Stability analysis of interconnected nonlinear fractional‐order systems via a single‐state variable control
Summary This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 29; no. 18; pp. 6374 - 6397 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.4725 |
Cover
Loading…
Abstract | Summary
This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The obtained results are general and can further extend the application range. Meanwhile, an improved single‐state variable control method is introduced. The control scheme only needs to control some state variable of the system or some subsystem(s) to realize and any additional restrictions are not added. Finally, the effectiveness of the obtained results is demonstrated by several typical examples. Besides, by comparison, simulation results show that the proposed control method can indeed decrease the design and control cost and improve flexibility of control. |
---|---|
AbstractList | This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The obtained results are general and can further extend the application range. Meanwhile, an improved single‐state variable control method is introduced. The control scheme only needs to control some state variable of the system or some subsystem(s) to realize and any additional restrictions are not added. Finally, the effectiveness of the obtained results is demonstrated by several typical examples. Besides, by comparison, simulation results show that the proposed control method can indeed decrease the design and control cost and improve flexibility of control. Summary This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The obtained results are general and can further extend the application range. Meanwhile, an improved single‐state variable control method is introduced. The control scheme only needs to control some state variable of the system or some subsystem(s) to realize and any additional restrictions are not added. Finally, the effectiveness of the obtained results is demonstrated by several typical examples. Besides, by comparison, simulation results show that the proposed control method can indeed decrease the design and control cost and improve flexibility of control. |
Author | Dai, Xin Sun, Yue Ye, Zhaohong Yu, Zhongming |
Author_xml | – sequence: 1 givenname: Zhongming orcidid: 0000-0002-9584-6820 surname: Yu fullname: Yu, Zhongming organization: Chongqing University – sequence: 2 givenname: Yue surname: Sun fullname: Sun, Yue email: syue@cqu.edu.cn organization: Chongqing University – sequence: 3 givenname: Xin surname: Dai fullname: Dai, Xin organization: Chongqing University – sequence: 4 givenname: Zhaohong surname: Ye fullname: Ye, Zhaohong organization: Chongqing University |
BookMark | eNp1kM1KAzEQx4NUsFbBRwh48bI1ySbbzVGKX1AU_Dgv2d1ZSUmTmqSVvfkIPqNPYtZ6EmUOMzC_-c_M_xCNrLOA0AklU0oIO_e2mfIZE3toTImUGWW5HA01l1kpWX6ADkNYEpJ6jI-Re4yq1kbHHiurTB90wK7D2kbwjbMWmggtTjuMtqA87rxqonYJ_Xz_cL4Fj0MfIqwC3mqFFQ7avhhIzRBVBLxVXqvaAE5i0TtzhPY7ZQIc_-QJer66fJrfZIv769v5xSJr8pyITFJOC1mqUnZ8lkNJZqqlwLqWEFG0ILgQtKSKp5gx1jFWF1QWpSC8ZoS3dT5BpzvdtXevGwixWrqNT2eHiuU0MbIsRKLOdlTjXQgeumrt9Ur5vqKkGuyskp3VYGdCp7_QRqcP9fCW0uavgWw38KYN9P8KVw9382_-C_R5ivk |
CitedBy_id | crossref_primary_10_1109_TCYB_2022_3190413 crossref_primary_10_1002_rnc_6848 crossref_primary_10_3390_math11214450 crossref_primary_10_1109_TCSII_2021_3067149 crossref_primary_10_1016_j_chaos_2023_113666 crossref_primary_10_1016_j_jfranklin_2021_11_022 crossref_primary_10_3390_math11133024 crossref_primary_10_1109_TCYB_2025_3526686 crossref_primary_10_1002_rnc_5400 crossref_primary_10_1016_j_jfranklin_2022_08_040 crossref_primary_10_1109_TCSII_2021_3069323 crossref_primary_10_1002_rnc_6673 crossref_primary_10_1002_rnc_7750 crossref_primary_10_1016_j_jfranklin_2023_05_037 crossref_primary_10_1109_TASE_2024_3461809 |
Cites_doi | 10.1016/j.automatica.2018.01.030 10.1002/rnc.3159 10.1016/j.cnsns.2014.01.022 10.1016/j.automatica.2016.06.002 10.1016/j.physleta.2005.10.055 10.1007/s40243-015-0052-y 10.1016/S0005-1098(96)00112-4 10.1109/TFUZZ.2018.2852281 10.1002/etep.2735 10.1016/j.cnsns.2015.01.013 10.1109/TAC.1984.1103551 10.1007/s13369-018-3412-y 10.1016/j.cnsns.2014.10.008 10.1002/oca.2169 10.1109/TAC.2012.2218064 10.1109/TPEL.2014.2373381 10.1109/TCSII.2008.2002571 10.1016/j.jpowsour.2018.08.047 10.1109/TED.2015.2458931 10.1016/S0022-0728(71)80115-8 10.1007/s11071-015-2172-4 10.1109/94.326654 10.1016/j.cnsns.2016.11.013 10.1016/j.automatica.2013.04.005 10.1007/s11071-016-2649-9 10.1115/1.4035196 10.1016/j.neucom.2012.02.012 10.1007/s11071-019-04877-y 10.3390/en12010084 10.1016/j.aml.2015.02.020 10.1016/j.chaos.2005.08.040 10.1016/j.automatica.2018.03.057 10.2514/3.20641 10.1016/j.isatra.2017.06.024 10.3906/mat-1510-5 10.1140/epjst/e2013-01967-y 10.1016/j.mcm.2010.05.016 10.1016/j.camwa.2009.08.003 10.1002/rnc.4055 10.1016/j.automatica.2008.06.021 10.1109/TIE.2019.2892696 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.4725 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 6397 |
ExternalDocumentID | 10_1002_rnc_4725 RNC4725 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51777022 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT .Y3 31~ AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG AI. AMVHM ASPBG AVWKF AZFZN CITATION CMOOK EJD FEDTE HF~ HVGLF LW6 M59 PALCI RIWAO RJQFR SAMSI VH1 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3305-9141698a89f473e807ad1e2fd0056de5455181a4a4a722f22b61968504b204db3 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 12:08:59 EDT 2025 Tue Jul 01 02:06:56 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 Wed Jan 22 16:37:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3305-9141698a89f473e807ad1e2fd0056de5455181a4a4a722f22b61968504b204db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9584-6820 |
PQID | 2312049865 |
PQPubID | 1026344 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2312049865 crossref_primary_10_1002_rnc_4725 crossref_citationtrail_10_1002_rnc_4725 wiley_primary_10_1002_rnc_4725_RNC4725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 1 December 2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 45 2018; 28 2017; 41 2010; 59 1991; 14 2015; 4 2013; 49 2017; 47 2019; 96 2015; 346 2015; 30 2018; 400 2013; 222 1996 1997; 27 2016; 73 2006; 351 1984; 29 1971 2008; 55 2018; 82 2016; 37 2016; 287‐288 1996; 32 2018; 26 2016; 12 1971; 33 2015; 25 2015; 47 2012; 91 2013; 58 2015; 82 2015; 62 2019; 44 2019; 66 2015; 22 2018; 92 2018; 91 2006; 29 2019; 29 2016; 84 2014; 19 2018; 12 1994; 1 2010; 52 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Agarwal R (e_1_2_7_22_1) 2015; 346 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_47_1 e_1_2_7_26_1 Gallegos J (e_1_2_7_20_1) 2016; 287 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Heaviside O (e_1_2_7_3_1) 1971 Machado J (e_1_2_7_15_1) 1997; 27 Khalil H (e_1_2_7_46_1) 1996 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 59 start-page: 1594 issue: 5 year: 2010 end-page: 1609 article-title: LMI stability conditions for fractional order systems publication-title: Comput Math Appl – volume: 33 start-page: 253 issue: 2 year: 1971 end-page: 265 article-title: An analog simulation of non‐integer order transfer functions for analysis of electrode processes publication-title: J Electroanal Chem Interfacial Electrochem – volume: 12 start-page: 84 year: 2018 article-title: Fractional‐order model predictive frequency control of an islanded microgrid publication-title: Energies – volume: 29 start-page: 441 issue: 5 year: 1984 end-page: 444 article-title: Linear approximation of transfer function with a pole of fractional power publication-title: IEEE Trans Autom Control – volume: 30 start-page: 5902 issue: 10 year: 2015 end-page: 5910 article-title: Auxiliary circuits for power flow control in multifrequency wireless power transfer systems with multiple receivers publication-title: IEEE Trans Power Electron – volume: 52 start-page: 862 issue: 5‐6 year: 2010 end-page: 874 article-title: Stability analysis of fractional differential system with Riemann‐Liouville derivative publication-title: Math Comput Model – volume: 1 start-page: 826 issue: 5 year: 1994 end-page: 839 article-title: Capacitor theory publication-title: IEEE Trans Dielectr Electr Insul – volume: 287‐288 start-page: 161 year: 2016 end-page: 170 article-title: On the Lyapunov theory for fractional order systems publication-title: Appl Math Comput – volume: 351 start-page: 79 issue: 1‐2 year: 2006 end-page: 84 article-title: Adaptive control and synchronization for a class of nonlinear chaotic systems using partial system states publication-title: Phys Lett A – volume: 22 start-page: 650 issue: 1‐3 year: 2015 end-page: 659 article-title: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems publication-title: Commun Nonlinear Sci Numer Simul – volume: 91 start-page: 69 year: 2018 end-page: 78 article-title: Distributed predictor‐based stabilization of continuous interconnected systems with input delays publication-title: Automatica – year: 1996 – volume: 222 start-page: 1827 issue: 8 year: 2013 end-page: 1846 article-title: Fractional calculus: a survey of useful formulas publication-title: Eur Phys J Special Top – volume: 400 start-page: 457 year: 2018 end-page: 467 article-title: Review of fractional‐order electrical characterization of supercapacitors publication-title: J Power Sources – volume: 92 start-page: 254 year: 2018 end-page: 258 article-title: Global stabilization via sampled‐data output feedback for large‐scale systems interconnected by inherent nonlinearities publication-title: Automatica – year: 1971 – volume: 29 start-page: 1 year: 2019 end-page: 17 article-title: A fractional order fuzzy PID for load frequency control of four‐area interconnected power system using biogeography‐based optimization publication-title: Int Trans Electr Energy Syst – volume: 55 start-page: 1178 issue: 11 year: 2008 end-page: 1182 article-title: Stability analysis of a class of nonlinear fractional‐order systems publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 25 start-page: 145 year: 2015 end-page: 148 article-title: Comments On “fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks” publication-title: Commun Nonlinear Sci Numer Simul – volume: 73 start-page: 256 year: 2016 end-page: 268 article-title: Sparse solution of the Lyapunov equation for large‐scale interconnected systems publication-title: Automatica – volume: 47 start-page: 328 year: 2017 end-page: 337 article-title: Dynamic stability analysis of fractional order leaky integrator echo state neural networks publication-title: Commun Nonlinear Sci Numer Simul – volume: 84 start-page: 2357 issue: 4 year: 2016 end-page: 2361 article-title: Stabilization of the unstable equilibrium points of the fractional‐order BLDCM chaotic system in the sense of Lyapunov by a single‐state variable publication-title: Nonlinear Dynamics – volume: 49 start-page: 2551 issue: 8 year: 2013 end-page: 2555 article-title: Decentralized control of nonlinear interconnected systems under both amplitude and rate saturations publication-title: Automatica – volume: 45 start-page: 217 year: 2009 end-page: 224 article-title: Characterization of robust stability of a class of interconnected systems publication-title: Automatica – volume: 66 start-page: 9439 year: 2019 end-page: 9447 article-title: Reliable fuzzy tracking control of near‐space hypersonic vehicle using aperiodic measurement information publication-title: IEEE Trans Ind Electron – volume: 82 start-page: 519 issue: 1‐2 year: 2015 end-page: 525 article-title: Stabilization of a fractional‐order chaotic brushless DC motor via a single input publication-title: Nonlinear Dynamics – volume: 44 start-page: 2265 issue: 3 year: 2019 end-page: 2280 article-title: Fractional‐order Sliding mode control for D‐STATCOM connected wind farm based DFIG under voltage unbalanced publication-title: Arab J Sci Eng – volume: 91 start-page: 67 year: 2012 end-page: 76 article-title: Global exponential stability of impulsive fuzzy Cohen–Grossberg neural networks with mixed delays and reaction‐diffusion terms publication-title: Neurocomputing – volume: 19 start-page: 2951 issue: 9 year: 2014 end-page: 2957 article-title: Lyapunov functions for fractional order systems publication-title: Commun Nonlinear Sci Numer Simul – volume: 96 start-page: 1665 year: 2019 end-page: 1675 article-title: Exponential ultimate boundedness of fractional‐order differential systems via periodically intermittent control publication-title: Nonlinear Dynamics – volume: 37 start-page: 305 issue: 2 year: 2016 end-page: 322 article-title: An analysis and design method for fractional‐order linear systems subject to actuator saturation and disturbance publication-title: Optim Control Appl Methods – volume: 62 start-page: 3012 issue: 9 year: 2015 end-page: 3018 article-title: Characterization of CMOS metamaterial transmission line by compact fractional‐order equivalent circuit model publication-title: IEEE Trans Electron Devices – volume: 27 start-page: 107 issue: 2‐3 year: 1997 end-page: 122 article-title: Analysis and design of fractional‐order digital control systems publication-title: Syst Anal Model Simul – volume: 26 start-page: 3875 year: 2018 end-page: 3883 article-title: An improved result on exponential stabilization of sampled‐data fuzzy systems publication-title: IEEE Trans Fuzzy Syst – volume: 41 start-page: 1260 year: 2017 end-page: 1278 article-title: Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann‐Liouville derivatives publication-title: Turk J Math – volume: 12 start-page: 031014 issue: 3 year: 2016 article-title: Stabilization of fractional‐order systems subject to saturation element using fractional dynamic output feedback sliding mode control publication-title: J Comput Nonlinear Dyn – volume: 346 start-page: 1 year: 2015 end-page: 20 article-title: Lyapunov functions and strict stability of Caputo fractional differential equations publication-title: Adv Differ Equ – volume: 58 start-page: 1062 issue: 4 year: 2013 end-page: 1067 article-title: Stability and stabilization of fractional‐order linear systems subject to input saturation publication-title: IEEE Trans Autom Control – volume: 29 start-page: 198 year: 2006 end-page: 201 article-title: Impulsive synchronization of Chua's oscillators via a single variable publication-title: Chaos Solit Fractals – volume: 14 start-page: 304 issue: 2 year: 1991 end-page: 311 article-title: Fractional order state equations for the control of viscoelastically damped structures publication-title: J Guid Control Dyn – volume: 4 start-page: 1 issue: 3 year: 2015 end-page: 7 article-title: Fractional‐order models of supercapacitors, batteries and fuel cells: a survey publication-title: Mater Renew Sustain Energy – volume: 28 start-page: 2887 year: 2018 end-page: 2905 article-title: Stability analysis of a class of nonlinear fractional‐order systems under control input saturation publication-title: Int J Robust Nonlinear Control – volume: 47 start-page: 26 year: 2015 end-page: 34 article-title: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control publication-title: Appl Math Lett – volume: 32 start-page: 1603 issue: 11 year: 1996 end-page: 1608 article-title: Decentralized robust control for interconnected systems with time‐varying uncertainties publication-title: Automatica – volume: 82 start-page: 184 year: 2018 end-page: 199 article-title: Modeling and analysis of fractional order DC‐DC converter publication-title: ISA Transactions – volume: 25 start-page: 1548 issue: 10 year: 2015 end-page: 1568 article-title: Nonlinear fractional‐order power system stabilizer for multi‐machine power systems based on sliding mode technique publication-title: Int J Robust Nonlinear Control – ident: e_1_2_7_35_1 doi: 10.1016/j.automatica.2018.01.030 – ident: e_1_2_7_8_1 doi: 10.1002/rnc.3159 – ident: e_1_2_7_19_1 doi: 10.1016/j.cnsns.2014.01.022 – ident: e_1_2_7_34_1 doi: 10.1016/j.automatica.2016.06.002 – ident: e_1_2_7_43_1 doi: 10.1016/j.physleta.2005.10.055 – volume-title: Electromagnetic Theory year: 1971 ident: e_1_2_7_3_1 – ident: e_1_2_7_13_1 doi: 10.1007/s40243-015-0052-y – ident: e_1_2_7_31_1 doi: 10.1016/S0005-1098(96)00112-4 – ident: e_1_2_7_39_1 doi: 10.1109/TFUZZ.2018.2852281 – ident: e_1_2_7_9_1 doi: 10.1002/etep.2735 – ident: e_1_2_7_28_1 doi: 10.1016/j.cnsns.2015.01.013 – ident: e_1_2_7_2_1 doi: 10.1109/TAC.1984.1103551 – ident: e_1_2_7_10_1 doi: 10.1007/s13369-018-3412-y – ident: e_1_2_7_23_1 doi: 10.1016/j.cnsns.2014.10.008 – ident: e_1_2_7_30_1 doi: 10.1002/oca.2169 – ident: e_1_2_7_27_1 doi: 10.1109/TAC.2012.2218064 – ident: e_1_2_7_47_1 doi: 10.1109/TPEL.2014.2373381 – ident: e_1_2_7_24_1 doi: 10.1109/TCSII.2008.2002571 – ident: e_1_2_7_5_1 doi: 10.1016/j.jpowsour.2018.08.047 – ident: e_1_2_7_6_1 doi: 10.1109/TED.2015.2458931 – ident: e_1_2_7_12_1 doi: 10.1016/S0022-0728(71)80115-8 – ident: e_1_2_7_41_1 doi: 10.1007/s11071-015-2172-4 – ident: e_1_2_7_14_1 doi: 10.1109/94.326654 – ident: e_1_2_7_17_1 doi: 10.1016/j.cnsns.2016.11.013 – ident: e_1_2_7_33_1 doi: 10.1016/j.automatica.2013.04.005 – ident: e_1_2_7_42_1 doi: 10.1007/s11071-016-2649-9 – volume-title: Nonlinear Systems year: 1996 ident: e_1_2_7_46_1 – ident: e_1_2_7_40_1 doi: 10.1115/1.4035196 – ident: e_1_2_7_38_1 doi: 10.1016/j.neucom.2012.02.012 – ident: e_1_2_7_21_1 doi: 10.1007/s11071-019-04877-y – ident: e_1_2_7_7_1 doi: 10.3390/en12010084 – ident: e_1_2_7_29_1 doi: 10.1016/j.aml.2015.02.020 – ident: e_1_2_7_44_1 doi: 10.1016/j.chaos.2005.08.040 – ident: e_1_2_7_36_1 doi: 10.1016/j.automatica.2018.03.057 – ident: e_1_2_7_11_1 doi: 10.2514/3.20641 – volume: 287 start-page: 161 year: 2016 ident: e_1_2_7_20_1 article-title: On the Lyapunov theory for fractional order systems publication-title: Appl Math Comput – ident: e_1_2_7_4_1 doi: 10.1016/j.isatra.2017.06.024 – volume: 346 start-page: 1 year: 2015 ident: e_1_2_7_22_1 article-title: Lyapunov functions and strict stability of Caputo fractional differential equations publication-title: Adv Differ Equ – ident: e_1_2_7_25_1 doi: 10.3906/mat-1510-5 – ident: e_1_2_7_45_1 doi: 10.1140/epjst/e2013-01967-y – volume: 27 start-page: 107 issue: 2 year: 1997 ident: e_1_2_7_15_1 article-title: Analysis and design of fractional‐order digital control systems publication-title: Syst Anal Model Simul – ident: e_1_2_7_26_1 doi: 10.1016/j.mcm.2010.05.016 – ident: e_1_2_7_16_1 doi: 10.1016/j.camwa.2009.08.003 – ident: e_1_2_7_18_1 doi: 10.1002/rnc.4055 – ident: e_1_2_7_32_1 doi: 10.1016/j.automatica.2008.06.021 – ident: e_1_2_7_37_1 doi: 10.1109/TIE.2019.2892696 |
SSID | ssj0009924 |
Score | 2.350143 |
Snippet | Summary
This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of... This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6374 |
SubjectTerms | Control stability Control systems Economic models fractional order interconnected nonlinear system Nonlinear analysis Nonlinear systems single‐state variable control Stability analysis State variable Subsystems |
Title | Stability analysis of interconnected nonlinear fractional‐order systems via a single‐state variable control |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4725 https://www.proquest.com/docview/2312049865 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ33wLl6mRBB96tamaZs-ylBEcA_DwcCHkqQJiMNJdwF98if4G_0lntO0m4qCSKEtJKGnSU7yJZzvCyEnVisZ-Np6XFu48Vh7MggNEnx4kufKGoV855tufNXn14NoUEVVIhfG6UPMN9zQM8rxGh1cqnF7IRpagP_whCG_HEO1EA_1FspRaerOswUA7AkAMbXurM_adcGvM9ECXn4GqeUsc7lG7mr7XHDJQ2s6US398k268X8_sE5WK_BJz11v2SBL5nGTrHySJNwiI0CfZbzsM5WVXgkdWYqqEoXGoBgNEJU-uu_LgtrCMSPk8P31rdTxpE4cekxn95JKinsRQwOJJXWJzmBtjmwtWsXIb5P-5cVt58qrDmXwdAhjAwyOAOFSIUVqeRIa4ScyDwyzOYqK5gYAWQSgQXK4EsYsYwqWaLGIfK6Yz3MV7pAGGGl2CRUmSGKjDWfa8oBbAe8hl2EsTKSkn--Rs7qBMl0pluPBGcPMaS2zDKowwyrcI8fznE9OpeOHPM26jbPKT8cZoFuwKhUxJJ-WjfVr-azX7eBz_68ZD8gyoKvUxb40SWNSTM0hIJiJOir76gdL5_KV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtBNFT3TZN2xRP4oP1tQdR8CCUJE1AXFS6u4Ke_An-Rn-Jk6Z1VRRECm0hCUwek3wZZr4B2DBKisBXxmPK4IvFyhNBqG2AD0vyXBotbbzzWStuXrLjq-hqAHbqWBjHD_FhcLOaUe7XVsGtQbrRZw0tUIFYQqNBGLYJva1W7p_3uaPS1GW0RQjscYQxNfOsTxt1y69nUR9gfoap5TlzOAHXtYTOveR2u9eV2-r5G3njP7swCeMV_iS7bsFMwYC-m4axT6yEM3CPALR0mX0ioqIsIfeGWGKJQlm_GIUoldw5AURBTOGCI0T77eW1pPIkjh-6Qx5vBBHEmiPaGgvL6CXyiNdzG7BFKjf5Wbg8PLjYa3pVXgZPhbg94P6IKC7lgqeGJaHmfiLyQFOTW17RXCMmixA3CIZPQqmhVOItLeaRzyT1WS7DORhCIfU8EK6DJNZKM6oMC5jh-B8yEcZcR1L4-QJs1TOUqYq03ObOaGeObplmOISZHcIFWP-o-eCIOn6os1xPclapaidDgItSpTzG4s1ytn5tn5239ux38a8V12CkeXF2mp0etU6WYBTBVupcYZZhqFv09AoCmq5cLRfuO1oj9q4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDThB98C5Op0YQferWpmmbPoo6vA4ZCgMfSpImIA6V7gL65EfwM_pJPGlaN0VBpNAWktA013_COb8gtKul4J4rtUOlhhsNpcM9XxkHHxqlqdBKGH_ny1Z4ckPPOkGnsKo0vjCWD_G54WZ6Rj5emw7-lOrGCBqaQf-hEQkm0RQNXWYWXkftEToqju2BtqCAHQYqpgTPuqRRpvw6FY305bhKzaeZ5jy6LTNorUvu64O-qMuXb-zG__3BApor1Cc-sM1lEU2ohyU0O8YkXEaPID9zg9lnzAtgCX7U2GAlMmmsYiRoVPxgv88zrDPrGsG7769vOcgTWzp0Dw_vOObYbEZ0FQTmvkt4CItz466FCyP5FXTTPL4-PHGKUxkc6cPgAKMjaLiYcRZrGvmKuRFPPUV0aqiiqQJFFoBq4BSuiBBNiIA1WsgClwri0lT4q6gCmVRrCDPlRaGSihKpqUc1g3efcj9kKhDcTatov6ygRBbIcnNyRjexsGWSQBEmpgiraOcz5pPFdPwQp1bWcVJ01F4C8hZyFbMQgvfyyvo1fdJuHZrn-l8jbqPpq6NmcnHaOt9AM6C0YmsHU0OVfjZQm6Bm-mIrb7YfqiP1Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+analysis+of+interconnected+nonlinear+fractional%E2%80%90order+systems+via+a+single%E2%80%90state+variable+control&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Yu%2C+Zhongming&rft.au=Sun%2C+Yue&rft.au=Dai%2C+Xin&rft.au=Ye%2C+Zhaohong&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=29&rft.issue=18&rft.spage=6374&rft.epage=6397&rft_id=info:doi/10.1002%2Frnc.4725&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |