Stability analysis of interconnected nonlinear fractional‐order systems via a single‐state variable control

Summary This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 29; no. 18; pp. 6374 - 6397
Main Authors Yu, Zhongming, Sun, Yue, Dai, Xin, Ye, Zhaohong
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.4725

Cover

Loading…
Abstract Summary This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The obtained results are general and can further extend the application range. Meanwhile, an improved single‐state variable control method is introduced. The control scheme only needs to control some state variable of the system or some subsystem(s) to realize and any additional restrictions are not added. Finally, the effectiveness of the obtained results is demonstrated by several typical examples. Besides, by comparison, simulation results show that the proposed control method can indeed decrease the design and control cost and improve flexibility of control.
AbstractList This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The obtained results are general and can further extend the application range. Meanwhile, an improved single‐state variable control method is introduced. The control scheme only needs to control some state variable of the system or some subsystem(s) to realize and any additional restrictions are not added. Finally, the effectiveness of the obtained results is demonstrated by several typical examples. Besides, by comparison, simulation results show that the proposed control method can indeed decrease the design and control cost and improve flexibility of control.
Summary This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all, based on stability theory, the Grönwall‐Bellman lemma and the Mittag‐Leffler function, the relevant stability results are derived. The obtained results are general and can further extend the application range. Meanwhile, an improved single‐state variable control method is introduced. The control scheme only needs to control some state variable of the system or some subsystem(s) to realize and any additional restrictions are not added. Finally, the effectiveness of the obtained results is demonstrated by several typical examples. Besides, by comparison, simulation results show that the proposed control method can indeed decrease the design and control cost and improve flexibility of control.
Author Dai, Xin
Sun, Yue
Ye, Zhaohong
Yu, Zhongming
Author_xml – sequence: 1
  givenname: Zhongming
  orcidid: 0000-0002-9584-6820
  surname: Yu
  fullname: Yu, Zhongming
  organization: Chongqing University
– sequence: 2
  givenname: Yue
  surname: Sun
  fullname: Sun, Yue
  email: syue@cqu.edu.cn
  organization: Chongqing University
– sequence: 3
  givenname: Xin
  surname: Dai
  fullname: Dai, Xin
  organization: Chongqing University
– sequence: 4
  givenname: Zhaohong
  surname: Ye
  fullname: Ye, Zhaohong
  organization: Chongqing University
BookMark eNp1kM1KAzEQx4NUsFbBRwh48bI1ySbbzVGKX1AU_Dgv2d1ZSUmTmqSVvfkIPqNPYtZ6EmUOMzC_-c_M_xCNrLOA0AklU0oIO_e2mfIZE3toTImUGWW5HA01l1kpWX6ADkNYEpJ6jI-Re4yq1kbHHiurTB90wK7D2kbwjbMWmggtTjuMtqA87rxqonYJ_Xz_cL4Fj0MfIqwC3mqFFQ7avhhIzRBVBLxVXqvaAE5i0TtzhPY7ZQIc_-QJer66fJrfZIv769v5xSJr8pyITFJOC1mqUnZ8lkNJZqqlwLqWEFG0ILgQtKSKp5gx1jFWF1QWpSC8ZoS3dT5BpzvdtXevGwixWrqNT2eHiuU0MbIsRKLOdlTjXQgeumrt9Ur5vqKkGuyskp3VYGdCp7_QRqcP9fCW0uavgWw38KYN9P8KVw9382_-C_R5ivk
CitedBy_id crossref_primary_10_1109_TCYB_2022_3190413
crossref_primary_10_1002_rnc_6848
crossref_primary_10_3390_math11214450
crossref_primary_10_1109_TCSII_2021_3067149
crossref_primary_10_1016_j_chaos_2023_113666
crossref_primary_10_1016_j_jfranklin_2021_11_022
crossref_primary_10_3390_math11133024
crossref_primary_10_1109_TCYB_2025_3526686
crossref_primary_10_1002_rnc_5400
crossref_primary_10_1016_j_jfranklin_2022_08_040
crossref_primary_10_1109_TCSII_2021_3069323
crossref_primary_10_1002_rnc_6673
crossref_primary_10_1002_rnc_7750
crossref_primary_10_1016_j_jfranklin_2023_05_037
crossref_primary_10_1109_TASE_2024_3461809
Cites_doi 10.1016/j.automatica.2018.01.030
10.1002/rnc.3159
10.1016/j.cnsns.2014.01.022
10.1016/j.automatica.2016.06.002
10.1016/j.physleta.2005.10.055
10.1007/s40243-015-0052-y
10.1016/S0005-1098(96)00112-4
10.1109/TFUZZ.2018.2852281
10.1002/etep.2735
10.1016/j.cnsns.2015.01.013
10.1109/TAC.1984.1103551
10.1007/s13369-018-3412-y
10.1016/j.cnsns.2014.10.008
10.1002/oca.2169
10.1109/TAC.2012.2218064
10.1109/TPEL.2014.2373381
10.1109/TCSII.2008.2002571
10.1016/j.jpowsour.2018.08.047
10.1109/TED.2015.2458931
10.1016/S0022-0728(71)80115-8
10.1007/s11071-015-2172-4
10.1109/94.326654
10.1016/j.cnsns.2016.11.013
10.1016/j.automatica.2013.04.005
10.1007/s11071-016-2649-9
10.1115/1.4035196
10.1016/j.neucom.2012.02.012
10.1007/s11071-019-04877-y
10.3390/en12010084
10.1016/j.aml.2015.02.020
10.1016/j.chaos.2005.08.040
10.1016/j.automatica.2018.03.057
10.2514/3.20641
10.1016/j.isatra.2017.06.024
10.3906/mat-1510-5
10.1140/epjst/e2013-01967-y
10.1016/j.mcm.2010.05.016
10.1016/j.camwa.2009.08.003
10.1002/rnc.4055
10.1016/j.automatica.2008.06.021
10.1109/TIE.2019.2892696
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.4725
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 6397
ExternalDocumentID 10_1002_rnc_4725
RNC4725
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51777022
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
.Y3
31~
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AI.
AMVHM
ASPBG
AVWKF
AZFZN
CITATION
CMOOK
EJD
FEDTE
HF~
HVGLF
LW6
M59
PALCI
RIWAO
RJQFR
SAMSI
VH1
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3305-9141698a89f473e807ad1e2fd0056de5455181a4a4a722f22b61968504b204db3
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:08:59 EDT 2025
Tue Jul 01 02:06:56 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
Wed Jan 22 16:37:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3305-9141698a89f473e807ad1e2fd0056de5455181a4a4a722f22b61968504b204db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9584-6820
PQID 2312049865
PQPubID 1026344
PageCount 25
ParticipantIDs proquest_journals_2312049865
crossref_primary_10_1002_rnc_4725
crossref_citationtrail_10_1002_rnc_4725
wiley_primary_10_1002_rnc_4725_RNC4725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 1 December 2019
  day: 01
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 45
2018; 28
2017; 41
2010; 59
1991; 14
2015; 4
2013; 49
2017; 47
2019; 96
2015; 346
2015; 30
2018; 400
2013; 222
1996
1997; 27
2016; 73
2006; 351
1984; 29
1971
2008; 55
2018; 82
2016; 37
2016; 287‐288
1996; 32
2018; 26
2016; 12
1971; 33
2015; 25
2015; 47
2012; 91
2013; 58
2015; 82
2015; 62
2019; 44
2019; 66
2015; 22
2018; 92
2018; 91
2006; 29
2019; 29
2016; 84
2014; 19
2018; 12
1994; 1
2010; 52
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Agarwal R (e_1_2_7_22_1) 2015; 346
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_47_1
e_1_2_7_26_1
Gallegos J (e_1_2_7_20_1) 2016; 287
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Heaviside O (e_1_2_7_3_1) 1971
Machado J (e_1_2_7_15_1) 1997; 27
Khalil H (e_1_2_7_46_1) 1996
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 59
  start-page: 1594
  issue: 5
  year: 2010
  end-page: 1609
  article-title: LMI stability conditions for fractional order systems
  publication-title: Comput Math Appl
– volume: 33
  start-page: 253
  issue: 2
  year: 1971
  end-page: 265
  article-title: An analog simulation of non‐integer order transfer functions for analysis of electrode processes
  publication-title: J Electroanal Chem Interfacial Electrochem
– volume: 12
  start-page: 84
  year: 2018
  article-title: Fractional‐order model predictive frequency control of an islanded microgrid
  publication-title: Energies
– volume: 29
  start-page: 441
  issue: 5
  year: 1984
  end-page: 444
  article-title: Linear approximation of transfer function with a pole of fractional power
  publication-title: IEEE Trans Autom Control
– volume: 30
  start-page: 5902
  issue: 10
  year: 2015
  end-page: 5910
  article-title: Auxiliary circuits for power flow control in multifrequency wireless power transfer systems with multiple receivers
  publication-title: IEEE Trans Power Electron
– volume: 52
  start-page: 862
  issue: 5‐6
  year: 2010
  end-page: 874
  article-title: Stability analysis of fractional differential system with Riemann‐Liouville derivative
  publication-title: Math Comput Model
– volume: 1
  start-page: 826
  issue: 5
  year: 1994
  end-page: 839
  article-title: Capacitor theory
  publication-title: IEEE Trans Dielectr Electr Insul
– volume: 287‐288
  start-page: 161
  year: 2016
  end-page: 170
  article-title: On the Lyapunov theory for fractional order systems
  publication-title: Appl Math Comput
– volume: 351
  start-page: 79
  issue: 1‐2
  year: 2006
  end-page: 84
  article-title: Adaptive control and synchronization for a class of nonlinear chaotic systems using partial system states
  publication-title: Phys Lett A
– volume: 22
  start-page: 650
  issue: 1‐3
  year: 2015
  end-page: 659
  article-title: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 91
  start-page: 69
  year: 2018
  end-page: 78
  article-title: Distributed predictor‐based stabilization of continuous interconnected systems with input delays
  publication-title: Automatica
– year: 1996
– volume: 222
  start-page: 1827
  issue: 8
  year: 2013
  end-page: 1846
  article-title: Fractional calculus: a survey of useful formulas
  publication-title: Eur Phys J Special Top
– volume: 400
  start-page: 457
  year: 2018
  end-page: 467
  article-title: Review of fractional‐order electrical characterization of supercapacitors
  publication-title: J Power Sources
– volume: 92
  start-page: 254
  year: 2018
  end-page: 258
  article-title: Global stabilization via sampled‐data output feedback for large‐scale systems interconnected by inherent nonlinearities
  publication-title: Automatica
– year: 1971
– volume: 29
  start-page: 1
  year: 2019
  end-page: 17
  article-title: A fractional order fuzzy PID for load frequency control of four‐area interconnected power system using biogeography‐based optimization
  publication-title: Int Trans Electr Energy Syst
– volume: 55
  start-page: 1178
  issue: 11
  year: 2008
  end-page: 1182
  article-title: Stability analysis of a class of nonlinear fractional‐order systems
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 25
  start-page: 145
  year: 2015
  end-page: 148
  article-title: Comments On “fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks”
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 73
  start-page: 256
  year: 2016
  end-page: 268
  article-title: Sparse solution of the Lyapunov equation for large‐scale interconnected systems
  publication-title: Automatica
– volume: 47
  start-page: 328
  year: 2017
  end-page: 337
  article-title: Dynamic stability analysis of fractional order leaky integrator echo state neural networks
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 84
  start-page: 2357
  issue: 4
  year: 2016
  end-page: 2361
  article-title: Stabilization of the unstable equilibrium points of the fractional‐order BLDCM chaotic system in the sense of Lyapunov by a single‐state variable
  publication-title: Nonlinear Dynamics
– volume: 49
  start-page: 2551
  issue: 8
  year: 2013
  end-page: 2555
  article-title: Decentralized control of nonlinear interconnected systems under both amplitude and rate saturations
  publication-title: Automatica
– volume: 45
  start-page: 217
  year: 2009
  end-page: 224
  article-title: Characterization of robust stability of a class of interconnected systems
  publication-title: Automatica
– volume: 66
  start-page: 9439
  year: 2019
  end-page: 9447
  article-title: Reliable fuzzy tracking control of near‐space hypersonic vehicle using aperiodic measurement information
  publication-title: IEEE Trans Ind Electron
– volume: 82
  start-page: 519
  issue: 1‐2
  year: 2015
  end-page: 525
  article-title: Stabilization of a fractional‐order chaotic brushless DC motor via a single input
  publication-title: Nonlinear Dynamics
– volume: 44
  start-page: 2265
  issue: 3
  year: 2019
  end-page: 2280
  article-title: Fractional‐order Sliding mode control for D‐STATCOM connected wind farm based DFIG under voltage unbalanced
  publication-title: Arab J Sci Eng
– volume: 91
  start-page: 67
  year: 2012
  end-page: 76
  article-title: Global exponential stability of impulsive fuzzy Cohen–Grossberg neural networks with mixed delays and reaction‐diffusion terms
  publication-title: Neurocomputing
– volume: 19
  start-page: 2951
  issue: 9
  year: 2014
  end-page: 2957
  article-title: Lyapunov functions for fractional order systems
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 96
  start-page: 1665
  year: 2019
  end-page: 1675
  article-title: Exponential ultimate boundedness of fractional‐order differential systems via periodically intermittent control
  publication-title: Nonlinear Dynamics
– volume: 37
  start-page: 305
  issue: 2
  year: 2016
  end-page: 322
  article-title: An analysis and design method for fractional‐order linear systems subject to actuator saturation and disturbance
  publication-title: Optim Control Appl Methods
– volume: 62
  start-page: 3012
  issue: 9
  year: 2015
  end-page: 3018
  article-title: Characterization of CMOS metamaterial transmission line by compact fractional‐order equivalent circuit model
  publication-title: IEEE Trans Electron Devices
– volume: 27
  start-page: 107
  issue: 2‐3
  year: 1997
  end-page: 122
  article-title: Analysis and design of fractional‐order digital control systems
  publication-title: Syst Anal Model Simul
– volume: 26
  start-page: 3875
  year: 2018
  end-page: 3883
  article-title: An improved result on exponential stabilization of sampled‐data fuzzy systems
  publication-title: IEEE Trans Fuzzy Syst
– volume: 41
  start-page: 1260
  year: 2017
  end-page: 1278
  article-title: Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann‐Liouville derivatives
  publication-title: Turk J Math
– volume: 12
  start-page: 031014
  issue: 3
  year: 2016
  article-title: Stabilization of fractional‐order systems subject to saturation element using fractional dynamic output feedback sliding mode control
  publication-title: J Comput Nonlinear Dyn
– volume: 346
  start-page: 1
  year: 2015
  end-page: 20
  article-title: Lyapunov functions and strict stability of Caputo fractional differential equations
  publication-title: Adv Differ Equ
– volume: 58
  start-page: 1062
  issue: 4
  year: 2013
  end-page: 1067
  article-title: Stability and stabilization of fractional‐order linear systems subject to input saturation
  publication-title: IEEE Trans Autom Control
– volume: 29
  start-page: 198
  year: 2006
  end-page: 201
  article-title: Impulsive synchronization of Chua's oscillators via a single variable
  publication-title: Chaos Solit Fractals
– volume: 14
  start-page: 304
  issue: 2
  year: 1991
  end-page: 311
  article-title: Fractional order state equations for the control of viscoelastically damped structures
  publication-title: J Guid Control Dyn
– volume: 4
  start-page: 1
  issue: 3
  year: 2015
  end-page: 7
  article-title: Fractional‐order models of supercapacitors, batteries and fuel cells: a survey
  publication-title: Mater Renew Sustain Energy
– volume: 28
  start-page: 2887
  year: 2018
  end-page: 2905
  article-title: Stability analysis of a class of nonlinear fractional‐order systems under control input saturation
  publication-title: Int J Robust Nonlinear Control
– volume: 47
  start-page: 26
  year: 2015
  end-page: 34
  article-title: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control
  publication-title: Appl Math Lett
– volume: 32
  start-page: 1603
  issue: 11
  year: 1996
  end-page: 1608
  article-title: Decentralized robust control for interconnected systems with time‐varying uncertainties
  publication-title: Automatica
– volume: 82
  start-page: 184
  year: 2018
  end-page: 199
  article-title: Modeling and analysis of fractional order DC‐DC converter
  publication-title: ISA Transactions
– volume: 25
  start-page: 1548
  issue: 10
  year: 2015
  end-page: 1568
  article-title: Nonlinear fractional‐order power system stabilizer for multi‐machine power systems based on sliding mode technique
  publication-title: Int J Robust Nonlinear Control
– ident: e_1_2_7_35_1
  doi: 10.1016/j.automatica.2018.01.030
– ident: e_1_2_7_8_1
  doi: 10.1002/rnc.3159
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cnsns.2014.01.022
– ident: e_1_2_7_34_1
  doi: 10.1016/j.automatica.2016.06.002
– ident: e_1_2_7_43_1
  doi: 10.1016/j.physleta.2005.10.055
– volume-title: Electromagnetic Theory
  year: 1971
  ident: e_1_2_7_3_1
– ident: e_1_2_7_13_1
  doi: 10.1007/s40243-015-0052-y
– ident: e_1_2_7_31_1
  doi: 10.1016/S0005-1098(96)00112-4
– ident: e_1_2_7_39_1
  doi: 10.1109/TFUZZ.2018.2852281
– ident: e_1_2_7_9_1
  doi: 10.1002/etep.2735
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cnsns.2015.01.013
– ident: e_1_2_7_2_1
  doi: 10.1109/TAC.1984.1103551
– ident: e_1_2_7_10_1
  doi: 10.1007/s13369-018-3412-y
– ident: e_1_2_7_23_1
  doi: 10.1016/j.cnsns.2014.10.008
– ident: e_1_2_7_30_1
  doi: 10.1002/oca.2169
– ident: e_1_2_7_27_1
  doi: 10.1109/TAC.2012.2218064
– ident: e_1_2_7_47_1
  doi: 10.1109/TPEL.2014.2373381
– ident: e_1_2_7_24_1
  doi: 10.1109/TCSII.2008.2002571
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jpowsour.2018.08.047
– ident: e_1_2_7_6_1
  doi: 10.1109/TED.2015.2458931
– ident: e_1_2_7_12_1
  doi: 10.1016/S0022-0728(71)80115-8
– ident: e_1_2_7_41_1
  doi: 10.1007/s11071-015-2172-4
– ident: e_1_2_7_14_1
  doi: 10.1109/94.326654
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cnsns.2016.11.013
– ident: e_1_2_7_33_1
  doi: 10.1016/j.automatica.2013.04.005
– ident: e_1_2_7_42_1
  doi: 10.1007/s11071-016-2649-9
– volume-title: Nonlinear Systems
  year: 1996
  ident: e_1_2_7_46_1
– ident: e_1_2_7_40_1
  doi: 10.1115/1.4035196
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neucom.2012.02.012
– ident: e_1_2_7_21_1
  doi: 10.1007/s11071-019-04877-y
– ident: e_1_2_7_7_1
  doi: 10.3390/en12010084
– ident: e_1_2_7_29_1
  doi: 10.1016/j.aml.2015.02.020
– ident: e_1_2_7_44_1
  doi: 10.1016/j.chaos.2005.08.040
– ident: e_1_2_7_36_1
  doi: 10.1016/j.automatica.2018.03.057
– ident: e_1_2_7_11_1
  doi: 10.2514/3.20641
– volume: 287
  start-page: 161
  year: 2016
  ident: e_1_2_7_20_1
  article-title: On the Lyapunov theory for fractional order systems
  publication-title: Appl Math Comput
– ident: e_1_2_7_4_1
  doi: 10.1016/j.isatra.2017.06.024
– volume: 346
  start-page: 1
  year: 2015
  ident: e_1_2_7_22_1
  article-title: Lyapunov functions and strict stability of Caputo fractional differential equations
  publication-title: Adv Differ Equ
– ident: e_1_2_7_25_1
  doi: 10.3906/mat-1510-5
– ident: e_1_2_7_45_1
  doi: 10.1140/epjst/e2013-01967-y
– volume: 27
  start-page: 107
  issue: 2
  year: 1997
  ident: e_1_2_7_15_1
  article-title: Analysis and design of fractional‐order digital control systems
  publication-title: Syst Anal Model Simul
– ident: e_1_2_7_26_1
  doi: 10.1016/j.mcm.2010.05.016
– ident: e_1_2_7_16_1
  doi: 10.1016/j.camwa.2009.08.003
– ident: e_1_2_7_18_1
  doi: 10.1002/rnc.4055
– ident: e_1_2_7_32_1
  doi: 10.1016/j.automatica.2008.06.021
– ident: e_1_2_7_37_1
  doi: 10.1109/TIE.2019.2892696
SSID ssj0009924
Score 2.350143
Snippet Summary This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of...
This paper is devoted to investigating the stability of interconnected nonlinear fractional‐order systems via a single‐state variable control. First of all,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6374
SubjectTerms Control stability
Control systems
Economic models
fractional order
interconnected nonlinear system
Nonlinear analysis
Nonlinear systems
single‐state variable control
Stability analysis
State variable
Subsystems
Title Stability analysis of interconnected nonlinear fractional‐order systems via a single‐state variable control
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4725
https://www.proquest.com/docview/2312049865
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ33wLl6mRBB96tamaZs-ylBEcA_DwcCHkqQJiMNJdwF98if4G_0lntO0m4qCSKEtJKGnSU7yJZzvCyEnVisZ-Np6XFu48Vh7MggNEnx4kufKGoV855tufNXn14NoUEVVIhfG6UPMN9zQM8rxGh1cqnF7IRpagP_whCG_HEO1EA_1FspRaerOswUA7AkAMbXurM_adcGvM9ECXn4GqeUsc7lG7mr7XHDJQ2s6US398k268X8_sE5WK_BJz11v2SBL5nGTrHySJNwiI0CfZbzsM5WVXgkdWYqqEoXGoBgNEJU-uu_LgtrCMSPk8P31rdTxpE4cekxn95JKinsRQwOJJXWJzmBtjmwtWsXIb5P-5cVt58qrDmXwdAhjAwyOAOFSIUVqeRIa4ScyDwyzOYqK5gYAWQSgQXK4EsYsYwqWaLGIfK6Yz3MV7pAGGGl2CRUmSGKjDWfa8oBbAe8hl2EsTKSkn--Rs7qBMl0pluPBGcPMaS2zDKowwyrcI8fznE9OpeOHPM26jbPKT8cZoFuwKhUxJJ-WjfVr-azX7eBz_68ZD8gyoKvUxb40SWNSTM0hIJiJOir76gdL5_KV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtBNFT3TZN2xRP4oP1tQdR8CCUJE1AXFS6u4Ke_An-Rn-Jk6Z1VRRECm0hCUwek3wZZr4B2DBKisBXxmPK4IvFyhNBqG2AD0vyXBotbbzzWStuXrLjq-hqAHbqWBjHD_FhcLOaUe7XVsGtQbrRZw0tUIFYQqNBGLYJva1W7p_3uaPS1GW0RQjscYQxNfOsTxt1y69nUR9gfoap5TlzOAHXtYTOveR2u9eV2-r5G3njP7swCeMV_iS7bsFMwYC-m4axT6yEM3CPALR0mX0ioqIsIfeGWGKJQlm_GIUoldw5AURBTOGCI0T77eW1pPIkjh-6Qx5vBBHEmiPaGgvL6CXyiNdzG7BFKjf5Wbg8PLjYa3pVXgZPhbg94P6IKC7lgqeGJaHmfiLyQFOTW17RXCMmixA3CIZPQqmhVOItLeaRzyT1WS7DORhCIfU8EK6DJNZKM6oMC5jh-B8yEcZcR1L4-QJs1TOUqYq03ObOaGeObplmOISZHcIFWP-o-eCIOn6os1xPclapaidDgItSpTzG4s1ytn5tn5239ux38a8V12CkeXF2mp0etU6WYBTBVupcYZZhqFv09AoCmq5cLRfuO1oj9q4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDThB98C5Op0YQferWpmmbPoo6vA4ZCgMfSpImIA6V7gL65EfwM_pJPGlaN0VBpNAWktA013_COb8gtKul4J4rtUOlhhsNpcM9XxkHHxqlqdBKGH_ny1Z4ckPPOkGnsKo0vjCWD_G54WZ6Rj5emw7-lOrGCBqaQf-hEQkm0RQNXWYWXkftEToqju2BtqCAHQYqpgTPuqRRpvw6FY305bhKzaeZ5jy6LTNorUvu64O-qMuXb-zG__3BApor1Cc-sM1lEU2ohyU0O8YkXEaPID9zg9lnzAtgCX7U2GAlMmmsYiRoVPxgv88zrDPrGsG7769vOcgTWzp0Dw_vOObYbEZ0FQTmvkt4CItz466FCyP5FXTTPL4-PHGKUxkc6cPgAKMjaLiYcRZrGvmKuRFPPUV0aqiiqQJFFoBq4BSuiBBNiIA1WsgClwri0lT4q6gCmVRrCDPlRaGSihKpqUc1g3efcj9kKhDcTatov6ygRBbIcnNyRjexsGWSQBEmpgiraOcz5pPFdPwQp1bWcVJ01F4C8hZyFbMQgvfyyvo1fdJuHZrn-l8jbqPpq6NmcnHaOt9AM6C0YmsHU0OVfjZQm6Bm-mIrb7YfqiP1Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+analysis+of+interconnected+nonlinear+fractional%E2%80%90order+systems+via+a+single%E2%80%90state+variable+control&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Yu%2C+Zhongming&rft.au=Sun%2C+Yue&rft.au=Dai%2C+Xin&rft.au=Ye%2C+Zhaohong&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=29&rft.issue=18&rft.spage=6374&rft.epage=6397&rft_id=info:doi/10.1002%2Frnc.4725&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon