An inverse eigenvalue method for frequency isolation in spring-mass systems

The action of external vibrating forces on mechanical structures can cause severe damages when resonance occurs. The removal of natural frequencies of the structure from resonance bands is therefore of great importance. This problem is called frequency isolation problem and is the subject of this pa...

Full description

Saved in:
Bibliographic Details
Published inNumerical linear algebra with applications Vol. 9; no. 1; pp. 65 - 79
Main Authors Egaña, Juan C., Kuhl, Nelson M., Santos, Luis C.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2002
Subjects
Online AccessGet full text
ISSN1070-5325
1099-1506
DOI10.1002/nla.255

Cover

Abstract The action of external vibrating forces on mechanical structures can cause severe damages when resonance occurs. The removal of natural frequencies of the structure from resonance bands is therefore of great importance. This problem is called frequency isolation problem and is the subject of this paper. A new inverse eigenvalue method is proposed and applied to spring–mass systems, which have generated much interest in the literature as prototypes of vibrating structures. The novelty of the method lies in using the zeros of the frequency response function at the last mass as control variables in an optimization problem to minimize the impact of redesign. Numerically accurate algorithms for computing the sensitivity with respect to the control variables are presented, which form the basis of an efficient multidimensional search strategy to solve the frequency isolation problem. Copyright © 2001 by John Wiley & Sons, Ltd.
AbstractList The action of external vibrating forces on mechanical structures can cause severe damages when resonance occurs. The removal of natural frequencies of the structure from resonance bands is therefore of great importance. This problem is called frequency isolation problem and is the subject of this paper. A new inverse eigenvalue method is proposed and applied to spring–mass systems, which have generated much interest in the literature as prototypes of vibrating structures. The novelty of the method lies in using the zeros of the frequency response function at the last mass as control variables in an optimization problem to minimize the impact of redesign. Numerically accurate algorithms for computing the sensitivity with respect to the control variables are presented, which form the basis of an efficient multidimensional search strategy to solve the frequency isolation problem. Copyright © 2001 by John Wiley & Sons, Ltd.
Author Egaña, Juan C.
Santos, Luis C.
Kuhl, Nelson M.
Author_xml – sequence: 1
  givenname: Juan C.
  surname: Egaña
  fullname: Egaña, Juan C.
  email: jegana@ucn.cl
  organization: Departamento de Matemática, Universidad Católica del Norte, Antofagasta, Chile
– sequence: 2
  givenname: Nelson M.
  surname: Kuhl
  fullname: Kuhl, Nelson M.
  email: kuhl@ime.usp.br
  organization: Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
– sequence: 3
  givenname: Luis C.
  surname: Santos
  fullname: Santos, Luis C.
  email: lsantos@ime.usp.br
  organization: Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
BookMark eNp1kE9PwzAMxSM0JMZAfIXcOKAOp2m69jhNMBDTOPD3FoXMGYEuhaQb9NuTMYQEAl9syT8_-b1d0nG1Q0IOGPQZQHrsKtVPhdgiXQZlmTABeWc9DyARPBU7ZDeEJwDIRcm75GLoqHUr9AEp2jm6laqWSBfYPNYzampPjcfXJTrdUhvqSjW2Xl_Q8OKtmycLFQINbWhwEfbItlFVwP2v3iM3pyfXo7Nkcjk-Hw0nieYcRGJUfEwjQFEykRvMmM6MiKuCzQyWnD8A8lIXhjEeHZlC6FmuhOZlLJ3lvEcON7ra1yF4NDL-slC-lQzkOgMZM5Axg0gmv0htm08LjVe2-oM_2vBvtsL2P1k5nQx_qNto__2bVv5Z5gM-EPJuOpZwNb6_ZVkqp_wDHOp9hw
CitedBy_id crossref_primary_10_1016_j_ymssp_2022_109688
crossref_primary_10_1155_2014_513513
crossref_primary_10_1002_zamm_202100127
crossref_primary_10_1007_s12190_013_0716_7
crossref_primary_10_1016_j_ymssp_2015_12_030
crossref_primary_10_1016_j_camwa_2004_10_043
Cites_doi 10.1137/0153082
10.1088/0266-5611/13/4/012
10.2514/3.11634
10.1016/0024-3795(78)90086-1
10.1016/0024-3795(76)90064-1
10.1007/BF01183013
10.1088/0266-5611/3/4/010
10.1002/(SICI)1099-1506(199701/02)4:1<1::AID-NLA95>3.0.CO;2-D
10.1016/0024-3795(76)90020-3
10.1115/1.3149517
ContentType Journal Article
Copyright Copyright © 2001 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2001 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/nla.255
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage 79
ExternalDocumentID 10_1002_nla_255
NLA255
ark_67375_WNG_0SGXV142_N
Genre article
GrantInformation_xml – fundername: CAPES Brazil and Fondecyt
  funderid: 1990361
– fundername: Publishing Arts Research Council
  funderid: 98‐1846389
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
ID FETCH-LOGICAL-c3305-fa109ce0089156fe41c4f533081dfe933b0e39c8f113100f85cd6a5c39999c463
IEDL.DBID DR2
ISSN 1070-5325
IngestDate Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 03:25:03 EDT 2025
Wed Jan 22 16:51:30 EST 2025
Wed Oct 30 09:46:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3305-fa109ce0089156fe41c4f533081dfe933b0e39c8f113100f85cd6a5c39999c463
Notes ark:/67375/WNG-0SGXV142-N
CAPES Brazil and Fondecyt - No. 1990361
istex:A1F85E744022F5A7567FDD6CF0278865C6C43EB3
Publishing Arts Research Council - No. 98-1846389
ArticleID:NLA255
OpenAccessLink http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3238498
PageCount 15
ParticipantIDs crossref_primary_10_1002_nla_255
crossref_citationtrail_10_1002_nla_255
wiley_primary_10_1002_nla_255_NLA255
istex_primary_ark_67375_WNG_0SGXV142_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-01
January/February 2002
2002-01-00
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – month: 01
  year: 2002
  text: 2002-01
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Numerical linear algebra with applications
PublicationTitleAlternate Numer. Linear Algebra Appl
PublicationYear 2002
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Friedlander A, Martínez JM, Santos SA. New trust region algorithm for bound constrained minimization. Applied Mathematics and Optimization 1994; 30:235-266.
Egaña JC, Santos LC, Kuhl N. A strategy for frequencies isolation in discrete dynamical systems. Proceedings VI Pan American Congress of Applied Mechanics, Rio de Janeiro 1999; 6:243-246.
Gladwell GM. Inverse Problems in Vibration. Martinus Nijhoff Publishers: Dordrecht, 1989.
Hochstadt H. On some inverse problems in matrix theory. Archiv der Mathematik 1974; 8:435-446.
Gladwell GM. Inverse Problems in Vibrations. Applied Mechanics Reviews 1986; 39(7).
Hald O. Inverse eigenvalue problems for Jacobi matrices. Linear Algebra and Its Applications 1976; 14:63-85.
Golub GH, Van Loan CF. Matrix Computations. The Johns Hopkins University Press: Baltimore, 1989.
Boley D, Golub GH. A survey of matrix inverse eigenvalue problem. Inverse Problems 1987; 3:595-622.
Datta BN. Numerical linear algebra and applications. Brooks/Cole Publishing Company: Pacific Grove, CA, 1995.
Gladwell GM. Inverse Problems in Vibrations-2. Applied Mechanics Reviews 1996; 49(10).
Gray LJ, Wilson DG. Construction of a Jacobi matrix from spectral data. Linear Algebra and Its Applications 1976; 14:131-134.
Dai H, Lancaster P. Newton's method for a generalized inverse eigenvalue problem. Numerical Linear Algebra with Applications 1997; 4(1):1-27.
Nylen P, Uhlig F. Inverse eigenvalue problems: existence of special spring-mass systems. Inverse Problems 1997; 13:1071-1081.
de Boor C, Golub GH. The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra and Its Applications 1978; 21:245-260.
Ram YM. Inverse eigenvalue problems for a modified vibrating system. SIAM Journal on Applied Mathematics 1993; 53:1762-1775.
Joseph KT. Inverse eigenvalue problem in structural design. American Institute of Aeronautics and Astronautics Journal 1992; 30:2890-2896.
Golub GH, Boley D. Inverse eigenvalue problems for band matrices. Numerical Analysis 1977; (66):23-31.
Inman D. Vibration with Control, Measurement and Stability. Pretince-Hall: Englewood Cliffs, NJ, 1989.
Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal Research NBS Section B 1950; 45.
1987; 3
1976; 14
1978; 21
1997; 13
1993; 53
1986; 39
1995
1950; 45.
1996; 49
1999; 6
1974; 8
1997; 4
1994; 30
1989
1992; 30
1977
1999
Hochstadt H (e_1_2_1_10_2) 1974; 8
Gladwell GM (e_1_2_1_6_2) 1989
Gladwell GM (e_1_2_1_5_2) 1996; 49
Datta BN (e_1_2_1_2_2) 1995
Golub GH (e_1_2_1_12_2) 1989
Golub GH (e_1_2_1_19_2) 1977
e_1_2_1_7_2
Inman D (e_1_2_1_3_2) 1989
e_1_2_1_4_2
Lanczos C (e_1_2_1_17_2) 1950; 45
e_1_2_1_11_2
e_1_2_1_22_2
Golub GH (e_1_2_1_18_2) 1977
e_1_2_1_23_2
e_1_2_1_20_2
Egaña JC (e_1_2_1_21_2) 1999; 6
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Egaña JC, Santos LC, Kuhl N. A strategy for frequencies isolation in discrete dynamical systems. Proceedings VI Pan American Congress of Applied Mechanics, Rio de Janeiro 1999; 6:243-246.
– reference: Gladwell GM. Inverse Problems in Vibrations-2. Applied Mechanics Reviews 1996; 49(10).
– reference: Golub GH, Boley D. Inverse eigenvalue problems for band matrices. Numerical Analysis 1977; (66):23-31.
– reference: Dai H, Lancaster P. Newton's method for a generalized inverse eigenvalue problem. Numerical Linear Algebra with Applications 1997; 4(1):1-27.
– reference: Gladwell GM. Inverse Problems in Vibrations. Applied Mechanics Reviews 1986; 39(7).
– reference: Hochstadt H. On some inverse problems in matrix theory. Archiv der Mathematik 1974; 8:435-446.
– reference: Golub GH, Van Loan CF. Matrix Computations. The Johns Hopkins University Press: Baltimore, 1989.
– reference: Friedlander A, Martínez JM, Santos SA. New trust region algorithm for bound constrained minimization. Applied Mathematics and Optimization 1994; 30:235-266.
– reference: Ram YM. Inverse eigenvalue problems for a modified vibrating system. SIAM Journal on Applied Mathematics 1993; 53:1762-1775.
– reference: Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal Research NBS Section B 1950; 45.
– reference: Joseph KT. Inverse eigenvalue problem in structural design. American Institute of Aeronautics and Astronautics Journal 1992; 30:2890-2896.
– reference: Hald O. Inverse eigenvalue problems for Jacobi matrices. Linear Algebra and Its Applications 1976; 14:63-85.
– reference: Gray LJ, Wilson DG. Construction of a Jacobi matrix from spectral data. Linear Algebra and Its Applications 1976; 14:131-134.
– reference: Datta BN. Numerical linear algebra and applications. Brooks/Cole Publishing Company: Pacific Grove, CA, 1995.
– reference: Nylen P, Uhlig F. Inverse eigenvalue problems: existence of special spring-mass systems. Inverse Problems 1997; 13:1071-1081.
– reference: Gladwell GM. Inverse Problems in Vibration. Martinus Nijhoff Publishers: Dordrecht, 1989.
– reference: Boley D, Golub GH. A survey of matrix inverse eigenvalue problem. Inverse Problems 1987; 3:595-622.
– reference: Inman D. Vibration with Control, Measurement and Stability. Pretince-Hall: Englewood Cliffs, NJ, 1989.
– reference: de Boor C, Golub GH. The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra and Its Applications 1978; 21:245-260.
– volume: 30
  start-page: 2890
  year: 1992
  end-page: 2896
  article-title: Inverse eigenvalue problem in structural design
  publication-title: American Institute of Aeronautics and Astronautics Journal
– volume: 30
  start-page: 235
  year: 1994
  end-page: 266
  article-title: New trust region algorithm for bound constrained minimization
  publication-title: Applied Mathematics and Optimization
– volume: 14
  start-page: 131
  year: 1976
  end-page: 134
  article-title: Construction of a Jacobi matrix from spectral data
  publication-title: Linear Algebra and Its Applications
– volume: 21
  start-page: 245
  year: 1978
  end-page: 260
  article-title: The numerically stable reconstruction of a Jacobi matrix from spectral data
  publication-title: Linear Algebra and Its Applications
– volume: 45.
  year: 1950
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: Journal Research NBS Section B
– volume: 53
  start-page: 1762
  year: 1993
  end-page: 1775
  article-title: Inverse eigenvalue problems for a modified vibrating system
  publication-title: SIAM Journal on Applied Mathematics
– year: 1989
– volume: 39
  issue: 7
  year: 1986
  article-title: Inverse Problems in Vibrations
  publication-title: Applied Mechanics Reviews
– volume: 14
  start-page: 63
  year: 1976
  end-page: 85
  article-title: Inverse eigenvalue problems for Jacobi matrices
  publication-title: Linear Algebra and Its Applications
– year: 1995
– start-page: 23
  issue: 66
  year: 1977
  end-page: 31
  article-title: Inverse eigenvalue problems for band matrices
  publication-title: Numerical Analysis
– volume: 8
  start-page: 435
  year: 1974
  end-page: 446
  article-title: On some inverse problems in matrix theory
  publication-title: Archiv der Mathematik
– volume: 3
  start-page: 595
  year: 1987
  end-page: 622
  article-title: A survey of matrix inverse eigenvalue problem
  publication-title: Inverse Problems
– year: 1977
– volume: 6
  start-page: 243
  year: 1999
  end-page: 246
  article-title: A strategy for frequencies isolation in discrete dynamical systems
  publication-title: Proceedings VI Pan American Congress of Applied Mechanics
– volume: 4
  start-page: 1
  issue: 1
  year: 1997
  end-page: 27
  article-title: Newton's method for a generalized inverse eigenvalue problem
  publication-title: Numerical Linear Algebra with Applications
– volume: 49
  issue: 10
  year: 1996
  article-title: Inverse Problems in Vibrations–2
  publication-title: Applied Mechanics Reviews
– volume: 13
  start-page: 1071
  year: 1997
  end-page: 1081
  article-title: Inverse eigenvalue problems: existence of special spring–mass systems
  publication-title: Inverse Problems
– year: 1999
– ident: e_1_2_1_15_2
  doi: 10.1137/0153082
– ident: e_1_2_1_7_2
– ident: e_1_2_1_14_2
  doi: 10.1088/0266-5611/13/4/012
– ident: e_1_2_1_4_2
  doi: 10.2514/3.11634
– volume-title: Vibration with Control, Measurement and Stability
  year: 1989
  ident: e_1_2_1_3_2
– volume-title: Inverse Problems in Vibration
  year: 1989
  ident: e_1_2_1_6_2
– volume: 49
  issue: 10
  year: 1996
  ident: e_1_2_1_5_2
  article-title: Inverse Problems in Vibrations–2
  publication-title: Applied Mechanics Reviews
– ident: e_1_2_1_16_2
  doi: 10.1016/0024-3795(78)90086-1
– ident: e_1_2_1_9_2
  doi: 10.1016/0024-3795(76)90064-1
– volume-title: Lectures Notes in Mathematics, Numerical Analysis
  year: 1977
  ident: e_1_2_1_18_2
– start-page: 23
  issue: 66
  year: 1977
  ident: e_1_2_1_19_2
  article-title: Inverse eigenvalue problems for band matrices
  publication-title: Numerical Analysis
– ident: e_1_2_1_22_2
  doi: 10.1007/BF01183013
– ident: e_1_2_1_23_2
– volume-title: Matrix Computations
  year: 1989
  ident: e_1_2_1_12_2
– volume: 45
  year: 1950
  ident: e_1_2_1_17_2
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: Journal Research NBS Section B
– volume-title: Numerical linear algebra and applications
  year: 1995
  ident: e_1_2_1_2_2
– ident: e_1_2_1_11_2
  doi: 10.1088/0266-5611/3/4/010
– ident: e_1_2_1_20_2
  doi: 10.1002/(SICI)1099-1506(199701/02)4:1<1::AID-NLA95>3.0.CO;2-D
– ident: e_1_2_1_8_2
  doi: 10.1016/0024-3795(76)90020-3
– ident: e_1_2_1_13_2
  doi: 10.1115/1.3149517
– volume: 6
  start-page: 243
  year: 1999
  ident: e_1_2_1_21_2
  article-title: A strategy for frequencies isolation in discrete dynamical systems
  publication-title: Proceedings VI Pan American Congress of Applied Mechanics
– volume: 8
  start-page: 435
  year: 1974
  ident: e_1_2_1_10_2
  article-title: On some inverse problems in matrix theory
  publication-title: Archiv der Mathematik
SSID ssj0006593
Score 1.5982031
Snippet The action of external vibrating forces on mechanical structures can cause severe damages when resonance occurs. The removal of natural frequencies of the...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms inverse eigenvalue problem
Jacobi matrix
spring-mass system
δ-Lanczos method
Title An inverse eigenvalue method for frequency isolation in spring-mass systems
URI https://api.istex.fr/ark:/67375/WNG-0SGXV142-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.255
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIYtBAsM3BHlJg9Vt7RJHKfxWAFthWgHoFCxRI5rS1VLQL1IwMQ78IY8Ccd2GloQEmLKEJ_I8uX4d3z8HYSKVMEi1WPM4eAfnYD1PCeCfneUx_0Q3F9CzXWxVjtsdoKLLu3OpfqyfIj8h5ueGcZf6wnOk3FlDho65GXQw-B9PRJqav7Z1Rc4KrS4XdjbuA4lPrXXZbVlJbNbWIdWdJM-L-pTs8DUN9D9rGo2rmRQnk6Ssnj9Rm38V9030XomO3HNjpMttCTTbbTWypmt4x3UqqW4n-ooDYmlZnRqDrjENsU0Bm2L1cjGXb_gPoxY06Vgge3R7sfb-wMIcWzR0ONd1Kmf35w2nSzZgiMIzHlHcc9lQoIkYLClUzLwRKB06CkIWiUZIYkrCROR8jx9JqAiKnohpwIEDmMiCMkeWk4fU7mPsBJuVUa-4rD5CsCYw5YqIQGVUtMNI1JApVnTxyIjkeuEGMPYMpR9Q7qG9ikgnBd8svCNn0VKpu_y93w00LFqVRrftRuxe93o3nqBH7cLqGh65LcPxe3LGjwO_lbsEK2atDDmX8wRWp6MpvIY1MkkOTED8RM2TeH0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHQA_AgR1RVh8qbilZ7BAfK7YCbQ6slThEiWtLVUtApUjAiXfgDXkSxnYom5AQpxziiSKv_9jjbwAqTOEi1ebcSXF-dChve06E7e4oL_VDnP4yZq6LNeOwfk6PWqxVRFXquzCWDzHccNMjw8zXeoDrDemtT9TQXlpFQTwKJYoyQzteuycf6KjQAnfRu3EdFvjMXpjVpluF4ZeVqKQr9eGrQjVLzP40XL3_nI0s6VbvB1lVPH3jNv7v72dgqlCepGa7yiyMyHwOJptDbOvdPDRrOenkOlBDEqkxnRoFLonNMk1Q3hLVt6HXj6SDnda0KloQe7r7-vxyjVqcWDr03QKc7--d7dSdIt-CIwIc9o5KPZcLiaqAo1enJPUEVTr6FDWtkjwIMlcGXETK8_SxgIqYaIcpE6hxOBc0DBZhLL_J5RIQJdxtGfkqRf-LonGKXlUWUCalBhxGQRk23-s-EQWMXOfE6CUWo-wb2DXWTxnIsOCt5W_8LLJpGm_4Pu13dbjaNksu44PEPT1oXXjUT-IyVEyT_PahJG7U8LH8t2IbMF4_azaSxmF8vAITJkuM2ZpZhbFB_16uoVgZZOumV74BXHvmEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHQCUEB3ZEWX1A3FKy2Gl8rICyNkKsFZcocW2paglVKRJw4h14Q56Esd2WTUiIUw7xRJbHy-94_A3AJlO4SDU4d1KcHx3KG54Tod8d5aV-iNNfxsx1sVocHlzSozqrf0r1ZfkQwx9uemSY-VoP8E5DbX-ChrbTEurhUSjQEHWE1kNnH-So0PJ2cXPjOizwmb0vq023-4ZfFqKCbtPHrwLVrDDVabgZ1M0GlrRKD72sJJ6_YRv_VfkZmOrrTlKxHWUWRmQ-B5O1IbT1fh5qlZw0cx2mIYnUkE4NApfE5pgmKG6J6trA6yfSxC5rfIoWxJ7tvr283qISJ5YNfb8Al9W9i50Dp59twREBDnpHpZ7LhURNwHFPpyT1BFU69hQVrZI8CDJXBlxEyvP0oYCKmGiEKROocDgXNAwWYSy_y-USECXcsox8leLui6JxinuqLKBMSo03jIIibA2aPhF9FLnOiNFOLETZN6hrbJ8ikGHBjqVv_CyyZXw3fJ92WzpYrcyS63g_cc_361ce9ZO4CJvGI799KIlPKvhY_luxDRg_3a0mJ4fx8QpMmBQx5r_MKoz1ug9yDZVKL1s3ffIdyqbkwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inverse+eigenvalue+method+for+frequency+isolation+in+spring%E2%80%93mass+systems&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Ega%C3%B1a%2C+Juan+C.&rft.au=Kuhl%2C+Nelson+M.&rft.au=Santos%2C+Luis+C.&rft.date=2002-01-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=9&rft.issue=1&rft.spage=65&rft.epage=79&rft_id=info:doi/10.1002%2Fnla.255&rft.externalDBID=10.1002%252Fnla.255&rft.externalDocID=NLA255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon