In‐tandem Electrochemical Reduction of Nitrate to Ammonia on Ultrathin‐Sheet‐Assembled Iron‐Nickel Alloy Nanoflowers
The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐dr...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 14; pp. e202500167 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO3RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO3RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h−1 cm−2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3− to NO2− occurred on the Fe surface, whereas subsequent hydrogenation of NO2− to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO3RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3−‐contaminated water.
Electrochemical synthesis of an ultrathin‐sheet‐like nanoflower Fe−Ni (Fe80Ni20) alloy on a carbon cloth and electroreduction of NO3− to NH3 through an in‐tandem mechanism. |
---|---|
AbstractList | The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO3RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO3RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h−1 cm−2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3− to NO2− occurred on the Fe surface, whereas subsequent hydrogenation of NO2− to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO3RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3−‐contaminated water.
Electrochemical synthesis of an ultrathin‐sheet‐like nanoflower Fe−Ni (Fe80Ni20) alloy on a carbon cloth and electroreduction of NO3− to NH3 through an in‐tandem mechanism. The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3 -) reduction to NH3 (e-NO3RRA) is a promising alternative to the energy-intensive, fossil-fuel-driven Haber-Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in-depth mechanistic understanding of e-NO3RRA. In this study, we developed an ultrathin sheet (μm) iron-nickel nanoflower alloy through electrodeposition and used it for e-NO3RRA under alkaline conditions. The prepared Fe-Ni alloy exhibited an FE of 97.28±1.36 % at -238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h-1 cm-2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3 - to NO2 - occurred on the Fe surface, whereas subsequent hydrogenation of NO2 - to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long-term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e-NO3RRA. This work introduces a sustainable, robust, and efficient Fe-Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3 --contaminated water.The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3 -) reduction to NH3 (e-NO3RRA) is a promising alternative to the energy-intensive, fossil-fuel-driven Haber-Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in-depth mechanistic understanding of e-NO3RRA. In this study, we developed an ultrathin sheet (μm) iron-nickel nanoflower alloy through electrodeposition and used it for e-NO3RRA under alkaline conditions. The prepared Fe-Ni alloy exhibited an FE of 97.28±1.36 % at -238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h-1 cm-2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3 - to NO2 - occurred on the Fe surface, whereas subsequent hydrogenation of NO2 - to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long-term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e-NO3RRA. This work introduces a sustainable, robust, and efficient Fe-Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3 --contaminated water. The development of alternative routes for ammonia (NH ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO ) reduction to NH (e-NO RRA) is a promising alternative to the energy-intensive, fossil-fuel-driven Haber-Bosch process. The implementation of this innovative NH synthesis technique requires an efficient electrocatalyst and in-depth mechanistic understanding of e-NO RRA. In this study, we developed an ultrathin sheet (μm) iron-nickel nanoflower alloy through electrodeposition and used it for e-NO RRA under alkaline conditions. The prepared Fe-Ni alloy exhibited an FE of 97.28±1.36 % at -238 mV and an NH yield rate up to 3999.1±242.59 μg h cm . Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO to NO occurred on the Fe surface, whereas subsequent hydrogenation of NO to NH occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long-term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e-NO RRA. This work introduces a sustainable, robust, and efficient Fe-Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH from NO -contaminated water. The development of alternative routes for ammonia (NH 3 ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO 3 − ) reduction to NH 3 (e‐NO 3 RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH 3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO 3 RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO 3 RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mV RHE and an NH 3 yield rate up to 3999.1±242.59 μg h −1 cm −2 . Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO 3 − to NO 2 − occurred on the Fe surface, whereas subsequent hydrogenation of NO 2 − to NH 3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO 3 RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH 3 from NO 3 − ‐contaminated water. The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO3RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO3RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h−1 cm−2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3− to NO2− occurred on the Fe surface, whereas subsequent hydrogenation of NO2− to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO3RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3−‐contaminated water. |
Author | Chandra Majhi, Kartick Batool, Asma Jin, Yangxin Chun‐Ho Lam, Jason Chen, Hongjiang Sit, Patrick H.‐L. Zhu, Qi Liu, Shengqin |
Author_xml | – sequence: 1 givenname: Kartick surname: Chandra Majhi fullname: Chandra Majhi, Kartick organization: City University of Hong Kong, Kowloon Tong – sequence: 2 givenname: Hongjiang surname: Chen fullname: Chen, Hongjiang organization: City University of Hong Kong – sequence: 3 givenname: Asma surname: Batool fullname: Batool, Asma organization: City University of Hong Kong, Kowloon Tong – sequence: 4 givenname: Qi surname: Zhu fullname: Zhu, Qi organization: City University of Hong Kong, Kowloon Tong – sequence: 5 givenname: Yangxin surname: Jin fullname: Jin, Yangxin organization: City University of Hong Kong, Kowloon Tong – sequence: 6 givenname: Shengqin surname: Liu fullname: Liu, Shengqin organization: City University of Hong Kong, Kowloon Tong – sequence: 7 givenname: Patrick H.‐L. surname: Sit fullname: Sit, Patrick H.‐L. organization: City University of Hong Kong – sequence: 8 givenname: Jason orcidid: 0000-0003-3085-1634 surname: Chun‐Ho Lam fullname: Chun‐Ho Lam, Jason email: jason.lam@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39904929$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0Utr3DAQAGBRUppXrz0GQS65eKuHJdlHE7btQthCHmejyGNWqSwlkk1Y6CE_ob8xvyQym6bQS9BhhOabQcwcoj0fPCD0hZIFJYR91d7CghEmCKFSfUAHVDBacKX4Xr6XnBeqEnQfHaZ0l31VEfkJ7fO6JmXN6gP0e-Wfn_6M2ncw4KUDM8ZgNjBYox2-hG4yow0ehx6v7Rj1CHgMuBmG4K3GOXHj5teNnbtcbQDGHJuUYLh10OFVDHNibc0vcLhxLmzxWvvQu_AIMR2jj712CT6_xiN08215ff6juPj5fXXeXBSGc6IKSqQUFa97yTpGeigVVx0pWSUEcCWZqrXSLB-Q0pQVy45AncfRUdOXJeNH6GzX9z6GhwnS2A42GXBOewhTajmVXBChBMn09D96F6bo8--yqkQlOZNlVievarodoGvvox103LZ_55rBYgdMDClF6N8IJe28uHZeXPu2uFxQ7woerYPtO7pt1qvlv9oXaL-evg |
Cites_doi | 10.1016/j.ese.2024.100492 10.1038/s41560-020-0654-1 10.1021/acs.est.0c05631 10.1002/anie.202301269 10.1002/aesr.202300173 10.1021/acsami.0c10991 10.1016/j.jece.2024.112700 10.1016/j.cej.2021.133680 10.1021/acscatal.9b05260 10.1038/s41467-023-39366-9 10.1039/D2EE03461A 10.1039/D1CS00857A 10.1016/j.apcatb.2022.121805 10.1038/s41467-021-23115-x 10.1016/j.apcatb.2024.124812 10.1021/acs.energyfuels.1c01079 10.3164/jcbn.10-130 10.1039/b720020j 10.1021/acs.iecr.2c02495 10.1016/j.jallcom.2020.156736 10.1006/jcat.2000.3087 10.1016/j.scitotenv.2023.161444 10.1016/S0022-0728(72)80485-6 10.1002/adfm.202303480 10.1021/acscatal.2c04841 10.1016/j.cej.2019.122065 10.1021/jp312391h 10.1016/j.watres.2019.05.104 10.1039/C9EE02873K 10.1039/D2SC04617B 10.1038/s41467-024-48035-4 10.1016/j.cej.2022.135104 10.1021/cr400641x 10.1002/cphc.202300536 10.3390/pr10040751 10.1039/D1TA09441F 10.1002/ijc.31306 10.1073/pnas.2115504119 10.1021/acs.est.6b01897 10.1016/j.jece.2022.107416 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202500167 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39904929 10_1002_anie_202500167 ANIE202500167 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Research Grants Council funderid: CityU 11302623 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 22109133 – fundername: Research Grants Council grantid: CityU 11302623 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 22109133 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 53G 9M8 AAMMB AANHP AASGY AAYJJ AAYXX ABDBF ABDPE ABEFU ACBWZ ACRPL ACYXJ ADNMO ADXHL AEFGJ AETEA AEYWJ AGCDD AGQPQ AGXDD AGYGG AI. AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 M53 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3307-10665839f62d20fe4737d042855e376279a7a2a2ae66c482f620e9167d1cf4423 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:39:16 EDT 2025 Thu Aug 21 03:41:41 EDT 2025 Fri Apr 04 01:34:09 EDT 2025 Thu Aug 21 00:36:08 EDT 2025 Thu Apr 03 09:33:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Hydrogen Spillover Nanoflower Nitrate Reduction In-Tandem Mechanism Electrocatalysts |
Language | English |
License | Attribution-NonCommercial 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3307-10665839f62d20fe4737d042855e376279a7a2a2ae66c482f620e9167d1cf4423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3085-1634 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500167 |
PMID | 39904929 |
PQID | 3185863264 |
PQPubID | 946352 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3163505750 proquest_journals_3185863264 pubmed_primary_39904929 crossref_primary_10_1002_anie_202500167 wiley_primary_10_1002_anie_202500167_ANIE202500167 |
PublicationCentury | 2000 |
PublicationDate | April 1, 2025 2025-04-00 2025-Apr-01 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 1, 2025 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 143 2023; 14 2023; 33 2022; 51 2023; 16 2008; 18 2020; 13 2016; 50 2020; 386 2020; 12 2024; 12 2024 2023; 866 2020; 10 2020; 54 2022; 119 2022; 318 2024; 15 2019; 161 2014; 114 2022; 435 2022; 433 2021; 35 2023; 62 2020; 5 2021; 12 2001; 197 2025; 363 2023 2024; 5 2022; 61 2021; 852 2013; 117 2022; 13 2022; 10 2025; 23 2011; 49 1972; 39 1992; 40 e_1_2_8_28_1 Chastain J. (e_1_2_8_29_1) 1992; 40 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_37_2 e_1_2_8_16_1 Majhi K. C. (e_1_2_8_7_1) 2024 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 197 start-page: 229 year: 2001 end-page: 231 publication-title: J. Catal. – volume: 51 start-page: 2710 year: 2022 end-page: 2758 publication-title: Chem. Soc. Rev. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 852 year: 2021 publication-title: J. Alloys Compd. – volume: 143 start-page: 73 year: 2018 end-page: 79 publication-title: Int. J. Cancer – volume: 14 start-page: 3634 year: 2023 publication-title: Nat. Commun. – volume: 5 year: 2024 publication-title: Advanced Energy and Sustainability Research – year: 2023 publication-title: ChemPhysChem – volume: 5 start-page: 605 year: 2020 end-page: 613 publication-title: Nat. Energy – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 386 year: 2020 publication-title: Chem. Eng. J. – volume: 117 start-page: 4852 year: 2013 end-page: 4858 publication-title: J. Phys. Chem. C – volume: 40 start-page: 221 year: 1992 publication-title: Perkin–Elmer Corporation – volume: 318 year: 2022 publication-title: Appl. Catal. B – volume: 33 issue: 43 year: 2023 publication-title: Adv. Funct. Mater. – volume: 10 year: 2022 publication-title: J. Environ. Chem. Eng. – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 54 start-page: 13344 year: 2020 end-page: 13353 publication-title: Environ. Sci. Technol. – volume: 49 start-page: 96 year: 2011 end-page: 101 publication-title: J. Clin. Biochem. Nutr. – volume: 13 start-page: 331 year: 2020 end-page: 344 publication-title: Energy Environ. Sci. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 114 start-page: 4041 year: 2014 end-page: 4062 publication-title: Chem. Rev. – volume: 61 start-page: 14731 year: 2022 end-page: 14746 publication-title: Ind. Eng. Chem. Res. – volume: 39 start-page: 163 year: 1972 end-page: 184 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 23 year: 2025 publication-title: Environmental Science and Ecotechnology – volume: 866 year: 2023 publication-title: Sci. Total Environ. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 16 start-page: 663 year: 2023 end-page: 672 publication-title: Energy Environ. Sci. – volume: 10 start-page: 3963 year: 2022 end-page: 3969 publication-title: J. Mater. Chem. A – year: 2024 publication-title: Curr. Opin. Green Sustain. Chem. – volume: 13 start-page: 87 year: 2022 end-page: 98 publication-title: ACS Catal. – volume: 35 start-page: 12473 year: 2021 end-page: 12481 publication-title: Energy Fuels – volume: 161 start-page: 126 year: 2019 end-page: 135 publication-title: Water Res. – volume: 363 year: 2025 publication-title: Applied Catalysis B: Environment and Energy – volume: 12 start-page: 37258 year: 2020 end-page: 37264 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 3619 year: 2024 publication-title: Nat. Commun. – volume: 10 start-page: 751 year: 2022 publication-title: Processes – volume: 18 start-page: 2304 year: 2008 end-page: 2310 publication-title: J. Mater. Chem. – volume: 50 start-page: 7290 year: 2016 end-page: 7304 publication-title: Environ. Sci. Technol. – volume: 14 start-page: 3056 year: 2023 end-page: 3069 publication-title: Chem. Sci. – volume: 12 year: 2024 publication-title: J. Environ. Chem. Eng. – volume: 10 start-page: 3533 year: 2020 end-page: 3540 publication-title: ACS Catal. – ident: e_1_2_8_24_1 doi: 10.1016/j.ese.2024.100492 – ident: e_1_2_8_33_1 doi: 10.1038/s41560-020-0654-1 – ident: e_1_2_8_45_1 doi: 10.1021/acs.est.0c05631 – ident: e_1_2_8_27_1 doi: 10.1002/anie.202301269 – ident: e_1_2_8_20_1 – ident: e_1_2_8_8_1 doi: 10.1002/aesr.202300173 – ident: e_1_2_8_17_2 doi: 10.1021/acsami.0c10991 – ident: e_1_2_8_15_1 doi: 10.1016/j.jece.2024.112700 – ident: e_1_2_8_35_1 doi: 10.1016/j.cej.2021.133680 – ident: e_1_2_8_34_1 doi: 10.1021/acscatal.9b05260 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-023-39366-9 – ident: e_1_2_8_42_1 doi: 10.1039/D2EE03461A – ident: e_1_2_8_6_1 doi: 10.1039/D1CS00857A – ident: e_1_2_8_30_1 doi: 10.1016/j.apcatb.2022.121805 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-021-23115-x – ident: e_1_2_8_31_1 doi: 10.1016/j.apcatb.2024.124812 – ident: e_1_2_8_36_1 – ident: e_1_2_8_39_1 doi: 10.1021/acs.energyfuels.1c01079 – ident: e_1_2_8_43_1 doi: 10.3164/jcbn.10-130 – ident: e_1_2_8_1_1 doi: 10.1039/b720020j – ident: e_1_2_8_9_1 doi: 10.1021/acs.iecr.2c02495 – ident: e_1_2_8_41_1 doi: 10.1016/j.jallcom.2020.156736 – ident: e_1_2_8_19_1 doi: 10.1006/jcat.2000.3087 – ident: e_1_2_8_21_2 doi: 10.1016/j.scitotenv.2023.161444 – ident: e_1_2_8_23_1 doi: 10.1016/S0022-0728(72)80485-6 – ident: e_1_2_8_16_1 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202303480 – ident: e_1_2_8_32_1 doi: 10.1021/acscatal.2c04841 – ident: e_1_2_8_4_1 doi: 10.1016/j.cej.2019.122065 – ident: e_1_2_8_25_1 doi: 10.1021/jp312391h – ident: e_1_2_8_10_1 doi: 10.1016/j.watres.2019.05.104 – ident: e_1_2_8_2_1 doi: 10.1039/C9EE02873K – ident: e_1_2_8_28_1 doi: 10.1039/D2SC04617B – volume: 40 start-page: 221 year: 1992 ident: e_1_2_8_29_1 publication-title: Perkin–Elmer Corporation – ident: e_1_2_8_44_1 doi: 10.1038/s41467-024-48035-4 – ident: e_1_2_8_38_2 doi: 10.1016/j.cej.2022.135104 – ident: e_1_2_8_18_2 doi: 10.1021/cr400641x – ident: e_1_2_8_26_1 doi: 10.1002/cphc.202300536 – year: 2024 ident: e_1_2_8_7_1 publication-title: Curr. Opin. Green Sustain. Chem. – ident: e_1_2_8_13_1 doi: 10.3390/pr10040751 – ident: e_1_2_8_37_2 doi: 10.1039/D1TA09441F – ident: e_1_2_8_5_1 doi: 10.1002/ijc.31306 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.2115504119 – ident: e_1_2_8_22_2 doi: 10.1021/acs.est.6b01897 – ident: e_1_2_8_40_1 doi: 10.1016/j.jece.2022.107416 |
SSID | ssj0028806 |
Score | 2.5377333 |
Snippet | The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero... The development of alternative routes for ammonia (NH 3 ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero... The development of alternative routes for ammonia (NH ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202500167 |
SubjectTerms | Alternative energy sources Ammonia Chemical reduction Density functional theory Electrocatalysts Electrolysis Electron paramagnetic resonance Electron spin resonance Emissions Energy conservation Fossil fuels Haber Bosch process Hydrogen Spillover In-Tandem Mechanism Iron Nanoflower Nickel Nickel base alloys Nitrate Reduction Nitrates Nitrogen dioxide Raman spectroscopy Synthesis Water pollution |
Title | In‐tandem Electrochemical Reduction of Nitrate to Ammonia on Ultrathin‐Sheet‐Assembled Iron‐Nickel Alloy Nanoflowers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500167 https://www.ncbi.nlm.nih.gov/pubmed/39904929 https://www.proquest.com/docview/3185863264 https://www.proquest.com/docview/3163505750 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXsqFf-jSUrkSEqe0wfbG2eOq2qqLxKoqrNRb5DhjddU0QW32AOLQR-gz9kmYiTeBhQMSKIc4cZw49tj-7PF8A_DWjIxLYxtH3qs80l5jlKM3UTE0Phl5l2OrPf84S07m-sP58PwXK_7AD9EvuHHLaPtrbuA2vzn8SRrKFtg0v6MhnHfSUyfMG7YYFZ31_FGShDOYFykVsRf6jrUxlofryddHpT-g5jpybYee48dgu0yHHSeXB8smP3DffuNz_J-_egKPVrhUjIMgPYUNrJ7B1lHnDu45fJ9W97d3vPCAV2ISnOe4FduAOGMCWK5iUXsxW7SMt6KpxZilfGEFRcxLvnux4Ld8ukBs6Mwa56u8xEJMr2uOILm8RMpFWdZfBXX8tS9bL24vYH48-Xx0Eq1cN0ROtbSTrNEh7OUTWcjYozbKFDw9Gw6RujRpRtZYSQcmidOppOdiJKRqivfOa4J4L2GzqivcBoEqUUWS-pykShdWpaktpE2Vo5Aj_DmAd13VZV8CQ0cWuJhlxqWZ9aU5gN2uZrNVS73J2Ho8TQjE6gHs99FUtqw4sRXWS36GYBkD23gAr4JE9J8igEeTLEnZkG29_iUP2Xg2nfRXr_8l0Q485HDYPrQLm831Et8QMmryPXgg9ele2wZ-AFj4Ceg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB219AAXKG2BLRRcqVJPgWBn4-xxRRftFtgDZaXeosQZixUhQZA9UHHoJ_Qb-ZLOxJugLYdKrXJIYsfJxB7bzx77DcAn3dMm8hPfs1alXmAD9FK02su62oY9a1Ksredn43A4Cb5-7zarCXkvjOOHaCfcuGbU7TVXcJ6QPnhiDeUt2DTAoz6cl9K_hFfs1pvp87-ctwxSktTTbTBSymM_9A1voy8PFtMv9kvPwOYidq07n-M1SBux3ZqTq_1Zle6bH38wOv7Xf72G1Tk0FX2nS-vwAos3sHzUeIR7Cw-j4vHnL557wGsxcP5zzJxwQJwzByyXsiitGE9r0ltRlaLPij5NBEVMcg69nPJbvl0iVnRmo_N1mmMmRrclR5BqXiFJkeflvaC2v7R57cjtHUyOBxdHQ2_uvcEzqmaeZKMOwS8bykz6FgOtdMYjtG4XqVWTupfoRNKBYWiCSNJzPhJY1dmhsQGhvA1YKsoCt0CgClUWRjYlxQqyREVRkskkUoauDEHQDnxuyi6-cSQdsaNjljHnZtzmZgd2mqKN55X1LuYN5FFIODbowMc2mvKWbSdJgeWMnyFkxtjW78CmU4n2U4TxaJwlSQxZF-xfZIj749GgvXv_L4n2YHl4cXYan47GJ9uwwuFuNdEOLFW3M_xAQKlKd-uq8Bunnw0t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5SB9pcQvqMU6fdQqEnEWV3rZWPxrGxk9aYtgbfhKSdJaayZBLnEMghPyG_Mb-kM5Kt1PRQKDpI2oe07Ozj252dbwA-m45JQz_2PedU4mmn0UvQGc-2jQs6Lk2w1J5_GwfDqT6ftWd_WPFX_BD1hhv3jHK85g6-tO7kiTSULbBpfUdTOJ-kfwa7rPHjQ11ST-olF7XOyr5IKY_d0G9oG315sp1_e1r6C2tuQ9dy7hkcwP4aNIpuJeWXsIP5K3jR2_hqew13o_zx_oF3BXAh-pVnm3RNBSC-Mzsr178onBjPSzpasSpEl5vgPBYUMc049HLOX_lxibiiO6uDF0mGVoyuCo6gRvMLqRRZVtwKGpULl5Uu1t7AdND_2Rt6a78KXqpKTkhWtxAwcoG00neojTKW107tNtJ4I00nNrGkC4Mg1aGkdD4SjDT2NHWa8NdbaORFjocgUAXKBqFLSOTaxioMYyvjUKX0lBI4bMKXTbVGy4o-I6qIkmXEAohqATShtan1aN2NriM27Q4DQpi6CZ_qaKpb1mrEORY3nIYwE6NOvwnvKmnVvyL0RSsgScWQpfj-UYaoOx7167ej_8n0EZ5PzgbR19H44j3scXB1zKcFjdXVDR4TglklH8pG-hu_dupz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%90tandem+Electrochemical+Reduction+of+Nitrate+to+Ammonia+on+Ultrathin%E2%80%90Sheet%E2%80%90Assembled+Iron%E2%80%90Nickel+Alloy+Nanoflowers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chandra+Majhi%2C+Kartick&rft.au=Chen%2C+Hongjiang&rft.au=Batool%2C+Asma&rft.au=Zhu%2C+Qi&rft.date=2025-04-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202500167&rft.externalDBID=10.1002%252Fanie.202500167&rft.externalDocID=ANIE202500167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |