Spiro‐Driven Ferroelectric Coordination Polymer Exhibiting Distinct Phase Transitions Under Thermal and Pressure Stimuli
Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholi...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 19; pp. e202500027 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co‐ligand, we obtained a neutral chain‐like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal‐induced phase transition, driven by ring‐conformational flipping of the spiro‐like [Cd(MEO)] fragment, and a pressure‐induced transition, triggered by significant deformation of the spring‐like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro‐driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.
Here we report the first example of a 1D spiro‐based ferroelectric coordination polymer, which exhibits distinct phase transitions under thermal or pressure stimuli, triggered by the flipping of a spiro ring fragment as well as the deformation of the main chain. |
---|---|
AbstractList | Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co‐ligand, we obtained a neutral chain‐like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal‐induced phase transition, driven by ring‐conformational flipping of the spiro‐like [Cd(MEO)] fragment, and a pressure‐induced transition, triggered by significant deformation of the spring‐like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro‐driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics. Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN) ]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN) ] helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics. Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co‐ligand, we obtained a neutral chain‐like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal‐induced phase transition, driven by ring‐conformational flipping of the spiro‐like [Cd(MEO)] fragment, and a pressure‐induced transition, triggered by significant deformation of the spring‐like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro‐driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics. Here we report the first example of a 1D spiro‐based ferroelectric coordination polymer, which exhibits distinct phase transitions under thermal or pressure stimuli, triggered by the flipping of a spiro ring fragment as well as the deformation of the main chain. Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics. |
Author | Zhang, Shi‐Yong Huang, Rui‐Kang Xie, Miao Qiu, Wenbo Zeng, Ying He, Chun‐Ting Du, Zi‐Yi Han, Ding‐Chong Cai, Weizhao Nakamura, Takayoshi |
Author_xml | – sequence: 1 givenname: Zi‐Yi surname: Du fullname: Du, Zi‐Yi email: ziyidu@gmail.com organization: Gannan Normal University – sequence: 2 givenname: Miao surname: Xie fullname: Xie, Miao organization: Jiangxi Normal University – sequence: 3 givenname: Wenbo surname: Qiu fullname: Qiu, Wenbo organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Ding‐Chong surname: Han fullname: Han, Ding‐Chong organization: Sun Yat‐Sen Uiversity – sequence: 5 givenname: Shi‐Yong surname: Zhang fullname: Zhang, Shi‐Yong organization: Gannan Normal University – sequence: 6 givenname: Ying surname: Zeng fullname: Zeng, Ying organization: Jiangxi Normal University – sequence: 7 givenname: Weizhao surname: Cai fullname: Cai, Weizhao email: wzhcai@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Takayoshi surname: Nakamura fullname: Nakamura, Takayoshi organization: Hiroshima University – sequence: 9 givenname: Rui‐Kang surname: Huang fullname: Huang, Rui‐Kang email: huangrk@es.hokudai.ac.jp organization: Hokkaido University – sequence: 10 givenname: Chun‐Ting surname: He fullname: He, Chun‐Ting organization: Jiangxi Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40069112$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1u1DAQB3ALFdEPuHJElrhwyeKPJPYeq-0WKlWwUrdny4knrKvEXsYJsD31EXhGngSvthSJC_JhbOk31mj-p-QoxACEvOZsxhkT723wMBNMVCy_1DNywivBC6mUPMr3UspC6Yofk9OU7rLQmtUvyHHJWD3nXJyQ-5utx_jr4ecF-m8Q6CUgRuihHdG3dBEjOh_s6GOgq9jvBkC6_LHxjR99-EIvfMq1HelqYxPQNdqQ_B4nehtctusN4GB7aoOjK4SUJgR6M_ph6v1L8ryzfYJXj_WM3F4u14uPxfXnD1eL8-uilZKpQoCFsnRzwbmrtMpHNxpsKaFpHNjOWcUboSvdMdYIYaXUVa1c2bIOKl7P5Rl5d_h3i_HrBGk0g08t9L0NEKdkJFe1LCUvq0zf_kPv4oQhT2ekYIznedRevXlUUzOAM1v0g8Wd-bPVDGYH0GJMCaF7IpyZfWxmH5t5ii03zA8N330Pu_9oc_7pavm39zdXRJ0K |
Cites_doi | 10.1038/ncomms13108 10.1126/science.1129564 10.1038/nature08731 10.1039/D3SC03432A 10.1021/ja203894r 10.1021/acs.accounts.8b00677 10.1126/science.1229675 10.1021/acs.jpclett.3c00566 10.1126/science.1217954 10.1021/jz500778t 10.1021/jacs.3c00634 10.1021/jacs.1c06108 10.1038/natrevmats.2016.87 10.1038/nature11395 10.1038/s41467-024-49053-y 10.1021/jacs.3c08419 10.1021/jacs.7b01334 10.1143/JPSJ.27.387 10.1073/pnas.1817866116 10.1021/jacs.4c07676 10.1021/jacs.5b08061 10.1002/chem.202303120 10.1126/science.aas9330 10.1038/s41586-024-08041-4 10.1002/anie.202215286 10.1021/jacs.0c02924 10.1002/anie.202407934 10.1039/D1SC01345A 10.1002/anie.202218675 10.1039/C9CS00504H 10.1002/adma.202004999 10.1002/anie.202420512 10.1093/nsr/nwac240 10.1126/science.aav3057 10.1038/nmat2137 10.1021/jacs.0c07055 10.1039/D3CS00262D 10.1038/nchem.2206 10.1126/science.1082001 10.1038/ncomms8338 10.1016/j.matt.2019.12.008 10.1021/jacs.8b04600 10.1038/s41467-023-38590-7 10.1021/jacs.4c06859 10.1021/acs.jpclett.7b00019 10.1126/science.adj1946 10.1038/nchem.2567 10.1002/anie.201406810 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202500027 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 40069112 10_1002_anie_202500027 ANIE202500027 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology – fundername: Natural Science Foundation of China funderid: 22465020; 21971091; 12274062 – fundername: Natural Science Foundation of Jiangxi Province funderid: 20224ACB203002 – fundername: JSPS funderid: JP22H00311 – fundername: Natural Science Foundation of Jiangxi Province grantid: 20224ACB203002 – fundername: JSPS grantid: JP22H00311 – fundername: Natural Science Foundation of China grantid: 22465020 – fundername: Natural Science Foundation of China grantid: 21971091 – fundername: Natural Science Foundation of China grantid: 12274062 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UMC UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 53G 9M8 AAMMB AANHP AASGY AAYJJ AAYXX ABDPE ABEFU ACBWZ ACRPL ACYXJ ADNMO ADXHL AEFGJ AETEA AGCDD AGQPQ AGXDD AI. AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 M53 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 AAYOK NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3307-2eae44d9211d5878788b8ea43ebbdeafda71b2858f00b22a338567d4c0fe51693 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:44:18 EDT 2025 Thu Aug 21 03:40:54 EDT 2025 Tue May 06 01:32:01 EDT 2025 Thu Aug 21 00:18:20 EDT 2025 Tue May 06 09:40:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Pressure‐induced phase transition Thermal‐induced phase transition Ferroelectrics Coordination polymer |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3307-2eae44d9211d5878788b8ea43ebbdeafda71b2858f00b22a338567d4c0fe51693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 40069112 |
PQID | 3200130775 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3176343145 proquest_journals_3200130775 pubmed_primary_40069112 crossref_primary_10_1002_anie_202500027 wiley_primary_10_1002_anie_202500027_ANIE202500027 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2023; 10 2017; 8 2015; 6 2023; 14 2018; 140 2019; 52 2020; 142 2023; 145 2009 2010; 463 2024; 383 2024; 30 2008; 7 2024; 53 2022; 41 2024; 146 2021; 143 2012; 488 2021; 50 2024; 15 2015; 7 2011; 133 2017; 139 2019; 363 2023; 62 2016; 7 2014; 5 2016; 2 2020; 2 2021; 12 2007; 315 2021; 33 2015; 137 2013; 339 2022 2024; 634 2019; 116 2024; 63 2024; 64 1969; 27 2022; 32 2003; 300 2012; 336 2016; 8 2014; 53 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_51_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Mao Y. (e_1_2_5_28_1) 2022; 32 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 Ramon R. T. (e_1_2_5_46_1) 2022 (e_1_2_5_47_1) 2009 e_1_2_5_18_1 Chen Y. Y. (e_1_2_5_29_1) 2022; 41 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 383 start-page: 1492 year: 2024 end-page: 1498 publication-title: Science – year: 2009 – volume: 634 start-page: 833 year: 2024 end-page: 841 publication-title: Nature – volume: 315 start-page: 954 year: 2007 end-page: 959 publication-title: Science – volume: 50 start-page: 8248 year: 2021 end-page: 8278 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 13816 year: 2021 end-page: 13823 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2024 publication-title: Chem. ‐ Eur. J. – volume: 41 start-page: 2204001 year: 2022 end-page: 2204011 publication-title: Chin. J. Struct. – volume: 64 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 357 year: 2008 end-page: 366 publication-title: Nat. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 32 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 23292 year: 2023 end-page: 23299 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2182 year: 2014 end-page: 2188 publication-title: J. Phys. Chem. Lett. – volume: 339 start-page: 425 year: 2013 end-page: 428 publication-title: Science – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 2 start-page: 697 year: 2020 end-page: 710 publication-title: Matter – year: 2022 – volume: 142 start-page: 9000 year: 2020 end-page: 9006 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 281 year: 2015 end-page: 294 publication-title: Nat. Chem. – volume: 139 start-page: 6369 year: 2017 end-page: 6375 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 8713 year: 2021 end-page: 8721 publication-title: Chem. Sci. – volume: 52 start-page: 1928 year: 2019 end-page: 1938 publication-title: Acc. Chem. Res. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 11242 year: 2014 end-page: 11247 publication-title: Angew. Chem. Int. Ed. – volume: 363 start-page: 1206 year: 2019 end-page: 1210 publication-title: Science – volume: 488 start-page: 485 year: 2012 end-page: 489 publication-title: Nature – volume: 53 start-page: 5781 year: 2024 end-page: 5861 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7338 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 10631 year: 2023 end-page: 10643 publication-title: Chem. Sci. – volume: 2 year: 2016 publication-title: Nat. Rev. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 929 year: 2017 end-page: 935 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 2863 year: 2023 publication-title: Nat. Commun. – volume: 142 start-page: 15205 year: 2020 end-page: 15218 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 387 year: 1969 end-page: 396 publication-title: J. Phys. Soc. Jpn. – volume: 146 start-page: 22893 year: 2024 end-page: 22898 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 4702 year: 2024 publication-title: Nat. Commun. – volume: 140 start-page: 8051 year: 2018 end-page: 8059 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 5545 year: 2023 end-page: 5552 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 946 year: 2016 end-page: 952 publication-title: Nat. Chem. – volume: 137 start-page: 13345 year: 2015 end-page: 13351 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 13767 year: 2011 end-page: 13769 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 3535 year: 2023 end-page: 3552 publication-title: J. Phys. Chem. Lett. – volume: 361 start-page: 151 year: 2018 end-page: 155 publication-title: Science – volume: 300 start-page: 612 year: 2003 end-page: 615 publication-title: Science – volume: 116 start-page: 5878 year: 2019 end-page: 5885 publication-title: Proc. Natl. Acad. Sci. – volume: 463 start-page: 789 year: 2010 end-page: 792 publication-title: Nature – volume: 10 year: 2023 publication-title: Natl. Sci. Rev. – volume: 336 start-page: 209 year: 2012 end-page: 213 publication-title: Science – volume: 146 start-page: 21176 year: 2024 end-page: 21185 publication-title: J. Am. Chem. Soc. – ident: e_1_2_5_13_1 doi: 10.1038/ncomms13108 – ident: e_1_2_5_1_1 doi: 10.1126/science.1129564 – ident: e_1_2_5_5_1 doi: 10.1038/nature08731 – ident: e_1_2_5_41_1 doi: 10.1039/D3SC03432A – ident: e_1_2_5_38_1 doi: 10.1021/ja203894r – ident: e_1_2_5_42_1 doi: 10.1021/acs.accounts.8b00677 – ident: e_1_2_5_16_1 doi: 10.1126/science.1229675 – ident: e_1_2_5_33_1 doi: 10.1021/acs.jpclett.3c00566 – ident: e_1_2_5_39_1 doi: 10.1126/science.1217954 – ident: e_1_2_5_49_1 doi: 10.1021/jz500778t – ident: e_1_2_5_31_1 doi: 10.1021/jacs.3c00634 – ident: e_1_2_5_7_1 doi: 10.1021/jacs.1c06108 – ident: e_1_2_5_2_1 doi: 10.1038/natrevmats.2016.87 – ident: e_1_2_5_10_1 doi: 10.1038/nature11395 – ident: e_1_2_5_21_1 doi: 10.1038/s41467-024-49053-y – ident: e_1_2_5_14_1 doi: 10.1021/jacs.3c08419 – ident: e_1_2_5_24_1 doi: 10.1021/jacs.7b01334 – ident: e_1_2_5_50_1 doi: 10.1143/JPSJ.27.387 – ident: e_1_2_5_6_1 doi: 10.1073/pnas.1817866116 – ident: e_1_2_5_20_1 doi: 10.1021/jacs.4c07676 – ident: e_1_2_5_11_1 doi: 10.1021/jacs.5b08061 – ident: e_1_2_5_15_1 doi: 10.1002/chem.202303120 – volume-title: Spiro Compounds: Synthesis and Applications year: 2022 ident: e_1_2_5_46_1 – ident: e_1_2_5_25_1 doi: 10.1126/science.aas9330 – ident: e_1_2_5_4_1 doi: 10.1038/s41586-024-08041-4 – ident: e_1_2_5_19_1 doi: 10.1002/anie.202215286 – ident: e_1_2_5_40_1 doi: 10.1021/jacs.0c02924 – ident: e_1_2_5_8_1 doi: 10.1002/anie.202407934 – ident: e_1_2_5_27_1 doi: 10.1039/D1SC01345A – ident: e_1_2_5_30_1 doi: 10.1002/anie.202218675 – ident: e_1_2_5_52_1 doi: 10.1039/C9CS00504H – volume: 41 start-page: 2204001 year: 2022 ident: e_1_2_5_29_1 publication-title: Chin. J. Struct. – ident: e_1_2_5_3_1 doi: 10.1002/adma.202004999 – ident: e_1_2_5_35_1 doi: 10.1002/anie.202420512 – ident: e_1_2_5_34_1 doi: 10.1093/nsr/nwac240 – ident: e_1_2_5_26_1 doi: 10.1126/science.aav3057 – ident: e_1_2_5_37_1 doi: 10.1038/nmat2137 – ident: e_1_2_5_43_1 doi: 10.1021/jacs.0c07055 – ident: e_1_2_5_44_1 doi: 10.1039/D3CS00262D – ident: e_1_2_5_12_1 doi: 10.1038/nchem.2206 – ident: e_1_2_5_36_1 doi: 10.1126/science.1082001 – ident: e_1_2_5_23_1 doi: 10.1038/ncomms8338 – ident: e_1_2_5_18_1 doi: 10.1016/j.matt.2019.12.008 – ident: e_1_2_5_51_1 doi: 10.1021/jacs.8b04600 – ident: e_1_2_5_32_1 doi: 10.1038/s41467-023-38590-7 – ident: e_1_2_5_45_1 doi: 10.1021/jacs.4c06859 – ident: e_1_2_5_48_1 doi: 10.1021/acs.jpclett.7b00019 – volume: 32 year: 2022 ident: e_1_2_5_28_1 publication-title: Angew. Chem. Int. Ed. – volume-title: Accelrys Materials Studio Getting Started, Release 5.5 year: 2009 ident: e_1_2_5_47_1 – ident: e_1_2_5_9_1 doi: 10.1126/science.adj1946 – ident: e_1_2_5_17_1 doi: 10.1038/nchem.2567 – ident: e_1_2_5_22_1 doi: 10.1002/anie.201406810 |
SSID | ssj0028806 |
Score | 2.4826746 |
Snippet | Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202500027 |
SubjectTerms | Chelation Controllability Coordination polymer Coordination polymers Electronic equipment Ferroelectric materials Ferroelectricity Ferroelectrics Ligands Phase transitions Polymers Pressure‐induced phase transition Thermal‐induced phase transition |
Title | Spiro‐Driven Ferroelectric Coordination Polymer Exhibiting Distinct Phase Transitions Under Thermal and Pressure Stimuli |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500027 https://www.ncbi.nlm.nih.gov/pubmed/40069112 https://www.proquest.com/docview/3200130775 https://www.proquest.com/docview/3176343145 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLvRSSkvpFlq5EhKnQNZ21t4jWnZFe0CogMQt8l_UqEuCQvYAJx6BZ-yTdMbepN1yqFRuiWwrjj2eH8_MN4TsWSOU9RJsk7GwiZCFSDTnPpHOSm5AwEsToi1ORyeX4utVdvVHFn_Eh-gv3PBkBH6NB1yb28PfoKGYgQ32HcuC9wyYMAZsoVb0rcePYkCcMb2I8wSr0HeojSk7XB2-KpWeqJqrmmsQPbMNortJx4iTHweL1hzY-7_wHJ_zV6_Jq6VeSo8iIW2SF756Q9YnXTm4t-T-_KZs6p8Pj8cNMkg6801TxyI6paWTGozYMt4s0rN6fnftGzrF4tslxlXTY2QllW3p2XcQmzRIyBgsRkPlJQrkCiJiTnXlaExZbDw9b0uM3toil7PpxeQkWRZuSCxH0EnmtRfCjcG4dJkClqCUUV4L7o1xXhdOy6FhKlNFmhrGgDhUNpJO2LTw6Lfj78haVVf-PaFGS21HBlo1FwL6OjdMC1EobrKxEWxA9ruNy28iPkcekZhZjmuZ92s5ILvdvubLc3qbcxZct1JmA_K5b4aVRbeJrny9gD5D4MGgZwnosx3pof-UQKRnoOgBYWFX_zGH_Oj0y7R_-_A_g3bIS3yOMZe7ZK1tFv4j6EWt-RRo_xdRXQa7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXKH9loYCRQJzSZm1nnT30UO2PdmlZVbSVegu244iIklRpVqg98Qh9lb4Kj8CTMLY3QQsHJKQeOCZ2kok945nxjL8BeK0Vj7UR6Jv0uQ64yHggGTOBSLVgChW8UC7bYtabHPN3J9HJClw3Z2E8PkS74WYlw63XVsDthvT2L9RQewQbHTwaufDZIq9yz1x8Ra_tfGc6xCl-Q-l4dDSYBIvCAoFmFhSRGmk4T_vo_KRRjCwbxyo2kjOjVGpklkrRVTSO4iwMFaVIfBz1RMp1mBkbV2L43ltw25YRt3D9ww8tYhVFcfAHmhgLbN37BicypNvL9C7rwT-M22Vb2Sm78T343gyTz3H5vDWv1Za-_A1B8r8ax3W4uzC9ya6XlfuwYooHsDZoKt49hMvDs7wqf3y7GlZWB5CxqarS1wnKNRmUSGnuN0_JQXl68cVUZGTri-c2dZwM7WpZ6JocfELLgDgjwOfDEVdciqBEohY8JbJIiT-VWRlyWOc2Qe0RHN_Irz-G1aIszBMgSgqpewpbJeMc-6ZpN8x4FjMV9RWnHXjbcEpy5iFIEg82TRM7d0k7dx3YbBgpWSxF5wmjLjotRNSBV20zjqyNDMnClHPs00U1g6Ykxz4bngHbT3ELZo1C2wHq2OgvNCS7s-movXr6Lw-9hLXJ0fv9ZH8623sGd-x9n2K6Cat1NTfP0Qys1QsneAQ-3jSH_gSGAGSR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8WChgJxClt1nbW2QOHarOrLkWrFaVSb8F_EVHbZJVmhdoTj8Cj8Cq8Ak_CON4ELRyQkHrgmNhJJvaMZ8Yz_gbgpVY81lagbzLkOuAi44FkzAbCaMEUKnihmmyL2WDvkL89io424Ft7FsbjQ3Qbbk4ymvXaCfjCZDu_QEPdCWz072jURM9WaZX79vwzOm1nb6YJzvArSifjD6O9YFVXINDMYSJSKy3nZoi-j4li5Ng4VrGVnFmljJWZkaKvaBzFWRgqSpH2OBoIw3WYWRdWYvjeK3CVD8KhKxaRvO8AqyhKgz_PxFjgyt63MJEh3Vmnd10N_mHbrpvKja6b3ILv7Sj5FJfj7WWttvXFbwCS_9Mw3oabK8Ob7HpJuQMbtrgL10dtvbt7cHGwyKvyx5evSeU0AJnYqip9laBck1GJlOZ-65TMy5PzU1uRsasunrvEcZK4tbLQNZl_QruANCaAz4YjTWkpgvKIOvCEyMIQfyazsuSgzl162n04vJRffwCbRVnYR0CUFFIPFLZKxjn2NaYfZjyLmYqGitMevG4ZJV14AJLUQ03T1M1d2s1dD7ZaPkpXC9FZymgTmxYi6sGLrhlH1sWFZGHLJfbpo5JBQ5Jjn4ee_7pPcQdljSLbA9pw0V9oSHdn03F39fhfHnoO1-bJJH03ne0_gRvuts8v3YLNulrap2gD1upZI3YEPl42g_4E2n5jQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiro-Driven+Ferroelectric+Coordination+Polymer+Exhibiting+Distinct+Phase+Transitions+Under+Thermal+and+Pressure+Stimuli&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Du%2C+Zi-Yi&rft.au=Xie%2C+Miao&rft.au=Qiu%2C+Wenbo&rft.au=Han%2C+Ding-Chong&rft.date=2025-05-01&rft.eissn=1521-3773&rft.volume=64&rft.issue=19&rft.spage=e202500027&rft_id=info:doi/10.1002%2Fanie.202500027&rft_id=info%3Apmid%2F40069112&rft.externalDocID=40069112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |