Out of steady state: Tracking canopy gap dynamics across Brazilian Amazon

Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed...

Full description

Saved in:
Bibliographic Details
Published inBiotropica Vol. 55; no. 4; pp. 755 - 766
Main Authors Gorgens, Eric Bastos, Keller, Michael, Jackson, Toby, Marra, Daniel Magnabosco, Reis, Cristiano Rodrigues, Almeida, Danilo Roberti Alves, Coomes, David, Ometto, Jean Pierre
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics. Resumo As clareiras são evidências de distúrbios em paisagens florestais. A floresta está em constante mudança, com longos períodos de acúmulo de biomassa interrompidos por distúrbios episódicos. Usamos dados multitemporais de levantamento laser aerotransportado para comparar a dinâmica de clareiras de quatro sítios na Amazônia, ao longo de 1,9 a 3,8 anos, entre 2017 e 2020. Os sítios estavam localizados nas regiões central, centro‐leste, sudeste e nordeste da Amazônia brasileira, com áreas variando de 590 a 1205 ha. O tamanho das clareiras estudadas variou entre o mínimo de 10 m2 a um máximo de aproximadamente 10.000 m2. Analisamos quatro estágios da dinâmica de clareiras: formação, expansão, persistência e recuperação a partir de dois levantamentos laser aerotransportado consecutivos. A fração de clareiras em nossos locais de estudo variou entre 1,26% e 7,84%. Todos os locais apresentaram proporção semelhante de clareiras entre as classes de tamanho. O que diferiu notavelmente entre os locais não foi a distribuição do tamanho das clareiras, mas a importância relativa dos estágios de dinâmica de clareiras. As taxas de expansão e persistência variaram de entre 12 e 118 m2 ha−1. A taxa de formação de clareiras (formação + expansão) foi menor do que a taxa de recuperação para três dos quatro locais de estudo. Em contraste, o sítio sudeste teve 1,44 vezes mais área em formação e expansão em comparação com a recuperação. Ao longo do intervalo de 2 a 4 anos do nosso estudo, nenhum local estava próximo do estado estacionário. Análises multitemporais de grandes áreas ao longo de muitos anos são necessárias para melhorar nossa compreensão da dinâmica das florestas tropicais. Gaps are the manifestation of how disturbances disrupt forest landscapes, opening the canopy to sunlight and trigging succession, which increase heterogeneity, diversity, and complexity to forest canopies. Over the 2–4 years interval of our study, no site was close to steady state. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics.
AbstractList Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m 2 to a maximum of about 10,000 m 2 . We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m 2 ha −1 . The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics. As clareiras são evidências de distúrbios em paisagens florestais. A floresta está em constante mudança, com longos períodos de acúmulo de biomassa interrompidos por distúrbios episódicos. Usamos dados multitemporais de levantamento laser aerotransportado para comparar a dinâmica de clareiras de quatro sítios na Amazônia, ao longo de 1,9 a 3,8 anos, entre 2017 e 2020. Os sítios estavam localizados nas regiões central, centro‐leste, sudeste e nordeste da Amazônia brasileira, com áreas variando de 590 a 1205 ha. O tamanho das clareiras estudadas variou entre o mínimo de 10 m 2 a um máximo de aproximadamente 10.000 m 2 . Analisamos quatro estágios da dinâmica de clareiras: formação, expansão, persistência e recuperação a partir de dois levantamentos laser aerotransportado consecutivos. A fração de clareiras em nossos locais de estudo variou entre 1,26% e 7,84%. Todos os locais apresentaram proporção semelhante de clareiras entre as classes de tamanho. O que diferiu notavelmente entre os locais não foi a distribuição do tamanho das clareiras, mas a importância relativa dos estágios de dinâmica de clareiras. As taxas de expansão e persistência variaram de entre 12 e 118 m 2 ha −1 . A taxa de formação de clareiras (formação + expansão) foi menor do que a taxa de recuperação para três dos quatro locais de estudo. Em contraste, o sítio sudeste teve 1,44 vezes mais área em formação e expansão em comparação com a recuperação. Ao longo do intervalo de 2 a 4 anos do nosso estudo, nenhum local estava próximo do estado estacionário. Análises multitemporais de grandes áreas ao longo de muitos anos são necessárias para melhorar nossa compreensão da dinâmica das florestas tropicais.
Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics.
Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m² to a maximum of about 10,000 m². We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m² ha⁻¹. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics.
Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics. Resumo As clareiras são evidências de distúrbios em paisagens florestais. A floresta está em constante mudança, com longos períodos de acúmulo de biomassa interrompidos por distúrbios episódicos. Usamos dados multitemporais de levantamento laser aerotransportado para comparar a dinâmica de clareiras de quatro sítios na Amazônia, ao longo de 1,9 a 3,8 anos, entre 2017 e 2020. Os sítios estavam localizados nas regiões central, centro‐leste, sudeste e nordeste da Amazônia brasileira, com áreas variando de 590 a 1205 ha. O tamanho das clareiras estudadas variou entre o mínimo de 10 m2 a um máximo de aproximadamente 10.000 m2. Analisamos quatro estágios da dinâmica de clareiras: formação, expansão, persistência e recuperação a partir de dois levantamentos laser aerotransportado consecutivos. A fração de clareiras em nossos locais de estudo variou entre 1,26% e 7,84%. Todos os locais apresentaram proporção semelhante de clareiras entre as classes de tamanho. O que diferiu notavelmente entre os locais não foi a distribuição do tamanho das clareiras, mas a importância relativa dos estágios de dinâmica de clareiras. As taxas de expansão e persistência variaram de entre 12 e 118 m2 ha−1. A taxa de formação de clareiras (formação + expansão) foi menor do que a taxa de recuperação para três dos quatro locais de estudo. Em contraste, o sítio sudeste teve 1,44 vezes mais área em formação e expansão em comparação com a recuperação. Ao longo do intervalo de 2 a 4 anos do nosso estudo, nenhum local estava próximo do estado estacionário. Análises multitemporais de grandes áreas ao longo de muitos anos são necessárias para melhorar nossa compreensão da dinâmica das florestas tropicais. Gaps are the manifestation of how disturbances disrupt forest landscapes, opening the canopy to sunlight and trigging succession, which increase heterogeneity, diversity, and complexity to forest canopies. Over the 2–4 years interval of our study, no site was close to steady state. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics.
Author Marra, Daniel Magnabosco
Ometto, Jean Pierre
Keller, Michael
Reis, Cristiano Rodrigues
Gorgens, Eric Bastos
Coomes, David
Jackson, Toby
Almeida, Danilo Roberti Alves
Author_xml – sequence: 1
  givenname: Eric Bastos
  orcidid: 0000-0003-2517-0279
  surname: Gorgens
  fullname: Gorgens, Eric Bastos
  email: eric.gorgens@ufvjm.edu.br
  organization: Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri
– sequence: 2
  givenname: Michael
  orcidid: 0000-0002-0253-3359
  surname: Keller
  fullname: Keller, Michael
  organization: Jet Propulsion Laboratory
– sequence: 3
  givenname: Toby
  orcidid: 0000-0001-8143-6161
  surname: Jackson
  fullname: Jackson, Toby
  organization: University of Cambridge
– sequence: 4
  givenname: Daniel Magnabosco
  orcidid: 0000-0003-1216-2982
  surname: Marra
  fullname: Marra, Daniel Magnabosco
  organization: Max‐Planck Institute for Biogeochemistry
– sequence: 5
  givenname: Cristiano Rodrigues
  orcidid: 0000-0002-5584-613X
  surname: Reis
  fullname: Reis, Cristiano Rodrigues
  organization: Universidade de São Paulo
– sequence: 6
  givenname: Danilo Roberti Alves
  orcidid: 0000-0002-8747-0085
  surname: Almeida
  fullname: Almeida, Danilo Roberti Alves
  organization: Universidade de São Paulo
– sequence: 7
  givenname: David
  orcidid: 0000-0002-8261-2582
  surname: Coomes
  fullname: Coomes, David
  organization: University of Cambridge
– sequence: 8
  givenname: Jean Pierre
  orcidid: 0000-0002-4221-1039
  surname: Ometto
  fullname: Ometto, Jean Pierre
  organization: Instituto Nacional de Pesquisas Espaciais
BookMark eNp1kEtrwzAQhEVJoUnaQ_-BoJf24ES2FFvuLQl9BALpIT2btSwHpY7kSjbF-fVVHqfQ7mVY-GbYnQHqaaMlQvchGYV-xnlTj0IaRfEV6ocJY0HCorSH-oSQOKAxiW_QwLmtX9MJYX20WLUNNiV2jYSi8wKNfMZrC-JL6Q0WoE3d4Q3UuOg07JRwGIQ1zuGZhb2qFGg83cHe6Ft0XULl5N1Zh-jz9WU9fw-Wq7fFfLoMBKX-Bk75JOVpAYxOIk6jQuR0ImQiKMu9lCIuaAGUF3FeljkRAFHKUsEFSAZlmNAhejzl1tZ8t9I12U45IasKtDStyyLOUs5ZGHOPPlygW9Na7a_zFPUISZIDNT5Rx7-sLDOhfA3K6MaCqrKQZIdqM19tdqzWO54uHLVVO7Ddn-w5_UdVsvsfzGbrj5PjFyNUijg
CitedBy_id crossref_primary_10_1029_2023AV001030
crossref_primary_10_1111_gcb_17493
crossref_primary_10_3390_rs15164027
crossref_primary_10_1016_j_ecoinf_2024_102628
crossref_primary_10_1111_1365_2745_14320
crossref_primary_10_1016_j_ecoinf_2024_102654
crossref_primary_10_5194_bg_20_3651_2023
Cites_doi 10.1111/nph.16260
10.1371/journal.pone.0132144
10.1038/s41598-020-80809-w
10.1038/s41467-020-18996-3
10.1111/j.1654-1103.2012.01491.x
10.1101/2021.05.03.442416
10.1111/gcb.15423
10.1111/1365-2745.13076
10.1111/ele.13978
10.1073/pnas.1202894110
10.1007/BF00044908
10.1186/s13021-015-0013-x
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1111/j.1461-0248.2009.01345.x
10.1016/j.rse.2011.07.015
10.1002/2017GL073564
10.1002/fee.2085
10.3390/rs9101068
10.1046/j.1365-2745.1998.00295.x
10.1111/nph.15381
10.1038/ncomms4434
10.1088/1748-9326/aabe9f
10.1111/nph.17729
10.1111/jvs.12981
10.1111/gcb.15227
10.3390/rs8060501
10.1016/j.rse.2007.10.003
10.1111/nph.15110
10.1016/j.foreco.2006.10.026
10.1016/j.jag.2022.102780
10.1371/journal.pone.0103711
10.1007/s11676-014-0521-7
10.1111/j.1461-0248.2008.01169.x
10.1111/gcb.14457
10.14214/sf.76
10.2307/1940195
10.3390/rs11070817
10.2307/1941119
10.1029/2010GL043146
10.1371/journal.pone.0060875
ContentType Journal Article
Copyright 2023 Association for Tropical Biology and Conservation.
Copyright © 2023 Association for Tropical Biology and Conservation Inc
Copyright_xml – notice: 2023 Association for Tropical Biology and Conservation.
– notice: Copyright © 2023 Association for Tropical Biology and Conservation Inc
DBID AAYXX
CITATION
7QG
7QR
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
P64
SOI
7S9
L.6
DOI 10.1111/btp.13226
DatabaseName CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Entomology Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1744-7429
EndPage 766
ExternalDocumentID 10_1111_btp_13226
BTP13226
Genre article
GeographicLocations Brazil
Amazon Basin
Amazonia
GeographicLocations_xml – name: Amazon Basin
– name: Brazil
– name: Amazonia
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 301661/2019‐7; 403297/2016‐8
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil
  funderid: 001
– fundername: Amazon Fund
  funderid: 14.2.0929.1
– fundername: São Paulo Research Foundation
  funderid: 2019/14697‐0; 2018/21338‐3
– fundername: UK Natural Environment Research Council
  funderid: NE/S010750/1
– fundername: Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
– fundername: National Academy of Sciences
– fundername: US Agency for International Development
  funderid: AID‐OAA‐A‐11‐00012
GroupedDBID -DZ
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23N
2AX
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACHIC
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEPYG
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFIJ
AFFPM
AFGKR
AFNWH
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AI.
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DC7
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RX1
SA0
SUPJJ
TN5
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZCA
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QG
7QR
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c3306-8385989da4352832dcb35ce7c34bce7fc6d3da38d6bffb0caa2949c8cae4af173
IEDL.DBID DR2
ISSN 0006-3606
IngestDate Fri Jul 11 18:28:11 EDT 2025
Fri Jul 25 08:33:23 EDT 2025
Tue Jul 01 02:22:54 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3306-8385989da4352832dcb35ce7c34bce7fc6d3da38d6bffb0caa2949c8cae4af173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8747-0085
0000-0002-4221-1039
0000-0002-0253-3359
0000-0002-5584-613X
0000-0003-2517-0279
0000-0001-8143-6161
0000-0002-8261-2582
0000-0003-1216-2982
PQID 2834160778
PQPubID 976347
PageCount 12
ParticipantIDs proquest_miscellaneous_2849884168
proquest_journals_2834160778
crossref_citationtrail_10_1111_btp_13226
crossref_primary_10_1111_btp_13226
wiley_primary_10_1111_btp_13226_BTP13226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Biotropica
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2021; 27
2010; 37
2002; 52
2019; 11
2013; 24
2017; 44
1991; 72
2015; 10
2019; 17
2009
2020; 225
2022; 25
2014; 25
1988; 79
2008; 11
1978; 1
2020; 11
2019; 107
2013; 8
1998; 86
2019; 221
2017; 9
2018; 24
2009; 12
2021; 32
2014; 5
2021; 11
2007; 238
2021; 233
2021
1989; 70
2020; 26
1985
2011; 45
2018; 219
2013; 110
2014; 9
2008; 112
2022; 109
2016; 8
2021; 2021
2018; 13
e_1_2_9_31_1
e_1_2_9_50_1
White P. S. (e_1_2_9_45_1) 1985
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Araujo R. F. (e_1_2_9_2_1) 2021; 2021
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Puig H. (e_1_2_9_36_1) 2009
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_19_1
Hartshorn G. S. (e_1_2_9_21_1) 1978
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 44
  start-page: 7793
  year: 2017
  end-page: 7798
  article-title: Regional distribution of large blowdown patches across Amazonia in 2005 caused by a single convective squall line
  publication-title: Geophysical Research Letters
– year: 2009
– volume: 8
  year: 2013
  article-title: Forest canopy gap distributions in the southern Peruvian Amazon
  publication-title: PLoS One
– volume: 17
  start-page: 373
  year: 2019
  end-page: 374
  article-title: The giant trees of the Amazon basin
  publication-title: Frontiers in Ecology and the Environment
– volume: 79
  start-page: 165
  year: 1988
  end-page: 176
  article-title: Tree uprooting: Review of impacts on forest ecology
  publication-title: Vegetatio
– volume: 11
  start-page: 1388
  year: 2021
  article-title: Large‐scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates
  publication-title: Scientific Reports UK
– volume: 9
  year: 2014
  article-title: Large‐scale wind disturbances promote tree diversity in a Central Amazon Forest
  publication-title: PLoS One
– volume: 110
  start-page: 3949
  year: 2013
  end-page: 3954
  article-title: The steady‐state mosaic of disturbance and succession across an old‐growth Central Amazon forest landscape
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 86
  start-page: 597
  year: 1998
  end-page: 609
  article-title: Treefall gap size effects on above‐ and below‐ground processes in a tropical wet forest
  publication-title: Journal of Ecology
– volume: 25
  start-page: 1126
  year: 2022
  end-page: 1138
  article-title: Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape
  publication-title: Ecology Letters
– volume: 45
  start-page: 875
  year: 2011
  end-page: 887
  article-title: Gap‐phase dynamics in the old‐growth forest of Lom, Bosnia and Herzegovina
  publication-title: Silva Fennica
– volume: 11
  start-page: 5515
  year: 2020
  article-title: Tree mode of death and mortality risk factors across Amazon forests
  publication-title: Nature Communications
– volume: 52
  start-page: 19
  year: 2002
  end-page: 30
  article-title: Lidar remote sensing for ecosystem studies
  publication-title: Bioscience
– volume: 13
  year: 2018
  article-title: Vulnerability of Amazon forests to storm‐driven tree mortality
  publication-title: Environmental Research Letters
– year: 2021
– volume: 12
  start-page: 887
  year: 2009
  end-page: 897
  article-title: Convergent structural responses of tropical forests to diverse disturbance regimes
  publication-title: Ecology Letters
– volume: 221
  start-page: 169
  year: 2019
  end-page: 179
  article-title: Crown damage and the mortality of tropical trees
  publication-title: The New Phytologist
– volume: 219
  start-page: 959
  year: 2018
  end-page: 971
  article-title: El Niño drought increased canopy turnover in Amazon forests
  publication-title: The New Phytologist
– volume: 225
  start-page: 1936
  year: 2020
  end-page: 1944
  article-title: Lightning is a major cause of large tree mortality in a lowland neotropical forest
  publication-title: The New Phytologist
– volume: 5
  start-page: 3434
  year: 2014
  article-title: Size and frequency of natural forest disturbances and the Amazon forest carbon balance
  publication-title: Nature Communications
– volume: 27
  start-page: 177
  year: 2021
  end-page: 189
  article-title: Resource availability and disturbance shape maximum tree height across the Amazon
  publication-title: Global Change Biology
– start-page: 3
  year: 1985
  end-page: 13
– volume: 8
  start-page: 501
  year: 2016
  article-title: An easy‐to‐use airborne LiDAR data filtering method based on cloth simulation
  publication-title: Remote Sensing
– volume: 10
  year: 2015
  article-title: Structural dynamics of tropical moist forest gaps
  publication-title: PLoS One
– volume: 10
  start-page: 3
  year: 2015
  article-title: Airborne lidar‐based estimates of tropical forest structure in complex terrain: Opportunities and trade‐offs for REDD+
  publication-title: Carbon Balance and Management
– volume: 24
  start-page: 651
  year: 2013
  end-page: 663
  article-title: Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: Evidence from tree mode of death in Central Amazonia
  publication-title: Journal of Vegetation Science
– volume: 72
  start-page: 1464
  year: 1991
  end-page: 1471
  article-title: Crown asymmetry, treefalls, and repeat disturbance of broad‐leaved forest gaps
  publication-title: Ecology
– volume: 1
  year: 1978
– volume: 115
  start-page: 3322
  year: 2011
  end-page: 3328
  article-title: Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests
  publication-title: Remote Sensing of Environment
– volume: 238
  start-page: 309
  year: 2007
  end-page: 318
  article-title: Necromass in undisturbed and logged forests in the Brazilian Amazon
  publication-title: Forest Ecology and Management
– volume: 70
  start-page: 536
  year: 1989
  end-page: 538
  article-title: Canopy gaps and the two major groups of forest trees
  publication-title: Ecology
– volume: 26
  start-page: 5017
  year: 2020
  end-page: 5026
  article-title: Pantropical geography of lightning‐caused disturbance and its implications for tropical forests
  publication-title: Global Change Biology
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 19
  article-title: Strong temporal variation in treefall and branchfall rates in a tropical forest is explained by rainfall: Results from five years of monthly drone data for a 50‐ha plot
  publication-title: Biogeosciences Discussions
– volume: 24
  start-page: 5867
  year: 2018
  end-page: 5881
  article-title: Windthrows control biomass patterns and functional composition of Amazon forests
  publication-title: Global Change Biology
– volume: 107
  start-page: 656
  year: 2019
  end-page: 667
  article-title: Fire, fragmentation, and windstorms: A recipe for tropical forest degradation
  publication-title: Journal of Ecology
– volume: 11
  start-page: 817
  year: 2019
  article-title: Quantifying canopy tree loss and gap recovery in tropical forests under low‐intensity logging using VHR satellite imagery and airborne LiDAR
  publication-title: Remote Sensing
– volume: 9
  start-page: 1068
  year: 2017
  article-title: Impacts of airborne Lidar pulse density on estimating biomass stocks and changes in a selectively logged tropical Forest
  publication-title: Remote Sensing
– volume: 109
  year: 2022
  article-title: Mapping tree mortality rate in a tropical moist forest using multi‐temporal LiDAR
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 25
  start-page: 725
  year: 2014
  end-page: 736
  article-title: A review of the roles of forest canopy gaps
  publication-title: Journal of Forestry Research
– volume: 37
  year: 2010
  article-title: Storm intensity and old‐growth forest disturbances in the Amazon region
  publication-title: Geophysical Research Letters
– volume: 112
  start-page: 2309
  year: 2008
  end-page: 2325
  article-title: Identification of gaps in mangrove forests with airborne LIDAR
  publication-title: Remote Sensing of Environment
– volume: 32
  year: 2021
  article-title: Tree death and damage: A standardized protocol for frequent surveys in tropical forests
  publication-title: Journal of Vegetation Science
– volume: 233
  start-page: 612
  year: 2021
  end-page: 617
  article-title: Deciphering the fingerprint of disturbance on the three‐dimensional structure of the world's forests
  publication-title: The New Phytologist
– volume: 11
  start-page: 554
  year: 2008
  end-page: 563
  article-title: Clustered disturbances lead to bias in large‐scale estimates based on forest sample plots
  publication-title: Ecology Letters
– ident: e_1_2_9_47_1
  doi: 10.1111/nph.16260
– ident: e_1_2_9_23_1
  doi: 10.1371/journal.pone.0132144
– ident: e_1_2_9_12_1
  doi: 10.1038/s41598-020-80809-w
– ident: e_1_2_9_16_1
  doi: 10.1038/s41467-020-18996-3
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1654-1103.2012.01491.x
– ident: e_1_2_9_39_1
  doi: 10.1101/2021.05.03.442416
– ident: e_1_2_9_20_1
  doi: 10.1111/gcb.15423
– ident: e_1_2_9_43_1
  doi: 10.1111/1365-2745.13076
– ident: e_1_2_9_10_1
  doi: 10.1111/ele.13978
– ident: e_1_2_9_8_1
  doi: 10.1073/pnas.1202894110
– ident: e_1_2_9_41_1
  doi: 10.1007/BF00044908
– ident: e_1_2_9_27_1
  doi: 10.1186/s13021-015-0013-x
– ident: e_1_2_9_26_1
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1461-0248.2009.01345.x
– ident: e_1_2_9_32_1
  doi: 10.1016/j.rse.2011.07.015
– ident: e_1_2_9_3_1
  doi: 10.1002/2017GL073564
– ident: e_1_2_9_19_1
  doi: 10.1002/fee.2085
– ident: e_1_2_9_42_1
  doi: 10.3390/rs9101068
– ident: e_1_2_9_38_1
– ident: e_1_2_9_13_1
  doi: 10.1046/j.1365-2745.1998.00295.x
– ident: e_1_2_9_35_1
– ident: e_1_2_9_4_1
  doi: 10.1111/nph.15381
– ident: e_1_2_9_14_1
  doi: 10.1038/ncomms4434
– ident: e_1_2_9_33_1
  doi: 10.1088/1748-9326/aabe9f
– ident: e_1_2_9_24_1
  doi: 10.1111/nph.17729
– ident: e_1_2_9_5_1
  doi: 10.1111/jvs.12981
– ident: e_1_2_9_18_1
  doi: 10.1111/gcb.15227
– ident: e_1_2_9_50_1
  doi: 10.3390/rs8060501
– ident: e_1_2_9_49_1
  doi: 10.1016/j.rse.2007.10.003
– start-page: 3
  volume-title: The ecology of natural disturbance and patch dynamics
  year: 1985
  ident: e_1_2_9_45_1
– ident: e_1_2_9_28_1
  doi: 10.1111/nph.15110
– volume-title: Tropical trees as living systems
  year: 1978
  ident: e_1_2_9_21_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.foreco.2006.10.026
– volume-title: Floresta Tropical Úmida
  year: 2009
  ident: e_1_2_9_36_1
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jag.2022.102780
– ident: e_1_2_9_29_1
  doi: 10.1371/journal.pone.0103711
– ident: e_1_2_9_31_1
  doi: 10.1007/s11676-014-0521-7
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1461-0248.2008.01169.x
– ident: e_1_2_9_40_1
– ident: e_1_2_9_30_1
  doi: 10.1111/gcb.14457
– ident: e_1_2_9_7_1
  doi: 10.14214/sf.76
– ident: e_1_2_9_46_1
  doi: 10.2307/1940195
– ident: e_1_2_9_11_1
  doi: 10.3390/rs11070817
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_9_2_1
  article-title: Strong temporal variation in treefall and branchfall rates in a tropical forest is explained by rainfall: Results from five years of monthly drone data for a 50‐ha plot
  publication-title: Biogeosciences Discussions
– ident: e_1_2_9_37_1
– ident: e_1_2_9_48_1
  doi: 10.2307/1941119
– ident: e_1_2_9_9_1
– ident: e_1_2_9_15_1
  doi: 10.1029/2010GL043146
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pone.0060875
SSID ssj0009504
Score 2.4282513
Snippet Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 755
SubjectTerms Airborne lasers
Amazon
Amazonia
biomass production
Canopies
Canopy
Canopy gaps
Disturbances
Dynamics
forest dynamics
Forest ecosystems
forest stands
gap fraction
gap recovery
Laser applications
Lasers
Plant cover
Recovery
Steady state
Tracking
tropical Forest
Tropical forests
Title Out of steady state: Tracking canopy gap dynamics across Brazilian Amazon
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbtp.13226
https://www.proquest.com/docview/2834160778
https://www.proquest.com/docview/2849884168
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEHzxW5xOieKDLx1rk7apPm2yoYIfiIM9CCVfFVHbsXUP219vLm3nFAXxpQ30SpPcXXO53P0OoZNIKVckLeVo4gYOZeYiCA8dwYkUiZsIpiAb-eY2uOzT64E_qKHzKhemwIeYO9xAM-z_GhSci_GCkot82IStFMBtQ6wWGEQP3gLgbqtAYIbYLmOll6hCEMUzf_PrWvRpYC6aqXad6a2hp6qHRXjJa3OSi6acfQNv_OcQ1tFqaX_idiEwG6im0020XFSknJpW16JYT7fQ1d0kx1mCrRRMsU08OsNmaZPgXMeGI9lwip_5EKuiqP0YcztM3Bnx2Qt4T3D7nc-ydBv1e93Hi0unrLvgSGJ2EA4jzI9YpDi10C-ekoL4UoeSUGFuiQwUUZwwFYgkES3JuRfRSDLJNeWJG5IdtJRmqd5FmKowCkUrVFQzyM1i3NUBVV4gfeERX9XRacWBWJag5FAb4y2uNidmjmI7R3V0PCcdFkgcPxE1KjbGpTKOYzMGCjh6Iaujo_ljo0ZwNsJTnU2AhkYMjmANzanl2e8fiTuP97ax93fSfbQCheqLQN8GWspHE31gzJlcHFq5_QCKyPDM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQhexmAgOsbmIR72kiqJncSZ9rKhVt3YCkKd1Jcp8lcQApKqTR_avx6fk3RlYhLaS2IpF8X2-eK7893vAD6mWgcy97VnaBB7jNuLpCLxpKBK5kEuucZs5OthPLhhl-NovAGnbS5MjQ-xcrihZLj_NQo4OqTXpFxWky7aUvET2MKK3s6g-hauQe76NQYzRndZPb3BFcI4ntWrf-9GdyrmuqLqdpr-C7ht-1gHmPzszivZVct78I2PHcQObDcqKDmr18xL2DDFK3haF6Vc2FbPAVkvduHiy7wiZU7cQlgQl3t0QuzuptC_TixTysmCfBcTouu69jMi3DjJ-VQsf6ADhZz9FsuyeA03_d7o08BrSi94ilojwuOURylPtWAO_SXUStJImURRJu0tV7GmWlCuY5nn0ldChClLFVfCMJEHCX0Dm0VZmLdAmE7SRPqJZoZjehYXgYmZDmMVyZBGugPHLQsy1eCSY3mMX1lrn9g5ytwcdeDDinRSg3H8i2i_5WPWyOMss2NgCKWX8A4crR5bScLjEVGYco40LOV4Cmtpjh3THv5Idj766hp7_096CM8Go-ur7Opi-PkdPMe69XXc7z5sVtO5eW-1m0oeuEX8B5bB9Oc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BFYhLKS916QJuxYFLVknsJE458VoBpRQhkDggRX5WCEgiNnvY_fW1nWRZqiJVXBJLmSi2ZyaesWe-AdhJpQy49qWncBB7hJoLxyzxOMOC60BzKm028s-L-OSGnN1GtzOw1-bC1PgQkw03qxnuf20VvJR6Ssl5VfasKxXPwgcS-9SK9NFVOIW469cQzDa4y5jpDayQDeOZvPp6MXqxMKftVLfQ9Jfgru1iHV_y0BtWvCfGf6E3vnMMn-BjY4Ci_VpilmFG5SswX5ekHJnWsYOxHq3C6a9hhQqNnBiMkMs8-o7M2ibs7joyLCnKEfrNSiTrqvYDxNww0cEzG9_b7RO0_8TGRb4GN_3j68MTrym84AlsXAiPYhqlNJWMOOyXUAqOI6ESgQk3Ny1iiSXDVMZca-4LxsKUpIIKpgjTQYLXYS4vcvUZEJFJmnA_kURRm5xFWaBiIsNYRDzEkezAbsuBTDSo5LY4xmPWeidmjjI3Rx34NiEtayiOfxF1WzZmjTYOMjMGYoH0EtqBr5PHRo_s4QjLVTG0NCSl9gzW0Ow6nr39kezg-tI1Nv6fdBsWLo_62fnpxY8vsGiL1tdBv12Yq56HatOYNhXfciL8B93w858
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out+of+steady+state%3A+Tracking+canopy+gap+dynamics+across+Brazilian+Amazon&rft.jtitle=Biotropica&rft.au=Gorgens%2C+Eric+Bastos&rft.au=Keller%2C+Michael&rft.au=Jackson%2C+Toby&rft.au=Marra%2C+Daniel+Magnabosco&rft.date=2023-07-01&rft.issn=0006-3606&rft.eissn=1744-7429&rft.volume=55&rft.issue=4&rft.spage=755&rft.epage=766&rft_id=info:doi/10.1111%2Fbtp.13226&rft.externalDBID=10.1111%252Fbtp.13226&rft.externalDocID=BTP13226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon