Harnessing Lithium‐Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles

Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 27; pp. e202503465 - n/a
Main Authors Miao, Jun, Chen, Cailing, Cao, Li, Al Nuaimi, Reham, Li, Zhen, Huang, Kuo‐Wei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry. This study pioneers a sustainable approach to ammonia synthesis by integrating lithium‐mediated nitrogen reduction (Li‐NRR) with water electrolysis (WE). Polyoxometalates (POMs) serve as electron‐coupled proton buffers (ECPBs), enhancing proton transfer while suppressing hydrogen evolution. A three‐compartment flow reactor achieves continuous ammonia production, setting a benchmark for eco‐friendly nitrogen fixation.
AbstractList Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron-coupled proton buffers (ECPBs) to seamlessly link WE with Li-NRR in a three-compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻ with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻ 2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry. This study pioneers a sustainable approach to ammonia synthesis by integrating lithium‐mediated nitrogen reduction (Li‐NRR) with water electrolysis (WE). Polyoxometalates (POMs) serve as electron‐coupled proton buffers (ECPBs), enhancing proton transfer while suppressing hydrogen evolution. A three‐compartment flow reactor achieves continuous ammonia production, setting a benchmark for eco‐friendly nitrogen fixation.
Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron-coupled proton buffers (ECPBs) to seamlessly link WE with Li-NRR in a three-compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 μg h-1 cm-2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron-coupled proton buffers (ECPBs) to seamlessly link WE with Li-NRR in a three-compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 μg h-1 cm-2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Author Li, Zhen
Lai, Zhiping
Chen, Cailing
Miao, Jun
Al Nuaimi, Reham
Huang, Kuo‐Wei
Cao, Li
Author_xml – sequence: 1
  givenname: Jun
  surname: Miao
  fullname: Miao, Jun
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Cailing
  surname: Chen
  fullname: Chen, Cailing
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Reham
  surname: Al Nuaimi
  fullname: Al Nuaimi, Reham
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  email: zhen.li@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
– sequence: 6
  givenname: Kuo‐Wei
  surname: Huang
  fullname: Huang, Kuo‐Wei
  organization: King Abdullah University of Science and Technology
– sequence: 7
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40289915$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1u1DAQB3ALFdEPuHJElrhwyeKPOI6PS7W0lbZQqSCOlhNPWFeJXexEJZz6CJV4Q54EL1taiQsnj63ffzTyHKI9Hzwg9JKSBSWEvTXewYIRJggvK_EEHVDBaMGl5Hu5LjkvZC3oPjpM6Sr7uibVM7Rf5kopKg7Qz1MTPaTk_Fe8duPGTcOv27tzsM6MYPFJBPB4OQzBO4MvZz9uILmEbzLFXzKJeNVDO8bQz9v3dyGkba6Z8TkMTTQeHsGPrP8EL_IlfA8DjKbPPfBFDGPw-HIzjWMP6Tl62pk-wYv78wh9fr_6dHxarD-enB0v10XLORFFYytroLKqLTsALsu6FK1i0HSNKLkhzIIyihjT8RoqabmFjsqWKWubhrCSH6E3u77XMXybII16cKmFvs9ThylpTpWQSqpSZPr6H3oVpujzdJozpgiTUtVZvbpXUzOA1dfRDSbO-u93Z7DYgTaGlCJ0D4QSvd2n3u5TP-wzB9QucON6mP-j9fLD2eox-xv-k6iU
Cites_doi 10.1038/s41570-018-0112
10.1038/s41467-024-46803-w
10.1038/s41467-020-19130-z
10.1038/s41586-024-07276-5
10.1038/s41467-021-27866-5
10.1021/acsenergylett.2c02792
10.1126/science.aar6611
10.1002/adma.202312645
10.1021/jacs.7b04393
10.1002/anie.202416027
10.1126/science.1257443
10.1038/s41557-021-00850-8
10.1016/j.cclet.2022.03.060
10.1246/cl.1993.851
10.1038/s41929-019-0252-4
10.1038/ngeo325
10.1038/s41560-019-0451-x
10.1126/science.abg2371
10.1038/s41586-022-05108-y
10.1039/D0EE02246B
10.1039/D3EE00026E
10.1039/C9GC01338E
10.1038/s41467-021-24513-x
10.1016/0022-0728(93)03025-K
10.1038/s41893-022-00908-6
10.1126/science.abl4300
10.1002/anie.202409006
10.1038/s44286-024-00137-y
10.1002/aenm.201601375
10.1002/anie.202305843
10.1038/s41560-020-0654-1
10.1021/ja4071893
10.1038/s41586-019-1260-x
10.1021/jacs.3c08965
10.1038/s44286-023-00009-x
10.1002/advs.201802109
10.1016/j.joule.2022.07.009
10.1039/C7EE01126A
10.1039/D0EE02263B
10.1038/nchem.1621
10.1016/S0379-6779(02)00649-5
10.1038/s41929-024-01115-6
10.1126/sciadv.add5598
10.1016/j.mtcata.2023.100031
10.1002/hlca.19300130604
10.1038/s41893-023-01252-z
10.1016/j.isci.2021.103105
10.1038/s44160-023-00458-5
10.1038/ncomms14589
10.1002/anie.201916516
10.1126/sciadv.1700336
10.1002/adma.202007650
10.1126/science.adf4403
10.1016/j.joule.2020.04.004
10.1038/s41929-020-0455-8
10.1038/s41893-024-01406-7
10.1002/anie.202203170
10.1016/j.electacta.2013.12.058
10.1002/adfm.202214495
10.1002/cphc.202401097
10.1021/acsenergylett.4c01896
10.1016/j.joule.2019.02.003
10.1039/D2QM01131J
10.1002/adfm.202009151
10.1002/anie.202311413
10.1038/s41560-020-00680-x
10.1126/science.aam6014
10.1016/j.chempr.2018.10.010
10.1002/anie.202015496
10.1021/acsenergylett.1c02104
10.1038/s41586-021-03482-7
10.1016/j.joule.2023.05.013
10.1038/s41929-024-01200-w
10.1039/D2CS00797E
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202503465
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 40289915
10_1002_anie_202503465
ANIE202503465
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: BAS/1/1375–01; FCC/1/1972–88; BAS/1/1334–01
– fundername: King Abdullah University of Science and Technology
  grantid: BAS/1/1375-01
– fundername: King Abdullah University of Science and Technology
  grantid: FCC/1/1972-88
– fundername: King Abdullah University of Science and Technology
  grantid: BAS/1/1334-01
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
53G
9M8
AAMMB
AANHP
AASGY
AAYJJ
AAYXX
ABDPE
ABEFU
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AETEA
AGCDD
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
M53
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
AAYOK
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3305-bd6dae6d9c4fee374845c92ebfb543a02de9a90aaf38e67d3def17c29ddbb0243
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 18:32:05 EDT 2025
Wed Aug 20 01:40:31 EDT 2025
Sat Jul 12 03:49:47 EDT 2025
Thu Aug 21 00:32:46 EDT 2025
Mon Jun 30 09:44:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords Sustainable ammonia production
Polyoxometalates
Electrochemical processes
Membrane technology
Ion‐conducting membranes
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3305-bd6dae6d9c4fee374845c92ebfb543a02de9a90aaf38e67d3def17c29ddbb0243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40289915
PQID 3229027798
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_3195797945
proquest_journals_3229027798
pubmed_primary_40289915
crossref_primary_10_1002_anie_202503465
wiley_primary_10_1002_anie_202503465_ANIE202503465
PublicationCentury 2000
PublicationDate July 1, 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 1, 2025
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2024; 629
2021; 24
2017; 8
2018; 360
2023; 33
2023; 34
2023; 7
1993; 22
2023; 8
2023; 145
1930; 13
2020; 59
2020; 13
2020; 11
2023; 3
2024
2008; 1
2024; 36
2013; 5
2017; 358
2023; 62
2020; 5
2020; 4
2020; 3
2021; 31
2018; 2
2021; 33
2018; 4
2024; 7
2019; 21
2024; 9
2023; 379
2024; 63
2022; 609
2025; 26
2024; 1
2021; 595
2024; 3
2025; 64
2014; 120
2023; 52
2019; 4
2019; 3
2019; 6
2019; 5
2019; 2
2023; 16
2024; 15
2017; 139
2021; 14
2016; 6
1994; 367
2021; 12
2023
2022; 5
2022; 61
2022; 6
2022; 7
2017; 10
2022; 8
2022; 13
2022; 14
2013; 135
2021; 372
2021; 374
2019; 570
2021; 60
2003; 135‐136
2014; 345
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Iqbal M. S. (e_1_2_8_21_1) 2023
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Remmers M. (e_1_2_8_47_1) 2024; 63
Gao Z. (e_1_2_8_71_1) 2023; 62
Li S. (e_1_2_8_31_1) 2024
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Guan D.‐H. (e_1_2_8_48_1) 2023; 62
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 3
  start-page: 406
  year: 2024
  end-page: 418
  publication-title: Nat. Synth.
– volume: 14
  start-page: 672
  year: 2021
  end-page: 687
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 787
  year: 2022
  end-page: 794
  publication-title: Nat. Sustainability
– volume: 11
  start-page: 5546
  year: 2020
  publication-title: Nat. Commun.
– volume: 22
  start-page: 851
  year: 1993
  end-page: 854
  publication-title: Chem. Lett.
– volume: 2
  start-page: 290
  year: 2019
  end-page: 296
  publication-title: Nat. Catal.
– volume: 60
  start-page: 5257
  year: 2021
  end-page: 5261
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 463
  year: 2020
  end-page: 469
  publication-title: Nat. Catal.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1127
  year: 2019
  end-page: 1139
  publication-title: Joule
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 13
  start-page: 4291
  year: 2020
  end-page: 4300
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 36
  year: 2022
  end-page: 41
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 1230
  year: 2023
  end-page: 1235
  publication-title: ACS Energy Lett.
– year: 2024
  publication-title: Nat. Energy
– volume: 345
  start-page: 1326
  year: 2014
  end-page: 1330
  publication-title: Science
– volume: 59
  start-page: 6244
  year: 2020
  end-page: 6248
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 379
  start-page: 707
  year: 2023
  end-page: 712
  publication-title: Science
– volume: 609
  start-page: 722
  year: 2022
  end-page: 727
  publication-title: Nature
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1032
  year: 2024
  end-page: 1043
  publication-title: Nat. Catal.
– volume: 14
  start-page: 321
  year: 2022
  end-page: 327
  publication-title: Nat. Chem.
– volume: 1
  start-page: 45
  year: 2024
  end-page: 60
  publication-title: Nat. Chem. Eng.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 16
  start-page: 3063
  year: 2023
  end-page: 3073
  publication-title: Energy Environ. Sci.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 4205
  year: 2021
  publication-title: Nat. Commun.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 2
  start-page: 0112
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 4
  start-page: 776
  year: 2019
  end-page: 785
  publication-title: Nat. Energy
– volume: 4
  start-page: 1186
  year: 2020
  end-page: 1205
  publication-title: Joule
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 372
  start-page: 1187
  year: 2021
  end-page: 1191
  publication-title: Science
– volume: 5
  start-page: 263
  year: 2019
  end-page: 283
  publication-title: Chem
– volume: 135‐136
  start-page: 225
  year: 2003
  end-page: 226
  publication-title: Synth. Met.
– volume: 7
  start-page: 179
  year: 2024
  end-page: 190
  publication-title: Nat. Sustainability
– volume: 6
  start-page: 2083
  year: 2022
  end-page: 2101
  publication-title: Joule
– volume: 595
  start-page: 361
  year: 2021
  end-page: 369
  publication-title: Nature
– volume: 10
  start-page: 1621
  year: 2017
  end-page: 1630
  publication-title: Energy Environ. Sci.
– volume: 367
  start-page: 183
  year: 1994
  end-page: 188
  publication-title: J. Electroanal. Chem.
– volume: 7
  start-page: 720
  year: 2023
  end-page: 727
  publication-title: Mater. Chem. Front.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– year: 2023
  publication-title: Ind. Chem. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 231
  year: 2024
  end-page: 241
  publication-title: Nat. Catal.
– volume: 13
  start-page: 1228
  year: 1930
  end-page: 1236
  publication-title: Helv. Chim. Acta
– volume: 358
  start-page: 506
  year: 2017
  end-page: 510
  publication-title: Science
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  publication-title: Nat. Energy
– volume: 3
  year: 2023
  publication-title: Materials Today Catalysis
– volume: 26
  year: 2025
  publication-title: ChemPhysChem
– volume: 13
  start-page: 202
  year: 2022
  publication-title: Nat. Commun.
– volume: 1
  start-page: 710
  year: 2024
  end-page: 723
  publication-title: Nat. Chem. Eng.
– volume: 21
  start-page: 3839
  year: 2019
  end-page: 3845
  publication-title: Green Chem.
– volume: 5
  start-page: 759
  year: 2020
  end-page: 767
  publication-title: Nat. Energy
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 15
  start-page: 2417
  year: 2024
  publication-title: Nat. Commun.
– volume: 64
  year: 2025
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1251
  year: 2024
  end-page: 1263
  publication-title: Nat. Sustainability
– volume: 139
  start-page: 9771
  year: 2017
  end-page: 9774
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 13656
  year: 2013
  end-page: 13659
  publication-title: J. Am. Chem. Soc.
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  publication-title: Nature
– volume: 1
  start-page: 636
  year: 2008
  end-page: 639
  publication-title: Nat. Geosci.
– volume: 52
  start-page: 6938
  year: 2023
  end-page: 6956
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 359
  year: 2014
  end-page: 368
  publication-title: Electrochim. Acta
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 629
  start-page: 92
  year: 2024
  end-page: 97
  publication-title: Nature
– volume: 360
  year: 2018
  publication-title: Science
– volume: 5
  start-page: 403
  year: 2013
  end-page: 409
  publication-title: Nat. Chem.
– volume: 374
  start-page: 1593
  year: 2021
  end-page: 1597
  publication-title: Science
– volume: 7
  start-page: 1333
  year: 2023
  end-page: 1346
  publication-title: Joule
– volume: 145
  start-page: 25716
  year: 2023
  end-page: 25725
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4673
  year: 2024
  end-page: 4681
  publication-title: ACS Energy Lett.
– ident: e_1_2_8_59_1
  doi: 10.1038/s41570-018-0112
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-024-46803-w
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-020-19130-z
– ident: e_1_2_8_32_1
  doi: 10.1038/s41586-024-07276-5
– ident: e_1_2_8_62_1
  doi: 10.1038/s41467-021-27866-5
– ident: e_1_2_8_64_1
  doi: 10.1021/acsenergylett.2c02792
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aar6611
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202312645
– ident: e_1_2_8_50_1
  doi: 10.1021/jacs.7b04393
– ident: e_1_2_8_75_1
  doi: 10.1002/anie.202416027
– ident: e_1_2_8_41_1
  doi: 10.1126/science.1257443
– ident: e_1_2_8_45_1
  doi: 10.1038/s41557-021-00850-8
– ident: e_1_2_8_74_1
  doi: 10.1016/j.cclet.2022.03.060
– ident: e_1_2_8_29_1
  doi: 10.1246/cl.1993.851
– ident: e_1_2_8_10_1
  doi: 10.1038/s41929-019-0252-4
– ident: e_1_2_8_1_1
  doi: 10.1038/ngeo325
– ident: e_1_2_8_8_1
  doi: 10.1038/s41560-019-0451-x
– ident: e_1_2_8_24_1
  doi: 10.1126/science.abg2371
– ident: e_1_2_8_65_1
  doi: 10.1038/s41586-022-05108-y
– ident: e_1_2_8_19_1
  doi: 10.1039/D0EE02246B
– year: 2023
  ident: e_1_2_8_21_1
  publication-title: Ind. Chem. Mater.
– ident: e_1_2_8_36_1
  doi: 10.1039/D3EE00026E
– ident: e_1_2_8_55_1
  doi: 10.1039/C9GC01338E
– volume: 62
  year: 2023
  ident: e_1_2_8_71_1
  publication-title: Angew. Chem. Int. Ed.
– year: 2024
  ident: e_1_2_8_31_1
  publication-title: Nat. Energy
– ident: e_1_2_8_61_1
  doi: 10.1038/s41467-021-24513-x
– ident: e_1_2_8_30_1
  doi: 10.1016/0022-0728(93)03025-K
– ident: e_1_2_8_5_1
  doi: 10.1038/s41893-022-00908-6
– ident: e_1_2_8_18_1
  doi: 10.1126/science.abl4300
– ident: e_1_2_8_53_1
  doi: 10.1002/anie.202409006
– ident: e_1_2_8_9_1
  doi: 10.1038/s44286-024-00137-y
– ident: e_1_2_8_54_1
  doi: 10.1002/aenm.201601375
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.202305843
– ident: e_1_2_8_39_1
  doi: 10.1038/s41560-020-0654-1
– ident: e_1_2_8_43_1
  doi: 10.1021/ja4071893
– ident: e_1_2_8_23_1
  doi: 10.1038/s41586-019-1260-x
– ident: e_1_2_8_37_1
  doi: 10.1021/jacs.3c08965
– ident: e_1_2_8_52_1
  doi: 10.1038/s44286-023-00009-x
– ident: e_1_2_8_79_1
  doi: 10.1002/advs.201802109
– ident: e_1_2_8_68_1
  doi: 10.1016/j.joule.2022.07.009
– ident: e_1_2_8_40_1
  doi: 10.1039/C7EE01126A
– ident: e_1_2_8_6_1
  doi: 10.1039/D0EE02263B
– ident: e_1_2_8_42_1
  doi: 10.1038/nchem.1621
– ident: e_1_2_8_77_1
  doi: 10.1016/S0379-6779(02)00649-5
– ident: e_1_2_8_26_1
  doi: 10.1038/s41929-024-01115-6
– ident: e_1_2_8_57_1
  doi: 10.1126/sciadv.add5598
– ident: e_1_2_8_20_1
  doi: 10.1016/j.mtcata.2023.100031
– ident: e_1_2_8_28_1
  doi: 10.1002/hlca.19300130604
– ident: e_1_2_8_15_1
  doi: 10.1038/s41893-023-01252-z
– ident: e_1_2_8_35_1
  doi: 10.1016/j.isci.2021.103105
– ident: e_1_2_8_56_1
  doi: 10.1038/s44160-023-00458-5
– ident: e_1_2_8_76_1
  doi: 10.1038/ncomms14589
– ident: e_1_2_8_78_1
  doi: 10.1002/anie.201916516
– volume: 62
  year: 2023
  ident: e_1_2_8_48_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_49_1
  doi: 10.1126/sciadv.1700336
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202007650
– ident: e_1_2_8_17_1
  doi: 10.1126/science.adf4403
– ident: e_1_2_8_2_1
  doi: 10.1016/j.joule.2020.04.004
– ident: e_1_2_8_34_1
  doi: 10.1038/s41929-020-0455-8
– ident: e_1_2_8_14_1
  doi: 10.1038/s41893-024-01406-7
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202203170
– ident: e_1_2_8_63_1
  doi: 10.1016/j.electacta.2013.12.058
– ident: e_1_2_8_73_1
  doi: 10.1002/adfm.202214495
– ident: e_1_2_8_27_1
  doi: 10.1002/cphc.202401097
– ident: e_1_2_8_16_1
  doi: 10.1021/acsenergylett.4c01896
– ident: e_1_2_8_66_1
  doi: 10.1016/j.joule.2019.02.003
– volume: 63
  year: 2024
  ident: e_1_2_8_47_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_72_1
  doi: 10.1039/D2QM01131J
– ident: e_1_2_8_58_1
  doi: 10.1002/adfm.202009151
– ident: e_1_2_8_69_1
  doi: 10.1002/anie.202311413
– ident: e_1_2_8_44_1
  doi: 10.1038/s41560-020-00680-x
– ident: e_1_2_8_60_1
  doi: 10.1126/science.aam6014
– ident: e_1_2_8_4_1
  doi: 10.1016/j.chempr.2018.10.010
– ident: e_1_2_8_70_1
  doi: 10.1002/anie.202015496
– ident: e_1_2_8_67_1
  doi: 10.1021/acsenergylett.1c02104
– ident: e_1_2_8_51_1
  doi: 10.1038/s41586-021-03482-7
– ident: e_1_2_8_11_1
  doi: 10.1016/j.joule.2023.05.013
– ident: e_1_2_8_38_1
  doi: 10.1038/s41929-024-01200-w
– ident: e_1_2_8_7_1
  doi: 10.1039/D2CS00797E
SSID ssj0028806
Score 2.4818742
Snippet Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly...
Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202503465
SubjectTerms Ammonia
Buffers (chemistry)
Electrochemical processes
Electrolysis
Green chemistry
Hydrogen
Hydrogen evolution reactions
Hydrophobicity
Intermediates
Ion‐conducting membranes
Lithium
Membrane technology
Oxidation
Polymethyl methacrylate
Polymethylmethacrylate
Polyoxometalates
Polyoxometallates
Protons
Reactor technology
Reactors
Sustainable ammonia production
Synthesis
Water pollution
Title Harnessing Lithium‐Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202503465
https://www.ncbi.nlm.nih.gov/pubmed/40289915
https://www.proquest.com/docview/3229027798
https://www.proquest.com/docview/3195797945
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQF7iwy8-yZQEZCWlPgcbOT30sqKggitACWm6RHTuiQk1Q00gLp30EJN6QJ2HGbgLdPSDBLVbGjjOescf2zDeE7Pq6Y9Au9iKRGi9gmfIQAxpzvSgVS5ZxG8c9OIv6V8HJdXj9Jorf4UM0B26oGXa-RgWXqtx_BQ3FCGzY38ESzoMIo8zRYQutol8NfhQD4XThRZx7mIW-Rm1ss_3Z6rOr0n-m5qzlapeeoy9E1p12Hie3e9VE7aUP_-A5fuavvpKlqV1Ku06QlsmcyVfIwmGdDm6VPPXlGKdFWOro6XByM6xGz38fBzbTh9HU-u_QLkr1UNKL-xwMy3JYUjznpb-BZEx7LuOOxUChB4WNLqHqng7MCHqcm1eCB6C2Fc-hUPwpRga2CNAGPR8XYKvSi5sKoZfLNXJ11Ls87HvTjA5eymFi8ZSOtDSRFmmQGYPIN0GYCmZUpsKAyzbTRkjRlhJExESx5tpkfpwyobVSiJ34jcznRW6-E6piED_BhQZVCBRXKmNahDLUWvsd2PG3yM96RJM7B9yROIhmliCTk4bJLbJZD3gyVeAy4YiDz-JYdFpkp3kNLMf7FGBJUQGNj3ecMKFBE-tOUJpPBXiDK3x4w-xwv9OHpHt23GtKGx-p9IMs4rNzJd4k85NxZbbAYJqobasULwG5E2M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VcigX_n8CBYwE4rRt1vsXHziENlVCk6iirehtsddeNaqyW2WzgvTEIyDxJLwKj8CTMOPNbhU4ICH1wNHrsdcaz4zHP_MNwEtXdwz5xU4oEuP4PFUOYUBTrhelIslTz8Zxj8Zh_9h_dxKcrMH3OhamwodoDtxIM6y9JgWnA-ntS9RQCsHGDR6u4Z4f1u8q983iE-7aijeDXZziV5zv9Y52-s4ysYCT4PY9cJQOtTShFomfGkMALH6QCG5UqgLfk22ujZCiLSWO1ISR9rRJ3SjhQmulCMIP-70G1ymNOMH1775vEKs4qkMV0OR5DuW9r3Ei23x7dbyr6-Afzu2qr2wXu71b8KNmU_XG5WyrnKut5OI3BMn_io-34ebS9WbdSlfuwJrJ7sLGTp3x7h5868sZWX5czdlwMj-dlNOfX76ObDITo5l9osS6pLgTyQ4XGfrOxaRgdJTNPiDJjPWqpEIW5oW9zW0ADVMLNjJTZFFmLgkukNo2PMBC_jmfGtwFYR_sYJajO84OT0tCly7uw_GV8OQBrGd5Zh4BUxFqmPCERm33ladUyrUIZKC1djuiHbXgdS1C8XmFTRJXKNQ8pkmNm0ltwWYtYfHSRhWxR1D_PIpEpwUvmmpkOV0ZIUvyEmlcusZFm41dPKwks_mVT5fUwsUabuXrL2OIu-NBryk9_pdGz2GjfzQaxsPBeP8J3KDv1cvpTVifz0rzFP3DuXpmNZLBx6sW3V_LnXUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIgEX_qGBAkYCcdp21_sXHziEJlFCmyiiVPS2rNdeNaqyW2WzgvTEIyDxIrwKr8CTMOPNbhU4ICH1wNHrsdcaz9gztucbgBeOamuyi61AJNryeCotwoCmXC9ShjFPXRPHPRoHgyPv7bF_vAHf61iYCh-iOXAjzTDrNSn4mUp3L0BDKQIb_Tvcwl0vqJ9V7uvlJ3TaitfDLs7wS877vfd7A2uVV8BK0Hv3LakCFetAicRLtSb8Fc9PBNcylb7nxjZXWsTCjmMcqA5C5SqdOmHChVJSEoIf9nsFrnqBLShZRPddA1jFURuqeCbXtSjtfQ0TafPd9fGub4N_2LbrprLZ6_q34EfNpeqJy-lOuZA7yflvAJL_Extvw82V4c06labcgQ2d3YXre3W-u3vwbRDPad3HvZwdTBcn03L288vXkUllohUzD5RYh9R2GrPDZYaWczEtGB1ksw9IMme9KqWQAXlhb3ITPsPkko30DDmU6QuCc6Q2DSdYyD_nM40-EPbBJvMcjXF2eFIStnRxH44uhScPYDPLM70FTIaoX8IVCnXdk66UKVfCj32llNMWdtiCV7UERWcVMklUYVDziCY1aia1Bdu1gEWrFaqIXAL652Eo2i143lQjy-nCCFmSl0jj0CUurtjYxcNKMJtfeXRFLRys4Ua8_jKGqDMe9prSo39p9AyuTbr96GA43n8MN-hz9Wx6GzYX81I_QeNwIZ8afWTw8bIl9xf2zXPP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Lithium%E2%80%90Mediated+Green+Ammonia+Synthesis+with+Water+Electrolysis+Boosted+by+Membrane+Electrolyzer+with+Polyoxometalate+Proton+Shuttles&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Miao%2C+Jun&rft.au=Chen%2C+Cailing&rft.au=Cao%2C+Li&rft.au=Al+Nuaimi%2C+Reham&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=27&rft_id=info:doi/10.1002%2Fanie.202503465&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon