Insulating polysiloxane coating for XLPE‐Si‐rubber interfaces with high long‐term stability

Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide....

Full description

Saved in:
Bibliographic Details
Published inPolymer composites Vol. 41; no. 9; pp. 3501 - 3509
Main Authors Chen, Yidong, Zhou, Kai, Ren, Xiancheng, Chen, Shijia, Li, Zerui
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2020
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of BDS (tangential AC [alternating current] breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Groups 1‐3 are silicone gel groups, which have fewer oil leakage than that of the silicone grease. As the crosslink density increases, the oil permeability decreases. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults.
AbstractList Abstract Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults.
Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults. Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of BDS (tangential AC [alternating current] breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Groups 1‐3 are silicone gel groups, which have fewer oil leakage than that of the silicone grease. As the crosslink density increases, the oil permeability decreases. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults.
Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts of the cable lines, especially for the solid‐solid interfaces in joints, attract much attention and are investigated by researchers worldwide. High‐voltage power transmission in electrical grids requires reliable and durable dielectric coatings for the interface insulation. The breakdown caused by local electric field enhancement is a gradual damaging process that leads to structural degradation and an increase of electrical conduction of dielectric materials, and ultimately, it results in catastrophic failure of the cable joints. Here, we demonstrate that the coating of silicone gel instead of silicone grease enables the improvements of tangential AC (alternating current) BDS (breakdown strength) and long‐term stability in the interfaces of joints. Under the pressure of Si‐rubber (silicone rubber) cold‐shrinkable cable accessories, the silicone gel almost did not lose, which improved the insulating stability of the interfaces. Our method allows us to fill the XLPE‐Si‐rubber (cross‐linked polyethylene and silicone rubber interfaces with silicone gel instead of silicone grease), which could reduce the risks of the power outage caused by cable joint faults.
Author Chen, Shijia
Ren, Xiancheng
Zhou, Kai
Li, Zerui
Chen, Yidong
Author_xml – sequence: 1
  givenname: Yidong
  orcidid: 0000-0003-2514-2948
  surname: Chen
  fullname: Chen, Yidong
  organization: Sichuan University
– sequence: 2
  givenname: Kai
  orcidid: 0000-0002-8109-6408
  surname: Zhou
  fullname: Zhou, Kai
  email: zhoukai_scu@163.com
  organization: Sichuan University
– sequence: 3
  givenname: Xiancheng
  orcidid: 0000-0003-0035-9788
  surname: Ren
  fullname: Ren, Xiancheng
  email: xiancren@sina.com
  organization: Sichuan University
– sequence: 4
  givenname: Shijia
  surname: Chen
  fullname: Chen, Shijia
  organization: Sichuan University
– sequence: 5
  givenname: Zerui
  surname: Li
  fullname: Li, Zerui
  organization: Sichuan University
BookMark eNp1kM1KAzEQx4NUsK2CjxDw4mVrvja7PUqpWihYUMFbyO4mbco2WZNd6t58BJ_RJzG6Xp3DzDDzYz7-EzCyzioALjGaYYTITVPOSMopPwFjnLI8QSmfj8AYkYwkOZ1nZ2ASwj6SmHM6BnJlQ1fL1tgtbFzdB1O7d2kVLN1Q1M7D1_Vm-fXx-WSi811RKA-NbZXXslQBHk27gzuz3cHa2W1EYucAQysLU5u2PwenWtZBXfzFKXi5Wz4vHpL14_1qcbtOSkoRTyo6J0zLijHCqwozXWiWxo9YvLlIFUdkznGelySTDGdpKnFM81xJRKmWqqJTcDXMbbx761Roxd513saVgrBolDKOI3U9UKV3IXilRePNQfpeYCR-BBRNKX4FjGgyoEdTq_5fTmwWA_8N-Hx1nQ
CitedBy_id crossref_primary_10_1049_hve2_12176
crossref_primary_10_1088_1402_4896_acf964
crossref_primary_10_1109_TDEI_2022_3226136
crossref_primary_10_1063_5_0196163
crossref_primary_10_1109_TDEI_2024_3365656
crossref_primary_10_1109_TDEI_2022_3157905
crossref_primary_10_1002_app_52314
Cites_doi 10.1134/S1995421214030150
10.1109/TDEI.2016.005744
10.1109/TDEI.2016.005405
10.1109/TDEI.2019.007881
10.1109/TDEI.2007.344630
10.1063/1.1723791
10.1109/T-AIEE.1930.5055572
10.1109/TDEI.2017.006540
10.1038/s41565-018-0327-4
10.1109/TDEI.2010.5658247
10.1109/TDEI.2011.5704508
10.1109/TDEI.2008.4712654
10.1109/TDEI.2018.007600
10.1109/33.87316
10.1109/61.568221
10.1109/TDEI.2019.007942
10.1049/cp:19990781
10.1109/T-AIEE.1948.5059649
10.1109/57.776938
10.1109/TDEI.2006.1593420
ContentType Journal Article
Copyright 2020 Society of Plastics Engineers
Copyright_xml – notice: 2020 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.25636
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 3509
ExternalDocumentID 10_1002_pc_25636
PC25636
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51877142
GroupedDBID .-4
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8AO
8FE
8FG
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHFT
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KB.
KC.
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2P
M2Q
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
S0X
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c3306-d3924fad4426dd14fbf451004397b5e60296188c27a41755a1c2788ea033faed3
IEDL.DBID DR2
ISSN 0272-8397
IngestDate Thu Oct 10 19:37:49 EDT 2024
Fri Aug 23 04:24:14 EDT 2024
Sat Aug 24 01:05:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3306-d3924fad4426dd14fbf451004397b5e60296188c27a41755a1c2788ea033faed3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 51877142
ORCID 0000-0003-2514-2948
0000-0002-8109-6408
0000-0003-0035-9788
PQID 2444433461
PQPubID 37365
PageCount 9
ParticipantIDs proquest_journals_2444433461
crossref_primary_10_1002_pc_25636
wiley_primary_10_1002_pc_25636_PC25636
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 1991; 14
2001
2006; 13
2010; 17
1930; 49
1999; 15
2019; 26
2017; 24
1943; 11
2019; 14
1997; 12
2008; 15
1982
2014; 7
2011; 18
1948; 67
2007; 14
2016; 23
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Baijal M. D. (e_1_2_7_32_1) 1982
References_xml – volume: 17
  start-page: 1922
  year: 2010
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– year: 1982
– volume: 18
  start-page: 176
  year: 2011
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 26
  start-page: 1181
  year: 2019
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 13
  start-page: 227
  year: 2006
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 23
  start-page: 1854
  year: 2016
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 12
  start-page: 29
  year: 1997
  publication-title: IEEE Trans. Power Deliv.
– volume: 15
  start-page: 5
  year: 1999
  publication-title: IEEE Electr. Insul. Magn.
– year: 2001
– volume: 67
  start-page: 113
  year: 1948
  publication-title: Trans. Am. Inst. Electr. Eng.
– volume: 26
  start-page: 1116
  year: 2019
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 49
  start-page: 776
  year: 1930
  publication-title: Trans. Am. Inst. Electr. Eng.
– volume: 23
  start-page: 1778
  year: 2016
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 7
  start-page: 222
  year: 2014
  publication-title: Polym. Sci., Ser. D
– volume: 11
  start-page: 512
  year: 1943
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 151
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 3047
  year: 2017
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 14
  start-page: 352
  year: 1991
  publication-title: IEEE Trans. Compon., Hybrids, Manuf. Technol
– volume: 14
  start-page: 487
  year: 2007
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 15
  start-page: 1526
  year: 2008
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 26
  start-page: 689
  year: 2019
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– ident: e_1_2_7_20_1
– ident: e_1_2_7_24_1
  doi: 10.1134/S1995421214030150
– ident: e_1_2_7_8_1
  doi: 10.1109/TDEI.2016.005744
– ident: e_1_2_7_14_1
– ident: e_1_2_7_7_1
  doi: 10.1109/TDEI.2016.005405
– ident: e_1_2_7_3_1
– ident: e_1_2_7_6_1
  doi: 10.1109/TDEI.2019.007881
– ident: e_1_2_7_22_1
  doi: 10.1109/TDEI.2007.344630
– ident: e_1_2_7_4_1
– ident: e_1_2_7_27_1
  doi: 10.1063/1.1723791
– ident: e_1_2_7_29_1
  doi: 10.1109/T-AIEE.1930.5055572
– ident: e_1_2_7_11_1
  doi: 10.1109/TDEI.2017.006540
– ident: e_1_2_7_5_1
  doi: 10.1038/s41565-018-0327-4
– ident: e_1_2_7_10_1
  doi: 10.1109/TDEI.2010.5658247
– ident: e_1_2_7_13_1
– ident: e_1_2_7_28_1
  doi: 10.1109/TDEI.2011.5704508
– ident: e_1_2_7_25_1
  doi: 10.1109/TDEI.2008.4712654
– ident: e_1_2_7_19_1
– ident: e_1_2_7_16_1
  doi: 10.1109/TDEI.2018.007600
– ident: e_1_2_7_23_1
  doi: 10.1109/33.87316
– ident: e_1_2_7_18_1
– ident: e_1_2_7_21_1
  doi: 10.1109/61.568221
– volume-title: Plastics Polymer Science and Technology
  year: 1982
  ident: e_1_2_7_32_1
  contributor:
    fullname: Baijal M. D.
– ident: e_1_2_7_9_1
– ident: e_1_2_7_15_1
  doi: 10.1109/TDEI.2019.007942
– ident: e_1_2_7_26_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_17_1
  doi: 10.1049/cp:19990781
– ident: e_1_2_7_30_1
  doi: 10.1109/T-AIEE.1948.5059649
– ident: e_1_2_7_2_1
  doi: 10.1109/57.776938
– ident: e_1_2_7_31_1
  doi: 10.1109/TDEI.2006.1593420
SSID ssj0021663
Score 2.3505788
Snippet Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures. Weak parts...
Abstract Cable joints play an important role in the power supply systems, but at the same time, they greatly contribute to the majority of direct failures....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3501
SubjectTerms Alternating current
Breakdown
cable accessory
Catastrophic failure analysis
Cross-linked polyethylene
Electric fields
Electric power supplies
Electrical conduction
Insulation
interface
Interface stability
Rubber
Silicon
silicone gel
silicone grease
Silicone resins
Silicone rubber
Silicones
Title Insulating polysiloxane coating for XLPE‐Si‐rubber interfaces with high long‐term stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.25636
https://www.proquest.com/docview/2444433461
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA2yJ33wW5xOiSC-dVubtE0fZW5MERnqYOBDSZpWxNGWbgP1yZ_gb_SXeG8_tikI4ktbShLam9zcc9PTE0JOXWV7nuKuAU7NIEFpC0Mp7RmCRYB2pYkfu5BtceP0h_xqZI9KViX-C1PoQ8wX3NAz8vkaHVyqSWshGpoGTQjXDNW2TeYim-vidq4cZZlOsYma5YLDQ8ytdGfbVquq-D0SLeDlMkjNo0xvgzxUz1eQS56bs6lqBm8_pBv_9wKbZL0En_S8GC1bZCWMt8nakiThDpGXSE6XSIamaYJ6JePkRcYhDZLiJoBcOroedD_fP-6e4JDNlAozirITWYT8LopLuxRlkOk4iR-hCM7-FFBozsN93SXDXve-0zfKbRiMgEFCYWiAUDySmkMw19rkkYq4jUJzYFZlh07bwl1jRGC5kgMYsaUJl0KEss1YJEPN9kgtTuJwn1DNBMAJKW3mMe6YSgptuVrajqcEU56ok5OqS_y0UNvwC11ly08DPzdXnTSqvvJLf5v40CrnDNusk7Pc6L_W9wed_Hzw14KHZNXCJDsnljVIbZrNwiNAIlN1nI-5L85D25w
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F9RhBvXbdN2qZ4knVl1VXEB-xBKEnTiri0y7oL6smf4G_0lzjTbn2BIF7aUpKQTjKdL-nXbwC2fe0GgRa-hU7NcYFSk5bWJrAkTxDtKps-dhHb4sxrXovjttsegb3yX5hCH-Jjw408I39fk4PThvTup2poN6pivObeKIyjt3PK23Bw8aEd5dhekUbN8dHlMeqWyrM1Z7es-T0WfQLMrzA1jzOHM3BT9rCgl9xXB31djZ5_iDf-8xFmYXqIP9l-MWHmYCRO52HqiyrhAqgj4qcr4kOzbkaSJZ3sUaUxi7LiJuJc1m6dN95eXi_v8NAbaB33GClP9BKieDHa3WWkhMw6WXqLRSgAMASiORX3aRGuDxtX9aY1zMRgRRzXFJZBFCUSZQTGc2NskehEuKQ1h3bVbuzVHEocIyPHVwLxiKtsvJQyVjXOExUbvgRjaZbGy8AMl4golHJ5wIVnayWN4xvleoGWXAeyAlvlmITdQnAjLKSVnbAbhbm5KrBWDlY4dLmHEFsVglObFdjJrf5r_fC8np9X_lpwEyaaV6etsHV0drIKkw6tuXOe2RqM9XuDeB2BSV9v5BPwHX5x37Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsQwEB28gOiDd3G9RhDfum6btE0fZd3FG7J4gQUfStK0Ii5tWXdBffIT_Ea_xJl26w0E8aUtJQntJJM5SU_PAOz62g0CLXwLnZrjAqUhLa1NYEmeINpVNn3sIrbFuXd0LU66bnfEqqR_YUp9iI8NN_KMYr4mB89Nsv8pGppHdQzX3BuHSeEh8CVAdPEhHeXYXplFzfHR4zHoVsKzDWe_qvk9FH3iy68otQgz7Tm4qR6wZJfc14cDXY-ef2g3_u8N5mF2hD7ZQTlcFmAsThdh5osm4RKoY2KnK2JDszwjwZJe9qjSmEVZeRNRLuuedVpvL6-Xd3joD7WO-4x0J_oJEbwY7e0y0kFmvSy9xSI0_TOEoQUR92kZrtutq-aRNcrDYEUcDWsZxFAiUUZgNDfGFolOhEtKc2hW7cZew6G0MTJyfCUQjbjKxkspY9XgPFGx4SswkWZpvArMcIl4QimXB1x4tlbSOL5RrhdoyXUga7BTdUmYl3IbYSms7IR5FBbmqsFG1VfhyOEeQmxVCE5t1mCvMPqv9cNOsziv_bXgNkx1Dtvh2fH56TpMO7TgLkhmGzAx6A_jTUQlA71VDL93BhveYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulating+polysiloxane+coating+for+XLPE%E2%80%90Si+%E2%80%90rubber+interfaces+with+high+long%E2%80%90term+stability&rft.jtitle=Polymer+composites&rft.au=Chen%2C+Yidong&rft.au=Zhou%2C+Kai&rft.au=Ren%2C+Xiancheng&rft.au=Chen%2C+Shijia&rft.date=2020-09-01&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=41&rft.issue=9&rft.spage=3501&rft.epage=3509&rft_id=info:doi/10.1002%2Fpc.25636&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pc_25636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon