Exact and approximation product solutions form of heat equation with nonlocal boundary conditions using Ritz–Galerkin method with Bernoulli polynomials basis
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli...
Saved in:
Published in | Numerical methods for partial differential equations Vol. 33; no. 4; pp. 1143 - 1158 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Wiley Subscription Services, Inc
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017 |
---|---|
AbstractList | In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017 In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz-Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz-Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. [copy 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143-1158, 2017 |
Author | Barikbin, Z. Keshavarz Hedayati, E. |
Author_xml | – sequence: 1 givenname: Z. surname: Barikbin fullname: Barikbin, Z. email: barikbin@ikiu.ac.ir organization: Imam Khomeini International University – sequence: 2 givenname: E. surname: Keshavarz Hedayati fullname: Keshavarz Hedayati, E. organization: Buein Zahra Technical University |
BookMark | eNp9kUtuFDEQhi0UJCaBBTewxAYWnfjRLy8hSkKkABIiErtWtbuGcXDbEz-UDCvuwAFyN06Ck2YVCVa2y9__q6r-fbLnvENCXnJ2yBkTRy7Ph0Jw2T4hK85UX4latHtkxbpaVbxRX5-R_RivGOO84WpF7k5uQScKbqKw3QZ_a2ZIxjta7lMuP9HbfF-IdO3DTP2abhASxeu8cDcmbWhpwnoNlo4-uwnCjmrvJrPocjTuG_1s0o_fP3-dgcXw3Tg6Y9r4aZG_w-B8ttbQrbc752cDNtIRoonPydN1eeCLv-cBuTw9-XL8vrr4dHZ-_Pai0lKytuqkAtboUQKfQE-TQhDYItOglOhbLhF1DRrbTvTQMw6qwbGrUU7t2HdayQPyevEtc19njGmYTdRoLTj0OQ5csVrUXS-agr56hF75HFzpbuC94n1TM1kX6s1C6eBjDLgetqHsNuwGzob7qIYS1fAQVWGPHrHapIf1pgDG_k9xYyzu_m09fLz8sCj-AFh3rXw |
CitedBy_id | crossref_primary_10_1007_s40314_022_01908_0 crossref_primary_10_1002_mma_7601 crossref_primary_10_3390_computation6030040 crossref_primary_10_1515_phys_2022_0221 crossref_primary_10_1002_mma_8607 crossref_primary_10_1002_num_22411 |
Cites_doi | 10.1016/j.na.2007.07.008 10.1080/00207729408928967 10.1016/S0377-0427(96)00097-0 10.1016/S0096-3003(02)00479-4 10.1016/j.cam.2011.05.038 10.1016/S0307-904X(03)00050-7 10.32917/hmj/1206126957 10.1016/j.enganabound.2010.10.006 10.1002/num.20071 10.1080/00207160412331284060 10.1016/j.apm.2012.07.014 10.1090/qam/1178432 10.1016/j.apnum.2004.02.002 10.1016/j.cam.2009.01.012 10.1177/1077546314567181 10.1017/CBO9781139086967 10.1016/j.apm.2008.03.006 10.1016/j.chaos.2005.11.010 10.1016/j.amc.2005.08.011 10.1016/j.amc.2008.03.008 10.1016/j.na.2007.02.006 10.1016/S0362-546X(96)00003-X 10.1002/num.20297 10.1016/j.apm.2014.04.064 10.1090/qam/860893 10.1007/BF01931285 10.1016/0020-7225(90)90086-X 10.1016/0020-7225(90)90056-O 10.1016/0022-0396(89)90103-4 10.1002/num.20299 10.1017/S0334270000010560 10.1016/S0377-0427(99)00200-9 10.1108/09615531211188784 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/num.22136 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2426 |
EndPage | 1158 |
ExternalDocumentID | 4321995869 10_1002_num_22136 NUM22136 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3306-739a05cb3a1dacdd9ea2e6e0ca9928613eec4ace6728a801a95eb74e3d6b87c93 |
IEDL.DBID | DR2 |
ISSN | 0749-159X |
IngestDate | Fri Jul 11 03:45:23 EDT 2025 Fri Jul 25 12:15:31 EDT 2025 Tue Jul 01 03:28:33 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Wed Jan 22 16:25:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3306-739a05cb3a1dacdd9ea2e6e0ca9928613eec4ace6728a801a95eb74e3d6b87c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1891854034 |
PQPubID | 1016406 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1904247825 proquest_journals_1891854034 crossref_primary_10_1002_num_22136 crossref_citationtrail_10_1002_num_22136 wiley_primary_10_1002_num_22136_NUM22136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2017 2017-07-00 20170701 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Numerical methods for partial differential equations |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 235 2011; 217 2004; 81 1991; 31 1984; 23 2015; 10 1994; 25 1997; 27 2006; 175 2011; 35 2008; 202 1999; 40 2009; 230 2007; 32 1996; 76 1992; 50 1978 2005; 25 2009; 33 2002; 26 1997; 128 2013; 37 1990; 28 1986; 44 2006; 22 2006; 26 2008; 69 2014; 38 1999; 110 1985 1999; 10 2008; 68 2008; 24 2003; 27 2014 1989; 79 2003; 145 2012; 22 2016; 22 Ang W. T. (e_1_2_6_25_1) 2002; 26 e_1_2_6_32_1 Bouziani A. (e_1_2_6_3_1) 1997; 27 e_1_2_6_10_1 Kunter F. C. (e_1_2_6_13_1) 2011; 217 e_1_2_6_31_1 e_1_2_6_30_1 Bouziani A. (e_1_2_6_2_1) 1999; 10 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 Costabile F. (e_1_2_6_40_1) 2006; 26 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_43_1 e_1_2_6_21_1 Kreyszig E. (e_1_2_6_42_1) 1978 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 Arfken G. (e_1_2_6_41_1) 1985 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_22_1 Tohidi E. (e_1_2_6_23_1) 2014 e_1_2_6_29_1 Doha E. H. (e_1_2_6_24_1) 2015; 10 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – year: 1985 – volume: 32 start-page: 661 year: 2007 end-page: 675 article-title: The one‐dimensional heat equation subject to a boundary integral specification publication-title: Chaos Solitons Fractals – volume: 76 start-page: 137 year: 1996 end-page: 146 article-title: A second‐order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions publication-title: J Comput Appl Math – volume: 69 start-page: 1515 year: 2008 end-page: 1524 article-title: Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions publication-title: Nonlinear Anal. – volume: 10 start-page: 61 year: 1999 end-page: 77 article-title: On a class of parabolic equations with a nonlocal boundary condition publication-title: Acad Roy Belg Bull Cl Sci – volume: 28 start-page: 573 issue: 7 year: 1990 end-page: 578 article-title: An implicit finite difference scheme for the diffusion equation subject to the specification of mass publication-title: Int J Eng Sci – volume: 24 start-page: 924 year: 2008 end-page: 938 article-title: Use of radial basis functions for solving the second‐order parabolic equation with nonlocal boundary conditions publication-title: Numer Methods Partial Differential Equations – volume: 50 start-page: 523 year: 1992 end-page: 533 article-title: Parabolic equations and thermodynamics publication-title: Quart Appl Math – volume: 22 start-page: 220 year: 2006 end-page: 257 article-title: A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications publication-title: Numer Methods Partial Differential Equations – volume: 175 start-page: 969 year: 2006 end-page: 979 article-title: Numerical solution of a non‐classical parabolic problem: An integro‐differential approach publication-title: Appl Math Comput – volume: 22 start-page: 3889 issue: 18 year: 2016 end-page: 3903 article-title: A numerical solution for fractional optimal control problems via Bernoulli polynomials publication-title: J Vib Control – volume: 33 start-page: 1729 year: 2009 end-page: 1738 article-title: On the solution of the non‐local parabolic partial differential equations via radial basis functions publication-title: Appl Math Modell – volume: 40 start-page: 475 year: 1999 end-page: 483 article-title: On the numerical solution of the diffusion equation subject to the specification of mass publication-title: J Austral Math Soc Ser B – volume: 25 start-page: 39 year: 2005 end-page: 62 article-title: Efficient techniques for the second‐order parabolic equation subject to nonlocal specifications publication-title: Appl Numer Math – volume: 230 start-page: 770 issue: 2 year: 2009 end-page: 780 article-title: Numerical algorithm for parabolic problems with non‐classical conditions publication-title: J Comput Appl Math – volume: 27 start-page: 471 year: 2003 end-page: 485 article-title: Hybrid functions approach for linearly constrained quadratic optimal control problems publication-title: Appl Math Model – volume: 38 start-page: 6038 issue: 24 year: 2014 end-page: 6051 article-title: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations publication-title: Appl Math Model – volume: 217 start-page: 10305 year: 2011 end-page: 10316 article-title: Radially symmetric weighted extended b‐spline model publication-title: Appl Math Comput – start-page: 6 year: 2014 article-title: An efficient spectral approximation for Solving several types of parabolic PDEs with nonlocal boundary conditions publication-title: Math Probl Eng – volume: 10 start-page: 13 issue: 2 year: 2015 article-title: An accurate Jacobi pseudo‐spectral algorithm for parabolic partial differential equations with non‐local boundary conditions publication-title: J Comput Nonlinear Dyn – volume: 37 start-page: 3355 year: 2013 end-page: 3368 article-title: Hybrid functions approach for optimal control of systems described by integro‐differential equations publication-title: Appl Math Model – volume: 81 start-page: 1427 year: 2004 end-page: 1432 article-title: A Tau method approximation for the diffusion equation with nonlocal boundary conditions publication-title: Int J Comput Math – volume: 26 start-page: 1 year: 2006 end-page: 12 article-title: A new approach to Bernoulli polynomials publication-title: Rendiconti di Matemat Ser VII – volume: 202 start-page: 708 year: 2008 end-page: 714 article-title: The solution of a parabolic differential equation with non‐local boundary conditions in the reproducing kernel space publication-title: Appl Math Comput – volume: 35 start-page: 639 year: 2011 end-page: 646 article-title: 3D web‐splines solution to human eye heat distribution using bioheat equation publication-title: Eng Anal Bound Elem – volume: 26 start-page: 197 year: 2002 end-page: 203 article-title: A method of solution for the one‐dimensional heat equation subject to nonlocal conditions publication-title: SEA Bull Maths – volume: 145 start-page: 185 year: 2003 end-page: 194 article-title: Numerical solution of a parabolic equation with non‐local boundary specifications publication-title: Appl Math Comput – volume: 27 start-page: 373 year: 1997 end-page: 390 article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations publication-title: Hiroshima Math J – volume: 23 year: 1984 – volume: 110 start-page: 115 year: 1999 end-page: 127 article-title: Numerical solution of the heat equation with nonlocal boundary conditions publication-title: J Comput Appl Math – volume: 28 start-page: 543 year: 1990 end-page: 546 article-title: A numerical method for the diffusion equation with nonlocal boundary specifications publication-title: Int J Eng Sci – volume: 128 start-page: 1533 year: 1997 end-page: 1543 article-title: General nonlocal nonlinear boundary value problem for differential equation of 3rd order publication-title: Nonlinear Anal – volume: 31 start-page: 245 year: 1991 end-page: 255 article-title: Finite difference methods for a non‐local boundary value problem for the heat equation publication-title: BIT – volume: 44 start-page: 401 year: 1986 end-page: 407 article-title: Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions publication-title: Quart Appl Math – volume: 68 start-page: 2594 year: 2008 end-page: 2607 article-title: On a singular two dimensional nonlinear evolution equation with nonlocal conditions publication-title: Nonlinear Anal – volume: 25 start-page: 393 year: 1994 end-page: 399 article-title: Linear quadratic optimal control problems via shifted Legendre state parametrization publication-title: Int J Syst Sci – volume: 235 start-page: 5272 year: 2011 end-page: 5283 article-title: The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass publication-title: J Comput Appl Math – volume: 24 start-page: 950 year: 2008 end-page: 959 article-title: Composite spectral method for solution of the diffusion equation with specification of energy publication-title: Numer Methods Partial Differential Equations – year: 1978 – volume: 22 start-page: 39 year: 2012 end-page: 48 article-title: Ritz‐Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non‐classic boundary conditions publication-title: Int J Numer Methods Heat Fluid Flow – volume: 79 start-page: 266 year: 1989 end-page: 288 article-title: On a class of non‐classical parabolic problems publication-title: J Differential Equations – volume: 10 start-page: 61 year: 1999 ident: e_1_2_6_2_1 article-title: On a class of parabolic equations with a nonlocal boundary condition publication-title: Acad Roy Belg Bull Cl Sci – ident: e_1_2_6_21_1 doi: 10.1016/j.na.2007.07.008 – ident: e_1_2_6_36_1 doi: 10.1080/00207729408928967 – ident: e_1_2_6_34_1 doi: 10.1016/S0377-0427(96)00097-0 – ident: e_1_2_6_17_1 doi: 10.1016/S0096-3003(02)00479-4 – ident: e_1_2_6_19_1 doi: 10.1016/j.cam.2011.05.038 – ident: e_1_2_6_35_1 doi: 10.1016/S0307-904X(03)00050-7 – volume: 27 start-page: 373 year: 1997 ident: e_1_2_6_3_1 article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations publication-title: Hiroshima Math J doi: 10.32917/hmj/1206126957 – ident: e_1_2_6_12_1 doi: 10.1016/j.enganabound.2010.10.006 – ident: e_1_2_6_14_1 doi: 10.1002/num.20071 – ident: e_1_2_6_33_1 doi: 10.1080/00207160412331284060 – ident: e_1_2_6_38_1 doi: 10.1016/j.apm.2012.07.014 – ident: e_1_2_6_7_1 doi: 10.1090/qam/1178432 – ident: e_1_2_6_15_1 doi: 10.1016/j.apnum.2004.02.002 – ident: e_1_2_6_22_1 doi: 10.1016/j.cam.2009.01.012 – ident: e_1_2_6_43_1 doi: 10.1177/1077546314567181 – ident: e_1_2_6_6_1 doi: 10.1017/CBO9781139086967 – volume: 26 start-page: 197 year: 2002 ident: e_1_2_6_25_1 article-title: A method of solution for the one‐dimensional heat equation subject to nonlocal conditions publication-title: SEA Bull Maths – ident: e_1_2_6_20_1 doi: 10.1016/j.apm.2008.03.006 – ident: e_1_2_6_11_1 doi: 10.1016/j.chaos.2005.11.010 – ident: e_1_2_6_26_1 doi: 10.1016/j.amc.2005.08.011 – ident: e_1_2_6_31_1 doi: 10.1016/j.amc.2008.03.008 – ident: e_1_2_6_10_1 doi: 10.1016/j.na.2007.02.006 – ident: e_1_2_6_9_1 doi: 10.1016/S0362-546X(96)00003-X – ident: e_1_2_6_28_1 doi: 10.1002/num.20297 – ident: e_1_2_6_37_1 doi: 10.1016/j.apm.2014.04.064 – volume-title: Introductory functional analysis with applications year: 1978 ident: e_1_2_6_42_1 – ident: e_1_2_6_8_1 doi: 10.1090/qam/860893 – ident: e_1_2_6_29_1 doi: 10.1007/BF01931285 – ident: e_1_2_6_4_1 doi: 10.1016/0020-7225(90)90086-X – volume: 217 start-page: 10305 year: 2011 ident: e_1_2_6_13_1 article-title: Radially symmetric weighted extended b‐spline model publication-title: Appl Math Comput – volume-title: Mathematical methods for physicists year: 1985 ident: e_1_2_6_41_1 – ident: e_1_2_6_16_1 doi: 10.1016/0020-7225(90)90056-O – ident: e_1_2_6_5_1 doi: 10.1016/0022-0396(89)90103-4 – ident: e_1_2_6_18_1 doi: 10.1016/j.amc.2008.03.008 – start-page: 6 year: 2014 ident: e_1_2_6_23_1 article-title: An efficient spectral approximation for Solving several types of parabolic PDEs with nonlocal boundary conditions publication-title: Math Probl Eng – ident: e_1_2_6_27_1 doi: 10.1002/num.20299 – volume: 10 start-page: 13 issue: 2 year: 2015 ident: e_1_2_6_24_1 article-title: An accurate Jacobi pseudo‐spectral algorithm for parabolic partial differential equations with non‐local boundary conditions publication-title: J Comput Nonlinear Dyn – ident: e_1_2_6_30_1 doi: 10.1017/S0334270000010560 – ident: e_1_2_6_32_1 doi: 10.1016/S0377-0427(99)00200-9 – volume: 26 start-page: 1 year: 2006 ident: e_1_2_6_40_1 article-title: A new approach to Bernoulli polynomials publication-title: Rendiconti di Matemat Ser VII – ident: e_1_2_6_39_1 doi: 10.1108/09615531211188784 |
SSID | ssj0011519 |
Score | 2.1477396 |
Snippet | In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1143 |
SubjectTerms | Approximation Bernoulli polynomials basis Boundary conditions boundary value problem Differential equations Exact solutions Heat equations integral boundary conditions Mathematical analysis Mathematical models one‐dimensional parabolic equation Polynomials product solution Ritz–Galerkin method |
Title | Exact and approximation product solutions form of heat equation with nonlocal boundary conditions using Ritz–Galerkin method with Bernoulli polynomials basis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22136 https://www.proquest.com/docview/1891854034 https://www.proquest.com/docview/1904247825 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuDAG7FQ0IA4cMk2fuRhcQLUUiFtDxUr7QEp8gu0omSX3azU9sR_4Afw3_glzNibUBBIiFuk2ImTzOT7bM98w9hT42teeC4z7rTOVO10ZpSoMl8XiIdC2pJTNvLkuDyaqjezYrbDnve5MEkfYlhwI8-I_2tycGPX-5dEQzefxkJwSXLbFKtFhOhkkI5CohOLeiBC6gwhe9arCuVif-j5Kxb9JJiXaWrEmcPr7F0_whRe8nG86ezYXfwm3vifj3CDXdvyT3iRDOYm2wntLXZ1Moi3rm-zbwdnxnVgWg9RcfxsntIbYZnUYWEwVyDGC4v3QH90CJ-TbDjQ2i60OEDCSbCxcNPqHHDm7VOAGFC0_Qc4mXcX3798fY0YRSv2kKpZp-4vw6pd0EYVLBen55Q7jX4CiLnz9R02PTx4--oo29ZxyJzEGUlWSW3ywllpuDfOex2MCGXIndFa1MgnQnDKuFBWojaImEYXwVYqSF_aunJa3mW7OOhwj4EpXV1azytT5op7nK4pi4Ba24orvLoYsWf9F23cVuScam2cNkmeWVChlSa-8xF7MjRdJmWPPzXa682i2Tr3uuG1RpajcqlG7PFwGt2S9lpMGxYbbKNpTxnpV4FDijbw95s0x9NJPLj_700fsCuCCEYMHN5ju91qEx4iPerso-gHPwBclxGU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOQAH_isWCgyIA5dsY8dJbIlLQS0LdPdQdaW9oMh_oBUlu-xmpbYn3oEH4N14ko7tTSgIJMQtUuzESTz5vhl7viHkmbKC5pZmCTVSJlwYmSjOysSKHPGQZbqgPht5OCoGY_52kk82yIs2FybqQ3QBN28Z4X_tDdwHpHcuqIauPvcZo1lxiVz2Fb2DQ3XYiUch1QllPRAjZYKgPWl1hVK203X9FY1-UsyLRDUgzf4N8r4dY9xg8qm_anTfnP0m3_i_D3GTXF9TUNiNc-YW2XD1bXJt2Om3Lu-Q73snyjSgagtBdPxkGjMcYR4FYqGbseBJL8w-gP-pg_sSlcPBh3ehxhF6qAQdajctTgGdbxv3iIHfcP8RDqfN2Y-v314jTPmgPcSC1rH7S7eoZ36tCuaz41OfPo2mAgi70-VdMt7fO3o1SNalHBKToVOSlJlUaW50pqhVxlrpFHOFS42SkgmkFM4ZrowrSiYUgqaSudMld5kttCiNzLbIJg7a3SOgCiMKbWmpipRTix4b14ipQpeU49VZjzxvP2ll1jrnvtzGcRUVmpmvtVKFd94jT7um8yju8adG2-28qNb2vayokEh0eJrxHnnSnUbL9MstqnazFbaRflkZGViOQwqT4O83qUbjYTi4_-9NH5Mrg6PhQXXwZvTuAbmKTE7G2NA22WwWK_cQ2VKjHwWjOAdMPxWr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VIiFY8K4IFBgQCzZOPQ-PZ8QKaEN5JEIVkbJAsuZVFFGckDhS2xX_wAfwb3wJd2ZiUxBIiJ0l37HH9r0-Zx73XIQeaSdJ4QjLiFUq49KqTHNaZk4WgIeUGUFCNvJwJPbH_NWkmGygJ20uTNKH6CbcQmTE_3UI8Lk73DkjGrr61KeUMHEOnecil8Gldw867ShgOrGqB0CkygCzJ62sUE53uqa_gtFPhnmWp0agGVxB79supv0lH_urxvTt6W_qjf_5DFfR5TUBxU-Tx1xDG76-ji4NO_XW5Q30be9Y2wbr2uEoOX48TfmNeJ7kYXHnrzhQXjw7xOGXjv3npBuOw-QurqGDASixiZWbFicYht4u7RDDYbv9B3wwbU6_f_n6AkAqTNnjVM46NX_mF_UsrFTh-ezoJCRPQ6BgAN3p8iYaD_bePd_P1oUcMstgSJKVTOm8sIZp4rR1TnlNvfC51UpRCYTCe8u19aKkUgNkalV4U3LPnDCytIptoU3otL-FsBZWCuNIqUXOiYPxGjeAqNKUhMPVaQ89br9oZdcq56HYxlGV9JlpqLRSxXfeQw8703mS9viT0XbrFtU6upcVkQpoDs8Z76EH3WmIy7DYoms_W4GNCovKwL8K6FL0gb_fpBqNh_Hg9r-b3kcX3u4OqjcvR6_voIs0kI24iXgbbTaLlb8LVKkx92JI_AAr3RRn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+and+approximation+product+solutions+form+of+heat+equation+with+nonlocal+boundary+conditions+using+Ritz-Galerkin+method+with+Bernoulli+polynomials+basis&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Barikbin%2C+Z&rft.au=Keshavarz+Hedayati%2C+E&rft.date=2017-07-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=33&rft.issue=4&rft.spage=1143&rft.epage=1158&rft_id=info:doi/10.1002%2Fnum.22136&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |