Insulating polysiloxane coating for XLPE‐Si‐rubber interfaces with high long‐term stability
Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide....
Saved in:
Published in | Polymer composites Vol. 41; no. 9; pp. 3501 - 3509 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2020
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults.
Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of BDS (tangential AC [alternating current] breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Groups 1‐3 are silicone gel groups, which have fewer oil leakage than that of the silicone grease. As the crosslink density increases, the oil permeability decreases. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. |
---|---|
AbstractList | Abstract Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of BDS (tangential AC [alternating current] breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Groups 1‐3 are silicone gel groups, which have fewer oil leakage than that of the silicone grease. As the crosslink density increases, the oil permeability decreases. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. |
Author | Chen, Shijia Ren, Xiancheng Zhou, Kai Li, Zerui Chen, Yidong |
Author_xml | – sequence: 1 givenname: Yidong orcidid: 0000-0003-2514-2948 surname: Chen fullname: Chen, Yidong organization: Sichuan University – sequence: 2 givenname: Kai orcidid: 0000-0002-8109-6408 surname: Zhou fullname: Zhou, Kai email: zhoukai_scu@163.com organization: Sichuan University – sequence: 3 givenname: Xiancheng orcidid: 0000-0003-0035-9788 surname: Ren fullname: Ren, Xiancheng email: xiancren@sina.com organization: Sichuan University – sequence: 4 givenname: Shijia surname: Chen fullname: Chen, Shijia organization: Sichuan University – sequence: 5 givenname: Zerui surname: Li fullname: Li, Zerui organization: Sichuan University |
BookMark | eNp1kM1KAzEQx4NUsK2CjxDw4mVrvja7PUqpWihYUMFbyO4mbco2WZNd6t58BJ_RJzG6Xp3DzDDzYz7-EzCyzioALjGaYYTITVPOSMopPwFjnLI8QSmfj8AYkYwkOZ1nZ2ASwj6SmHM6BnJlQ1fL1tgtbFzdB1O7d2kVLN1Q1M7D1_Vm-fXx-WSi811RKA-NbZXXslQBHk27gzuz3cHa2W1EYucAQysLU5u2PwenWtZBXfzFKXi5Wz4vHpL14_1qcbtOSkoRTyo6J0zLijHCqwozXWiWxo9YvLlIFUdkznGelySTDGdpKnFM81xJRKmWqqJTcDXMbbx761Roxd513saVgrBolDKOI3U9UKV3IXilRePNQfpeYCR-BBRNKX4FjGgyoEdTq_5fTmwWA_8N-Hx1nQ |
CitedBy_id | crossref_primary_10_1049_hve2_12176 crossref_primary_10_1088_1402_4896_acf964 crossref_primary_10_1109_TDEI_2022_3226136 crossref_primary_10_1063_5_0196163 crossref_primary_10_1109_TDEI_2024_3365656 crossref_primary_10_1109_TDEI_2022_3157905 crossref_primary_10_1002_app_52314 |
Cites_doi | 10.1134/S1995421214030150 10.1109/TDEI.2016.005744 10.1109/TDEI.2016.005405 10.1109/TDEI.2019.007881 10.1109/TDEI.2007.344630 10.1063/1.1723791 10.1109/T-AIEE.1930.5055572 10.1109/TDEI.2017.006540 10.1038/s41565-018-0327-4 10.1109/TDEI.2010.5658247 10.1109/TDEI.2011.5704508 10.1109/TDEI.2008.4712654 10.1109/TDEI.2018.007600 10.1109/33.87316 10.1109/61.568221 10.1109/TDEI.2019.007942 10.1049/cp:19990781 10.1109/T-AIEE.1948.5059649 10.1109/57.776938 10.1109/TDEI.2006.1593420 |
ContentType | Journal Article |
Copyright | 2020 Society of Plastics Engineers |
Copyright_xml | – notice: 2020 Society of Plastics Engineers |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/pc.25636 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1548-0569 |
EndPage | 3509 |
ExternalDocumentID | 10_1002_pc_25636 PC25636 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51877142 |
GroupedDBID | .-4 .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8AO 8FE 8FG 8FW 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHFT ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA H.T H.X HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KB. KC. KQQ KZ1 LATKE LAW LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES M2P M2Q M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL S0X SAMSI SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c3306-d3924fad4426dd14fbf451004397b5e60296188c27a41755a1c2788ea033faed3 |
IEDL.DBID | DR2 |
ISSN | 0272-8397 |
IngestDate | Thu Oct 10 19:37:49 EDT 2024 Fri Aug 23 04:24:14 EDT 2024 Sat Aug 24 01:05:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3306-d3924fad4426dd14fbf451004397b5e60296188c27a41755a1c2788ea033faed3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 51877142 |
ORCID | 0000-0003-2514-2948 0000-0002-8109-6408 0000-0003-0035-9788 |
PQID | 2444433461 |
PQPubID | 37365 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2444433461 crossref_primary_10_1002_pc_25636 wiley_primary_10_1002_pc_25636_PC25636 |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer composites |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
References | 1991; 14 2001 2006; 13 2010; 17 1930; 49 1999; 15 2019; 26 2017; 24 1943; 11 2019; 14 1997; 12 2008; 15 1982 2014; 7 2011; 18 1948; 67 2007; 14 2016; 23 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Baijal M. D. (e_1_2_7_32_1) 1982 |
References_xml | – volume: 17 start-page: 1922 year: 2010 publication-title: IEEE Trans. Dielectr. Electr. Insul. – year: 1982 – volume: 18 start-page: 176 year: 2011 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 26 start-page: 1181 year: 2019 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 13 start-page: 227 year: 2006 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 23 start-page: 1854 year: 2016 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 12 start-page: 29 year: 1997 publication-title: IEEE Trans. Power Deliv. – volume: 15 start-page: 5 year: 1999 publication-title: IEEE Electr. Insul. Magn. – year: 2001 – volume: 67 start-page: 113 year: 1948 publication-title: Trans. Am. Inst. Electr. Eng. – volume: 26 start-page: 1116 year: 2019 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 49 start-page: 776 year: 1930 publication-title: Trans. Am. Inst. Electr. Eng. – volume: 23 start-page: 1778 year: 2016 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 7 start-page: 222 year: 2014 publication-title: Polym. Sci., Ser. D – volume: 11 start-page: 512 year: 1943 publication-title: J. Chem. Phys. – volume: 14 start-page: 151 year: 2019 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 3047 year: 2017 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 14 start-page: 352 year: 1991 publication-title: IEEE Trans. Compon., Hybrids, Manuf. Technol – volume: 14 start-page: 487 year: 2007 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 15 start-page: 1526 year: 2008 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 26 start-page: 689 year: 2019 publication-title: IEEE Trans. Dielectr. Electr. Insul. – ident: e_1_2_7_20_1 – ident: e_1_2_7_24_1 doi: 10.1134/S1995421214030150 – ident: e_1_2_7_8_1 doi: 10.1109/TDEI.2016.005744 – ident: e_1_2_7_14_1 – ident: e_1_2_7_7_1 doi: 10.1109/TDEI.2016.005405 – ident: e_1_2_7_3_1 – ident: e_1_2_7_6_1 doi: 10.1109/TDEI.2019.007881 – ident: e_1_2_7_22_1 doi: 10.1109/TDEI.2007.344630 – ident: e_1_2_7_4_1 – ident: e_1_2_7_27_1 doi: 10.1063/1.1723791 – ident: e_1_2_7_29_1 doi: 10.1109/T-AIEE.1930.5055572 – ident: e_1_2_7_11_1 doi: 10.1109/TDEI.2017.006540 – ident: e_1_2_7_5_1 doi: 10.1038/s41565-018-0327-4 – ident: e_1_2_7_10_1 doi: 10.1109/TDEI.2010.5658247 – ident: e_1_2_7_13_1 – ident: e_1_2_7_28_1 doi: 10.1109/TDEI.2011.5704508 – ident: e_1_2_7_25_1 doi: 10.1109/TDEI.2008.4712654 – ident: e_1_2_7_19_1 – ident: e_1_2_7_16_1 doi: 10.1109/TDEI.2018.007600 – ident: e_1_2_7_23_1 doi: 10.1109/33.87316 – ident: e_1_2_7_18_1 – ident: e_1_2_7_21_1 doi: 10.1109/61.568221 – volume-title: Plastics Polymer Science and Technology year: 1982 ident: e_1_2_7_32_1 contributor: fullname: Baijal M. D. – ident: e_1_2_7_9_1 – ident: e_1_2_7_15_1 doi: 10.1109/TDEI.2019.007942 – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_17_1 doi: 10.1049/cp:19990781 – ident: e_1_2_7_30_1 doi: 10.1109/T-AIEE.1948.5059649 – ident: e_1_2_7_2_1 doi: 10.1109/57.776938 – ident: e_1_2_7_31_1 doi: 10.1109/TDEI.2006.1593420 |
SSID | ssj0021663 |
Score | 2.3505788 |
Snippet | Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts... Abstract Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3501 |
SubjectTerms | Alternating current Breakdown cable accessory Catastrophic failure analysis Cross-linked polyethylene Electric fields Electric power supplies Electrical conduction Insulation interface Interface stability Rubber Silicon silicone gel silicone grease Silicone resins Silicone rubber Silicones |
Title | Insulating polysiloxane coating for XLPE‐Si‐rubber interfaces with high long‐term stability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.25636 https://www.proquest.com/docview/2444433461 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA2yJ33wW5xOiSC-dVubtE0fZW5MERnqYOBDSZpWxNGWbgP1yZ_gb_SXeG8_tikI4ktbShLam9zcc9PTE0JOXWV7nuKuAU7NIEFpC0Mp7RmCRYB2pYkfu5BtceP0h_xqZI9KViX-C1PoQ8wX3NAz8vkaHVyqSWshGpoGTQjXDNW2TeYim-vidq4cZZlOsYma5YLDQ8ytdGfbVquq-D0SLeDlMkjNo0xvgzxUz1eQS56bs6lqBm8_pBv_9wKbZL0En_S8GC1bZCWMt8nakiThDpGXSE6XSIamaYJ6JePkRcYhDZLiJoBcOroedD_fP-6e4JDNlAozirITWYT8LopLuxRlkOk4iR-hCM7-FFBozsN93SXDXve-0zfKbRiMgEFCYWiAUDySmkMw19rkkYq4jUJzYFZlh07bwl1jRGC5kgMYsaUJl0KEss1YJEPN9kgtTuJwn1DNBMAJKW3mMe6YSgptuVrajqcEU56ok5OqS_y0UNvwC11ly08DPzdXnTSqvvJLf5v40CrnDNusk7Pc6L_W9wed_Hzw14KHZNXCJDsnljVIbZrNwiNAIlN1nI-5L85D25w |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F9RhBvXbdN2qZ4knVl1VXEB-xBKEnTiri0y7oL6smf4G_0lzjTbn2BIF7aUpKQTjKdL-nXbwC2fe0GgRa-hU7NcYFSk5bWJrAkTxDtKps-dhHb4sxrXovjttsegb3yX5hCH-Jjw408I39fk4PThvTup2poN6pivObeKIyjt3PK23Bw8aEd5dhekUbN8dHlMeqWyrM1Z7es-T0WfQLMrzA1jzOHM3BT9rCgl9xXB31djZ5_iDf-8xFmYXqIP9l-MWHmYCRO52HqiyrhAqgj4qcr4kOzbkaSJZ3sUaUxi7LiJuJc1m6dN95eXi_v8NAbaB33GClP9BKieDHa3WWkhMw6WXqLRSgAMASiORX3aRGuDxtX9aY1zMRgRRzXFJZBFCUSZQTGc2NskehEuKQ1h3bVbuzVHEocIyPHVwLxiKtsvJQyVjXOExUbvgRjaZbGy8AMl4golHJ5wIVnayWN4xvleoGWXAeyAlvlmITdQnAjLKSVnbAbhbm5KrBWDlY4dLmHEFsVglObFdjJrf5r_fC8np9X_lpwEyaaV6etsHV0drIKkw6tuXOe2RqM9XuDeB2BSV9v5BPwHX5x37Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsQwEB28gOiDd3G9RhDfum6btE0fZd3FG7J4gQUfStK0Ii5tWXdBffIT_Ea_xJl26w0E8aUtJQntJJM5SU_PAOz62g0CLXwLnZrjAqUhLa1NYEmeINpVNn3sIrbFuXd0LU66bnfEqqR_YUp9iI8NN_KMYr4mB89Nsv8pGppHdQzX3BuHSeEh8CVAdPEhHeXYXplFzfHR4zHoVsKzDWe_qvk9FH3iy68otQgz7Tm4qR6wZJfc14cDXY-ef2g3_u8N5mF2hD7ZQTlcFmAsThdh5osm4RKoY2KnK2JDszwjwZJe9qjSmEVZeRNRLuuedVpvL6-Xd3joD7WO-4x0J_oJEbwY7e0y0kFmvSy9xSI0_TOEoQUR92kZrtutq-aRNcrDYEUcDWsZxFAiUUZgNDfGFolOhEtKc2hW7cZew6G0MTJyfCUQjbjKxkspY9XgPFGx4SswkWZpvArMcIl4QimXB1x4tlbSOL5RrhdoyXUga7BTdUmYl3IbYSms7IR5FBbmqsFG1VfhyOEeQmxVCE5t1mCvMPqv9cNOsziv_bXgNkx1Dtvh2fH56TpMO7TgLkhmGzAx6A_jTUQlA71VDL93BhveYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulating+polysiloxane+coating+for+XLPE%E2%80%90Si+%E2%80%90rubber+interfaces+with+high+long%E2%80%90term+stability&rft.jtitle=Polymer+composites&rft.au=Chen%2C+Yidong&rft.au=Zhou%2C+Kai&rft.au=Ren%2C+Xiancheng&rft.au=Chen%2C+Shijia&rft.date=2020-09-01&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=41&rft.issue=9&rft.spage=3501&rft.epage=3509&rft_id=info:doi/10.1002%2Fpc.25636&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pc_25636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon |