Exact and approximation product solutions form of heat equation with nonlocal boundary conditions using Ritz–Galerkin method with Bernoulli polynomials basis

In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli...

Full description

Saved in:
Bibliographic Details
Published inNumerical methods for partial differential equations Vol. 33; no. 4; pp. 1143 - 1158
Main Authors Barikbin, Z., Keshavarz Hedayati, E.
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017
AbstractList In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz-Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz-Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. [copy 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143-1158, 2017
Author Barikbin, Z.
Keshavarz Hedayati, E.
Author_xml – sequence: 1
  givenname: Z.
  surname: Barikbin
  fullname: Barikbin, Z.
  email: barikbin@ikiu.ac.ir
  organization: Imam Khomeini International University
– sequence: 2
  givenname: E.
  surname: Keshavarz Hedayati
  fullname: Keshavarz Hedayati, E.
  organization: Buein Zahra Technical University
BookMark eNp9kUtuFDEQhi0UJCaBBTewxAYWnfjRLy8hSkKkABIiErtWtbuGcXDbEz-UDCvuwAFyN06Ck2YVCVa2y9__q6r-fbLnvENCXnJ2yBkTRy7Ph0Jw2T4hK85UX4latHtkxbpaVbxRX5-R_RivGOO84WpF7k5uQScKbqKw3QZ_a2ZIxjta7lMuP9HbfF-IdO3DTP2abhASxeu8cDcmbWhpwnoNlo4-uwnCjmrvJrPocjTuG_1s0o_fP3-dgcXw3Tg6Y9r4aZG_w-B8ttbQrbc752cDNtIRoonPydN1eeCLv-cBuTw9-XL8vrr4dHZ-_Pai0lKytuqkAtboUQKfQE-TQhDYItOglOhbLhF1DRrbTvTQMw6qwbGrUU7t2HdayQPyevEtc19njGmYTdRoLTj0OQ5csVrUXS-agr56hF75HFzpbuC94n1TM1kX6s1C6eBjDLgetqHsNuwGzob7qIYS1fAQVWGPHrHapIf1pgDG_k9xYyzu_m09fLz8sCj-AFh3rXw
CitedBy_id crossref_primary_10_1007_s40314_022_01908_0
crossref_primary_10_1002_mma_7601
crossref_primary_10_3390_computation6030040
crossref_primary_10_1515_phys_2022_0221
crossref_primary_10_1002_mma_8607
crossref_primary_10_1002_num_22411
Cites_doi 10.1016/j.na.2007.07.008
10.1080/00207729408928967
10.1016/S0377-0427(96)00097-0
10.1016/S0096-3003(02)00479-4
10.1016/j.cam.2011.05.038
10.1016/S0307-904X(03)00050-7
10.32917/hmj/1206126957
10.1016/j.enganabound.2010.10.006
10.1002/num.20071
10.1080/00207160412331284060
10.1016/j.apm.2012.07.014
10.1090/qam/1178432
10.1016/j.apnum.2004.02.002
10.1016/j.cam.2009.01.012
10.1177/1077546314567181
10.1017/CBO9781139086967
10.1016/j.apm.2008.03.006
10.1016/j.chaos.2005.11.010
10.1016/j.amc.2005.08.011
10.1016/j.amc.2008.03.008
10.1016/j.na.2007.02.006
10.1016/S0362-546X(96)00003-X
10.1002/num.20297
10.1016/j.apm.2014.04.064
10.1090/qam/860893
10.1007/BF01931285
10.1016/0020-7225(90)90086-X
10.1016/0020-7225(90)90056-O
10.1016/0022-0396(89)90103-4
10.1002/num.20299
10.1017/S0334270000010560
10.1016/S0377-0427(99)00200-9
10.1108/09615531211188784
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.22136
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 1158
ExternalDocumentID 4321995869
10_1002_num_22136
NUM22136
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3306-739a05cb3a1dacdd9ea2e6e0ca9928613eec4ace6728a801a95eb74e3d6b87c93
IEDL.DBID DR2
ISSN 0749-159X
IngestDate Fri Jul 11 03:45:23 EDT 2025
Fri Jul 25 12:15:31 EDT 2025
Tue Jul 01 03:28:33 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Jan 22 16:25:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3306-739a05cb3a1dacdd9ea2e6e0ca9928613eec4ace6728a801a95eb74e3d6b87c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1891854034
PQPubID 1016406
PageCount 17
ParticipantIDs proquest_miscellaneous_1904247825
proquest_journals_1891854034
crossref_primary_10_1002_num_22136
crossref_citationtrail_10_1002_num_22136
wiley_primary_10_1002_num_22136_NUM22136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 235
2011; 217
2004; 81
1991; 31
1984; 23
2015; 10
1994; 25
1997; 27
2006; 175
2011; 35
2008; 202
1999; 40
2009; 230
2007; 32
1996; 76
1992; 50
1978
2005; 25
2009; 33
2002; 26
1997; 128
2013; 37
1990; 28
1986; 44
2006; 22
2006; 26
2008; 69
2014; 38
1999; 110
1985
1999; 10
2008; 68
2008; 24
2003; 27
2014
1989; 79
2003; 145
2012; 22
2016; 22
Ang W. T. (e_1_2_6_25_1) 2002; 26
e_1_2_6_32_1
Bouziani A. (e_1_2_6_3_1) 1997; 27
e_1_2_6_10_1
Kunter F. C. (e_1_2_6_13_1) 2011; 217
e_1_2_6_31_1
e_1_2_6_30_1
Bouziani A. (e_1_2_6_2_1) 1999; 10
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
Costabile F. (e_1_2_6_40_1) 2006; 26
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_43_1
e_1_2_6_21_1
Kreyszig E. (e_1_2_6_42_1) 1978
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
Arfken G. (e_1_2_6_41_1) 1985
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_22_1
Tohidi E. (e_1_2_6_23_1) 2014
e_1_2_6_29_1
Doha E. H. (e_1_2_6_24_1) 2015; 10
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 1985
– volume: 32
  start-page: 661
  year: 2007
  end-page: 675
  article-title: The one‐dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Solitons Fractals
– volume: 76
  start-page: 137
  year: 1996
  end-page: 146
  article-title: A second‐order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions
  publication-title: J Comput Appl Math
– volume: 69
  start-page: 1515
  year: 2008
  end-page: 1524
  article-title: Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions
  publication-title: Nonlinear Anal.
– volume: 10
  start-page: 61
  year: 1999
  end-page: 77
  article-title: On a class of parabolic equations with a nonlocal boundary condition
  publication-title: Acad Roy Belg Bull Cl Sci
– volume: 28
  start-page: 573
  issue: 7
  year: 1990
  end-page: 578
  article-title: An implicit finite difference scheme for the diffusion equation subject to the specification of mass
  publication-title: Int J Eng Sci
– volume: 24
  start-page: 924
  year: 2008
  end-page: 938
  article-title: Use of radial basis functions for solving the second‐order parabolic equation with nonlocal boundary conditions
  publication-title: Numer Methods Partial Differential Equations
– volume: 50
  start-page: 523
  year: 1992
  end-page: 533
  article-title: Parabolic equations and thermodynamics
  publication-title: Quart Appl Math
– volume: 22
  start-page: 220
  year: 2006
  end-page: 257
  article-title: A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer Methods Partial Differential Equations
– volume: 175
  start-page: 969
  year: 2006
  end-page: 979
  article-title: Numerical solution of a non‐classical parabolic problem: An integro‐differential approach
  publication-title: Appl Math Comput
– volume: 22
  start-page: 3889
  issue: 18
  year: 2016
  end-page: 3903
  article-title: A numerical solution for fractional optimal control problems via Bernoulli polynomials
  publication-title: J Vib Control
– volume: 33
  start-page: 1729
  year: 2009
  end-page: 1738
  article-title: On the solution of the non‐local parabolic partial differential equations via radial basis functions
  publication-title: Appl Math Modell
– volume: 40
  start-page: 475
  year: 1999
  end-page: 483
  article-title: On the numerical solution of the diffusion equation subject to the specification of mass
  publication-title: J Austral Math Soc Ser B
– volume: 25
  start-page: 39
  year: 2005
  end-page: 62
  article-title: Efficient techniques for the second‐order parabolic equation subject to nonlocal specifications
  publication-title: Appl Numer Math
– volume: 230
  start-page: 770
  issue: 2
  year: 2009
  end-page: 780
  article-title: Numerical algorithm for parabolic problems with non‐classical conditions
  publication-title: J Comput Appl Math
– volume: 27
  start-page: 471
  year: 2003
  end-page: 485
  article-title: Hybrid functions approach for linearly constrained quadratic optimal control problems
  publication-title: Appl Math Model
– volume: 38
  start-page: 6038
  issue: 24
  year: 2014
  end-page: 6051
  article-title: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations
  publication-title: Appl Math Model
– volume: 217
  start-page: 10305
  year: 2011
  end-page: 10316
  article-title: Radially symmetric weighted extended b‐spline model
  publication-title: Appl Math Comput
– start-page: 6
  year: 2014
  article-title: An efficient spectral approximation for Solving several types of parabolic PDEs with nonlocal boundary conditions
  publication-title: Math Probl Eng
– volume: 10
  start-page: 13
  issue: 2
  year: 2015
  article-title: An accurate Jacobi pseudo‐spectral algorithm for parabolic partial differential equations with non‐local boundary conditions
  publication-title: J Comput Nonlinear Dyn
– volume: 37
  start-page: 3355
  year: 2013
  end-page: 3368
  article-title: Hybrid functions approach for optimal control of systems described by integro‐differential equations
  publication-title: Appl Math Model
– volume: 81
  start-page: 1427
  year: 2004
  end-page: 1432
  article-title: A Tau method approximation for the diffusion equation with nonlocal boundary conditions
  publication-title: Int J Comput Math
– volume: 26
  start-page: 1
  year: 2006
  end-page: 12
  article-title: A new approach to Bernoulli polynomials
  publication-title: Rendiconti di Matemat Ser VII
– volume: 202
  start-page: 708
  year: 2008
  end-page: 714
  article-title: The solution of a parabolic differential equation with non‐local boundary conditions in the reproducing kernel space
  publication-title: Appl Math Comput
– volume: 35
  start-page: 639
  year: 2011
  end-page: 646
  article-title: 3D web‐splines solution to human eye heat distribution using bioheat equation
  publication-title: Eng Anal Bound Elem
– volume: 26
  start-page: 197
  year: 2002
  end-page: 203
  article-title: A method of solution for the one‐dimensional heat equation subject to nonlocal conditions
  publication-title: SEA Bull Maths
– volume: 145
  start-page: 185
  year: 2003
  end-page: 194
  article-title: Numerical solution of a parabolic equation with non‐local boundary specifications
  publication-title: Appl Math Comput
– volume: 27
  start-page: 373
  year: 1997
  end-page: 390
  article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations
  publication-title: Hiroshima Math J
– volume: 23
  year: 1984
– volume: 110
  start-page: 115
  year: 1999
  end-page: 127
  article-title: Numerical solution of the heat equation with nonlocal boundary conditions
  publication-title: J Comput Appl Math
– volume: 28
  start-page: 543
  year: 1990
  end-page: 546
  article-title: A numerical method for the diffusion equation with nonlocal boundary specifications
  publication-title: Int J Eng Sci
– volume: 128
  start-page: 1533
  year: 1997
  end-page: 1543
  article-title: General nonlocal nonlinear boundary value problem for differential equation of 3rd order
  publication-title: Nonlinear Anal
– volume: 31
  start-page: 245
  year: 1991
  end-page: 255
  article-title: Finite difference methods for a non‐local boundary value problem for the heat equation
  publication-title: BIT
– volume: 44
  start-page: 401
  year: 1986
  end-page: 407
  article-title: Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions
  publication-title: Quart Appl Math
– volume: 68
  start-page: 2594
  year: 2008
  end-page: 2607
  article-title: On a singular two dimensional nonlinear evolution equation with nonlocal conditions
  publication-title: Nonlinear Anal
– volume: 25
  start-page: 393
  year: 1994
  end-page: 399
  article-title: Linear quadratic optimal control problems via shifted Legendre state parametrization
  publication-title: Int J Syst Sci
– volume: 235
  start-page: 5272
  year: 2011
  end-page: 5283
  article-title: The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass
  publication-title: J Comput Appl Math
– volume: 24
  start-page: 950
  year: 2008
  end-page: 959
  article-title: Composite spectral method for solution of the diffusion equation with specification of energy
  publication-title: Numer Methods Partial Differential Equations
– year: 1978
– volume: 22
  start-page: 39
  year: 2012
  end-page: 48
  article-title: Ritz‐Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non‐classic boundary conditions
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 79
  start-page: 266
  year: 1989
  end-page: 288
  article-title: On a class of non‐classical parabolic problems
  publication-title: J Differential Equations
– volume: 10
  start-page: 61
  year: 1999
  ident: e_1_2_6_2_1
  article-title: On a class of parabolic equations with a nonlocal boundary condition
  publication-title: Acad Roy Belg Bull Cl Sci
– ident: e_1_2_6_21_1
  doi: 10.1016/j.na.2007.07.008
– ident: e_1_2_6_36_1
  doi: 10.1080/00207729408928967
– ident: e_1_2_6_34_1
  doi: 10.1016/S0377-0427(96)00097-0
– ident: e_1_2_6_17_1
  doi: 10.1016/S0096-3003(02)00479-4
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cam.2011.05.038
– ident: e_1_2_6_35_1
  doi: 10.1016/S0307-904X(03)00050-7
– volume: 27
  start-page: 373
  year: 1997
  ident: e_1_2_6_3_1
  article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations
  publication-title: Hiroshima Math J
  doi: 10.32917/hmj/1206126957
– ident: e_1_2_6_12_1
  doi: 10.1016/j.enganabound.2010.10.006
– ident: e_1_2_6_14_1
  doi: 10.1002/num.20071
– ident: e_1_2_6_33_1
  doi: 10.1080/00207160412331284060
– ident: e_1_2_6_38_1
  doi: 10.1016/j.apm.2012.07.014
– ident: e_1_2_6_7_1
  doi: 10.1090/qam/1178432
– ident: e_1_2_6_15_1
  doi: 10.1016/j.apnum.2004.02.002
– ident: e_1_2_6_22_1
  doi: 10.1016/j.cam.2009.01.012
– ident: e_1_2_6_43_1
  doi: 10.1177/1077546314567181
– ident: e_1_2_6_6_1
  doi: 10.1017/CBO9781139086967
– volume: 26
  start-page: 197
  year: 2002
  ident: e_1_2_6_25_1
  article-title: A method of solution for the one‐dimensional heat equation subject to nonlocal conditions
  publication-title: SEA Bull Maths
– ident: e_1_2_6_20_1
  doi: 10.1016/j.apm.2008.03.006
– ident: e_1_2_6_11_1
  doi: 10.1016/j.chaos.2005.11.010
– ident: e_1_2_6_26_1
  doi: 10.1016/j.amc.2005.08.011
– ident: e_1_2_6_31_1
  doi: 10.1016/j.amc.2008.03.008
– ident: e_1_2_6_10_1
  doi: 10.1016/j.na.2007.02.006
– ident: e_1_2_6_9_1
  doi: 10.1016/S0362-546X(96)00003-X
– ident: e_1_2_6_28_1
  doi: 10.1002/num.20297
– ident: e_1_2_6_37_1
  doi: 10.1016/j.apm.2014.04.064
– volume-title: Introductory functional analysis with applications
  year: 1978
  ident: e_1_2_6_42_1
– ident: e_1_2_6_8_1
  doi: 10.1090/qam/860893
– ident: e_1_2_6_29_1
  doi: 10.1007/BF01931285
– ident: e_1_2_6_4_1
  doi: 10.1016/0020-7225(90)90086-X
– volume: 217
  start-page: 10305
  year: 2011
  ident: e_1_2_6_13_1
  article-title: Radially symmetric weighted extended b‐spline model
  publication-title: Appl Math Comput
– volume-title: Mathematical methods for physicists
  year: 1985
  ident: e_1_2_6_41_1
– ident: e_1_2_6_16_1
  doi: 10.1016/0020-7225(90)90056-O
– ident: e_1_2_6_5_1
  doi: 10.1016/0022-0396(89)90103-4
– ident: e_1_2_6_18_1
  doi: 10.1016/j.amc.2008.03.008
– start-page: 6
  year: 2014
  ident: e_1_2_6_23_1
  article-title: An efficient spectral approximation for Solving several types of parabolic PDEs with nonlocal boundary conditions
  publication-title: Math Probl Eng
– ident: e_1_2_6_27_1
  doi: 10.1002/num.20299
– volume: 10
  start-page: 13
  issue: 2
  year: 2015
  ident: e_1_2_6_24_1
  article-title: An accurate Jacobi pseudo‐spectral algorithm for parabolic partial differential equations with non‐local boundary conditions
  publication-title: J Comput Nonlinear Dyn
– ident: e_1_2_6_30_1
  doi: 10.1017/S0334270000010560
– ident: e_1_2_6_32_1
  doi: 10.1016/S0377-0427(99)00200-9
– volume: 26
  start-page: 1
  year: 2006
  ident: e_1_2_6_40_1
  article-title: A new approach to Bernoulli polynomials
  publication-title: Rendiconti di Matemat Ser VII
– ident: e_1_2_6_39_1
  doi: 10.1108/09615531211188784
SSID ssj0011519
Score 2.1477396
Snippet In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1143
SubjectTerms Approximation
Bernoulli polynomials basis
Boundary conditions
boundary value problem
Differential equations
Exact solutions
Heat equations
integral boundary conditions
Mathematical analysis
Mathematical models
one‐dimensional parabolic equation
Polynomials
product solution
Ritz–Galerkin method
Title Exact and approximation product solutions form of heat equation with nonlocal boundary conditions using Ritz–Galerkin method with Bernoulli polynomials basis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22136
https://www.proquest.com/docview/1891854034
https://www.proquest.com/docview/1904247825
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuDAG7FQ0IA4cMk2fuRhcQLUUiFtDxUr7QEp8gu0omSX3azU9sR_4Afw3_glzNibUBBIiFuk2ImTzOT7bM98w9hT42teeC4z7rTOVO10ZpSoMl8XiIdC2pJTNvLkuDyaqjezYrbDnve5MEkfYlhwI8-I_2tycGPX-5dEQzefxkJwSXLbFKtFhOhkkI5CohOLeiBC6gwhe9arCuVif-j5Kxb9JJiXaWrEmcPr7F0_whRe8nG86ezYXfwm3vifj3CDXdvyT3iRDOYm2wntLXZ1Moi3rm-zbwdnxnVgWg9RcfxsntIbYZnUYWEwVyDGC4v3QH90CJ-TbDjQ2i60OEDCSbCxcNPqHHDm7VOAGFC0_Qc4mXcX3798fY0YRSv2kKpZp-4vw6pd0EYVLBen55Q7jX4CiLnz9R02PTx4--oo29ZxyJzEGUlWSW3ywllpuDfOex2MCGXIndFa1MgnQnDKuFBWojaImEYXwVYqSF_aunJa3mW7OOhwj4EpXV1azytT5op7nK4pi4Ba24orvLoYsWf9F23cVuScam2cNkmeWVChlSa-8xF7MjRdJmWPPzXa682i2Tr3uuG1RpajcqlG7PFwGt2S9lpMGxYbbKNpTxnpV4FDijbw95s0x9NJPLj_700fsCuCCEYMHN5ju91qEx4iPerso-gHPwBclxGU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOQAH_isWCgyIA5dsY8dJbIlLQS0LdPdQdaW9oMh_oBUlu-xmpbYn3oEH4N14ko7tTSgIJMQtUuzESTz5vhl7viHkmbKC5pZmCTVSJlwYmSjOysSKHPGQZbqgPht5OCoGY_52kk82yIs2FybqQ3QBN28Z4X_tDdwHpHcuqIauPvcZo1lxiVz2Fb2DQ3XYiUch1QllPRAjZYKgPWl1hVK203X9FY1-UsyLRDUgzf4N8r4dY9xg8qm_anTfnP0m3_i_D3GTXF9TUNiNc-YW2XD1bXJt2Om3Lu-Q73snyjSgagtBdPxkGjMcYR4FYqGbseBJL8w-gP-pg_sSlcPBh3ehxhF6qAQdajctTgGdbxv3iIHfcP8RDqfN2Y-v314jTPmgPcSC1rH7S7eoZ36tCuaz41OfPo2mAgi70-VdMt7fO3o1SNalHBKToVOSlJlUaW50pqhVxlrpFHOFS42SkgmkFM4ZrowrSiYUgqaSudMld5kttCiNzLbIJg7a3SOgCiMKbWmpipRTix4b14ipQpeU49VZjzxvP2ll1jrnvtzGcRUVmpmvtVKFd94jT7um8yju8adG2-28qNb2vayokEh0eJrxHnnSnUbL9MstqnazFbaRflkZGViOQwqT4O83qUbjYTi4_-9NH5Mrg6PhQXXwZvTuAbmKTE7G2NA22WwWK_cQ2VKjHwWjOAdMPxWr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VIiFY8K4IFBgQCzZOPQ-PZ8QKaEN5JEIVkbJAsuZVFFGckDhS2xX_wAfwb3wJd2ZiUxBIiJ0l37HH9r0-Zx73XIQeaSdJ4QjLiFUq49KqTHNaZk4WgIeUGUFCNvJwJPbH_NWkmGygJ20uTNKH6CbcQmTE_3UI8Lk73DkjGrr61KeUMHEOnecil8Gldw867ShgOrGqB0CkygCzJ62sUE53uqa_gtFPhnmWp0agGVxB79supv0lH_urxvTt6W_qjf_5DFfR5TUBxU-Tx1xDG76-ji4NO_XW5Q30be9Y2wbr2uEoOX48TfmNeJ7kYXHnrzhQXjw7xOGXjv3npBuOw-QurqGDASixiZWbFicYht4u7RDDYbv9B3wwbU6_f_n6AkAqTNnjVM46NX_mF_UsrFTh-ezoJCRPQ6BgAN3p8iYaD_bePd_P1oUcMstgSJKVTOm8sIZp4rR1TnlNvfC51UpRCYTCe8u19aKkUgNkalV4U3LPnDCytIptoU3otL-FsBZWCuNIqUXOiYPxGjeAqNKUhMPVaQ89br9oZdcq56HYxlGV9JlpqLRSxXfeQw8703mS9viT0XbrFtU6upcVkQpoDs8Z76EH3WmIy7DYoms_W4GNCovKwL8K6FL0gb_fpBqNh_Hg9r-b3kcX3u4OqjcvR6_voIs0kI24iXgbbTaLlb8LVKkx92JI_AAr3RRn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+and+approximation+product+solutions+form+of+heat+equation+with+nonlocal+boundary+conditions+using+Ritz-Galerkin+method+with+Bernoulli+polynomials+basis&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Barikbin%2C+Z&rft.au=Keshavarz+Hedayati%2C+E&rft.date=2017-07-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=33&rft.issue=4&rft.spage=1143&rft.epage=1158&rft_id=info:doi/10.1002%2Fnum.22136&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon