Glutathione‐Responsive Near‐Infrared‐II Fluorescence Probe for Early and Accurate Detection of In Situ and Metastatic Tumors
In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to detect. As most imaging probes have high liver accumulation, it is difficult to distinguish tiny metastases from normal liver tissue with strong...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 30; pp. e2503257 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to detect. As most imaging probes have high liver accumulation, it is difficult to distinguish tiny metastases from normal liver tissue with strong background signal. In this study, the design of a novel second near‐infrared window (NIR‐II) fluorescence probe for precise detection of carcinoma in situ and liver metastases is presented. The probe called Tg‐RGD utilizes a commercially available cyanine dye IR‐806 as the signaling moiety, a disulfide bond linker as the responsive moiety, an RGD‐capped poly(ethylene glycol) (PEG) as the water soluble enhancer, and the tumor targeting moiety. Tg‐RGD shows good glutathione (GSH) responsiveness and selectivity, where its NIR‐II fluorescence intensity can enhance 50‐fold after activation. In vivo study indicates that Tg‐RGD shows much better imaging and targeting effects than Tg‐PEG with a similar structure but without RGD moiety for both orthotopic breast cancer and osteosarcoma. Most importantly, Tg‐RGD can detect tiny liver metastases with high signal‐to‐background ratio (3.2). Thus, this study reports a high‐performance tumor‐specific NIR‐II fluorescence probe for in situ and tiny metastatic tumor detection, and may further broaden the applications into related tumor lesions.
A glutathione‐responsive second near‐infrared window (NIR‐II) fluorescence probe enables precise detection of in situ tumors and liver metastases is designed. Such a probe is composed of a cyanine dye‐based backbone, a glutathione (GSH)‐responsive linker, and an RGD‐capped poly(ethylene glycol) PEG. It can effectively target tiny tumor tissue and turn on its NIR‐II fluorescence signal in the presence of tumor overexpressed GSH. |
---|---|
AbstractList | In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to detect. As most imaging probes have high liver accumulation, it is difficult to distinguish tiny metastases from normal liver tissue with strong background signal. In this study, the design of a novel second near-infrared window (NIR-II) fluorescence probe for precise detection of carcinoma in situ and liver metastases is presented. The probe called Tg-RGD utilizes a commercially available cyanine dye IR-806 as the signaling moiety, a disulfide bond linker as the responsive moiety, an RGD-capped poly(ethylene glycol) (PEG) as the water soluble enhancer, and the tumor targeting moiety. Tg-RGD shows good glutathione (GSH) responsiveness and selectivity, where its NIR-II fluorescence intensity can enhance 50-fold after activation. In vivo study indicates that Tg-RGD shows much better imaging and targeting effects than Tg-PEG with a similar structure but without RGD moiety for both orthotopic breast cancer and osteosarcoma. Most importantly, Tg-RGD can detect tiny liver metastases with high signal-to-background ratio (3.2). Thus, this study reports a high-performance tumor-specific NIR-II fluorescence probe for in situ and tiny metastatic tumor detection, and may further broaden the applications into related tumor lesions.In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to detect. As most imaging probes have high liver accumulation, it is difficult to distinguish tiny metastases from normal liver tissue with strong background signal. In this study, the design of a novel second near-infrared window (NIR-II) fluorescence probe for precise detection of carcinoma in situ and liver metastases is presented. The probe called Tg-RGD utilizes a commercially available cyanine dye IR-806 as the signaling moiety, a disulfide bond linker as the responsive moiety, an RGD-capped poly(ethylene glycol) (PEG) as the water soluble enhancer, and the tumor targeting moiety. Tg-RGD shows good glutathione (GSH) responsiveness and selectivity, where its NIR-II fluorescence intensity can enhance 50-fold after activation. In vivo study indicates that Tg-RGD shows much better imaging and targeting effects than Tg-PEG with a similar structure but without RGD moiety for both orthotopic breast cancer and osteosarcoma. Most importantly, Tg-RGD can detect tiny liver metastases with high signal-to-background ratio (3.2). Thus, this study reports a high-performance tumor-specific NIR-II fluorescence probe for in situ and tiny metastatic tumor detection, and may further broaden the applications into related tumor lesions. In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to detect. As most imaging probes have high liver accumulation, it is difficult to distinguish tiny metastases from normal liver tissue with strong background signal. In this study, the design of a novel second near‐infrared window (NIR‐II) fluorescence probe for precise detection of carcinoma in situ and liver metastases is presented. The probe called Tg‐RGD utilizes a commercially available cyanine dye IR‐806 as the signaling moiety, a disulfide bond linker as the responsive moiety, an RGD‐capped poly(ethylene glycol) (PEG) as the water soluble enhancer, and the tumor targeting moiety. Tg‐RGD shows good glutathione (GSH) responsiveness and selectivity, where its NIR‐II fluorescence intensity can enhance 50‐fold after activation. In vivo study indicates that Tg‐RGD shows much better imaging and targeting effects than Tg‐PEG with a similar structure but without RGD moiety for both orthotopic breast cancer and osteosarcoma. Most importantly, Tg‐RGD can detect tiny liver metastases with high signal‐to‐background ratio (3.2). Thus, this study reports a high‐performance tumor‐specific NIR‐II fluorescence probe for in situ and tiny metastatic tumor detection, and may further broaden the applications into related tumor lesions. In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to detect. As most imaging probes have high liver accumulation, it is difficult to distinguish tiny metastases from normal liver tissue with strong background signal. In this study, the design of a novel second near‐infrared window (NIR‐II) fluorescence probe for precise detection of carcinoma in situ and liver metastases is presented. The probe called Tg‐RGD utilizes a commercially available cyanine dye IR‐806 as the signaling moiety, a disulfide bond linker as the responsive moiety, an RGD‐capped poly(ethylene glycol) (PEG) as the water soluble enhancer, and the tumor targeting moiety. Tg‐RGD shows good glutathione (GSH) responsiveness and selectivity, where its NIR‐II fluorescence intensity can enhance 50‐fold after activation. In vivo study indicates that Tg‐RGD shows much better imaging and targeting effects than Tg‐PEG with a similar structure but without RGD moiety for both orthotopic breast cancer and osteosarcoma. Most importantly, Tg‐RGD can detect tiny liver metastases with high signal‐to‐background ratio (3.2). Thus, this study reports a high‐performance tumor‐specific NIR‐II fluorescence probe for in situ and tiny metastatic tumor detection, and may further broaden the applications into related tumor lesions. A glutathione‐responsive second near‐infrared window (NIR‐II) fluorescence probe enables precise detection of in situ tumors and liver metastases is designed. Such a probe is composed of a cyanine dye‐based backbone, a glutathione (GSH)‐responsive linker, and an RGD‐capped poly(ethylene glycol) PEG. It can effectively target tiny tumor tissue and turn on its NIR‐II fluorescence signal in the presence of tumor overexpressed GSH. |
Author | Sun, Liwen Zhou, Wen Xu, Pu Xie, Chen Gu, Xuxuan Huang, Yuxin Zhou, Hui Fan, Quli Yin, Likun |
Author_xml | – sequence: 1 givenname: Likun surname: Yin fullname: Yin, Likun organization: Nanjing University of Posts & Telecommunications – sequence: 2 givenname: Pu surname: Xu fullname: Xu, Pu organization: Nanjing University of Posts & Telecommunications – sequence: 3 givenname: Yuxin surname: Huang fullname: Huang, Yuxin organization: Nanjing University of Posts & Telecommunications – sequence: 4 givenname: Xuxuan surname: Gu fullname: Gu, Xuxuan organization: Nanjing University of Posts & Telecommunications – sequence: 5 givenname: Liwen surname: Sun fullname: Sun, Liwen organization: Nanjing University of Posts & Telecommunications – sequence: 6 givenname: Hui surname: Zhou fullname: Zhou, Hui organization: Nanjing University of Posts & Telecommunications – sequence: 7 givenname: Wen surname: Zhou fullname: Zhou, Wen organization: Nanjing University of Posts & Telecommunications – sequence: 8 givenname: Chen orcidid: 0000-0002-1068-4691 surname: Xie fullname: Xie, Chen email: iamcxie@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications – sequence: 9 givenname: Quli surname: Fan fullname: Fan, Quli email: iamqlfan@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40434227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URB5kyxJZYsNmBr-6bS-jvBhpAogk65bbrhYduduD3QbNDuUL8o18STyZMEhsWFWpdO6tsu8h2hvDCAi9oWROCWEf0uD9nBFWEc4q-QId0JryWa2Y3tv1lOyjw5TuCOGUCfkK7QsiuGBMHqD7S58nM33ri-3vXw9fIa3CmPofgD-BiWWyGLtoIrhNu8AXPocIycJoAX-JoQXchYjPTfRrbEaHT6zN0UyAz2ACOxVbHDq8GPF1P-Un4gomk8rK3uKbPISYXqOXnfEJjp_rEbq9OL85_Thbfr5cnJ4sZ5ZzImeOMdC6E1ZbJZVxUleO1Ewx2QljXKuEbpl01iinjKZKt45WXaUs1a6VsuZH6P3WdxXD9wxpaoa-vMR7M0LIqeGMMqkqUcuCvvsHvQs5juW6QnFBZVmmC_X2mcrtAK5ZxX4wcd38-d0CzLeAjSGlCN0OoaTZxNds4mt28RWB3gp-9h7W_6Gb66vl8q_2EdSpoWg |
Cites_doi | 10.1126/sciadv.aav7504 10.1002/smll.202206666 10.1002/adma.202201357 10.1002/adfm.202200016 10.1002/adhm.202303612 10.1016/j.bios.2023.115062 10.1038/s41578-021-00328-6 10.1016/j.ccr.2024.216122 10.1002/anie.202211409 10.1016/j.biomaterials.2017.12.002 10.1016/j.semcancer.2022.10.006 10.1002/anie.202009986 10.1016/j.cell.2011.02.013 10.1002/anie.202109728 10.1016/j.addr.2022.114320 10.3390/bios14060282 10.1002/smll.201703400 10.1007/s11426-022-1461-3 10.1002/adma.201800106 10.1021/acsnano.3c09870 10.1016/j.cej.2023.147515 10.1002/anie.202007040 10.1016/j.addr.2016.07.012 10.1021/acsnano.8b02588 10.1016/j.ccr.2023.215401 10.1038/nrc865 10.1038/s41551-019-0494-0 10.1002/anie.202011903 10.1148/radiology.162.1.3024210 10.1007/s10585-016-9816-8 10.1038/s41467-024-55096-y 10.1158/0008-5472.CAN-19-0458 10.1038/s41572-021-00261-6 10.1158/0008-5472.CAN-05-0440 10.1038/s41572-022-00409-y 10.1002/adfm.201900566 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202503257 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 40434227 10_1002_smll_202503257 SMLL202503257 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22174070; 22205115; 52373142 – fundername: Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology – fundername: Project of State Key Laboratory of Organic Electronics and Information Displays funderid: GZR2022010012; GZR2023010022 – fundername: Synergetic Innovation Center for Organic Electronics and Information Displays – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20230060 – fundername: Key Program of the National Natural Science Foundation of China funderid: U24A2077 – fundername: Basic Research Program of Jiangsu Province funderid: BK20243057 – fundername: Key Program of the National Natural Science Foundation of China grantid: U24A2077 – fundername: Basic Research Program of Jiangsu Province grantid: BK20243057 – fundername: National Natural Science Foundation of China grantid: 22205115 – fundername: National Natural Science Foundation of China grantid: 22174070 – fundername: Project of State Key Laboratory of Organic Electronics and Information Displays grantid: GZR2022010012 – fundername: National Natural Science Foundation of China grantid: 52373142 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20230060 – fundername: Project of State Key Laboratory of Organic Electronics and Information Displays grantid: GZR2023010022 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3307-d22e99f4c9c878ad795d062827f4aadb849b27dca8d8a9189bd15f58c19db7763 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 17:12:18 EDT 2025 Thu Aug 14 05:58:38 EDT 2025 Thu Jul 31 01:54:01 EDT 2025 Thu Aug 21 00:32:36 EDT 2025 Tue Jul 29 10:40:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | osteosarcoma imaging activatable probe liver metastases detection NIR‐II fluorescence imaging tumor targeting |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3307-d22e99f4c9c878ad795d062827f4aadb849b27dca8d8a9189bd15f58c19db7763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1068-4691 |
PMID | 40434227 |
PQID | 3234178499 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3212785467 proquest_journals_3234178499 pubmed_primary_40434227 crossref_primary_10_1002_smll_202503257 wiley_primary_10_1002_smll_202503257_SMLL202503257 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2005 1987; 65 162 2020; 6 2021; 6 2019 2011 2022; 79 144 87 2024 2024; 13 18 2024; 479 2024 2025 2021 2018; 519 16 60 30 2022; 61 2018; 157 2022; 8 2023; 496 2023; 19 2022; 34 2002; 2 2023; 224 2021 2016; 7 33 2022; 32 2023 2019 2022; 66 29 186 2018; 12 2020 2024; 4 14 2021; 60 2017; 113 2018; 14 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_14_4 e_1_2_7_17_1 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 12 start-page: 6988 year: 2018 publication-title: ACS Nano – volume: 7 33 start-page: 27 743 year: 2021 2016 publication-title: Nat. Rev. Dis. Primers Clin. Exp. Metastasis – volume: 65 162 start-page: 5231 49 year: 2005 1987 publication-title: Cancer Res. Radiology – volume: 4 14 start-page: 259 282 year: 2020 2024 publication-title: Nat. Biomed. Eng. Biosensors – volume: 60 start-page: 2637 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 519 16 60 30 start-page: 278 800 year: 2024 2025 2021 2018 publication-title: Coord. Chem. Rev. Nat. Commun. Angew. Chem., Int. Ed. Adv. Mater. – volume: 6 start-page: 1095 year: 2021 publication-title: Nat. Rev. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 79 144 87 start-page: 3011 646 17 year: 2019 2011 2022 publication-title: Cancer Res. Cell Semin. Cancer Biol. – volume: 2 start-page: 563 year: 2002 publication-title: Nat. Rev. Cancer – volume: 66 29 186 start-page: 1336 year: 2023 2019 2022 publication-title: Sci. China Chem. Adv. Funct. Mater. Adv. Drug Delivery Rev. – volume: 13 18 start-page: 2231 year: 2024 2024 publication-title: Adv. Healthcare Mater. ACS Nano – volume: 479 year: 2024 publication-title: Chem. Eng. J. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 14 year: 2018 publication-title: Small – volume: 113 start-page: 24 year: 2017 publication-title: Adv. Drug Delivery Rev. – volume: 496 year: 2023 publication-title: Coord. Chem. Rev. – volume: 19 year: 2023 publication-title: Small – volume: 224 year: 2023 publication-title: Biosens. Bioelectron. – volume: 157 start-page: 62 year: 2018 publication-title: Biomaterials – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 start-page: 77 year: 2022 publication-title: Nat. Rev. Dis. Primers – ident: e_1_2_7_4_1 doi: 10.1126/sciadv.aav7504 – ident: e_1_2_7_20_1 doi: 10.1002/smll.202206666 – ident: e_1_2_7_13_1 doi: 10.1002/adma.202201357 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.202200016 – ident: e_1_2_7_12_1 doi: 10.1002/adhm.202303612 – ident: e_1_2_7_22_1 doi: 10.1016/j.bios.2023.115062 – ident: e_1_2_7_11_1 doi: 10.1038/s41578-021-00328-6 – ident: e_1_2_7_14_1 doi: 10.1016/j.ccr.2024.216122 – ident: e_1_2_7_19_1 doi: 10.1002/anie.202211409 – ident: e_1_2_7_9_1 doi: 10.1016/j.biomaterials.2017.12.002 – ident: e_1_2_7_1_3 doi: 10.1016/j.semcancer.2022.10.006 – ident: e_1_2_7_14_3 doi: 10.1002/anie.202009986 – ident: e_1_2_7_1_2 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202109728 – ident: e_1_2_7_7_3 doi: 10.1016/j.addr.2022.114320 – ident: e_1_2_7_6_2 doi: 10.3390/bios14060282 – ident: e_1_2_7_24_1 doi: 10.1002/smll.201703400 – ident: e_1_2_7_7_1 doi: 10.1007/s11426-022-1461-3 – ident: e_1_2_7_14_4 doi: 10.1002/adma.201800106 – ident: e_1_2_7_12_2 doi: 10.1021/acsnano.3c09870 – ident: e_1_2_7_18_1 doi: 10.1016/j.cej.2023.147515 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202007040 – ident: e_1_2_7_8_1 doi: 10.1016/j.addr.2016.07.012 – ident: e_1_2_7_10_1 doi: 10.1021/acsnano.8b02588 – ident: e_1_2_7_17_1 doi: 10.1016/j.ccr.2023.215401 – ident: e_1_2_7_3_1 doi: 10.1038/nrc865 – ident: e_1_2_7_6_1 doi: 10.1038/s41551-019-0494-0 – ident: e_1_2_7_23_1 doi: 10.1002/anie.202011903 – ident: e_1_2_7_5_2 doi: 10.1148/radiology.162.1.3024210 – ident: e_1_2_7_2_2 doi: 10.1007/s10585-016-9816-8 – ident: e_1_2_7_14_2 doi: 10.1038/s41467-024-55096-y – ident: e_1_2_7_1_1 doi: 10.1158/0008-5472.CAN-19-0458 – ident: e_1_2_7_2_1 doi: 10.1038/s41572-021-00261-6 – ident: e_1_2_7_5_1 doi: 10.1158/0008-5472.CAN-05-0440 – ident: e_1_2_7_25_1 doi: 10.1038/s41572-022-00409-y – ident: e_1_2_7_7_2 doi: 10.1002/adfm.201900566 |
SSID | ssj0031247 |
Score | 2.4796832 |
Snippet | In situ and metastatic malignant tumors are primary diseases that threaten human life. Among all the metastases, liver metastasis is the most difficult to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2503257 |
SubjectTerms | activatable probe Animals Cell Line, Tumor Cyanine dyes Female Fluorescent Dyes - chemistry Fluorescent indicators Glutathione Glutathione - metabolism Humans In vivo methods and tests Infrared windows Liver liver metastases detection Liver Neoplasms - diagnosis Liver Neoplasms - secondary Medical imaging Metastasis Mice Mice, Nude Near infrared radiation Neoplasm Metastasis NIR‐II fluorescence imaging Oligopeptides - chemistry osteosarcoma imaging Polyethylene glycol Polyethylene Glycols - chemistry tumor targeting Tumors |
Title | Glutathione‐Responsive Near‐Infrared‐II Fluorescence Probe for Early and Accurate Detection of In Situ and Metastatic Tumors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202503257 https://www.ncbi.nlm.nih.gov/pubmed/40434227 https://www.proquest.com/docview/3234178499 https://www.proquest.com/docview/3212785467 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIAtxAkObXm1SwEZqVJPgY2TYPuIgIVFLKp4SNwiPyUEJGg36aEnxC_gN_JLmHF2A1sOlcotiW3FjxnPJB5_JuSHZVyarlGRdDyJUml4pGWsIpVJ77rCKx-gPoPTnaPL9Pgqu3qzi7_hQ7Q_3FAzwnyNCq70aPsVGjq6u8WlAzDhCYgdTMIYsIVe0VnLj0rAeIXTVcBmRQjemlAbu2x7uvi0VXrnak57rsH09D4TNal0E3Fys1VXesv8-Yvn-JFWfSGfxn4p3W0EaYHMuGKRzL-hFS6Rx0OQUgxWLAv3_PB0No6u_e3oKagLPOkXfojx7HjZp73buhwGWJRx9BfuOqLgINNAVKaqsHTXmBpBFXTfVSEgrKClp_2Cnl9XdcgxcJXCHU_Xhl7Ud-VwtEwuewcXe0fR-AiHyCSIn7SMOSl9aqQRXCjLZWZx1ybjPlXKapFKzbg1SlihZCyktnHmM2FiaTWHuW-FzBbQqm-Extp46brWJbFLd-C7SHHwBpXUPuWOCdchPydDmN83pI68YTKzHHs1b3u1Q9YmI5yPNXaUJwzsOYf6yA7ZbJNB13ABRRWurDFPzLjIwLZ0yNdGMtpXIaUoZQxSWBjff9QhPx-cnLR3q_9T6DuZw-smdniNzFbD2q2Dh1TpjaAFL0JBDKQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEICt0h6gByiPwkILRkLilHbjJLV9rCjbXdhdoXYrcYv8lCrapNpNOHCq-gv4jfwSZpxN6MIBCW6JH4pf45nY48-EvLGMS9M3KpKOJ1EqDY-0jFWkMuldX3jlA9RnMj0YnqUfPmetNyGehWn4EN2CG0pGmK9RwHFBev8XNXRxeYF7B6DDExh3d8gGXuuN-Pyjk44glYD6CvergNaKEL3Vchv7bH81_6pe-sPYXLVdg_IZPCC6LXbjc_Jlr670nvn2G9Hxv-q1Re4vTVN62Iylh2TNFY_I5i1g4WNycwwDFf0Vy8L9uP5-snSw_eroFCQGQkaFn6NLOz6O6OCiLueBF2Uc_YQHjyjYyDRAlakqLD00pkZWBT1yVfAJK2jp6aigp-dVHVJMXKXw0NO5obP6spwvnpCzwfvZu2G0vMUhMgkSKC1jTkqfGmkEF8pymVk8uMm4T5WyWqRSM26NElYoGQupbZz5TJhYWs1h-tsm6wXU6hmhsTZeur51SezSA_g1UhwMQiW1T7ljwvXI27YP86sG1pE3WGaWY6vmXav2yE7bxflSaBd5wkClcyiP7JHXXTSIG-6hqMKVNaaJGRcZqJceedoMje5TCCpKGYMYFjr4L2XITyfjcff2_F8yvSJ3h7PJOB-Pph9fkHsY3rgS75D1al67XTCYKv0yiMRP_EMQwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCRED7xLlxYwEhKntImTrO1jxbJ0YXdV9SH1FvkpVbRJtZtw4IT4Bf2N_SX1OLuhCwckuCWxrfgx45nE488A7wxlQsdaRsKyNMqEZpESiYxkLpyNuZMuQH0m0_7-Sfb5ND-9tYu_5UN0P9xQM8J8jQp-adzuL2jo_OIclw68CU-92N2Fe1k_Fnh4w-CwA0il3nqF41W80YqQvLXENsZ0d7X8qln6w9dcdV2D7Rk-ArmsdRty8nWnqdWO_v4b0PF_mvUYHi4cU7LXStITuGPLp7B-C1f4DH5-8mKK0YpVaa9_XB0uwmu_WTL1-uKfjEo3w4B2vByR4XlTzQItSltygNuOiPeQSUAqE1kasqd1g6QKMrB1iAgrSeXIqCRHZ3UTckxsLXHL05kmx81FNZs_h5Phx-MP-9HiDIdIp8ifNJRaIVymheaMS8NEbnDbJmUuk9IonglFmdGSGy5FwoUySe5yrhNhFPOT3waslb5Vm0ASpZ2wsbFpYrO-_zCSzLuDUiiXMUu57cH75RAWly2qo2ihzLTAXi26Xu3B9nKEi4XKzouUeoPOfH1ED952yV7ZcAVFlrZqME9CGc-9cenBi1Yyulchpiij1KfQML5_qUNxNBmPu7uX_1LoDdw_GAyL8Wj6ZQse4OM2jngb1upZY195b6lWr4NC3ADD-A9v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutathione%E2%80%90Responsive+Near%E2%80%90Infrared%E2%80%90II+Fluorescence+Probe+for+Early+and+Accurate+Detection+of+In+Situ+and+Metastatic+Tumors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yin%2C+Likun&rft.au=Xu%2C+Pu&rft.au=Huang%2C+Yuxin&rft.au=Gu%2C+Xuxuan&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=30&rft_id=info:doi/10.1002%2Fsmll.202503257&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |