In‐tandem Electrochemical Reduction of Nitrate to Ammonia on Ultrathin‐Sheet‐Assembled Iron‐Nickel Alloy Nanoflowers

The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐dr...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 14; pp. e202500167 - n/a
Main Authors Chandra Majhi, Kartick, Chen, Hongjiang, Batool, Asma, Zhu, Qi, Jin, Yangxin, Liu, Shengqin, Sit, Patrick H.‐L., Chun‐Ho Lam, Jason
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO3RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO3RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h−1 cm−2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3− to NO2− occurred on the Fe surface, whereas subsequent hydrogenation of NO2− to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO3RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3−‐contaminated water. Electrochemical synthesis of an ultrathin‐sheet‐like nanoflower Fe−Ni (Fe80Ni20) alloy on a carbon cloth and electroreduction of NO3− to NH3 through an in‐tandem mechanism.
AbstractList The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO3RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO3RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h−1 cm−2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3− to NO2− occurred on the Fe surface, whereas subsequent hydrogenation of NO2− to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO3RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3−‐contaminated water. Electrochemical synthesis of an ultrathin‐sheet‐like nanoflower Fe−Ni (Fe80Ni20) alloy on a carbon cloth and electroreduction of NO3− to NH3 through an in‐tandem mechanism.
The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3 -) reduction to NH3 (e-NO3RRA) is a promising alternative to the energy-intensive, fossil-fuel-driven Haber-Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in-depth mechanistic understanding of e-NO3RRA. In this study, we developed an ultrathin sheet (μm) iron-nickel nanoflower alloy through electrodeposition and used it for e-NO3RRA under alkaline conditions. The prepared Fe-Ni alloy exhibited an FE of 97.28±1.36 % at -238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h-1 cm-2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3 - to NO2 - occurred on the Fe surface, whereas subsequent hydrogenation of NO2 - to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long-term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e-NO3RRA. This work introduces a sustainable, robust, and efficient Fe-Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3 --contaminated water.The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3 -) reduction to NH3 (e-NO3RRA) is a promising alternative to the energy-intensive, fossil-fuel-driven Haber-Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in-depth mechanistic understanding of e-NO3RRA. In this study, we developed an ultrathin sheet (μm) iron-nickel nanoflower alloy through electrodeposition and used it for e-NO3RRA under alkaline conditions. The prepared Fe-Ni alloy exhibited an FE of 97.28±1.36 % at -238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h-1 cm-2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3 - to NO2 - occurred on the Fe surface, whereas subsequent hydrogenation of NO2 - to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long-term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e-NO3RRA. This work introduces a sustainable, robust, and efficient Fe-Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3 --contaminated water.
The development of alternative routes for ammonia (NH ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO ) reduction to NH (e-NO RRA) is a promising alternative to the energy-intensive, fossil-fuel-driven Haber-Bosch process. The implementation of this innovative NH synthesis technique requires an efficient electrocatalyst and in-depth mechanistic understanding of e-NO RRA. In this study, we developed an ultrathin sheet (μm) iron-nickel nanoflower alloy through electrodeposition and used it for e-NO RRA under alkaline conditions. The prepared Fe-Ni alloy exhibited an FE of 97.28±1.36 % at -238 mV and an NH yield rate up to 3999.1±242.59 μg h cm . Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO to NO occurred on the Fe surface, whereas subsequent hydrogenation of NO to NH occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long-term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e-NO RRA. This work introduces a sustainable, robust, and efficient Fe-Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH from NO -contaminated water.
The development of alternative routes for ammonia (NH 3 ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO 3 − ) reduction to NH 3 (e‐NO 3 RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH 3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO 3 RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO 3 RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mV RHE and an NH 3 yield rate up to 3999.1±242.59 μg h −1 cm −2 . Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO 3 − to NO 2 − occurred on the Fe surface, whereas subsequent hydrogenation of NO 2 − to NH 3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO 3 RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH 3 from NO 3 − ‐contaminated water.
The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero carbon emissions. Electrocatalytic nitrate (NO3−) reduction to NH3 (e‐NO3RRA) is a promising alternative to the energy‐intensive, fossil‐fuel‐driven Haber–Bosch process. The implementation of this innovative NH3 synthesis technique requires an efficient electrocatalyst and in‐depth mechanistic understanding of e‐NO3RRA. In this study, we developed an ultrathin sheet (μm) iron–nickel nanoflower alloy through electrodeposition and used it for e‐NO3RRA under alkaline conditions. The prepared Fe−Ni alloy exhibited an FE of 97.28±1.36 % at −238 mVRHE and an NH3 yield rate up to 3999.1±242.59 μg h−1 cm−2. Experimental electrolysis, in situ Raman spectroscopy, and density functional theory calculations showed that the adsorption and reduction of NO3− to NO2− occurred on the Fe surface, whereas subsequent hydrogenation of NO2− to NH3 occurred preferentially on the Ni surface. The catalysts exhibited comparable FE for at least 10 cycles, with a long‐term stability of 216 h. Electron paramagnetic resonance results confirmed that adsorbed hydrogen was consumed during e‐NO3RRA. This work introduces a sustainable, robust, and efficient Fe−Ni alloy electrocatalyst, offering an environmentally friendly approach for synthesizing NH3 from NO3−‐contaminated water.
Author Chandra Majhi, Kartick
Batool, Asma
Jin, Yangxin
Chun‐Ho Lam, Jason
Chen, Hongjiang
Sit, Patrick H.‐L.
Zhu, Qi
Liu, Shengqin
Author_xml – sequence: 1
  givenname: Kartick
  surname: Chandra Majhi
  fullname: Chandra Majhi, Kartick
  organization: City University of Hong Kong, Kowloon Tong
– sequence: 2
  givenname: Hongjiang
  surname: Chen
  fullname: Chen, Hongjiang
  organization: City University of Hong Kong
– sequence: 3
  givenname: Asma
  surname: Batool
  fullname: Batool, Asma
  organization: City University of Hong Kong, Kowloon Tong
– sequence: 4
  givenname: Qi
  surname: Zhu
  fullname: Zhu, Qi
  organization: City University of Hong Kong, Kowloon Tong
– sequence: 5
  givenname: Yangxin
  surname: Jin
  fullname: Jin, Yangxin
  organization: City University of Hong Kong, Kowloon Tong
– sequence: 6
  givenname: Shengqin
  surname: Liu
  fullname: Liu, Shengqin
  organization: City University of Hong Kong, Kowloon Tong
– sequence: 7
  givenname: Patrick H.‐L.
  surname: Sit
  fullname: Sit, Patrick H.‐L.
  organization: City University of Hong Kong
– sequence: 8
  givenname: Jason
  orcidid: 0000-0003-3085-1634
  surname: Chun‐Ho Lam
  fullname: Chun‐Ho Lam, Jason
  email: jason.lam@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39904929$$D View this record in MEDLINE/PubMed
BookMark eNqF0Utr3DAQAGBRUppXrz0GQS65eKuHJdlHE7btQthCHmejyGNWqSwlkk1Y6CE_ob8xvyQym6bQS9BhhOabQcwcoj0fPCD0hZIFJYR91d7CghEmCKFSfUAHVDBacKX4Xr6XnBeqEnQfHaZ0l31VEfkJ7fO6JmXN6gP0e-Wfn_6M2ncw4KUDM8ZgNjBYox2-hG4yow0ehx6v7Rj1CHgMuBmG4K3GOXHj5teNnbtcbQDGHJuUYLh10OFVDHNibc0vcLhxLmzxWvvQu_AIMR2jj712CT6_xiN08215ff6juPj5fXXeXBSGc6IKSqQUFa97yTpGeigVVx0pWSUEcCWZqrXSLB-Q0pQVy45AncfRUdOXJeNH6GzX9z6GhwnS2A42GXBOewhTajmVXBChBMn09D96F6bo8--yqkQlOZNlVievarodoGvvox103LZ_55rBYgdMDClF6N8IJe28uHZeXPu2uFxQ7woerYPtO7pt1qvlv9oXaL-evg
Cites_doi 10.1016/j.ese.2024.100492
10.1038/s41560-020-0654-1
10.1021/acs.est.0c05631
10.1002/anie.202301269
10.1002/aesr.202300173
10.1021/acsami.0c10991
10.1016/j.jece.2024.112700
10.1016/j.cej.2021.133680
10.1021/acscatal.9b05260
10.1038/s41467-023-39366-9
10.1039/D2EE03461A
10.1039/D1CS00857A
10.1016/j.apcatb.2022.121805
10.1038/s41467-021-23115-x
10.1016/j.apcatb.2024.124812
10.1021/acs.energyfuels.1c01079
10.3164/jcbn.10-130
10.1039/b720020j
10.1021/acs.iecr.2c02495
10.1016/j.jallcom.2020.156736
10.1006/jcat.2000.3087
10.1016/j.scitotenv.2023.161444
10.1016/S0022-0728(72)80485-6
10.1002/adfm.202303480
10.1021/acscatal.2c04841
10.1016/j.cej.2019.122065
10.1021/jp312391h
10.1016/j.watres.2019.05.104
10.1039/C9EE02873K
10.1039/D2SC04617B
10.1038/s41467-024-48035-4
10.1016/j.cej.2022.135104
10.1021/cr400641x
10.1002/cphc.202300536
10.3390/pr10040751
10.1039/D1TA09441F
10.1002/ijc.31306
10.1073/pnas.2115504119
10.1021/acs.est.6b01897
10.1016/j.jece.2022.107416
ContentType Journal Article
Copyright 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH
2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202500167
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39904929
10_1002_anie_202500167
ANIE202500167
Genre article
Journal Article
GrantInformation_xml – fundername: Research Grants Council
  funderid: CityU 11302623
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 22109133
– fundername: Research Grants Council
  grantid: CityU 11302623
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: 22109133
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
53G
9M8
AAMMB
AANHP
AASGY
AAYJJ
AAYXX
ABDBF
ABDPE
ABEFU
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AETEA
AEYWJ
AGCDD
AGQPQ
AGXDD
AGYGG
AI.
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
M53
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3307-10665839f62d20fe4737d042855e376279a7a2a2ae66c482f620e9167d1cf4423
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:39:16 EDT 2025
Thu Aug 21 03:41:41 EDT 2025
Fri Apr 04 01:34:09 EDT 2025
Thu Aug 21 00:36:08 EDT 2025
Thu Apr 03 09:33:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Hydrogen Spillover
Nanoflower
Nitrate Reduction
In-Tandem Mechanism
Electrocatalysts
Language English
License Attribution-NonCommercial
2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3307-10665839f62d20fe4737d042855e376279a7a2a2ae66c482f620e9167d1cf4423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3085-1634
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500167
PMID 39904929
PQID 3185863264
PQPubID 946352
PageCount 12
ParticipantIDs proquest_miscellaneous_3163505750
proquest_journals_3185863264
pubmed_primary_39904929
crossref_primary_10_1002_anie_202500167
wiley_primary_10_1002_anie_202500167_ANIE202500167
PublicationCentury 2000
PublicationDate April 1, 2025
2025-04-00
2025-Apr-01
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 1, 2025
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 143
2023; 14
2023; 33
2022; 51
2023; 16
2008; 18
2020; 13
2016; 50
2020; 386
2020; 12
2024; 12
2024
2023; 866
2020; 10
2020; 54
2022; 119
2022; 318
2024; 15
2019; 161
2014; 114
2022; 435
2022; 433
2021; 35
2023; 62
2020; 5
2021; 12
2001; 197
2025; 363
2023
2024; 5
2022; 61
2021; 852
2013; 117
2022; 13
2022; 10
2025; 23
2011; 49
1972; 39
1992; 40
e_1_2_8_28_1
Chastain J. (e_1_2_8_29_1) 1992; 40
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_37_2
e_1_2_8_16_1
Majhi K. C. (e_1_2_8_7_1) 2024
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 197
  start-page: 229
  year: 2001
  end-page: 231
  publication-title: J. Catal.
– volume: 51
  start-page: 2710
  year: 2022
  end-page: 2758
  publication-title: Chem. Soc. Rev.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 852
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 143
  start-page: 73
  year: 2018
  end-page: 79
  publication-title: Int. J. Cancer
– volume: 14
  start-page: 3634
  year: 2023
  publication-title: Nat. Commun.
– volume: 5
  year: 2024
  publication-title: Advanced Energy and Sustainability Research
– year: 2023
  publication-title: ChemPhysChem
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  publication-title: Nat. Energy
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 386
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 4852
  year: 2013
  end-page: 4858
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 221
  year: 1992
  publication-title: Perkin–Elmer Corporation
– volume: 318
  year: 2022
  publication-title: Appl. Catal. B
– volume: 33
  issue: 43
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2022
  publication-title: J. Environ. Chem. Eng.
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 54
  start-page: 13344
  year: 2020
  end-page: 13353
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 96
  year: 2011
  end-page: 101
  publication-title: J. Clin. Biochem. Nutr.
– volume: 13
  start-page: 331
  year: 2020
  end-page: 344
  publication-title: Energy Environ. Sci.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 4041
  year: 2014
  end-page: 4062
  publication-title: Chem. Rev.
– volume: 61
  start-page: 14731
  year: 2022
  end-page: 14746
  publication-title: Ind. Eng. Chem. Res.
– volume: 39
  start-page: 163
  year: 1972
  end-page: 184
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 23
  year: 2025
  publication-title: Environmental Science and Ecotechnology
– volume: 866
  year: 2023
  publication-title: Sci. Total Environ.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 663
  year: 2023
  end-page: 672
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 3963
  year: 2022
  end-page: 3969
  publication-title: J. Mater. Chem. A
– year: 2024
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 13
  start-page: 87
  year: 2022
  end-page: 98
  publication-title: ACS Catal.
– volume: 35
  start-page: 12473
  year: 2021
  end-page: 12481
  publication-title: Energy Fuels
– volume: 161
  start-page: 126
  year: 2019
  end-page: 135
  publication-title: Water Res.
– volume: 363
  year: 2025
  publication-title: Applied Catalysis B: Environment and Energy
– volume: 12
  start-page: 37258
  year: 2020
  end-page: 37264
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 3619
  year: 2024
  publication-title: Nat. Commun.
– volume: 10
  start-page: 751
  year: 2022
  publication-title: Processes
– volume: 18
  start-page: 2304
  year: 2008
  end-page: 2310
  publication-title: J. Mater. Chem.
– volume: 50
  start-page: 7290
  year: 2016
  end-page: 7304
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 3056
  year: 2023
  end-page: 3069
  publication-title: Chem. Sci.
– volume: 12
  year: 2024
  publication-title: J. Environ. Chem. Eng.
– volume: 10
  start-page: 3533
  year: 2020
  end-page: 3540
  publication-title: ACS Catal.
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ese.2024.100492
– ident: e_1_2_8_33_1
  doi: 10.1038/s41560-020-0654-1
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.est.0c05631
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202301269
– ident: e_1_2_8_20_1
– ident: e_1_2_8_8_1
  doi: 10.1002/aesr.202300173
– ident: e_1_2_8_17_2
  doi: 10.1021/acsami.0c10991
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jece.2024.112700
– ident: e_1_2_8_35_1
  doi: 10.1016/j.cej.2021.133680
– ident: e_1_2_8_34_1
  doi: 10.1021/acscatal.9b05260
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-023-39366-9
– ident: e_1_2_8_42_1
  doi: 10.1039/D2EE03461A
– ident: e_1_2_8_6_1
  doi: 10.1039/D1CS00857A
– ident: e_1_2_8_30_1
  doi: 10.1016/j.apcatb.2022.121805
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-021-23115-x
– ident: e_1_2_8_31_1
  doi: 10.1016/j.apcatb.2024.124812
– ident: e_1_2_8_36_1
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.energyfuels.1c01079
– ident: e_1_2_8_43_1
  doi: 10.3164/jcbn.10-130
– ident: e_1_2_8_1_1
  doi: 10.1039/b720020j
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.iecr.2c02495
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jallcom.2020.156736
– ident: e_1_2_8_19_1
  doi: 10.1006/jcat.2000.3087
– ident: e_1_2_8_21_2
  doi: 10.1016/j.scitotenv.2023.161444
– ident: e_1_2_8_23_1
  doi: 10.1016/S0022-0728(72)80485-6
– ident: e_1_2_8_16_1
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202303480
– ident: e_1_2_8_32_1
  doi: 10.1021/acscatal.2c04841
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cej.2019.122065
– ident: e_1_2_8_25_1
  doi: 10.1021/jp312391h
– ident: e_1_2_8_10_1
  doi: 10.1016/j.watres.2019.05.104
– ident: e_1_2_8_2_1
  doi: 10.1039/C9EE02873K
– ident: e_1_2_8_28_1
  doi: 10.1039/D2SC04617B
– volume: 40
  start-page: 221
  year: 1992
  ident: e_1_2_8_29_1
  publication-title: Perkin–Elmer Corporation
– ident: e_1_2_8_44_1
  doi: 10.1038/s41467-024-48035-4
– ident: e_1_2_8_38_2
  doi: 10.1016/j.cej.2022.135104
– ident: e_1_2_8_18_2
  doi: 10.1021/cr400641x
– ident: e_1_2_8_26_1
  doi: 10.1002/cphc.202300536
– year: 2024
  ident: e_1_2_8_7_1
  publication-title: Curr. Opin. Green Sustain. Chem.
– ident: e_1_2_8_13_1
  doi: 10.3390/pr10040751
– ident: e_1_2_8_37_2
  doi: 10.1039/D1TA09441F
– ident: e_1_2_8_5_1
  doi: 10.1002/ijc.31306
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.2115504119
– ident: e_1_2_8_22_2
  doi: 10.1021/acs.est.6b01897
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jece.2022.107416
SSID ssj0028806
Score 2.5377333
Snippet The development of alternative routes for ammonia (NH3) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero...
The development of alternative routes for ammonia (NH 3 ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero...
The development of alternative routes for ammonia (NH ) synthesis with high Faradaic efficiency (FE) is crucial for energy conservation and to achieve zero...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202500167
SubjectTerms Alternative energy sources
Ammonia
Chemical reduction
Density functional theory
Electrocatalysts
Electrolysis
Electron paramagnetic resonance
Electron spin resonance
Emissions
Energy conservation
Fossil fuels
Haber Bosch process
Hydrogen Spillover
In-Tandem Mechanism
Iron
Nanoflower
Nickel
Nickel base alloys
Nitrate Reduction
Nitrates
Nitrogen dioxide
Raman spectroscopy
Synthesis
Water pollution
Title In‐tandem Electrochemical Reduction of Nitrate to Ammonia on Ultrathin‐Sheet‐Assembled Iron‐Nickel Alloy Nanoflowers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500167
https://www.ncbi.nlm.nih.gov/pubmed/39904929
https://www.proquest.com/docview/3185863264
https://www.proquest.com/docview/3163505750
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXsqFf-jSUrkSEqe0wfbG2eOq2qqLxKoqrNRb5DhjddU0QW32AOLQR-gz9kmYiTeBhQMSKIc4cZw49tj-7PF8A_DWjIxLYxtH3qs80l5jlKM3UTE0Phl5l2OrPf84S07m-sP58PwXK_7AD9EvuHHLaPtrbuA2vzn8SRrKFtg0v6MhnHfSUyfMG7YYFZ31_FGShDOYFykVsRf6jrUxlofryddHpT-g5jpybYee48dgu0yHHSeXB8smP3DffuNz_J-_egKPVrhUjIMgPYUNrJ7B1lHnDu45fJ9W97d3vPCAV2ISnOe4FduAOGMCWK5iUXsxW7SMt6KpxZilfGEFRcxLvnux4Ld8ukBs6Mwa56u8xEJMr2uOILm8RMpFWdZfBXX8tS9bL24vYH48-Xx0Eq1cN0ROtbSTrNEh7OUTWcjYozbKFDw9Gw6RujRpRtZYSQcmidOppOdiJKRqivfOa4J4L2GzqivcBoEqUUWS-pykShdWpaktpE2Vo5Aj_DmAd13VZV8CQ0cWuJhlxqWZ9aU5gN2uZrNVS73J2Ho8TQjE6gHs99FUtqw4sRXWS36GYBkD23gAr4JE9J8igEeTLEnZkG29_iUP2Xg2nfRXr_8l0Q485HDYPrQLm831Et8QMmryPXgg9ele2wZ-AFj4Ceg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB219AAXKG2BLRRcqVJPgWBn4-xxRRftFtgDZaXeosQZixUhQZA9UHHoJ_Qb-ZLOxJugLYdKrXJIYsfJxB7bzx77DcAn3dMm8hPfs1alXmAD9FK02su62oY9a1Ksredn43A4Cb5-7zarCXkvjOOHaCfcuGbU7TVXcJ6QPnhiDeUt2DTAoz6cl9K_hFfs1pvp87-ctwxSktTTbTBSymM_9A1voy8PFtMv9kvPwOYidq07n-M1SBux3ZqTq_1Zle6bH38wOv7Xf72G1Tk0FX2nS-vwAos3sHzUeIR7Cw-j4vHnL557wGsxcP5zzJxwQJwzByyXsiitGE9r0ltRlaLPij5NBEVMcg69nPJbvl0iVnRmo_N1mmMmRrclR5BqXiFJkeflvaC2v7R57cjtHUyOBxdHQ2_uvcEzqmaeZKMOwS8bykz6FgOtdMYjtG4XqVWTupfoRNKBYWiCSNJzPhJY1dmhsQGhvA1YKsoCt0CgClUWRjYlxQqyREVRkskkUoauDEHQDnxuyi6-cSQdsaNjljHnZtzmZgd2mqKN55X1LuYN5FFIODbowMc2mvKWbSdJgeWMnyFkxtjW78CmU4n2U4TxaJwlSQxZF-xfZIj749GgvXv_L4n2YHl4cXYan47GJ9uwwuFuNdEOLFW3M_xAQKlKd-uq8Bunnw0t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5SB9pcQvqMU6fdQqEnEWV3rZWPxrGxk9aYtgbfhKSdJaayZBLnEMghPyG_Mb-kM5Kt1PRQKDpI2oe07Ozj252dbwA-m45JQz_2PedU4mmn0UvQGc-2jQs6Lk2w1J5_GwfDqT6ftWd_WPFX_BD1hhv3jHK85g6-tO7kiTSULbBpfUdTOJ-kfwa7rPHjQ11ST-olF7XOyr5IKY_d0G9oG315sp1_e1r6C2tuQ9dy7hkcwP4aNIpuJeWXsIP5K3jR2_hqew13o_zx_oF3BXAh-pVnm3RNBSC-Mzsr178onBjPSzpasSpEl5vgPBYUMc049HLOX_lxibiiO6uDF0mGVoyuCo6gRvMLqRRZVtwKGpULl5Uu1t7AdND_2Rt6a78KXqpKTkhWtxAwcoG00neojTKW107tNtJ4I00nNrGkC4Mg1aGkdD4SjDT2NHWa8NdbaORFjocgUAXKBqFLSOTaxioMYyvjUKX0lBI4bMKXTbVGy4o-I6qIkmXEAohqATShtan1aN2NriM27Q4DQpi6CZ_qaKpb1mrEORY3nIYwE6NOvwnvKmnVvyL0RSsgScWQpfj-UYaoOx7167ej_8n0EZ5PzgbR19H44j3scXB1zKcFjdXVDR4TglklH8pG-hu_dupz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%90tandem+Electrochemical+Reduction+of+Nitrate+to+Ammonia+on+Ultrathin%E2%80%90Sheet%E2%80%90Assembled+Iron%E2%80%90Nickel+Alloy+Nanoflowers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chandra+Majhi%2C+Kartick&rft.au=Chen%2C+Hongjiang&rft.au=Batool%2C+Asma&rft.au=Zhu%2C+Qi&rft.date=2025-04-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202500167&rft.externalDBID=10.1002%252Fanie.202500167&rft.externalDocID=ANIE202500167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon