Out of steady state: Tracking canopy gap dynamics across Brazilian Amazon
Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed...
Saved in:
Published in | Biotropica Vol. 55; no. 4; pp. 755 - 766 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics.
Resumo
As clareiras são evidências de distúrbios em paisagens florestais. A floresta está em constante mudança, com longos períodos de acúmulo de biomassa interrompidos por distúrbios episódicos. Usamos dados multitemporais de levantamento laser aerotransportado para comparar a dinâmica de clareiras de quatro sítios na Amazônia, ao longo de 1,9 a 3,8 anos, entre 2017 e 2020. Os sítios estavam localizados nas regiões central, centro‐leste, sudeste e nordeste da Amazônia brasileira, com áreas variando de 590 a 1205 ha. O tamanho das clareiras estudadas variou entre o mínimo de 10 m2 a um máximo de aproximadamente 10.000 m2. Analisamos quatro estágios da dinâmica de clareiras: formação, expansão, persistência e recuperação a partir de dois levantamentos laser aerotransportado consecutivos. A fração de clareiras em nossos locais de estudo variou entre 1,26% e 7,84%. Todos os locais apresentaram proporção semelhante de clareiras entre as classes de tamanho. O que diferiu notavelmente entre os locais não foi a distribuição do tamanho das clareiras, mas a importância relativa dos estágios de dinâmica de clareiras. As taxas de expansão e persistência variaram de entre 12 e 118 m2 ha−1. A taxa de formação de clareiras (formação + expansão) foi menor do que a taxa de recuperação para três dos quatro locais de estudo. Em contraste, o sítio sudeste teve 1,44 vezes mais área em formação e expansão em comparação com a recuperação. Ao longo do intervalo de 2 a 4 anos do nosso estudo, nenhum local estava próximo do estado estacionário. Análises multitemporais de grandes áreas ao longo de muitos anos são necessárias para melhorar nossa compreensão da dinâmica das florestas tropicais.
Gaps are the manifestation of how disturbances disrupt forest landscapes, opening the canopy to sunlight and trigging succession, which increase heterogeneity, diversity, and complexity to forest canopies. Over the 2–4 years interval of our study, no site was close to steady state. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. |
---|---|
AbstractList | Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m
2
to a maximum of about 10,000 m
2
. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m
2
ha
−1
. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics.
As clareiras são evidências de distúrbios em paisagens florestais. A floresta está em constante mudança, com longos períodos de acúmulo de biomassa interrompidos por distúrbios episódicos. Usamos dados multitemporais de levantamento laser aerotransportado para comparar a dinâmica de clareiras de quatro sítios na Amazônia, ao longo de 1,9 a 3,8 anos, entre 2017 e 2020. Os sítios estavam localizados nas regiões central, centro‐leste, sudeste e nordeste da Amazônia brasileira, com áreas variando de 590 a 1205 ha. O tamanho das clareiras estudadas variou entre o mínimo de 10 m
2
a um máximo de aproximadamente 10.000 m
2
. Analisamos quatro estágios da dinâmica de clareiras: formação, expansão, persistência e recuperação a partir de dois levantamentos laser aerotransportado consecutivos. A fração de clareiras em nossos locais de estudo variou entre 1,26% e 7,84%. Todos os locais apresentaram proporção semelhante de clareiras entre as classes de tamanho. O que diferiu notavelmente entre os locais não foi a distribuição do tamanho das clareiras, mas a importância relativa dos estágios de dinâmica de clareiras. As taxas de expansão e persistência variaram de entre 12 e 118 m
2
ha
−1
. A taxa de formação de clareiras (formação + expansão) foi menor do que a taxa de recuperação para três dos quatro locais de estudo. Em contraste, o sítio sudeste teve 1,44 vezes mais área em formação e expansão em comparação com a recuperação. Ao longo do intervalo de 2 a 4 anos do nosso estudo, nenhum local estava próximo do estado estacionário. Análises multitemporais de grandes áreas ao longo de muitos anos são necessárias para melhorar nossa compreensão da dinâmica das florestas tropicais. Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics. Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m² to a maximum of about 10,000 m². We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m² ha⁻¹. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics. Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics. Resumo As clareiras são evidências de distúrbios em paisagens florestais. A floresta está em constante mudança, com longos períodos de acúmulo de biomassa interrompidos por distúrbios episódicos. Usamos dados multitemporais de levantamento laser aerotransportado para comparar a dinâmica de clareiras de quatro sítios na Amazônia, ao longo de 1,9 a 3,8 anos, entre 2017 e 2020. Os sítios estavam localizados nas regiões central, centro‐leste, sudeste e nordeste da Amazônia brasileira, com áreas variando de 590 a 1205 ha. O tamanho das clareiras estudadas variou entre o mínimo de 10 m2 a um máximo de aproximadamente 10.000 m2. Analisamos quatro estágios da dinâmica de clareiras: formação, expansão, persistência e recuperação a partir de dois levantamentos laser aerotransportado consecutivos. A fração de clareiras em nossos locais de estudo variou entre 1,26% e 7,84%. Todos os locais apresentaram proporção semelhante de clareiras entre as classes de tamanho. O que diferiu notavelmente entre os locais não foi a distribuição do tamanho das clareiras, mas a importância relativa dos estágios de dinâmica de clareiras. As taxas de expansão e persistência variaram de entre 12 e 118 m2 ha−1. A taxa de formação de clareiras (formação + expansão) foi menor do que a taxa de recuperação para três dos quatro locais de estudo. Em contraste, o sítio sudeste teve 1,44 vezes mais área em formação e expansão em comparação com a recuperação. Ao longo do intervalo de 2 a 4 anos do nosso estudo, nenhum local estava próximo do estado estacionário. Análises multitemporais de grandes áreas ao longo de muitos anos são necessárias para melhorar nossa compreensão da dinâmica das florestas tropicais. Gaps are the manifestation of how disturbances disrupt forest landscapes, opening the canopy to sunlight and trigging succession, which increase heterogeneity, diversity, and complexity to forest canopies. Over the 2–4 years interval of our study, no site was close to steady state. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size‐distribution, but the relative importance of stages of gap dynamics. |
Author | Marra, Daniel Magnabosco Ometto, Jean Pierre Keller, Michael Reis, Cristiano Rodrigues Gorgens, Eric Bastos Coomes, David Jackson, Toby Almeida, Danilo Roberti Alves |
Author_xml | – sequence: 1 givenname: Eric Bastos orcidid: 0000-0003-2517-0279 surname: Gorgens fullname: Gorgens, Eric Bastos email: eric.gorgens@ufvjm.edu.br organization: Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri – sequence: 2 givenname: Michael orcidid: 0000-0002-0253-3359 surname: Keller fullname: Keller, Michael organization: Jet Propulsion Laboratory – sequence: 3 givenname: Toby orcidid: 0000-0001-8143-6161 surname: Jackson fullname: Jackson, Toby organization: University of Cambridge – sequence: 4 givenname: Daniel Magnabosco orcidid: 0000-0003-1216-2982 surname: Marra fullname: Marra, Daniel Magnabosco organization: Max‐Planck Institute for Biogeochemistry – sequence: 5 givenname: Cristiano Rodrigues orcidid: 0000-0002-5584-613X surname: Reis fullname: Reis, Cristiano Rodrigues organization: Universidade de São Paulo – sequence: 6 givenname: Danilo Roberti Alves orcidid: 0000-0002-8747-0085 surname: Almeida fullname: Almeida, Danilo Roberti Alves organization: Universidade de São Paulo – sequence: 7 givenname: David orcidid: 0000-0002-8261-2582 surname: Coomes fullname: Coomes, David organization: University of Cambridge – sequence: 8 givenname: Jean Pierre orcidid: 0000-0002-4221-1039 surname: Ometto fullname: Ometto, Jean Pierre organization: Instituto Nacional de Pesquisas Espaciais |
BookMark | eNp1kEtrwzAQhEVJoUnaQ_-BoJf24ES2FFvuLQl9BALpIT2btSwHpY7kSjbF-fVVHqfQ7mVY-GbYnQHqaaMlQvchGYV-xnlTj0IaRfEV6ocJY0HCorSH-oSQOKAxiW_QwLmtX9MJYX20WLUNNiV2jYSi8wKNfMZrC-JL6Q0WoE3d4Q3UuOg07JRwGIQ1zuGZhb2qFGg83cHe6Ft0XULl5N1Zh-jz9WU9fw-Wq7fFfLoMBKX-Bk75JOVpAYxOIk6jQuR0ImQiKMu9lCIuaAGUF3FeljkRAFHKUsEFSAZlmNAhejzl1tZ8t9I12U45IasKtDStyyLOUs5ZGHOPPlygW9Na7a_zFPUISZIDNT5Rx7-sLDOhfA3K6MaCqrKQZIdqM19tdqzWO54uHLVVO7Ddn-w5_UdVsvsfzGbrj5PjFyNUijg |
CitedBy_id | crossref_primary_10_1029_2023AV001030 crossref_primary_10_1111_gcb_17493 crossref_primary_10_3390_rs15164027 crossref_primary_10_1016_j_ecoinf_2024_102628 crossref_primary_10_1111_1365_2745_14320 crossref_primary_10_1016_j_ecoinf_2024_102654 crossref_primary_10_5194_bg_20_3651_2023 |
Cites_doi | 10.1111/nph.16260 10.1371/journal.pone.0132144 10.1038/s41598-020-80809-w 10.1038/s41467-020-18996-3 10.1111/j.1654-1103.2012.01491.x 10.1101/2021.05.03.442416 10.1111/gcb.15423 10.1111/1365-2745.13076 10.1111/ele.13978 10.1073/pnas.1202894110 10.1007/BF00044908 10.1186/s13021-015-0013-x 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1111/j.1461-0248.2009.01345.x 10.1016/j.rse.2011.07.015 10.1002/2017GL073564 10.1002/fee.2085 10.3390/rs9101068 10.1046/j.1365-2745.1998.00295.x 10.1111/nph.15381 10.1038/ncomms4434 10.1088/1748-9326/aabe9f 10.1111/nph.17729 10.1111/jvs.12981 10.1111/gcb.15227 10.3390/rs8060501 10.1016/j.rse.2007.10.003 10.1111/nph.15110 10.1016/j.foreco.2006.10.026 10.1016/j.jag.2022.102780 10.1371/journal.pone.0103711 10.1007/s11676-014-0521-7 10.1111/j.1461-0248.2008.01169.x 10.1111/gcb.14457 10.14214/sf.76 10.2307/1940195 10.3390/rs11070817 10.2307/1941119 10.1029/2010GL043146 10.1371/journal.pone.0060875 |
ContentType | Journal Article |
Copyright | 2023 Association for Tropical Biology and Conservation. Copyright © 2023 Association for Tropical Biology and Conservation Inc |
Copyright_xml | – notice: 2023 Association for Tropical Biology and Conservation. – notice: Copyright © 2023 Association for Tropical Biology and Conservation Inc |
DBID | AAYXX CITATION 7QG 7QR 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G P64 SOI 7S9 L.6 |
DOI | 10.1111/btp.13226 |
DatabaseName | CrossRef Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1744-7429 |
EndPage | 766 |
ExternalDocumentID | 10_1111_btp_13226 BTP13226 |
Genre | article |
GeographicLocations | Brazil Amazon Basin Amazonia |
GeographicLocations_xml | – name: Amazon Basin – name: Brazil – name: Amazonia |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 301661/2019‐7; 403297/2016‐8 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil funderid: 001 – fundername: Amazon Fund funderid: 14.2.0929.1 – fundername: São Paulo Research Foundation funderid: 2019/14697‐0; 2018/21338‐3 – fundername: UK Natural Environment Research Council funderid: NE/S010750/1 – fundername: Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) – fundername: National Academy of Sciences – fundername: US Agency for International Development funderid: AID‐OAA‐A‐11‐00012 |
GroupedDBID | -DZ -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23N 2AX 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANHP AANLZ AAONW AAPSS AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCZN ACGFO ACGFS ACHIC ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEPYG AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFIJ AFFPM AFGKR AFNWH AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGUYK AGXDD AGYGG AHBTC AHXOZ AI. AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DC7 DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RX1 SA0 SUPJJ TN5 UB1 V8K VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZCA ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7QG 7QR 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3306-8385989da4352832dcb35ce7c34bce7fc6d3da38d6bffb0caa2949c8cae4af173 |
IEDL.DBID | DR2 |
ISSN | 0006-3606 |
IngestDate | Fri Jul 11 18:28:11 EDT 2025 Fri Jul 25 08:33:23 EDT 2025 Tue Jul 01 02:22:54 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3306-8385989da4352832dcb35ce7c34bce7fc6d3da38d6bffb0caa2949c8cae4af173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8747-0085 0000-0002-4221-1039 0000-0002-0253-3359 0000-0002-5584-613X 0000-0003-2517-0279 0000-0001-8143-6161 0000-0002-8261-2582 0000-0003-1216-2982 |
PQID | 2834160778 |
PQPubID | 976347 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2849884168 proquest_journals_2834160778 crossref_citationtrail_10_1111_btp_13226 crossref_primary_10_1111_btp_13226 wiley_primary_10_1111_btp_13226_BTP13226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Biotropica |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2021; 27 2010; 37 2002; 52 2019; 11 2013; 24 2017; 44 1991; 72 2015; 10 2019; 17 2009 2020; 225 2022; 25 2014; 25 1988; 79 2008; 11 1978; 1 2020; 11 2019; 107 2013; 8 1998; 86 2019; 221 2017; 9 2018; 24 2009; 12 2021; 32 2014; 5 2021; 11 2007; 238 2021; 233 2021 1989; 70 2020; 26 1985 2011; 45 2018; 219 2013; 110 2014; 9 2008; 112 2022; 109 2016; 8 2021; 2021 2018; 13 e_1_2_9_31_1 e_1_2_9_50_1 White P. S. (e_1_2_9_45_1) 1985 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Araujo R. F. (e_1_2_9_2_1) 2021; 2021 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Puig H. (e_1_2_9_36_1) 2009 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_19_1 Hartshorn G. S. (e_1_2_9_21_1) 1978 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 44 start-page: 7793 year: 2017 end-page: 7798 article-title: Regional distribution of large blowdown patches across Amazonia in 2005 caused by a single convective squall line publication-title: Geophysical Research Letters – year: 2009 – volume: 8 year: 2013 article-title: Forest canopy gap distributions in the southern Peruvian Amazon publication-title: PLoS One – volume: 17 start-page: 373 year: 2019 end-page: 374 article-title: The giant trees of the Amazon basin publication-title: Frontiers in Ecology and the Environment – volume: 79 start-page: 165 year: 1988 end-page: 176 article-title: Tree uprooting: Review of impacts on forest ecology publication-title: Vegetatio – volume: 11 start-page: 1388 year: 2021 article-title: Large‐scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates publication-title: Scientific Reports UK – volume: 9 year: 2014 article-title: Large‐scale wind disturbances promote tree diversity in a Central Amazon Forest publication-title: PLoS One – volume: 110 start-page: 3949 year: 2013 end-page: 3954 article-title: The steady‐state mosaic of disturbance and succession across an old‐growth Central Amazon forest landscape publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 86 start-page: 597 year: 1998 end-page: 609 article-title: Treefall gap size effects on above‐ and below‐ground processes in a tropical wet forest publication-title: Journal of Ecology – volume: 25 start-page: 1126 year: 2022 end-page: 1138 article-title: Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape publication-title: Ecology Letters – volume: 45 start-page: 875 year: 2011 end-page: 887 article-title: Gap‐phase dynamics in the old‐growth forest of Lom, Bosnia and Herzegovina publication-title: Silva Fennica – volume: 11 start-page: 5515 year: 2020 article-title: Tree mode of death and mortality risk factors across Amazon forests publication-title: Nature Communications – volume: 52 start-page: 19 year: 2002 end-page: 30 article-title: Lidar remote sensing for ecosystem studies publication-title: Bioscience – volume: 13 year: 2018 article-title: Vulnerability of Amazon forests to storm‐driven tree mortality publication-title: Environmental Research Letters – year: 2021 – volume: 12 start-page: 887 year: 2009 end-page: 897 article-title: Convergent structural responses of tropical forests to diverse disturbance regimes publication-title: Ecology Letters – volume: 221 start-page: 169 year: 2019 end-page: 179 article-title: Crown damage and the mortality of tropical trees publication-title: The New Phytologist – volume: 219 start-page: 959 year: 2018 end-page: 971 article-title: El Niño drought increased canopy turnover in Amazon forests publication-title: The New Phytologist – volume: 225 start-page: 1936 year: 2020 end-page: 1944 article-title: Lightning is a major cause of large tree mortality in a lowland neotropical forest publication-title: The New Phytologist – volume: 5 start-page: 3434 year: 2014 article-title: Size and frequency of natural forest disturbances and the Amazon forest carbon balance publication-title: Nature Communications – volume: 27 start-page: 177 year: 2021 end-page: 189 article-title: Resource availability and disturbance shape maximum tree height across the Amazon publication-title: Global Change Biology – start-page: 3 year: 1985 end-page: 13 – volume: 8 start-page: 501 year: 2016 article-title: An easy‐to‐use airborne LiDAR data filtering method based on cloth simulation publication-title: Remote Sensing – volume: 10 year: 2015 article-title: Structural dynamics of tropical moist forest gaps publication-title: PLoS One – volume: 10 start-page: 3 year: 2015 article-title: Airborne lidar‐based estimates of tropical forest structure in complex terrain: Opportunities and trade‐offs for REDD+ publication-title: Carbon Balance and Management – volume: 24 start-page: 651 year: 2013 end-page: 663 article-title: Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: Evidence from tree mode of death in Central Amazonia publication-title: Journal of Vegetation Science – volume: 72 start-page: 1464 year: 1991 end-page: 1471 article-title: Crown asymmetry, treefalls, and repeat disturbance of broad‐leaved forest gaps publication-title: Ecology – volume: 1 year: 1978 – volume: 115 start-page: 3322 year: 2011 end-page: 3328 article-title: Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests publication-title: Remote Sensing of Environment – volume: 238 start-page: 309 year: 2007 end-page: 318 article-title: Necromass in undisturbed and logged forests in the Brazilian Amazon publication-title: Forest Ecology and Management – volume: 70 start-page: 536 year: 1989 end-page: 538 article-title: Canopy gaps and the two major groups of forest trees publication-title: Ecology – volume: 26 start-page: 5017 year: 2020 end-page: 5026 article-title: Pantropical geography of lightning‐caused disturbance and its implications for tropical forests publication-title: Global Change Biology – volume: 2021 start-page: 1 year: 2021 end-page: 19 article-title: Strong temporal variation in treefall and branchfall rates in a tropical forest is explained by rainfall: Results from five years of monthly drone data for a 50‐ha plot publication-title: Biogeosciences Discussions – volume: 24 start-page: 5867 year: 2018 end-page: 5881 article-title: Windthrows control biomass patterns and functional composition of Amazon forests publication-title: Global Change Biology – volume: 107 start-page: 656 year: 2019 end-page: 667 article-title: Fire, fragmentation, and windstorms: A recipe for tropical forest degradation publication-title: Journal of Ecology – volume: 11 start-page: 817 year: 2019 article-title: Quantifying canopy tree loss and gap recovery in tropical forests under low‐intensity logging using VHR satellite imagery and airborne LiDAR publication-title: Remote Sensing – volume: 9 start-page: 1068 year: 2017 article-title: Impacts of airborne Lidar pulse density on estimating biomass stocks and changes in a selectively logged tropical Forest publication-title: Remote Sensing – volume: 109 year: 2022 article-title: Mapping tree mortality rate in a tropical moist forest using multi‐temporal LiDAR publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 25 start-page: 725 year: 2014 end-page: 736 article-title: A review of the roles of forest canopy gaps publication-title: Journal of Forestry Research – volume: 37 year: 2010 article-title: Storm intensity and old‐growth forest disturbances in the Amazon region publication-title: Geophysical Research Letters – volume: 112 start-page: 2309 year: 2008 end-page: 2325 article-title: Identification of gaps in mangrove forests with airborne LIDAR publication-title: Remote Sensing of Environment – volume: 32 year: 2021 article-title: Tree death and damage: A standardized protocol for frequent surveys in tropical forests publication-title: Journal of Vegetation Science – volume: 233 start-page: 612 year: 2021 end-page: 617 article-title: Deciphering the fingerprint of disturbance on the three‐dimensional structure of the world's forests publication-title: The New Phytologist – volume: 11 start-page: 554 year: 2008 end-page: 563 article-title: Clustered disturbances lead to bias in large‐scale estimates based on forest sample plots publication-title: Ecology Letters – ident: e_1_2_9_47_1 doi: 10.1111/nph.16260 – ident: e_1_2_9_23_1 doi: 10.1371/journal.pone.0132144 – ident: e_1_2_9_12_1 doi: 10.1038/s41598-020-80809-w – ident: e_1_2_9_16_1 doi: 10.1038/s41467-020-18996-3 – ident: e_1_2_9_44_1 doi: 10.1111/j.1654-1103.2012.01491.x – ident: e_1_2_9_39_1 doi: 10.1101/2021.05.03.442416 – ident: e_1_2_9_20_1 doi: 10.1111/gcb.15423 – ident: e_1_2_9_43_1 doi: 10.1111/1365-2745.13076 – ident: e_1_2_9_10_1 doi: 10.1111/ele.13978 – ident: e_1_2_9_8_1 doi: 10.1073/pnas.1202894110 – ident: e_1_2_9_41_1 doi: 10.1007/BF00044908 – ident: e_1_2_9_27_1 doi: 10.1186/s13021-015-0013-x – ident: e_1_2_9_26_1 doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – ident: e_1_2_9_25_1 doi: 10.1111/j.1461-0248.2009.01345.x – ident: e_1_2_9_32_1 doi: 10.1016/j.rse.2011.07.015 – ident: e_1_2_9_3_1 doi: 10.1002/2017GL073564 – ident: e_1_2_9_19_1 doi: 10.1002/fee.2085 – ident: e_1_2_9_42_1 doi: 10.3390/rs9101068 – ident: e_1_2_9_38_1 – ident: e_1_2_9_13_1 doi: 10.1046/j.1365-2745.1998.00295.x – ident: e_1_2_9_35_1 – ident: e_1_2_9_4_1 doi: 10.1111/nph.15381 – ident: e_1_2_9_14_1 doi: 10.1038/ncomms4434 – ident: e_1_2_9_33_1 doi: 10.1088/1748-9326/aabe9f – ident: e_1_2_9_24_1 doi: 10.1111/nph.17729 – ident: e_1_2_9_5_1 doi: 10.1111/jvs.12981 – ident: e_1_2_9_18_1 doi: 10.1111/gcb.15227 – ident: e_1_2_9_50_1 doi: 10.3390/rs8060501 – ident: e_1_2_9_49_1 doi: 10.1016/j.rse.2007.10.003 – start-page: 3 volume-title: The ecology of natural disturbance and patch dynamics year: 1985 ident: e_1_2_9_45_1 – ident: e_1_2_9_28_1 doi: 10.1111/nph.15110 – volume-title: Tropical trees as living systems year: 1978 ident: e_1_2_9_21_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.foreco.2006.10.026 – volume-title: Floresta Tropical Úmida year: 2009 ident: e_1_2_9_36_1 – ident: e_1_2_9_22_1 doi: 10.1016/j.jag.2022.102780 – ident: e_1_2_9_29_1 doi: 10.1371/journal.pone.0103711 – ident: e_1_2_9_31_1 doi: 10.1007/s11676-014-0521-7 – ident: e_1_2_9_17_1 doi: 10.1111/j.1461-0248.2008.01169.x – ident: e_1_2_9_40_1 – ident: e_1_2_9_30_1 doi: 10.1111/gcb.14457 – ident: e_1_2_9_7_1 doi: 10.14214/sf.76 – ident: e_1_2_9_46_1 doi: 10.2307/1940195 – ident: e_1_2_9_11_1 doi: 10.3390/rs11070817 – volume: 2021 start-page: 1 year: 2021 ident: e_1_2_9_2_1 article-title: Strong temporal variation in treefall and branchfall rates in a tropical forest is explained by rainfall: Results from five years of monthly drone data for a 50‐ha plot publication-title: Biogeosciences Discussions – ident: e_1_2_9_37_1 – ident: e_1_2_9_48_1 doi: 10.2307/1941119 – ident: e_1_2_9_9_1 – ident: e_1_2_9_15_1 doi: 10.1029/2010GL043146 – ident: e_1_2_9_6_1 doi: 10.1371/journal.pone.0060875 |
SSID | ssj0009504 |
Score | 2.4282513 |
Snippet | Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 755 |
SubjectTerms | Airborne lasers Amazon Amazonia biomass production Canopies Canopy Canopy gaps Disturbances Dynamics forest dynamics Forest ecosystems forest stands gap fraction gap recovery Laser applications Lasers Plant cover Recovery Steady state Tracking tropical Forest Tropical forests |
Title | Out of steady state: Tracking canopy gap dynamics across Brazilian Amazon |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbtp.13226 https://www.proquest.com/docview/2834160778 https://www.proquest.com/docview/2849884168 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEHzxW5xOieKDLx1rk7apPm2yoYIfiIM9CCVfFVHbsXUP219vLm3nFAXxpQ30SpPcXXO53P0OoZNIKVckLeVo4gYOZeYiCA8dwYkUiZsIpiAb-eY2uOzT64E_qKHzKhemwIeYO9xAM-z_GhSci_GCkot82IStFMBtQ6wWGEQP3gLgbqtAYIbYLmOll6hCEMUzf_PrWvRpYC6aqXad6a2hp6qHRXjJa3OSi6acfQNv_OcQ1tFqaX_idiEwG6im0020XFSknJpW16JYT7fQ1d0kx1mCrRRMsU08OsNmaZPgXMeGI9lwip_5EKuiqP0YcztM3Bnx2Qt4T3D7nc-ydBv1e93Hi0unrLvgSGJ2EA4jzI9YpDi10C-ekoL4UoeSUGFuiQwUUZwwFYgkES3JuRfRSDLJNeWJG5IdtJRmqd5FmKowCkUrVFQzyM1i3NUBVV4gfeERX9XRacWBWJag5FAb4y2uNidmjmI7R3V0PCcdFkgcPxE1KjbGpTKOYzMGCjh6Iaujo_ljo0ZwNsJTnU2AhkYMjmANzanl2e8fiTuP97ax93fSfbQCheqLQN8GWspHE31gzJlcHFq5_QCKyPDM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQhexmAgOsbmIR72kiqJncSZ9rKhVt3YCkKd1Jcp8lcQApKqTR_avx6fk3RlYhLaS2IpF8X2-eK7893vAD6mWgcy97VnaBB7jNuLpCLxpKBK5kEuucZs5OthPLhhl-NovAGnbS5MjQ-xcrihZLj_NQo4OqTXpFxWky7aUvET2MKK3s6g-hauQe76NQYzRndZPb3BFcI4ntWrf-9GdyrmuqLqdpr-C7ht-1gHmPzszivZVct78I2PHcQObDcqKDmr18xL2DDFK3haF6Vc2FbPAVkvduHiy7wiZU7cQlgQl3t0QuzuptC_TixTysmCfBcTouu69jMi3DjJ-VQsf6ADhZz9FsuyeA03_d7o08BrSi94ilojwuOURylPtWAO_SXUStJImURRJu0tV7GmWlCuY5nn0ldChClLFVfCMJEHCX0Dm0VZmLdAmE7SRPqJZoZjehYXgYmZDmMVyZBGugPHLQsy1eCSY3mMX1lrn9g5ytwcdeDDinRSg3H8i2i_5WPWyOMss2NgCKWX8A4crR5bScLjEVGYco40LOV4Cmtpjh3THv5Idj766hp7_096CM8Go-ur7Opi-PkdPMe69XXc7z5sVtO5eW-1m0oeuEX8B5bB9Oc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BFYhLKS916QJuxYFLVknsJE458VoBpRQhkDggRX5WCEgiNnvY_fW1nWRZqiJVXBJLmSi2ZyaesWe-AdhJpQy49qWncBB7hJoLxyzxOMOC60BzKm028s-L-OSGnN1GtzOw1-bC1PgQkw03qxnuf20VvJR6Ssl5VfasKxXPwgcS-9SK9NFVOIW469cQzDa4y5jpDayQDeOZvPp6MXqxMKftVLfQ9Jfgru1iHV_y0BtWvCfGf6E3vnMMn-BjY4Ci_VpilmFG5SswX5ekHJnWsYOxHq3C6a9hhQqNnBiMkMs8-o7M2ibs7joyLCnKEfrNSiTrqvYDxNww0cEzG9_b7RO0_8TGRb4GN_3j68MTrym84AlsXAiPYhqlNJWMOOyXUAqOI6ESgQk3Ny1iiSXDVMZca-4LxsKUpIIKpgjTQYLXYS4vcvUZEJFJmnA_kURRm5xFWaBiIsNYRDzEkezAbsuBTDSo5LY4xmPWeidmjjI3Rx34NiEtayiOfxF1WzZmjTYOMjMGYoH0EtqBr5PHRo_s4QjLVTG0NCSl9gzW0Ow6nr39kezg-tI1Nv6fdBsWLo_62fnpxY8vsGiL1tdBv12Yq56HatOYNhXfciL8B93w858 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out+of+steady+state%3A+Tracking+canopy+gap+dynamics+across+Brazilian+Amazon&rft.jtitle=Biotropica&rft.au=Gorgens%2C+Eric+Bastos&rft.au=Keller%2C+Michael&rft.au=Jackson%2C+Toby&rft.au=Marra%2C+Daniel+Magnabosco&rft.date=2023-07-01&rft.issn=0006-3606&rft.eissn=1744-7429&rft.volume=55&rft.issue=4&rft.spage=755&rft.epage=766&rft_id=info:doi/10.1111%2Fbtp.13226&rft.externalDBID=10.1111%252Fbtp.13226&rft.externalDocID=BTP13226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon |