Reliable fusion estimation over sensor networks with outliers and energy constraints
Summary This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are employed to implement the information transmission in order to extend the lifetime. Specifically, the one has the merit of high reliability by...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 29; no. 17; pp. 5913 - 5929 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
25.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are employed to implement the information transmission in order to extend the lifetime. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. For the addressed problem, a χ2 detection in local state estimator is first designed to remove abnormal measurements, which could come from outliers or a malicious modification by attackers. Then, a new strategy is developed to compensate the lost local estimation transmitted by low‐reliable channels. Furthermore, by view of matrix operation and probability theory, a set of recursive formulas are developed to calculate desired error covariance matrices of local state estimation, compensated state estimation as well as fusion estimation. The optimal fusion weights are obtained analytically and the advantage of fusion estimation is disclosed by resorting to these covariance matrices. Finally, a numerical example is used to illustrate the effectiveness of the proposed method. |
---|---|
AbstractList | This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are employed to implement the information transmission in order to extend the lifetime. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. For the addressed problem, a χ2 detection in local state estimator is first designed to remove abnormal measurements, which could come from outliers or a malicious modification by attackers. Then, a new strategy is developed to compensate the lost local estimation transmitted by low‐reliable channels. Furthermore, by view of matrix operation and probability theory, a set of recursive formulas are developed to calculate desired error covariance matrices of local state estimation, compensated state estimation as well as fusion estimation. The optimal fusion weights are obtained analytically and the advantage of fusion estimation is disclosed by resorting to these covariance matrices. Finally, a numerical example is used to illustrate the effectiveness of the proposed method. Summary This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are employed to implement the information transmission in order to extend the lifetime. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. For the addressed problem, a χ2 detection in local state estimator is first designed to remove abnormal measurements, which could come from outliers or a malicious modification by attackers. Then, a new strategy is developed to compensate the lost local estimation transmitted by low‐reliable channels. Furthermore, by view of matrix operation and probability theory, a set of recursive formulas are developed to calculate desired error covariance matrices of local state estimation, compensated state estimation as well as fusion estimation. The optimal fusion weights are obtained analytically and the advantage of fusion estimation is disclosed by resorting to these covariance matrices. Finally, a numerical example is used to illustrate the effectiveness of the proposed method. This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are employed to implement the information transmission in order to extend the lifetime. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. For the addressed problem, a χ 2 detection in local state estimator is first designed to remove abnormal measurements, which could come from outliers or a malicious modification by attackers. Then, a new strategy is developed to compensate the lost local estimation transmitted by low‐reliable channels. Furthermore, by view of matrix operation and probability theory, a set of recursive formulas are developed to calculate desired error covariance matrices of local state estimation, compensated state estimation as well as fusion estimation. The optimal fusion weights are obtained analytically and the advantage of fusion estimation is disclosed by resorting to these covariance matrices. Finally, a numerical example is used to illustrate the effectiveness of the proposed method. |
Author | Ding, Derui Wei, Guoliang Han, Qing‐Long Xie, Meiling Dong, Hongli |
Author_xml | – sequence: 1 givenname: Meiling surname: Xie fullname: Xie, Meiling organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Derui orcidid: 0000-0001-7402-6682 surname: Ding fullname: Ding, Derui email: deruiding2010@usst.edu.cn organization: Swinburne University of Technology – sequence: 3 givenname: Hongli surname: Dong fullname: Dong, Hongli organization: Northeast Petroleum University – sequence: 4 givenname: Qing‐Long orcidid: 0000-0002-7207-0716 surname: Han fullname: Han, Qing‐Long organization: Swinburne University of Technology – sequence: 5 givenname: Guoliang surname: Wei fullname: Wei, Guoliang organization: University of Shanghai for Science and Technology |
BookMark | eNp1kE1LAzEQhoNUsFbBnxDw4mVrPra7m6MUv6AolHoO2exEU9ekJruW_nuzrSfRwzAD88y8M-8pGjnvAKELSqaUEHYdnJ7mJSmO0JgSITLKuBgNdS6ySjB-gk5jXBOSeiwfo9USWqvqFrDpo_UOQ-zsh-qG0n9BwBFc9AE76LY-vEe8td0b9n3XWggRK9dgcBBed1h7F7ugrOviGTo2qo1w_pMn6OXudjV_yBbP94_zm0WmOSdFlhuag2AlrwtT6IJpA6rIBW1mgrO60HWhWKlNiqoiUComjOaUNY1qKiBsxifo8rB3E_xnny6Xa98HlyQlSwKEM0LLRF0dKB18jAGM3IT0YthJSuTgmUyeycGzhE5_odp2ezOGz9q_BrLDwNa2sPt3sVw-zff8Nyy5gFQ |
CitedBy_id | crossref_primary_10_1002_rnc_4874 crossref_primary_10_1002_rnc_5614 crossref_primary_10_1002_rnc_5787 crossref_primary_10_1007_s12555_021_0155_4 crossref_primary_10_1016_j_ins_2020_08_007 crossref_primary_10_1109_JAS_2024_124590 crossref_primary_10_1002_rnc_5254 crossref_primary_10_1002_rnc_5496 crossref_primary_10_1007_s11071_021_07098_4 crossref_primary_10_1002_rnc_7330 |
Cites_doi | 10.1016/j.automatica.2013.09.036 10.1109/TCYB.2017.2789296 10.1109/JSEN.2016.2572694 10.1016/j.sysconle.2011.10.005 10.1109/TAC.2013.2294820 10.1016/j.inffus.2018.05.003 10.1109/TSP.2005.845429 10.1109/TSP.2012.2208961 10.1109/TAC.2004.834121 10.1109/TSP.2005.863009 10.1109/TII.2019.2905295 10.1016/j.camwa.2010.01.032 10.1016/j.sigpro.2013.09.015 10.1016/j.ins.2017.03.033 10.1109/TSMC.2019.2905253 10.1016/j.automatica.2012.05.070 10.1109/TSMCB.2009.2012437 10.1016/j.automatica.2004.01.014 10.1109/TSP.2007.895987 10.1016/j.automatica.2011.01.082 10.1109/MCS.2009.935569 10.1016/j.automatica.2018.10.029 10.1002/rnc.4353 10.1109/TCYB.2018.2885567 10.1016/j.automatica.2011.05.020 10.1002/rnc.4226 10.1016/j.ins.2018.04.052 10.1109/TSP.2013.2294603 10.1109/TSP.2010.2048213 10.1016/j.jprocont.2013.12.017 10.1109/TAC.2013.2263651 10.1109/TSP.2018.2853098 10.1002/rnc.4535 10.1109/TCYB.2018.2827037 10.1002/rnc.3855 10.1109/TAC.2015.2450271 10.1109/TSP.2009.2020748 10.1109/TSP.2017.2770102 10.1109/LSP.2007.913586 10.1109/TAC.2014.2308451 10.1016/j.automatica.2011.02.037 10.1109/TAC.2016.2539221 10.1109/TSP.2011.2116015 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.4706 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 5929 |
ExternalDocumentID | 10_1002_rnc_4706 RNC4706 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai funderid: 18ZR1427000 – fundername: Australian Research Council Discovery Project funderid: DP160103567 – fundername: National Natural Science Foundation of China funderid: 61573246; 61873169; 61873058 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3306-4f14e9273b6f6c62cfea6491d5932b6cb6a27cf27c880e7a29fc312ddad8e0253 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 12:11:30 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 02:06:56 EDT 2025 Wed Jan 22 16:39:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3306-4f14e9273b6f6c62cfea6491d5932b6cb6a27cf27c880e7a29fc312ddad8e0253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7402-6682 0000-0002-7207-0716 |
PQID | 2306032017 |
PQPubID | 1026344 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2306032017 crossref_primary_10_1002_rnc_4706 crossref_citationtrail_10_1002_rnc_4706 wiley_primary_10_1002_rnc_4706_RNC4706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 25 November 2019 |
PublicationDateYYYYMMDD | 2019-11-25 |
PublicationDate_xml | – month: 11 year: 2019 text: 25 November 2019 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 61 2012; 60 2018; 28 2010; 59 2004; 40 2010; 58 2006; 54 2019; 99 2004; 49 2018; 457‐458 2019; 15 2008; 15 2014; 24 2011; 12 2011; 59 2018; 66 2014; 62 2016; 16 2007; 55 2009; 57 2013; 58 2019; 46 2018; 432 2017; 34 2014; 59 2019; 49 2005; 53 2018 2019; 29 2016; 61 2012; 48 2011; 47 2014; 96 2014; 50 2010; 30 2009; 39 e_1_2_8_28_1 e_1_2_8_29_1 Caballero‐Águila R (e_1_2_8_13_1) 2017; 34 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 Ma J (e_1_2_8_38_1) 2011; 12 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 59 start-page: 1942 issue: 7 year: 2014 end-page: 1947 article-title: An online sensor power schedule for remote state estimation with communication energy constraint publication-title: IEEE Trans Autom Control – volume: 58 start-page: 3265 issue: 12 year: 2013 end-page: 3271 article-title: Optimal periodic sensor schedule for steady‐state estimation under average transmission energy constraint publication-title: IEEE Trans Autom Control – volume: 50 start-page: 169 year: 2014 end-page: 174 article-title: Robust distributed maximum likelihood estimation with dependent quantized data publication-title: Automatica – volume: 60 start-page: 6003 issue: 11 year: 2012 end-page: 6016 article-title: Linear decentralized estimation of correlated data for power‐constrained wireless sensor networks publication-title: IEEE Trans Signal Process – volume: 59 start-page: 2847 issue: 6 year: 2011 end-page: 2856 article-title: Ordering for estimation and optimization in energy efficient sensor networks publication-title: IEEE Trans Signal Process – volume: 59 start-page: 2636 year: 2010 end-page: 2646 article-title: Decentralized robust set‐valued state estimation in networked multiple sensor systems publication-title: Comput Math Appl – volume: 12 start-page: 213 issue: 3 year: 2011 end-page: 222 article-title: Information fusion estimators for systems with multiple sensors of different packet dropout rates publication-title: Information Sciences – volume: 24 start-page: 81 year: 2014 end-page: 87 article-title: Kalman filter with both adaptivity and robustness publication-title: J Process Control – volume: 54 start-page: 1131 issue: 3 year: 2006 end-page: 1143 article-title: Bandwidth‐constrained distributed estimation for wireless sensor networks‐part I: Gaussian case publication-title: IEEE Trans Signal Process – volume: 40 start-page: 1017 year: 2004 end-page: 1023 article-title: Multi‐sensor optimal information fusion Kalman filter publication-title: Automatica – volume: 61 start-page: 805 issue: 3 year: 2016 end-page: 810 article-title: Distributed mixed / fusion estimation with limited communication capacity publication-title: IEEE Trans Autom Control – volume: 457‐458 start-page: 126 year: 2018 end-page: 140 article-title: Robust MPC under event‐triggered mechanism and round‐robin protocol: an average dwell‐time approach publication-title: Information Sciences – volume: 15 start-page: 2483 issue: 5 year: 2019 end-page: 2499 article-title: A survey on model‐based distributed control and filtering for industrial cyber‐physical systems publication-title: IEEE Trans Ind Inform – volume: 48 start-page: 1575 issue: 8 year: 2012 end-page: 1585 article-title: Distributed state estimation with stochastic parameters and nonlinearities through sensor networks: the finite‐horizon case publication-title: Automatica – volume: 16 start-page: 5817 issue: 14 year: 2016 end-page: 5825 article-title: Guaranteed cost robust weighted measurement fusion Kalman estimators with uncertain noise variances and missing measurements publication-title: IEEE Sens J – volume: 34 start-page: 70 year: 2017 end-page: 79 article-title: Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses publication-title: Information Sciences – volume: 15 start-page: 174 year: 2008 end-page: 177 article-title: Joint dimension assignment and compression for distributed multisensor estimation publication-title: IEEE Signal Process Lett – volume: 61 start-page: 155 year: 2012 end-page: 164 article-title: State estimation with remote sensors and intermittent transmissions publication-title: Syst Control Lett – year: 2018 article-title: containment control of multi‐agent systems under event‐triggered communication scheduling: the finite‐horizon case publication-title: IEEE Trans Cybern – volume: 53 start-page: 1631 issue: 5 year: 2005 end-page: 1639 article-title: Optimal dimensionality reduction of sensor data in multisensor estimation fusion publication-title: IEEE Trans Signal Process – volume: 46 start-page: 218 year: 2019 end-page: 230 article-title: Distributed joint sensor registration and target tracking via sensor network publication-title: Information Fusion – volume: 49 start-page: 1148 issue: 4 year: 2019 end-page: 1159 article-title: A threshold‐parameter‐dependent approach to designing distributed event‐triggered consensus filters over sensor networks publication-title: IEEE Trans Cybern – volume: 66 start-page: 641 issue: 3 year: 2018 end-page: 653 article-title: Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates publication-title: IEEE Trans Signal Process – volume: 59 start-page: 1271 issue: 5 year: 2014 end-page: 1282 article-title: Optimal distributed Kalman filtering fusion with singular covariances of filtering errors and measurement noises publication-title: IEEE Trans Autom Control – volume: 28 start-page: 4139 issue: 14 year: 2018 end-page: 4174 article-title: Robust fusion time‐varying Kalman estimators for multisensor networked systems with mixed uncertainties publication-title: Int J Robust Nonlinear Control – volume: 39 start-page: 1107 issue: 5 year: 2009 end-page: 1120 article-title: Networked data fusion with packet losses and variable delays publication-title: IEEE Trans Syst Man Cybern B – volume: 28 start-page: 53 issue: 1 year: 2018 end-page: 67 article-title: Sampled‐data consensus of nonlinear multi‐agent systems subject to cyber attacks publication-title: Int J Robust Nonlinear Control – volume: 47 start-page: 1992 year: 2011 end-page: 2000 article-title: Optimal linear estimation for networked systems with communication constraints publication-title: Automatica – volume: 61 start-page: 4020 issue: 12 year: 2016 end-page: 4026 article-title: Distributed covariance intersection fusion estimation for cyber‐physical systems with communication constraints publication-title: IEEE Trans Autom Control – volume: 57 start-page: 3193 issue: 8 year: 2009 end-page: 3207 article-title: Power‐efficient dimensionality reduction for distributed channel‐aware Kalman tracking using WSNs publication-title: IEEE Trans Signal Process – volume: 49 start-page: 2372 issue: 6 year: 2019 end-page: 2384 article-title: Neural‐network‐based output‐feedback control under round‐robin scheduling protocols publication-title: IEEE Trans Cybern – volume: 29 start-page: 2941 year: 2019 end-page: 2959 article-title: Distributed filtering for nonlinear time‐delay systems over sensor networks subject to multiplicative link noises and switching topology publication-title: Int J Robust Nonlinear Control – volume: 47 start-page: 1053 year: 2011 end-page: 1059 article-title: An efficient sensor quantization algorithm for decentralized estimation fusion publication-title: Automatica – volume: 49 start-page: 1453 issue: 9 year: 2004 end-page: 1464 article-title: Kalman filtering with intermittent observations publication-title: IEEE Trans Autom Control – volume: 55 start-page: 4284 issue: 8 year: 2007 end-page: 4299 article-title: Distributed estimation using reduced‐dimensionality sensor observations publication-title: IEEE Trans Signal Process – volume: 30 start-page: 66 issue: 2 year: 2010 end-page: 86 article-title: Kalman filtering in wireless sensor networks publication-title: IEEE Control Syst Mag – volume: 49 start-page: 1688 year: 2019 end-page: 1697 article-title: Distributed resilient filtering for power systems subject to denial‐of‐service attacks publication-title: IEEE Trans Syst Man Cybern Syst – volume: 47 start-page: 1693 issue: 8 year: 2011 end-page: 1698 article-title: Sensor data scheduling for optimal state estimation with communication energy constraint publication-title: Automatica – volume: 58 start-page: 4339 issue: 8 year: 2010 end-page: 4353 article-title: Optimal/near‐optimal dimensionality reduction for distributed estimation in homogeneous and certain inhomogeneous scenarios publication-title: IEEE Trans Signal Process – volume: 66 start-page: 4477 issue: 17 year: 2018 end-page: 4489 article-title: Distributed federated tobit Kalman filter fusion over a packet‐delaying network: a probabilistic perspective publication-title: IEEE Trans Signal Process – volume: 432 start-page: 572 year: 2018 end-page: 583 article-title: Distributed quantized multi‐modal fusion filtering for two‐time‐scale systems publication-title: Information Sciences – volume: 62 start-page: 797 issue: 4 year: 2014 end-page: 812 article-title: Distributed finite‐horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks publication-title: IEEE Trans Signal Process – volume: 96 start-page: 284 year: 2014 end-page: 289 article-title: Distributed fusion filtering with communication bandwidth constraints publication-title: Signal Processing – volume: 28 start-page: 5962 issue: 18 year: 2018 end-page: 5980 article-title: Fault estimation for a class of nonlinear semi‐Markovian jump systems with partly unknown transition rates and output quantization publication-title: Int J Robust Nonlinear Control – volume: 99 start-page: 203 year: 2019 end-page: 212 article-title: On robust Kalman filter for two‐dimensional uncertain linear discrete time‐varying systems: a least squares method publication-title: Automatica – ident: e_1_2_8_25_1 doi: 10.1016/j.automatica.2013.09.036 – ident: e_1_2_8_36_1 doi: 10.1109/TCYB.2017.2789296 – ident: e_1_2_8_18_1 doi: 10.1109/JSEN.2016.2572694 – ident: e_1_2_8_31_1 doi: 10.1016/j.sysconle.2011.10.005 – ident: e_1_2_8_33_1 doi: 10.1109/TAC.2013.2294820 – ident: e_1_2_8_2_1 doi: 10.1016/j.inffus.2018.05.003 – ident: e_1_2_8_22_1 doi: 10.1109/TSP.2005.845429 – ident: e_1_2_8_24_1 doi: 10.1109/TSP.2012.2208961 – volume: 12 start-page: 213 issue: 3 year: 2011 ident: e_1_2_8_38_1 article-title: Information fusion estimators for systems with multiple sensors of different packet dropout rates publication-title: Information Sciences – ident: e_1_2_8_46_1 doi: 10.1109/TAC.2004.834121 – ident: e_1_2_8_3_1 doi: 10.1109/TSP.2005.863009 – ident: e_1_2_8_4_1 doi: 10.1109/TII.2019.2905295 – volume: 34 start-page: 70 year: 2017 ident: e_1_2_8_13_1 article-title: Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses publication-title: Information Sciences – ident: e_1_2_8_9_1 doi: 10.1016/j.camwa.2010.01.032 – ident: e_1_2_8_28_1 doi: 10.1016/j.sigpro.2013.09.015 – ident: e_1_2_8_12_1 doi: 10.1016/j.ins.2017.03.033 – ident: e_1_2_8_40_1 doi: 10.1109/TSMC.2019.2905253 – ident: e_1_2_8_5_1 doi: 10.1016/j.automatica.2012.05.070 – ident: e_1_2_8_39_1 doi: 10.1109/TSMCB.2009.2012437 – ident: e_1_2_8_45_1 doi: 10.1016/j.automatica.2004.01.014 – ident: e_1_2_8_20_1 doi: 10.1109/TSP.2007.895987 – ident: e_1_2_8_26_1 doi: 10.1016/j.automatica.2011.01.082 – ident: e_1_2_8_27_1 doi: 10.1109/MCS.2009.935569 – ident: e_1_2_8_19_1 doi: 10.1016/j.automatica.2018.10.029 – ident: e_1_2_8_29_1 doi: 10.1002/rnc.4353 – ident: e_1_2_8_43_1 doi: 10.1109/TCYB.2018.2885567 – ident: e_1_2_8_8_1 doi: 10.1016/j.automatica.2011.05.020 – ident: e_1_2_8_17_1 doi: 10.1002/rnc.4226 – ident: e_1_2_8_41_1 doi: 10.1016/j.ins.2018.04.052 – ident: e_1_2_8_16_1 doi: 10.1109/TSP.2013.2294603 – ident: e_1_2_8_23_1 doi: 10.1109/TSP.2010.2048213 – ident: e_1_2_8_44_1 doi: 10.1016/j.jprocont.2013.12.017 – ident: e_1_2_8_34_1 doi: 10.1109/TAC.2013.2263651 – ident: e_1_2_8_6_1 doi: 10.1109/TSP.2018.2853098 – ident: e_1_2_8_7_1 doi: 10.1002/rnc.4535 – ident: e_1_2_8_35_1 doi: 10.1109/TCYB.2018.2827037 – ident: e_1_2_8_10_1 doi: 10.1002/rnc.3855 – ident: e_1_2_8_15_1 doi: 10.1109/TAC.2015.2450271 – ident: e_1_2_8_37_1 doi: 10.1109/TSP.2009.2020748 – ident: e_1_2_8_11_1 doi: 10.1109/TSP.2017.2770102 – ident: e_1_2_8_21_1 doi: 10.1109/LSP.2007.913586 – ident: e_1_2_8_14_1 doi: 10.1109/TAC.2014.2308451 – ident: e_1_2_8_32_1 doi: 10.1016/j.automatica.2011.02.037 – ident: e_1_2_8_42_1 doi: 10.1109/TAC.2016.2539221 – ident: e_1_2_8_30_1 doi: 10.1109/TSP.2011.2116015 |
SSID | ssj0009924 |
Score | 2.3184006 |
Snippet | Summary
This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are... This paper provides a reliable fusion scheme over sensor networks subject to abnormal measurements and energy constraints. Two kinds of channels are employed... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5913 |
SubjectTerms | Channels Covariance matrix distributed filtering Energy costs information compensation outliers Outliers (statistics) Probability theory reliable fusion estimation sensor networks State estimation χ2 detection |
Title | Reliable fusion estimation over sensor networks with outliers and energy constraints |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4706 https://www.proquest.com/docview/2306032017 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykx78LU6nRBA9ZVvTtGmPMhxDcIexwcBDSdLkonSydhf_et_rj22KgngovSRtmpfXfHl873uE3LrQ9BVsK8ylRjEhhWMqNpoZHUjjfGtUWe7teRyOZuJpHsxrViXmwlT6EOuAG3pG-b9GB1c6721EQ5fgP0KWattI1UI8NNkoR8VxVc8WADCLAMQ0urN93ms6ft2JNvByG6SWu8zwgLw046vIJa_dVaG75uObdOP_PuCQ7Nfgkz5Uq-WI7NjsmOxtSRKekClylDGdiroVBtIoqnBU6Y0U2Z40h3PvYkmzij6eUwzkUqQVYU1tqrKU2jKdkBpEnliAoshPyWz4OB2MWF15gRkfzhBMOE_YGJCNDsGYITfOqlDEXhoA3NOh0aHiYEq4wP2tVDx2xvd4mqo0soCi_DPSyhaZPSeUK57qvhO-VlYEKtbWeZGSRiroF0nZJveNFRJTy5Lj4N6SSlCZJzBPCc5Tm9ysW75XUhw_tOk0hkxqZ8wTPGVhnXgPXnZXWuTX_slkPMD7xV8bXpJdeHCM2Yk86JBWsVzZK4Aphb4uF-QnNNXn4A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHtSDv8Xp1Aiip25rmv7Ck0zH1G2HscEOQknS5KJ0snYX_3rfa1c3RUE8lF4S0ublJV8e730fIZfGUy0Bx4plYiUs7nNjiVBJS0nXV8bRSuRyb_2B1x3zx4k7qZCbsham4If4DLihZ-T7NTo4BqSbS9bQGTgQ95Fuew0FvZE4_2645I4Kw0LRFiCwFQCMKZlnW6xZ9vx6Fi0B5ipMzc-ZzjZ5Lr-wSC95acwz2VDv38gb__kLO2RrgT_pbbFgdklFJ3tkc4WVcJ-MME0ZK6qomWMsjSIRR1HhSDHhk6Zw9Z3OaFJkkKcUY7kUM4tQVpuKJKY6ryikCsEnalBk6QEZd-5H7a61EF-wlAPXCIsbm-sQwI30wJ4eU0YLj4d27ALik56SnmBgTXhgB9C-YKFRjs3iWMSBBiDlHJJqMk30EaFMsFi2DHek0NwVodTGDoSvfAH9At-vkevSDJFaMJPjx71GBacyi2CeIpynGrn4bPlWsHH80KZeWjJa-GMa4UULpeJtGOwqN8mv_aPhoI3v4782PCfr3VG_F_UeBk8nZAMGCbFYkbl1Us1mc30KqCWTZ_nq_ACpkOv8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQfTgW6xWjSB62rabze42R2kt9VWktFDwsCTZ5KJsSx8Xf70z-2irKIiHZS8JyWYymy_DzPcRcmUDXZdwrDg21tLhIbeOFFo5Wvmhtp7RMpV7e-4GnQF_GPrDPKsSa2EyfohFwA09I_1fo4OPY1tbkoZOwH94iGzb6zyoC5RtaPWW1FFCZIK2gICdBqCYgni2zmpFz69H0RJfrqLU9Jhp75DXYoJZdslbdT5TVf3xjbvxf1-wS7Zz9Elvs-2yR9ZMsk-2VjgJD0gfk5SxnoraOUbSKNJwZPWNFNM96RQuvqMJTbL88SnFSC7FvCIU1aYyialJ6wmpRuiJChSz6SEZtO_6zY6TSy842oNLhMOty40AaKMCsGbAtDUy4MKNfcB7KtAqkAxsCQ_4vwklE1Z7LotjGTcMwCjviJSSUWKOCWWSxapuuaek4b4Uyli3IUMdSujXCMMyuSmsEOmclxwn9x5ljMosgnWKcJ3K5HLRcpxxcfzQplIYMsq9cRrhNQuF4l0Y7Dq1yK_9o163ie-Tvza8IBsvrXb0dN99PCWbMIbASkXmV0hpNpmbM4AsM3We7s1PBfXqqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+fusion+estimation+over+sensor+networks+with+outliers+and+energy+constraints&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Xie%2C+Meiling&rft.au=Ding%2C+Derui&rft.au=Dong%2C+Hongli&rft.au=Han%2C+Qing%E2%80%90Long&rft.date=2019-11-25&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=29&rft.issue=17&rft.spage=5913&rft.epage=5929&rft_id=info:doi/10.1002%2Frnc.4706&rft.externalDBID=10.1002%252Frnc.4706&rft.externalDocID=RNC4706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |