Spiro‐Driven Ferroelectric Coordination Polymer Exhibiting Distinct Phase Transitions Under Thermal and Pressure Stimuli

Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholi...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 19; pp. e202500027 - n/a
Main Authors Du, Zi‐Yi, Xie, Miao, Qiu, Wenbo, Han, Ding‐Chong, Zhang, Shi‐Yong, Zeng, Ying, Cai, Weizhao, Nakamura, Takayoshi, Huang, Rui‐Kang, He, Chun‐Ting
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co‐ligand, we obtained a neutral chain‐like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal‐induced phase transition, driven by ring‐conformational flipping of the spiro‐like [Cd(MEO)] fragment, and a pressure‐induced transition, triggered by significant deformation of the spring‐like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro‐driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics. Here we report the first example of a 1D spiro‐based ferroelectric coordination polymer, which exhibits distinct phase transitions under thermal or pressure stimuli, triggered by the flipping of a spiro ring fragment as well as the deformation of the main chain.
AbstractList Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co‐ligand, we obtained a neutral chain‐like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal‐induced phase transition, driven by ring‐conformational flipping of the spiro‐like [Cd(MEO)] fragment, and a pressure‐induced transition, triggered by significant deformation of the spring‐like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro‐driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.
Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN) ]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN) ] helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.
Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro‐driven approach for the design of a new class of molecular ferroelectrics. Using 2‐morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co‐ligand, we obtained a neutral chain‐like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal‐induced phase transition, driven by ring‐conformational flipping of the spiro‐like [Cd(MEO)] fragment, and a pressure‐induced transition, triggered by significant deformation of the spring‐like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro‐driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics. Here we report the first example of a 1D spiro‐based ferroelectric coordination polymer, which exhibits distinct phase transitions under thermal or pressure stimuli, triggered by the flipping of a spiro ring fragment as well as the deformation of the main chain.
Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN⁻ anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)₂]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN)₂]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.
Author Zhang, Shi‐Yong
Huang, Rui‐Kang
Xie, Miao
Qiu, Wenbo
Zeng, Ying
He, Chun‐Ting
Du, Zi‐Yi
Han, Ding‐Chong
Cai, Weizhao
Nakamura, Takayoshi
Author_xml – sequence: 1
  givenname: Zi‐Yi
  surname: Du
  fullname: Du, Zi‐Yi
  email: ziyidu@gmail.com
  organization: Gannan Normal University
– sequence: 2
  givenname: Miao
  surname: Xie
  fullname: Xie, Miao
  organization: Jiangxi Normal University
– sequence: 3
  givenname: Wenbo
  surname: Qiu
  fullname: Qiu, Wenbo
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Ding‐Chong
  surname: Han
  fullname: Han, Ding‐Chong
  organization: Sun Yat‐Sen Uiversity
– sequence: 5
  givenname: Shi‐Yong
  surname: Zhang
  fullname: Zhang, Shi‐Yong
  organization: Gannan Normal University
– sequence: 6
  givenname: Ying
  surname: Zeng
  fullname: Zeng, Ying
  organization: Jiangxi Normal University
– sequence: 7
  givenname: Weizhao
  surname: Cai
  fullname: Cai, Weizhao
  email: wzhcai@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Takayoshi
  surname: Nakamura
  fullname: Nakamura, Takayoshi
  organization: Hiroshima University
– sequence: 9
  givenname: Rui‐Kang
  surname: Huang
  fullname: Huang, Rui‐Kang
  email: huangrk@es.hokudai.ac.jp
  organization: Hokkaido University
– sequence: 10
  givenname: Chun‐Ting
  surname: He
  fullname: He, Chun‐Ting
  organization: Jiangxi Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40069112$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1u1DAQB3ALFdEPuHJElrhwyeKPJPYeq-0WKlWwUrdny4knrKvEXsYJsD31EXhGngSvthSJC_JhbOk31mj-p-QoxACEvOZsxhkT723wMBNMVCy_1DNywivBC6mUPMr3UspC6Yofk9OU7rLQmtUvyHHJWD3nXJyQ-5utx_jr4ecF-m8Q6CUgRuihHdG3dBEjOh_s6GOgq9jvBkC6_LHxjR99-EIvfMq1HelqYxPQNdqQ_B4nehtctusN4GB7aoOjK4SUJgR6M_ph6v1L8ryzfYJXj_WM3F4u14uPxfXnD1eL8-uilZKpQoCFsnRzwbmrtMpHNxpsKaFpHNjOWcUboSvdMdYIYaXUVa1c2bIOKl7P5Rl5d_h3i_HrBGk0g08t9L0NEKdkJFe1LCUvq0zf_kPv4oQhT2ekYIznedRevXlUUzOAM1v0g8Wd-bPVDGYH0GJMCaF7IpyZfWxmH5t5ii03zA8N330Pu_9oc_7pavm39zdXRJ0K
Cites_doi 10.1038/ncomms13108
10.1126/science.1129564
10.1038/nature08731
10.1039/D3SC03432A
10.1021/ja203894r
10.1021/acs.accounts.8b00677
10.1126/science.1229675
10.1021/acs.jpclett.3c00566
10.1126/science.1217954
10.1021/jz500778t
10.1021/jacs.3c00634
10.1021/jacs.1c06108
10.1038/natrevmats.2016.87
10.1038/nature11395
10.1038/s41467-024-49053-y
10.1021/jacs.3c08419
10.1021/jacs.7b01334
10.1143/JPSJ.27.387
10.1073/pnas.1817866116
10.1021/jacs.4c07676
10.1021/jacs.5b08061
10.1002/chem.202303120
10.1126/science.aas9330
10.1038/s41586-024-08041-4
10.1002/anie.202215286
10.1021/jacs.0c02924
10.1002/anie.202407934
10.1039/D1SC01345A
10.1002/anie.202218675
10.1039/C9CS00504H
10.1002/adma.202004999
10.1002/anie.202420512
10.1093/nsr/nwac240
10.1126/science.aav3057
10.1038/nmat2137
10.1021/jacs.0c07055
10.1039/D3CS00262D
10.1038/nchem.2206
10.1126/science.1082001
10.1038/ncomms8338
10.1016/j.matt.2019.12.008
10.1021/jacs.8b04600
10.1038/s41467-023-38590-7
10.1021/jacs.4c06859
10.1021/acs.jpclett.7b00019
10.1126/science.adj1946
10.1038/nchem.2567
10.1002/anie.201406810
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202500027
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 40069112
10_1002_anie_202500027
ANIE202500027
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology
– fundername: Natural Science Foundation of China
  funderid: 22465020; 21971091; 12274062
– fundername: Natural Science Foundation of Jiangxi Province
  funderid: 20224ACB203002
– fundername: JSPS
  funderid: JP22H00311
– fundername: Natural Science Foundation of Jiangxi Province
  grantid: 20224ACB203002
– fundername: JSPS
  grantid: JP22H00311
– fundername: Natural Science Foundation of China
  grantid: 22465020
– fundername: Natural Science Foundation of China
  grantid: 21971091
– fundername: Natural Science Foundation of China
  grantid: 12274062
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UMC
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
53G
9M8
AAMMB
AANHP
AASGY
AAYJJ
AAYXX
ABDPE
ABEFU
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AETEA
AGCDD
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
M53
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
AAYOK
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3307-2eae44d9211d5878788b8ea43ebbdeafda71b2858f00b22a338567d4c0fe51693
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:44:18 EDT 2025
Thu Aug 21 03:40:54 EDT 2025
Tue May 06 01:32:01 EDT 2025
Thu Aug 21 00:18:20 EDT 2025
Tue May 06 09:40:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Pressure‐induced phase transition
Thermal‐induced phase transition
Ferroelectrics
Coordination polymer
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3307-2eae44d9211d5878788b8ea43ebbdeafda71b2858f00b22a338567d4c0fe51693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40069112
PQID 3200130775
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_3176343145
proquest_journals_3200130775
pubmed_primary_40069112
crossref_primary_10_1002_anie_202500027
wiley_primary_10_1002_anie_202500027_ANIE202500027
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2023; 10
2017; 8
2015; 6
2023; 14
2018; 140
2019; 52
2020; 142
2023; 145
2009
2010; 463
2024; 383
2024; 30
2008; 7
2024; 53
2022; 41
2024; 146
2021; 143
2012; 488
2021; 50
2024; 15
2015; 7
2011; 133
2017; 139
2019; 363
2023; 62
2016; 7
2014; 5
2016; 2
2020; 2
2021; 12
2007; 315
2021; 33
2015; 137
2013; 339
2022
2024; 634
2019; 116
2024; 63
2024; 64
1969; 27
2022; 32
2003; 300
2012; 336
2016; 8
2014; 53
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_51_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Mao Y. (e_1_2_5_28_1) 2022; 32
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
Ramon R. T. (e_1_2_5_46_1) 2022
(e_1_2_5_47_1) 2009
e_1_2_5_18_1
Chen Y. Y. (e_1_2_5_29_1) 2022; 41
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 383
  start-page: 1492
  year: 2024
  end-page: 1498
  publication-title: Science
– year: 2009
– volume: 634
  start-page: 833
  year: 2024
  end-page: 841
  publication-title: Nature
– volume: 315
  start-page: 954
  year: 2007
  end-page: 959
  publication-title: Science
– volume: 50
  start-page: 8248
  year: 2021
  end-page: 8278
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 13816
  year: 2021
  end-page: 13823
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2024
  publication-title: Chem. ‐ Eur. J.
– volume: 41
  start-page: 2204001
  year: 2022
  end-page: 2204011
  publication-title: Chin. J. Struct.
– volume: 64
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 357
  year: 2008
  end-page: 366
  publication-title: Nat. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 23292
  year: 2023
  end-page: 23299
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2182
  year: 2014
  end-page: 2188
  publication-title: J. Phys. Chem. Lett.
– volume: 339
  start-page: 425
  year: 2013
  end-page: 428
  publication-title: Science
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 2
  start-page: 697
  year: 2020
  end-page: 710
  publication-title: Matter
– year: 2022
– volume: 142
  start-page: 9000
  year: 2020
  end-page: 9006
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 281
  year: 2015
  end-page: 294
  publication-title: Nat. Chem.
– volume: 139
  start-page: 6369
  year: 2017
  end-page: 6375
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 8713
  year: 2021
  end-page: 8721
  publication-title: Chem. Sci.
– volume: 52
  start-page: 1928
  year: 2019
  end-page: 1938
  publication-title: Acc. Chem. Res.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 11242
  year: 2014
  end-page: 11247
  publication-title: Angew. Chem. Int. Ed.
– volume: 363
  start-page: 1206
  year: 2019
  end-page: 1210
  publication-title: Science
– volume: 488
  start-page: 485
  year: 2012
  end-page: 489
  publication-title: Nature
– volume: 53
  start-page: 5781
  year: 2024
  end-page: 5861
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 7338
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 10631
  year: 2023
  end-page: 10643
  publication-title: Chem. Sci.
– volume: 2
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 929
  year: 2017
  end-page: 935
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 2863
  year: 2023
  publication-title: Nat. Commun.
– volume: 142
  start-page: 15205
  year: 2020
  end-page: 15218
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 387
  year: 1969
  end-page: 396
  publication-title: J. Phys. Soc. Jpn.
– volume: 146
  start-page: 22893
  year: 2024
  end-page: 22898
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 4702
  year: 2024
  publication-title: Nat. Commun.
– volume: 140
  start-page: 8051
  year: 2018
  end-page: 8059
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 5545
  year: 2023
  end-page: 5552
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 946
  year: 2016
  end-page: 952
  publication-title: Nat. Chem.
– volume: 137
  start-page: 13345
  year: 2015
  end-page: 13351
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 13767
  year: 2011
  end-page: 13769
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3535
  year: 2023
  end-page: 3552
  publication-title: J. Phys. Chem. Lett.
– volume: 361
  start-page: 151
  year: 2018
  end-page: 155
  publication-title: Science
– volume: 300
  start-page: 612
  year: 2003
  end-page: 615
  publication-title: Science
– volume: 116
  start-page: 5878
  year: 2019
  end-page: 5885
  publication-title: Proc. Natl. Acad. Sci.
– volume: 463
  start-page: 789
  year: 2010
  end-page: 792
  publication-title: Nature
– volume: 10
  year: 2023
  publication-title: Natl. Sci. Rev.
– volume: 336
  start-page: 209
  year: 2012
  end-page: 213
  publication-title: Science
– volume: 146
  start-page: 21176
  year: 2024
  end-page: 21185
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_5_13_1
  doi: 10.1038/ncomms13108
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1129564
– ident: e_1_2_5_5_1
  doi: 10.1038/nature08731
– ident: e_1_2_5_41_1
  doi: 10.1039/D3SC03432A
– ident: e_1_2_5_38_1
  doi: 10.1021/ja203894r
– ident: e_1_2_5_42_1
  doi: 10.1021/acs.accounts.8b00677
– ident: e_1_2_5_16_1
  doi: 10.1126/science.1229675
– ident: e_1_2_5_33_1
  doi: 10.1021/acs.jpclett.3c00566
– ident: e_1_2_5_39_1
  doi: 10.1126/science.1217954
– ident: e_1_2_5_49_1
  doi: 10.1021/jz500778t
– ident: e_1_2_5_31_1
  doi: 10.1021/jacs.3c00634
– ident: e_1_2_5_7_1
  doi: 10.1021/jacs.1c06108
– ident: e_1_2_5_2_1
  doi: 10.1038/natrevmats.2016.87
– ident: e_1_2_5_10_1
  doi: 10.1038/nature11395
– ident: e_1_2_5_21_1
  doi: 10.1038/s41467-024-49053-y
– ident: e_1_2_5_14_1
  doi: 10.1021/jacs.3c08419
– ident: e_1_2_5_24_1
  doi: 10.1021/jacs.7b01334
– ident: e_1_2_5_50_1
  doi: 10.1143/JPSJ.27.387
– ident: e_1_2_5_6_1
  doi: 10.1073/pnas.1817866116
– ident: e_1_2_5_20_1
  doi: 10.1021/jacs.4c07676
– ident: e_1_2_5_11_1
  doi: 10.1021/jacs.5b08061
– ident: e_1_2_5_15_1
  doi: 10.1002/chem.202303120
– volume-title: Spiro Compounds: Synthesis and Applications
  year: 2022
  ident: e_1_2_5_46_1
– ident: e_1_2_5_25_1
  doi: 10.1126/science.aas9330
– ident: e_1_2_5_4_1
  doi: 10.1038/s41586-024-08041-4
– ident: e_1_2_5_19_1
  doi: 10.1002/anie.202215286
– ident: e_1_2_5_40_1
  doi: 10.1021/jacs.0c02924
– ident: e_1_2_5_8_1
  doi: 10.1002/anie.202407934
– ident: e_1_2_5_27_1
  doi: 10.1039/D1SC01345A
– ident: e_1_2_5_30_1
  doi: 10.1002/anie.202218675
– ident: e_1_2_5_52_1
  doi: 10.1039/C9CS00504H
– volume: 41
  start-page: 2204001
  year: 2022
  ident: e_1_2_5_29_1
  publication-title: Chin. J. Struct.
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.202004999
– ident: e_1_2_5_35_1
  doi: 10.1002/anie.202420512
– ident: e_1_2_5_34_1
  doi: 10.1093/nsr/nwac240
– ident: e_1_2_5_26_1
  doi: 10.1126/science.aav3057
– ident: e_1_2_5_37_1
  doi: 10.1038/nmat2137
– ident: e_1_2_5_43_1
  doi: 10.1021/jacs.0c07055
– ident: e_1_2_5_44_1
  doi: 10.1039/D3CS00262D
– ident: e_1_2_5_12_1
  doi: 10.1038/nchem.2206
– ident: e_1_2_5_36_1
  doi: 10.1126/science.1082001
– ident: e_1_2_5_23_1
  doi: 10.1038/ncomms8338
– ident: e_1_2_5_18_1
  doi: 10.1016/j.matt.2019.12.008
– ident: e_1_2_5_51_1
  doi: 10.1021/jacs.8b04600
– ident: e_1_2_5_32_1
  doi: 10.1038/s41467-023-38590-7
– ident: e_1_2_5_45_1
  doi: 10.1021/jacs.4c06859
– ident: e_1_2_5_48_1
  doi: 10.1021/acs.jpclett.7b00019
– volume: 32
  year: 2022
  ident: e_1_2_5_28_1
  publication-title: Angew. Chem. Int. Ed.
– volume-title: Accelrys Materials Studio Getting Started, Release 5.5
  year: 2009
  ident: e_1_2_5_47_1
– ident: e_1_2_5_9_1
  doi: 10.1126/science.adj1946
– ident: e_1_2_5_17_1
  doi: 10.1038/nchem.2567
– ident: e_1_2_5_22_1
  doi: 10.1002/anie.201406810
SSID ssj0028806
Score 2.4826746
Snippet Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202500027
SubjectTerms Chelation
Controllability
Coordination polymer
Coordination polymers
Electronic equipment
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Ligands
Phase transitions
Polymers
Pressure‐induced phase transition
Thermal‐induced phase transition
Title Spiro‐Driven Ferroelectric Coordination Polymer Exhibiting Distinct Phase Transitions Under Thermal and Pressure Stimuli
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500027
https://www.ncbi.nlm.nih.gov/pubmed/40069112
https://www.proquest.com/docview/3200130775
https://www.proquest.com/docview/3176343145
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLvRSSkvpFlq5EhKnQNZ21t4jWnZFe0CogMQt8l_UqEuCQvYAJx6BZ-yTdMbepN1yqFRuiWwrjj2eH8_MN4TsWSOU9RJsk7GwiZCFSDTnPpHOSm5AwEsToi1ORyeX4utVdvVHFn_Eh-gv3PBkBH6NB1yb28PfoKGYgQ32HcuC9wyYMAZsoVb0rcePYkCcMb2I8wSr0HeojSk7XB2-KpWeqJqrmmsQPbMNortJx4iTHweL1hzY-7_wHJ_zV6_Jq6VeSo8iIW2SF756Q9YnXTm4t-T-_KZs6p8Pj8cNMkg6801TxyI6paWTGozYMt4s0rN6fnftGzrF4tslxlXTY2QllW3p2XcQmzRIyBgsRkPlJQrkCiJiTnXlaExZbDw9b0uM3toil7PpxeQkWRZuSCxH0EnmtRfCjcG4dJkClqCUUV4L7o1xXhdOy6FhKlNFmhrGgDhUNpJO2LTw6Lfj78haVVf-PaFGS21HBlo1FwL6OjdMC1EobrKxEWxA9ruNy28iPkcekZhZjmuZ92s5ILvdvubLc3qbcxZct1JmA_K5b4aVRbeJrny9gD5D4MGgZwnosx3pof-UQKRnoOgBYWFX_zGH_Oj0y7R_-_A_g3bIS3yOMZe7ZK1tFv4j6EWt-RRo_xdRXQa7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXKH9loYCRQJzSZm1nnT30UO2PdmlZVbSVegu244iIklRpVqg98Qh9lb4Kj8CTMLY3QQsHJKQeOCZ2kok945nxjL8BeK0Vj7UR6Jv0uQ64yHggGTOBSLVgChW8UC7bYtabHPN3J9HJClw3Z2E8PkS74WYlw63XVsDthvT2L9RQewQbHTwaufDZIq9yz1x8Ra_tfGc6xCl-Q-l4dDSYBIvCAoFmFhSRGmk4T_vo_KRRjCwbxyo2kjOjVGpklkrRVTSO4iwMFaVIfBz1RMp1mBkbV2L43ltw25YRt3D9ww8tYhVFcfAHmhgLbN37BicypNvL9C7rwT-M22Vb2Sm78T343gyTz3H5vDWv1Za-_A1B8r8ax3W4uzC9ya6XlfuwYooHsDZoKt49hMvDs7wqf3y7GlZWB5CxqarS1wnKNRmUSGnuN0_JQXl68cVUZGTri-c2dZwM7WpZ6JocfELLgDgjwOfDEVdciqBEohY8JbJIiT-VWRlyWOc2Qe0RHN_Irz-G1aIszBMgSgqpewpbJeMc-6ZpN8x4FjMV9RWnHXjbcEpy5iFIEg82TRM7d0k7dx3YbBgpWSxF5wmjLjotRNSBV20zjqyNDMnClHPs00U1g6Ykxz4bngHbT3ELZo1C2wHq2OgvNCS7s-movXr6Lw-9hLXJ0fv9ZH8623sGd-x9n2K6Cat1NTfP0Qys1QsneAQ-3jSH_gSGAGSR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8WChgJxClt1nbW2QOHarOrLkWrFaVSb8F_EVHbZJVmhdoTj8Cj8Cq8Ak_CON4ELRyQkHrgmNhJJvaMZ8Yz_gbgpVY81lagbzLkOuAi44FkzAbCaMEUKnihmmyL2WDvkL89io424Ft7FsbjQ3Qbbk4ymvXaCfjCZDu_QEPdCWz072jURM9WaZX79vwzOm1nb6YJzvArSifjD6O9YFVXINDMYSJSKy3nZoi-j4li5Ng4VrGVnFmljJWZkaKvaBzFWRgqSpH2OBoIw3WYWRdWYvjeK3CVD8KhKxaRvO8AqyhKgz_PxFjgyt63MJEh3Vmnd10N_mHbrpvKja6b3ILv7Sj5FJfj7WWttvXFbwCS_9Mw3oabK8Ob7HpJuQMbtrgL10dtvbt7cHGwyKvyx5evSeU0AJnYqip9laBck1GJlOZ-65TMy5PzU1uRsasunrvEcZK4tbLQNZl_QruANCaAz4YjTWkpgvKIOvCEyMIQfyazsuSgzl162n04vJRffwCbRVnYR0CUFFIPFLZKxjn2NaYfZjyLmYqGitMevG4ZJV14AJLUQ03T1M1d2s1dD7ZaPkpXC9FZymgTmxYi6sGLrhlH1sWFZGHLJfbpo5JBQ5Jjn4ee_7pPcQdljSLbA9pw0V9oSHdn03F39fhfHnoO1-bJJH03ne0_gRvuts8v3YLNulrap2gD1upZI3YEPl42g_4E2n5jQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiro-Driven+Ferroelectric+Coordination+Polymer+Exhibiting+Distinct+Phase+Transitions+Under+Thermal+and+Pressure+Stimuli&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Du%2C+Zi-Yi&rft.au=Xie%2C+Miao&rft.au=Qiu%2C+Wenbo&rft.au=Han%2C+Ding-Chong&rft.date=2025-05-01&rft.eissn=1521-3773&rft.volume=64&rft.issue=19&rft.spage=e202500027&rft_id=info:doi/10.1002%2Fanie.202500027&rft_id=info%3Apmid%2F40069112&rft.externalDocID=40069112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon