Nussbaum‐type function–based attitude control of spacecraft with actuator saturation

Summary This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude control scheme is technically proposed by incorporating the Nussbaum gain technique into backstepping design. The key idea behind this is to int...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 28; no. 8; pp. 2927 - 2949
Main Authors Hu, Qinglei, Shao, Xiaodong, Zhang, Youmin, Guo, Lei
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 25.05.2018
Subjects
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.4056

Cover

Loading…
Abstract Summary This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude control scheme is technically proposed by incorporating the Nussbaum gain technique into backstepping design. The key idea behind this is to introduce a special Nussbaum‐type function in order to compensate for the time‐varying nonlinear terms arising from input saturation. By exploiting the dynamic surface control technique, the problem of “explosion of terms” inherent in traditional backstepping designs is effectively eliminated and the computational burden is significantly reduced. Additionally, based on the selected Nussbaum‐type function, a constructive analysis methodology is presented, which plays an important role in analyzing the stability properties of the closed‐loop system. It is then proved that the proposed control scheme can guarantee the boundedness of all closed‐loop signals. Furthermore, the unwinding phenomenon is given a simple and effective remedy by resorting to suitable choices of the attitude error variable and the virtual control law. Finally, simulation experiments are carried out to assess the effectiveness and demonstrate the advantages of the proposed control scheme.
AbstractList Summary This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude control scheme is technically proposed by incorporating the Nussbaum gain technique into backstepping design. The key idea behind this is to introduce a special Nussbaum‐type function in order to compensate for the time‐varying nonlinear terms arising from input saturation. By exploiting the dynamic surface control technique, the problem of “explosion of terms” inherent in traditional backstepping designs is effectively eliminated and the computational burden is significantly reduced. Additionally, based on the selected Nussbaum‐type function, a constructive analysis methodology is presented, which plays an important role in analyzing the stability properties of the closed‐loop system. It is then proved that the proposed control scheme can guarantee the boundedness of all closed‐loop signals. Furthermore, the unwinding phenomenon is given a simple and effective remedy by resorting to suitable choices of the attitude error variable and the virtual control law. Finally, simulation experiments are carried out to assess the effectiveness and demonstrate the advantages of the proposed control scheme.
This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude control scheme is technically proposed by incorporating the Nussbaum gain technique into backstepping design. The key idea behind this is to introduce a special Nussbaum‐type function in order to compensate for the time‐varying nonlinear terms arising from input saturation. By exploiting the dynamic surface control technique, the problem of “explosion of terms” inherent in traditional backstepping designs is effectively eliminated and the computational burden is significantly reduced. Additionally, based on the selected Nussbaum‐type function, a constructive analysis methodology is presented, which plays an important role in analyzing the stability properties of the closed‐loop system. It is then proved that the proposed control scheme can guarantee the boundedness of all closed‐loop signals. Furthermore, the unwinding phenomenon is given a simple and effective remedy by resorting to suitable choices of the attitude error variable and the virtual control law. Finally, simulation experiments are carried out to assess the effectiveness and demonstrate the advantages of the proposed control scheme.
Author Hu, Qinglei
Guo, Lei
Shao, Xiaodong
Zhang, Youmin
Author_xml – sequence: 1
  givenname: Qinglei
  orcidid: 0000-0002-5563-310X
  surname: Hu
  fullname: Hu, Qinglei
  email: huql_buaa@buaa.edu.cn
  organization: Beihang University
– sequence: 2
  givenname: Xiaodong
  surname: Shao
  fullname: Shao, Xiaodong
  organization: Beihang University
– sequence: 3
  givenname: Youmin
  surname: Zhang
  fullname: Zhang, Youmin
  organization: Concordia University
– sequence: 4
  givenname: Lei
  surname: Guo
  fullname: Guo, Lei
  organization: Beihang University
BookMark eNp1kMtKw0AUhgdRsK2CjzDgxk3q3HKZpRRvUCqIgrtwMplgSpqJc6F010cQfMM-iUnrSnR1Dpzv_w__P0bHrWk1QheUTCkh7Nq2aipInByhESVSRpRxeTzsQkaZZPwUjZ1bEtLfmBiht0VwroCw2m0__abTuAqt8rVpd9uvApwuMXhf-1BqrEzrrWmwqbDrQGllofJ4Xft3DMoH8MZiBz5YGPRn6KSCxunznzlBr3e3L7OHaP50_zi7mUeKc5JEhaQpqIzFsohZybQuWJJWKhYEACRkBWVE8kTQjGVCV5yLJC1Bx3FK0lQUnE_Q5cG3s-YjaOfzpQm27V_mjDCeJVlGaU9dHShljXNWV3ln6xXYTU5JPvSW973lQ289Ov2FqtrvI3kLdfOXIDoI1nWjN_8a58-L2Z7_Bo1kgtY
CitedBy_id crossref_primary_10_1016_j_ast_2024_109336
crossref_primary_10_1016_j_ifacol_2023_10_455
crossref_primary_10_1016_j_jfranklin_2024_107308
crossref_primary_10_1002_rnc_5915
crossref_primary_10_1177_1077546320902562
crossref_primary_10_1016_j_ast_2021_107252
crossref_primary_10_1016_j_jsv_2022_117110
crossref_primary_10_1016_j_asr_2024_09_041
crossref_primary_10_1002_rnc_4445
crossref_primary_10_1002_rnc_4742
crossref_primary_10_1109_TMECH_2021_3108558
crossref_primary_10_1016_j_oceaneng_2021_110113
crossref_primary_10_1109_TAES_2022_3226676
crossref_primary_10_1002_acs_3165
crossref_primary_10_1109_TNNLS_2022_3144493
crossref_primary_10_1016_j_ast_2023_108407
crossref_primary_10_1016_j_ast_2024_109319
crossref_primary_10_1109_TCYB_2020_3003327
crossref_primary_10_1177_09596518231222038
crossref_primary_10_31763_ijrcs_v1i2_306
crossref_primary_10_1002_rnc_7368
crossref_primary_10_1002_rnc_7742
crossref_primary_10_1016_j_oceaneng_2021_110468
crossref_primary_10_1007_s00773_022_00890_w
crossref_primary_10_1002_rnc_4693
crossref_primary_10_1002_rnc_6131
crossref_primary_10_2514_1_G007003
crossref_primary_10_1002_rnc_4732
crossref_primary_10_1109_TSMC_2019_2895048
crossref_primary_10_1002_rnc_5504
crossref_primary_10_1016_j_automatica_2022_110567
crossref_primary_10_1016_j_ymssp_2020_107406
crossref_primary_10_1002_rnc_4315
crossref_primary_10_1177_0142331220928887
crossref_primary_10_1016_j_isatra_2021_10_022
crossref_primary_10_1007_s11071_021_07182_9
crossref_primary_10_1109_ACCESS_2023_3315245
crossref_primary_10_1109_TAES_2024_3384180
crossref_primary_10_1007_s11424_024_3539_8
crossref_primary_10_1007_s00521_020_04977_6
crossref_primary_10_1002_rnc_5774
crossref_primary_10_1016_j_oceaneng_2022_111206
crossref_primary_10_1016_j_ast_2025_110158
crossref_primary_10_1109_TFUZZ_2022_3223253
crossref_primary_10_1002_rnc_5276
crossref_primary_10_1002_rnc_5397
crossref_primary_10_1109_TCSI_2019_2939375
crossref_primary_10_1002_asjc_2319
Cites_doi 10.1049/ip-cta:20055051
10.2514/1.31158
10.1016/0167-6911(91)90050-O
10.1016/j.automatica.2011.01.025
10.1109/TFUZZ.2010.2050326
10.1016/j.fss.2009.04.011
10.1002/rnc.3289
10.1109/5.4400
10.1016/0167-6911(83)90021-X
10.1002/rnc.3554
10.1109/TNN.2008.2010349
10.1109/TSMCB.2003.817055
10.1109/TAC.2013.2293452
10.1109/9.728882
10.1109/TAC.2011.2122730
10.1109/TCST.2008.924576
10.1109/TNN.2010.2042611
10.1016/j.automatica.2014.10.079
10.1002/rnc.3312
10.1002/rnc.3733
10.1109/TAC.2000.880994
10.2514/1.9980
10.1109/TIE.2011.2107719
10.2514/1.1059
10.1007/s11071-008-9363-1
10.1016/j.ins.2012.07.039
10.2514/1.45541
10.1016/j.fss.2014.05.015
10.1109/TAC.2011.2132270
10.2514/1.43029
10.1109/TAC.1985.1104006
10.1109/TCYB.2014.2334695
10.1016/j.automatica.2016.01.064
10.1109/9.802918
10.1109/TCYB.2015.2475363
10.1007/s11071-015-2068-3
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.4056
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 2949
ExternalDocumentID 10_1002_rnc_4056
RNC4056
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61522301; 61633003
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3306-b917ac8259b52d2eeb267fc540aaa9a8b120936418284ef33467dae5570774b33
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:20:53 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Wed Jan 22 17:05:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3306-b917ac8259b52d2eeb267fc540aaa9a8b120936418284ef33467dae5570774b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5563-310X
PQID 2023868811
PQPubID 1026344
PageCount 23
ParticipantIDs proquest_journals_2023868811
crossref_primary_10_1002_rnc_4056
crossref_citationtrail_10_1002_rnc_4056
wiley_primary_10_1002_rnc_4056_RNC4056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 May 2018
PublicationDateYYYYMMDD 2018-05-25
PublicationDate_xml – month: 05
  year: 2018
  text: 25 May 2018
  day: 25
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 33
1991; 16
2005; 152
2009; 20
1983; 3
2004; 27
2010; 18
2015; 51
2000; 45
2017; 27
2015; 263
1988; 76
1999; 44
2010; 161
2011; 56
2013; 220
2008; 31
2011; 58
2005; 28
1998; 43
2009; 55
2015; 45
2010; 21
2009; 32
2015; 81
2004; 34
2014; 59
1985; 30
2011; 47
2016; 26
2016; 46
2016; 68
2009; 17
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
References_xml – volume: 21
  start-page: 796
  issue: 5
  year: 2010
  end-page: 812
  article-title: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities
  publication-title: IEEE Trans Neural Netw
– volume: 45
  start-page: 728
  issue: 4
  year: 2015
  end-page: 741
  article-title: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation
  publication-title: IEEE Trans Cybern
– volume: 34
  start-page: 499
  issue: 1
  year: 2004
  end-page: 516
  article-title: Adaptive Neural control of nonlinear time‐delay systems with unknown virtual control coefficients
  publication-title: IEEE Trans Syst Man Cybern, Part B: Cybern
– volume: 263
  start-page: 1
  year: 2015
  end-page: 26
  article-title: Observer‐based fuzzy adaptive control for multi‐input multi‐output nonlinear systems with a nonsymmetric control gain matrix and unknown control direction
  publication-title: Fuzzy Set Syst
– volume: 58
  start-page: 4898
  issue: 10
  year: 2011
  end-page: 4907
  article-title: Adaptive sliding mode control for attitude stabilization with actuator saturation
  publication-title: IEEE Trans Ind Electron
– volume: 32
  start-page: 1476
  issue: 5
  year: 2009
  end-page: 1482
  article-title: Quaternion observer‐based model‐independent attitude tracking control of spacecraft
  publication-title: J Guid Control Dyn
– volume: 27
  start-page: 15
  issue: 1
  year: 2017
  end-page: 38
  article-title: Finite‐time angular velocity observers for rigid‐body attitude tracking with bounded inputs
  publication-title: Int J Robust Nonlinear Control
– volume: 17
  start-page: 227
  issue: 1
  year: 2009
  end-page: 232
  article-title: Satellite attitude control by quaternion‐based backstepping
  publication-title: IEEE Trans Control Syst Technol
– volume: 55
  start-page: 301
  issue: 4
  year: 2009
  end-page: 321
  article-title: Robust adaptive sliding mode attitude maneuvering and vibration damping of three‐axis‐stabilized flexible spacecraft with actuator saturation limits
  publication-title: Nonlinear Dyn
– volume: 33
  start-page: 254
  issue: 1
  year: 2010
  end-page: 259
  article-title: Backstepping control design with actuator torque bound for spacecraft attitude maneuver
  publication-title: J Guid Control Dyn
– volume: 30
  start-page: 549
  issue: 6
  year: 1985
  end-page: 554
  article-title: Adaptive stabilization of linear systems with unknown high‐frequency gains
  publication-title: IEEE Trans Autom Control
– volume: 56
  start-page: 1473
  issue: 6
  year: 2011
  end-page: 1478
  article-title: Decentralized adaptive stabilization of large‐scale nonlinear time‐delay systems with unknown high‐frequency‐gain signs
  publication-title: IEEE Trans Autom Control
– volume: 220
  start-page: 343
  year: 2013
  end-page: 366
  article-title: Controller design for rigid spacecraft attitude tracking with actuator saturation
  publication-title: Inform Sci
– volume: 56
  start-page: 1672
  issue: 7
  year: 2011
  end-page: 1678
  article-title: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance
  publication-title: IEEE Trans Autom Control
– volume: 46
  start-page: 2311
  issue: 10
  year: 2016
  end-page: 2322
  article-title: Saturated Nussbaum function based approach for robotic systems with unknown actuator dynamics
  publication-title: IEEE Trans Cybern
– volume: 27
  start-page: 3174
  issue: 16
  year: 2017
  end-page: 3196
  article-title: Adaptive fault‐tolerant spacecraft attitude control using a novel integral terminal sliding mode
  publication-title: Int J Robust Nonlinear Control
– volume: 47
  start-page: 452
  issue: 3
  year: 2011
  end-page: 465
  article-title: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
  publication-title: Automatica
– volume: 31
  start-page: 1456
  issue: 5
  year: 2008
  end-page: 1463
  article-title: Indirect robust adaptive fault‐tolerant control for attitude tracking of spacecraft
  publication-title: J Guid Control Dyn
– volume: 45
  start-page: 1893
  issue: 10
  year: 2000
  end-page: 1899
  article-title: Dynamic surface control for a class of nonlinear systems
  publication-title: IEEE Trans Autom Control
– volume: 18
  start-page: 845
  issue: 5
  year: 2010
  end-page: 861
  article-title: Fuzzy‐adaptive decentralized output‐feedback control for large‐scale nonlinear systems with dynamical uncertainties
  publication-title: IEEE Trans Fuzzy Syst
– volume: 3
  start-page: 243
  issue: 5
  year: 1983
  end-page: 246
  article-title: Some remarks on a conjecture in parameter adaptive control
  publication-title: Syst Control Lett
– volume: 44
  start-page: 2072
  issue: 11
  year: 1999
  end-page: 2076
  article-title: Decentralized adaptive regulation with unknown high‐frequency‐gain signs
  publication-title: IEEE Trans Autom Control
– volume: 51
  start-page: 348
  year: 2015
  end-page: 355
  article-title: Adaptive consensus output regulation of a class of nonlinear systems with unknown high‐frequency gain
  publication-title: Automatica
– volume: 28
  start-page: 957
  issue: 5
  year: 2005
  end-page: 963
  article-title: Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances
  publication-title: J Guid Control Dyn
– volume: 152
  start-page: 387
  issue: 4
  year: 2005
  end-page: 391
  article-title: Decentralised adaptive control for large‐scale non‐linear systems with unknown high‐frequency‐gain signs
  publication-title: IEE Proc‐Control Theory Appl
– volume: 68
  start-page: 228
  year: 2016
  end-page: 236
  article-title: Fault tolerant finite‐time leader‐follower formation control for autonomous surface vessels with LOS range and angle constraints
  publication-title: Automatica
– volume: 26
  start-page: 286
  issue: 2
  year: 2016
  end-page: 302
  article-title: Adaptive fault tolerant control for a class of input and state constrained MIMO nonlinear systems
  publication-title: Int J Robust Nonlinear Control
– volume: 161
  start-page: 797
  issue: 6
  year: 2010
  end-page: 820
  article-title: Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction
  publication-title: Fuzzy Set Syst
– volume: 27
  start-page: 627
  issue: 4
  year: 2004
  end-page: 633
  article-title: Robust tracking control design for spacecraft under control input saturation
  publication-title: J Guid Control Dyn
– volume: 59
  start-page: 1887
  issue: 7
  year: 2014
  end-page: 1892
  article-title: Adaptive consensus of multi‐agent systems with unknown identical control directions based on a novel Nussbaum‐type function
  publication-title: IEEE Trans Autom Control
– volume: 26
  start-page: 28
  issue: 1
  year: 2016
  end-page: 46
  article-title: Adaptive finite‐time attitude stabilization for rigid spacecraft with actuator faults and saturation constraints
  publication-title: Int J Robust Nonlinear Control
– volume: 43
  start-page: 1617
  issue: 11
  year: 1998
  end-page: 1621
  article-title: Adaptive nonlinear design without a priori knowledge of control directions
  publication-title: IEEE Trans Autom Control
– volume: 20
  start-page: 483
  issue: 3
  year: 2009
  end-page: 497
  article-title: Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions
  publication-title: IEEE Trans Neural Netw
– volume: 76
  start-page: 212
  issue: 3
  year: 1988
  end-page: 232
  article-title: Variable structure control of nonlinear multivariable systems: a tutorial
  publication-title: Proc IEEE
– volume: 16
  start-page: 209
  issue: 3
  year: 1991
  end-page: 218
  article-title: A universal adaptive stabilizer for a class of nonlinear systems
  publication-title: Syst Control Lett
– volume: 81
  start-page: 1289
  issue: 3
  year: 2015
  end-page: 1300
  article-title: Adaptive control of robotic systems with unknown actuator nonlinearities and control directions
  publication-title: Nonlinear Dyn
– ident: e_1_2_7_18_1
  doi: 10.1049/ip-cta:20055051
– ident: e_1_2_7_4_1
  doi: 10.2514/1.31158
– ident: e_1_2_7_14_1
  doi: 10.1016/0167-6911(91)90050-O
– ident: e_1_2_7_32_1
  doi: 10.1016/j.automatica.2011.01.025
– ident: e_1_2_7_24_1
  doi: 10.1109/TFUZZ.2010.2050326
– ident: e_1_2_7_19_1
  doi: 10.1016/j.fss.2009.04.011
– ident: e_1_2_7_10_1
  doi: 10.1002/rnc.3289
– ident: e_1_2_7_35_1
  doi: 10.1109/5.4400
– ident: e_1_2_7_12_1
  doi: 10.1016/0167-6911(83)90021-X
– ident: e_1_2_7_11_1
  doi: 10.1002/rnc.3554
– ident: e_1_2_7_23_1
  doi: 10.1109/TNN.2008.2010349
– ident: e_1_2_7_16_1
  doi: 10.1109/TSMCB.2003.817055
– ident: e_1_2_7_25_1
  doi: 10.1109/TAC.2013.2293452
– ident: e_1_2_7_15_1
  doi: 10.1109/9.728882
– ident: e_1_2_7_27_1
  doi: 10.1109/TAC.2011.2122730
– ident: e_1_2_7_36_1
  doi: 10.1109/TCST.2008.924576
– ident: e_1_2_7_31_1
  doi: 10.1109/TNN.2010.2042611
– ident: e_1_2_7_26_1
  doi: 10.1016/j.automatica.2014.10.079
– ident: e_1_2_7_34_1
  doi: 10.1002/rnc.3312
– ident: e_1_2_7_37_1
  doi: 10.1002/rnc.3733
– ident: e_1_2_7_30_1
  doi: 10.1109/TAC.2000.880994
– ident: e_1_2_7_6_1
  doi: 10.2514/1.9980
– ident: e_1_2_7_8_1
  doi: 10.1109/TIE.2011.2107719
– ident: e_1_2_7_3_1
  doi: 10.2514/1.1059
– ident: e_1_2_7_7_1
  doi: 10.1007/s11071-008-9363-1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ins.2012.07.039
– ident: e_1_2_7_2_1
  doi: 10.2514/1.45541
– ident: e_1_2_7_21_1
  doi: 10.1016/j.fss.2014.05.015
– ident: e_1_2_7_20_1
  doi: 10.1109/TAC.2011.2132270
– ident: e_1_2_7_5_1
  doi: 10.2514/1.43029
– ident: e_1_2_7_13_1
  doi: 10.1109/TAC.1985.1104006
– ident: e_1_2_7_22_1
  doi: 10.1109/TCYB.2014.2334695
– ident: e_1_2_7_33_1
  doi: 10.1016/j.automatica.2016.01.064
– ident: e_1_2_7_17_1
  doi: 10.1109/9.802918
– ident: e_1_2_7_28_1
  doi: 10.1109/TCYB.2015.2475363
– ident: e_1_2_7_29_1
  doi: 10.1007/s11071-015-2068-3
SSID ssj0009924
Score 2.4257843
Snippet Summary This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude...
This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude control...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2927
SubjectTerms Attitude stability
attitude stabilization
Computer simulation
Control systems
dynamic surface control
input saturation
Nussbaum‐type function
Saturation
spacecraft
Spacecraft attitude control
Stability analysis
Title Nussbaum‐type function–based attitude control of spacecraft with actuator saturation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4056
https://www.proquest.com/docview/2023868811
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVVhA9pW02abJ7lGIpgj0UCwUPYV-5qK00ycVTf4LgP-wvcSaPtoqCeMplFzY7OzvfLN98Q8ilDLTHtQwdYYRyfCOEw32FzKk4Zsyq0OYirveDoD_y78adccmqxFqYQh9i-eCGnpHf1-jgUiWtlWjoDPwH0AaqbSNVC_HQcKUcJUTRzxYAsMMBxFS6s23WqiZ-jUQreLkOUvMo09shj9X6CnLJUzNLVVO_fZNu_N8P7JLtEnzSm-K07JENO9knW2uShAdkPMiSRMnsZTF_x-dZioEPjbeYf2DEM1SmyC4wlpYsdzqNKVxLGvCnjFOKD7tUYlkKZPM0Qd3Q3PiHZNS7fej2nbL7gqM9yCMcBYmc1JBACtVhhllIwYMw1oDwpJRCcoVVt17gQ4LCfRt7Hly5RlqU9AJIqTzviNQm04k9JtRapo1UOrYa0Bdv89BzDXi_drULywvr5LqyRKRLaXLskPEcFaLKLIK9inCv6uRiOfK1kOP4YUyjMmZUOmQSYZd4HnDuunVylVvl1_nRcNDF78lfB56STYBRHDkFrNMgtXSW2TOAKqk6zw_lJwAO6Xo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32K16gqip6h5NNngSaqlatuDWOhBCLubzUVtpU0vnvoTBP9hf4kzebRVFMRTLruw2dmZ-WaY-QbgSLjK5kp4hh_60nBC3ze4I6lyKoosS0tPJySuzZZbbzu3nUqnABd5L0zKDzFJuJFmJPaaFJwS0mdT1tA-KhDCDXcO5mmgN40vuLqfckf5fjrRFiGwwRHG5Myz59ZZvvOrL5oCzFmYmviZ2go85idMy0ueToexPFVv38gb__kLq7Cc4U92mT6YNSjo7joszbASbkCnNRwMpBi-jEfvlKFl5PtIfuPRBzm9kImYCgxCzbJCd9aLGFomhRBURDGj3C4T1JmCAT0bEHVoIv9NaNeuH6p1IxvAYCgbQwlDYiwnFMaQvqxYoaUxCne9SCHIE0L4gktqvLVdB2MU7ujIttHqhkITqxeiSmnbW1Ds9rp6G5jWlgqFVJFWCMD4OfdsM0QDoExl4vG8EpzkoghUxk5OQzKeg5RX2QrwrgK6qxIcTla-powcP6wp59IMMp0cBDQonrucm2YJjhOx_Lo_uG9V6bvz14UHsFB_aDaCxk3rbhcWEVVxKjGwKmUoxv2h3kPkEsv95IV-AoTj7ZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt1ifK4ie0jaPJpujqKW-iohCwUPYVy5qKya9eOpPEPyH_hJn8rBVFMRTLrOw2dmZ-WaZ-QZgT_jK5UoEVqhDaXk6DC3uSaqcimPHMTIwGYnrZcdv33pn3Wa3qKqkXpicH-LzwY0sI_PXZOBPOq6PSEOf0X4QbfiTMOX5aCsEiK5H1FFhmA-0RQRscUQxJfFsw6mXK7-GohG-HEepWZhpzcNducG8uuS-NkhlTb1842783x8swFyBPtlhfl0WYcL0lmB2jJNwGbqdQZJIMXh8H77S-yyjyEfaex--UcjTTKRUXqANK8rcWT9m6JcUAlARp4xedpmgvhRM51lCxKGZ9lfgtnVyc9S2ivELlnIxkbAkZnJCYQYZyqajHYM5uB_ECiGeECIUXFLbret7mKFwz8Suiz5XC0OcXogppeuuQqXX75k1YMY4SgupYqMQfvEGD1xbo_krW9m4vaAKB6UmIlVwk9OIjIcoZ1V2IjyriM6qCrufkk85H8cPMpulMqPCIpOIxsRzn3PbrsJ-ppVf10fXnSP6rv9VcAemr45b0cVp53wDZhBScaovcJqbUEmfB2YLYUsqt7P7-QH1V-xM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nussbaum%E2%80%90type+function%E2%80%93based+attitude+control+of+spacecraft+with+actuator+saturation&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Hu%2C+Qinglei&rft.au=Shao%2C+Xiaodong&rft.au=Zhang%2C+Youmin&rft.au=Guo%2C+Lei&rft.date=2018-05-25&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=28&rft.issue=8&rft.spage=2927&rft.epage=2949&rft_id=info:doi/10.1002%2Frnc.4056&rft.externalDBID=10.1002%252Frnc.4056&rft.externalDocID=RNC4056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon