 53
  start-page: 722
  year: 1984
  ident: 6536_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.722
– volume: 106
  start-page: 236804
  year: 2011
  ident: 6536_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.236804
– volume: 367
  start-page: 895
  year: 2020
  ident: 6536_CR26
  publication-title: Science
  doi: 10.1126/science.aax8156
– ident: 6536_CR45
  doi: 10.48550/arXiv.2306.02501
– volume: 71
  start-page: 3846
  year: 1993
  ident: 6536_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3846
– volume: 360
  start-page: 62
  year: 2018
  ident: 6536_CR33
  publication-title: Science
  doi: 10.1126/science.aan8458
– volume: 600
  start-page: 439
  year: 2021
  ident: 6536_CR32
  publication-title: Nature
  doi: 10.1038/s41586-021-04002-3
– ident: 6536_CR49
  doi: 10.1103/PhysRevLett.131.136501
– volume: 61
  start-page: 2015
  year: 1988
  ident: 6536_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
– ident: 6536_CR44
  doi: 10.48550/arXiv.2306.01719
SSID ssj0005174
Score 2.7529233
Snippet The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field 1 – 3 . This phenomenon occurs in...
The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic held13. This phenomenon occurs in systems...
The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms 140/125
142/126
639/766/119/2792/4128
639/766/119/2793
639/766/119/2794
639/766/119/2795
Broken symmetry
Coagulation factors
Condensed matter physics
Electric fields
Electrical measurement
Electromagnetism
Electron gas
Electrons
Factor V
Fermi liquids
Hall effect
Humanities and Social Sciences
Integers
Magnetic fields
multidisciplinary
Phase transitions
Quantum Hall effect
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Symmetry
Unit cell
Title Observation of fractionally quantized anomalous Hall effect
URI https://link.springer.com/article/10.1038/s41586-023-06536-0
https://www.proquest.com/docview/2876745283
https://www.proquest.com/docview/2853941355
https://www.osti.gov/biblio/2578130
Volume 622
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB90RfDl8Ou4-kUEH5S74tY03QYfRMV1EfzgOGHfQpoPENZW7e7D3V9_M212FwWlEApJ03YmyUxmfpkBOMgTX-BI8rF3Wsbpic9iaXUaay6tyYzFizaKt3fZ4DG9GYphMLjVAVY5XRObhdpWhmzkx6jZZ72UQpGcvbzGlDWKvKshhcYiLFHoMoJ09Ya9OcTjQxTmcGimy_PjGgVXTvBbym0gON69E0ydCifYO6Xzg5-0ET_9VfgW9EZ23jJ6DRZcuQ7LDX7T1OuwFuZozQ5DIOmjDTi9L2Y2V1Z55t_aUwx6NPrLXidI06d_zjJdVs96VE1qNsAa1iI8NuGxf_XnchCHZAmx4ZxsnD7hhTTcedTxCuFl6rw2OjepFvinVmjUlKTRBRday0Rz62SB_PCcxKTo8u_QKavS_QAmBU9513rheYbbS-zqxPYSr51DdQfpHEEypZQyIZI4JbQYqcajzXPVUlchdVVDXdWN4OfsmZc2jsaXrbeJAQq1AAplawjzY8aKlheUuRHsTPmiwoyr1Xx8RLA_q8a5Qg4QXTqkIrYRXKLUFiKCX1N-zrv4_Hu2vn7jNqxQFvoG4yd2oDN-m7hd1FXGxV4zILHMLxMq-9d7sHRxdffw-z8xfua2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qieiL2Ko0tuoWWlA0NMlmc1lERNRy_fSlhXvbbvYDCmfSNndI_aP6N3YmH3e0YN9KXgK72SzzsfOb3dkZgM089gVKkg-90zJME5-F0uo01FxakxmLDzmKh0fZ6CTdG4vxElz3d2EorLJfE5uF2laG9si3Edlnw5RSkXw7vwipahSdrvYlNFqx2HdXf9Flq7_u_kT-biXJzq_jH6OwqyoQGvTd85D7mBfScOcRDBXCy9R5bXRuUi1EnlmhEVJIowsutJax5tbJAifuOdkTEXEc9xE8RsMbkUYNx8NFSMmdrM_dJZ2I59s1Gsqcwn2ploLg-HbLEA4qVOhbIPfOuWxj7nZewPMOp7LvrWAtw5IrV-BJEy9q6hVY7taEmn3oEld_fAlffhfzPV5WeeYv21sTejK5Yhcz5OHZP2eZLqs_elLNajbCFtZGlLyCkwch42sYlFXpVoFJwVMeWS88z9CdxaESO4y9dg7hVRzLAOKeUsp0mcupgMZENSfoPFctdRVSVzXUVVEAn-bfnLd5O-7tvUYMUIg6KHWuoRgjM1W0nKGND2C954vqNLxWC3kMYGPejLpJBy66dEhF7CO4RJQgRACfe34uhvj_fN7c_8f38HR0fHigDnaP9tfgWUJS1cQ0rMNgejlzbxEnTYt3jXAyOH1obbgB3ToijQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qieKLtFUxba0rKCga7pLNJllKEbEeV6vVBwv3tm72A4Rr0jZ3SP3T_OucyccdLdi3kpfAbjbJfOz8Znd2BuBlHvkCJcmH3mkZJrFPQ2l1EmourUmNxYscxa_H6eQk-TwV0zX425-FobDKfk5sJmpbGVojHyKyT7OEUpEMfRcW8f1g_P7sPKQKUrTT2pfTaEXkyF3-Rvet3j88QF6_iuPxpx8fJ2FXYSA06MfnIfcRL6ThziMwKoSXifPa6NwkWog8tUIjvJBGF1xoLSPNrZMF_oTnZFvEiOO4d-BuxkVEOpZNs1V4ybUM0N2BnRHPhzUazZxCf6muguB4d8UoDipU7iuA99oebWP6xuvwsMOs7EMrZBuw5spNuNfEjpp6Eza6-aFmr7sk1m8ewd63YrneyyrP_EV7gkLPZpfsfIH8_PXHWabL6lTPqkXNJtjC2uiSx3ByK2R8AoOyKt1TYFLwhI-sF56n6NriULHNIq-dQ6gVRTKAqKeUMl0WcyqmMVPNbjrPVUtdhdRVDXXVKIC3y2fO2hweN_beJgYoRCCURtdQvJGZK5ra0N4HsNPzRXXaXquVbAbwYtmMekqbL7p0SEXsI7hExCBEAO96fq6G-P_3bN38xudwH_VAfTk8PtqGBzEJVRPesAOD-cXCPUPINC92G9lk8PO2leEfbPAmww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+fractionally+quantized+anomalous+Hall+effect&rft.jtitle=Nature+%28London%29&rft.au=Park%2C+Heonjoon&rft.au=Cai%2C+Jiaqi&rft.au=Anderson%2C+Eric&rft.au=Zhang%2C+Yinong&rft.date=2023-10-05&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=622&rft.issue=7981&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1038%2Fs41586-023-06536-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_023_06536_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon