Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems

Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non‐available P, however, little is known about the role of soil microbes in immobili...

Full description

Saved in:
Bibliographic Details
Published inSoil use and management Vol. 36; no. 3; pp. 536 - 546
Main Authors Xu, Zhen, Qu, Mingshan, Liu, Shenglin, Duan, Yisheng, Wang, Xiao, Brown, Lawrie K, George, Timothy S, Zhang, Lin, Feng, Gu, Nicholson, Fiona
Format Journal Article
LanguageEnglish
Published Bedfordshire Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non‐available P, however, little is known about the role of soil microbes in immobilizing P to reduce P loss. Here, we test whether stimulating microbial biomass to immobilize P could reduce the amount of labile P available for leaching. The distribution characteristics of Olsen P, organic P and microbial biomass P were determined in three intensive agricultural systems. In addition, we conducted a pot experiment with three P and four carbon (C) levels. CaCl2 extractable P was measured and used to indicate the risk of P leaching. We found that there was a positive relationship between soil organic C and microbial biomass P. Carbon addition drove the process of P immobilization and reduced CaCl2 extractable P. Microbial biomass P increased by 64% (p < .05) with the addition of C, and Olsen P and CaCl2 extractable P decreased by 28% and 17%, respectively. Our results show that C addition increased microbial immobilization of P and reduced forms of labile P susceptible to leaching. Stimulating microbes to immobilize P by adding C to soils may have the potential to reduce P loss from intensive agricultural systems, reducing their environmental impact.
AbstractList Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non‐available P, however, little is known about the role of soil microbes in immobilizing P to reduce P loss. Here, we test whether stimulating microbial biomass to immobilize P could reduce the amount of labile P available for leaching. The distribution characteristics of Olsen P, organic P and microbial biomass P were determined in three intensive agricultural systems. In addition, we conducted a pot experiment with three P and four carbon (C) levels. CaCl2 extractable P was measured and used to indicate the risk of P leaching. We found that there was a positive relationship between soil organic C and microbial biomass P. Carbon addition drove the process of P immobilization and reduced CaCl2 extractable P. Microbial biomass P increased by 64% (p < .05) with the addition of C, and Olsen P and CaCl2 extractable P decreased by 28% and 17%, respectively. Our results show that C addition increased microbial immobilization of P and reduced forms of labile P susceptible to leaching. Stimulating microbes to immobilize P by adding C to soils may have the potential to reduce P loss from intensive agricultural systems, reducing their environmental impact.
Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non‐available P, however, little is known about the role of soil microbes in immobilizing P to reduce P loss. Here, we test whether stimulating microbial biomass to immobilize P could reduce the amount of labile P available for leaching. The distribution characteristics of Olsen P, organic P and microbial biomass P were determined in three intensive agricultural systems. In addition, we conducted a pot experiment with three P and four carbon (C) levels. CaCl2 extractable P was measured and used to indicate the risk of P leaching. We found that there was a positive relationship between soil organic C and microbial biomass P. Carbon addition drove the process of P immobilization and reduced CaCl2 extractable P. Microbial biomass P increased by 64% (p < .05) with the addition of C, and Olsen P and CaCl2 extractable P decreased by 28% and 17%, respectively. Our results show that C addition increased microbial immobilization of P and reduced forms of labile P susceptible to leaching. Stimulating microbes to immobilize P by adding C to soils may have the potential to reduce P loss from intensive agricultural systems, reducing their environmental impact.
Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non‐available P, however, little is known about the role of soil microbes in immobilizing P to reduce P loss. Here, we test whether stimulating microbial biomass to immobilize P could reduce the amount of labile P available for leaching. The distribution characteristics of Olsen P, organic P and microbial biomass P were determined in three intensive agricultural systems. In addition, we conducted a pot experiment with three P and four carbon (C) levels. CaCl₂ extractable P was measured and used to indicate the risk of P leaching. We found that there was a positive relationship between soil organic C and microbial biomass P. Carbon addition drove the process of P immobilization and reduced CaCl₂ extractable P. Microbial biomass P increased by 64% (p < .05) with the addition of C, and Olsen P and CaCl₂ extractable P decreased by 28% and 17%, respectively. Our results show that C addition increased microbial immobilization of P and reduced forms of labile P susceptible to leaching. Stimulating microbes to immobilize P by adding C to soils may have the potential to reduce P loss from intensive agricultural systems, reducing their environmental impact.
Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non‐available P, however, little is known about the role of soil microbes in immobilizing P to reduce P loss. Here, we test whether stimulating microbial biomass to immobilize P could reduce the amount of labile P available for leaching. The distribution characteristics of Olsen P, organic P and microbial biomass P were determined in three intensive agricultural systems. In addition, we conducted a pot experiment with three P and four carbon (C) levels. CaCl 2 extractable P was measured and used to indicate the risk of P leaching. We found that there was a positive relationship between soil organic C and microbial biomass P. Carbon addition drove the process of P immobilization and reduced CaCl 2 extractable P. Microbial biomass P increased by 64% ( p  < .05) with the addition of C, and Olsen P and CaCl 2 extractable P decreased by 28% and 17%, respectively. Our results show that C addition increased microbial immobilization of P and reduced forms of labile P susceptible to leaching. Stimulating microbes to immobilize P by adding C to soils may have the potential to reduce P loss from intensive agricultural systems, reducing their environmental impact.
Author Nicholson, Fiona
George, Timothy S
Liu, Shenglin
Feng, Gu
Qu, Mingshan
Brown, Lawrie K
Xu, Zhen
Zhang, Lin
Duan, Yisheng
Wang, Xiao
Author_xml – sequence: 1
  givenname: Zhen
  surname: Xu
  fullname: Xu, Zhen
  organization: China Agricultural University
– sequence: 2
  givenname: Mingshan
  surname: Qu
  fullname: Qu, Mingshan
  organization: Beijing Soil and Fertilizer Work Station
– sequence: 3
  givenname: Shenglin
  surname: Liu
  fullname: Liu, Shenglin
  organization: Shandong Academy of Agricultural Sciences
– sequence: 4
  givenname: Yisheng
  surname: Duan
  fullname: Duan, Yisheng
  organization: China Agricultural University
– sequence: 5
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: China Agricultural University
– sequence: 6
  givenname: Lawrie K
  surname: Brown
  fullname: Brown, Lawrie K
  organization: The James Hutton Institute
– sequence: 7
  givenname: Timothy S
  surname: George
  fullname: George, Timothy S
  organization: The James Hutton Institute
– sequence: 8
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: China Agricultural University
– sequence: 9
  givenname: Gu
  orcidid: 0000-0002-1052-5009
  surname: Feng
  fullname: Feng, Gu
  email: fenggu@cau.edu.cn
  organization: China Agricultural University
– sequence: 10
  givenname: Fiona
  surname: Nicholson
  fullname: Nicholson, Fiona
BookMark eNp1kU1vGyEQhlGVSnXSHvoPkHJJDhvztQs-RlbaRnLVQ-szYlnWxWLBYXYTWfnzxbEPUdSMmGEOzzuCec_RWUzRIfSVkhtaYg7TcENZreoPaEaFrCsmBT9DM8KapiKEs0_oHGBLCKOyITP0vDS5TRGbrvOjL0123WQd4GBaHxyG5APe_U1QMk-A2z320WZnwMcNHrzNqfUm4NanwQC8Rn0sZ3QR_KPDZpO9ncI45QLDHkY3wGf0sTcB3JfTfYHW3-7-LH9Uq1_f75e3q8pyTupKmYXriGSNUR2zXHHVLBRlfatEbyxVTU-5qDthVU8ZcVaKlqiOMNFwInipF-jqOHeX08PkYNSDB-tCMNGlCTSra0a4kosDevkG3aYpx_I6zQSrpVpIyQo1P1Ll9wDZ9dr60RzWN2bjg6ZEH8zQxQz9YkZRXL9R7LIfTN7_lz1NfyoG7N8H9e_1z6PiHwAQnTk
CitedBy_id crossref_primary_10_1007_s11368_024_03849_z
crossref_primary_10_1016_j_chemosphere_2020_129210
crossref_primary_10_1016_j_scitotenv_2024_170294
crossref_primary_10_1007_s11368_023_03493_z
crossref_primary_10_1016_j_agee_2022_107991
crossref_primary_10_1111_sum_12890
crossref_primary_10_1016_j_apsoil_2022_104739
crossref_primary_10_1016_j_scitotenv_2023_162400
crossref_primary_10_1111_sum_13153
crossref_primary_10_1007_s00374_022_01627_y
crossref_primary_10_1007_s11104_024_06623_9
crossref_primary_10_1007_s11104_024_06626_6
crossref_primary_10_1111_sum_13027
crossref_primary_10_3390_horticulturae9080898
crossref_primary_10_1186_s40538_023_00401_y
crossref_primary_10_1038_s41598_021_96885_5
crossref_primary_10_1080_02571862_2020_1797196
crossref_primary_10_1016_j_apsoil_2024_105372
crossref_primary_10_1007_s10705_021_10191_0
crossref_primary_10_2139_ssrn_3983957
crossref_primary_10_1007_s11368_024_03923_6
Cites_doi 10.1007/s00374-008-0288-0
10.1016/j.chemosphere.2016.12.042
10.1111/gcb.13850
10.1111/sum.12290
10.1016/j.ejsobi.2015.12.007
10.1016/0038-0717(82)90001-3
10.1051/agro:2006011
10.2134/jeq2000.00472425002900010013x
10.1111/gcbb.12266
10.2134/jeq2004.6780
10.1016/j.apsoil.2017.01.008
10.1002/ird.288
10.1016/S0003-2670(00)88254-9
10.1016/j.soilbio.2009.03.018
10.1073/pnas.0704119104
10.2134/agronmonogr9.2.2ed.c24
10.1007/s11104-016-2846-9
10.1080/01904167.2012.689911
10.1016/S0003-2670(00)88444-5
10.1111/1365-2664.12351
10.1007/s11104-011-0909-5
10.1016/j.jhydrol.2014.05.057
10.1038/nbt.2056
10.1007/s003740100362
10.1016/j.soilbio.2016.12.004
10.1039/an9760100187
10.1007/s10705-015-9712-7
10.1007/s11368-017-1705-5
10.1007/s11104-013-1696-y
10.1007/s13280-015-0633-0
10.1016/S0038-0717(00)00084-5
10.1186/2193-1801-2-587
10.1016/j.fcr.2010.11.006
10.1007/s11104-009-9925-0
10.1007/s11104-009-0263-z
10.1016/j.soilbio.2016.12.016
10.3389/fmicb.2018.00104
10.1016/j.agee.2018.01.006
10.1016/j.apsoil.2009.03.006
10.1016/j.geoderma.2015.03.020
10.1016/S0038-0717(01)00218-8
10.1007/s11104-009-9895-2
10.1016/j.soilbio.2016.10.002
10.1111/j.1574-6941.2010.00860.x
10.1073/pnas.1320054111
10.1007/s11104-006-9165-5
10.1016/j.soilbio.2014.03.004
10.2134/jeq2012.0463
10.1111/j.1461-0248.2007.01139.x
10.1104/pp.111.175448
ContentType Journal Article
Copyright 2020 British Society of Soil Science
Copyright_xml – notice: 2020 British Society of Soil Science
DBID AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
DOI 10.1111/sum.12585
DatabaseName CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1475-2743
EndPage 546
ExternalDocumentID 10_1111_sum_12585
SUM12585
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2017YFD0200200
– fundername: National Natural Science Foundation of China
  funderid: U1703232
– fundername: NSFC and RS jointly supported project
  funderid: 31711530217
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3305-8a9ed0726a8d2c383869812fb84fac186f1345d4c8f120ec74b08d02463043463
IEDL.DBID DR2
ISSN 0266-0032
IngestDate Fri Jul 11 18:30:31 EDT 2025
Fri Jul 25 20:02:38 EDT 2025
Tue Jul 01 00:47:32 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Jan 22 16:33:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3305-8a9ed0726a8d2c383869812fb84fac186f1345d4c8f120ec74b08d02463043463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1052-5009
PQID 2425789772
PQPubID 1046348
PageCount 11
ParticipantIDs proquest_miscellaneous_2552038796
proquest_journals_2425789772
crossref_citationtrail_10_1111_sum_12585
crossref_primary_10_1111_sum_12585
wiley_primary_10_1111_sum_12585_SUM12585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Bedfordshire
PublicationPlace_xml – name: Bedfordshire
PublicationTitle Soil use and management
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
1982; 14
2009; 41
2009; 42
2013; 2
2015; 102
2016; 32
2016; 72
2016; 103
2017; 113
2011; 156
2004; 33
2018; 9
2000
2018; 256
2015; 44
1986
2009; 321
1982
2011; 29
2010; 72
2007; 27
2011; 120
1976; 101
2000; 29
2014; 517
2002; 34
2015; 52
2013; 42
2017; 171
1993
2008; 11
2007; 290
2016; 401
2012; 35
2014; 111
2007; 56
2018; 24
2018; 18
1960; 22
2011; 349
2000; 32
1962; 27
2010; 331
2013; 372
2008; 44
2014; 74
2001; 34
2016; 8
2017; 106
2015; 257–258
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
Olsen S. R. (e_1_2_7_34_1) 1982
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
Shi R. (e_1_2_7_42_1) 1986
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
Sparks D. L. (e_1_2_7_43_1) 1993
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
Pierzynski G. M. (e_1_2_7_36_1) 2000
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 29
  start-page: 105
  year: 2000
  end-page: 110
  article-title: Development of an indicator for risk of phosphorus leaching
  publication-title: Journal of Environmental Quality
– volume: 33
  start-page: 678
  year: 2004
  end-page: 684
  article-title: Phosphorus Leaching in Relation to Soil Type and Soil Phosphorus Content
  publication-title: Journal of Environmental Quality
– volume: 257–258
  start-page: 29
  year: 2015
  end-page: 39
  article-title: Land use and soil factors affecting accumulation of phosphorus species in temperate soils
  publication-title: Geoderma
– volume: 52
  start-page: 228
  year: 2015
  end-page: 239
  article-title: Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses
  publication-title: Journal of Applied Ecology
– volume: 72
  start-page: 35
  year: 2016
  end-page: 41
  article-title: Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation
  publication-title: European Journal of Soil Biology
– volume: 35
  start-page: 1509
  year: 2012
  end-page: 1525
  article-title: Evaluation of conventional nitrogen and phosphorus fertilization and potential environmental risk in intensive orchards of north China
  publication-title: Journal of Plant Nutrition
– volume: 14
  start-page: 319
  year: 1982
  end-page: 329
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biology & Biochemistry
– volume: 106
  start-page: 119
  year: 2017
  end-page: 128
  article-title: Root exudates increase N availability by stimulating microbial turnover of fast‐cycling N pools
  publication-title: Soil Biology & Biochemistry
– volume: 9
  start-page: 104
  year: 2018
  article-title: Closing the loop on phosphorus loss from intensive agricultural soil: A microbial immobilization solution?
  publication-title: Frontiers in Microbiology
– volume: 331
  start-page: 427
  year: 2010
  end-page: 437
  article-title: Improving fertility and productivity of a highly‐weathered upland soil in subtropical China by incorporating rice straw
  publication-title: Plant and Soil
– volume: 27
  start-page: 29
  year: 2007
  end-page: 43
  article-title: Role of phosphate‐solubilizing microorganisms in sustainable agriculture ‐ A review
  publication-title: Agronomy for Sustainable Development
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Analytica Chimia Acta
– volume: 32
  start-page: 381
  year: 2016
  end-page: 389
  article-title: Lime placement on subsoil as a strategy to reduce phosphorus leaching from agricultural soils
  publication-title: Soil Use Manage
– volume: 42
  start-page: 982
  year: 2013
  end-page: 989
  article-title: Phosphorus in China's Intensive Vegetable Production Systems: Over‐fertilization, Soil Enrichment, and Environmental Implications
  publication-title: Journal of Environmental Quality
– volume: 171
  start-page: 106
  year: 2017
  end-page: 117
  article-title: Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus
  publication-title: Chemosphere
– volume: 22
  start-page: 120
  year: 1960
  end-page: 124
  article-title: A rapid method for the determination of organic carbon in soil
  publication-title: Analytica Chimica Acta
– year: 1986
– volume: 44
  start-page: 274
  year: 2015
  end-page: 285
  article-title: Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses
  publication-title: Ambio
– volume: 111
  start-page: 5266
  year: 2014
  end-page: 5270
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences
– volume: 74
  start-page: 177
  year: 2014
  end-page: 183
  article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil
  publication-title: Soil Biology & Biochemistry
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology & Biochemistry
– volume: 42
  start-page: 166
  year: 2009
  end-page: 175
  article-title: Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments
  publication-title: Applied Soil Ecology
– volume: 41
  start-page: 1406
  year: 2009
  end-page: 1416
  article-title: Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils
  publication-title: Soil Biology & Biochemistry
– volume: 44
  start-page: 1025
  year: 2008
  end-page: 1034
  article-title: Isolation of culturable phosphobacteria with both phytatemineralization and phosphate‐solubilization activity from the rhizosphere of plants grown in a volcanic soil
  publication-title: Biol Fert Soils
– volume: 290
  start-page: 333
  year: 2007
  end-page: 342
  article-title: Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments
  publication-title: Plant and Soil
– volume: 102
  start-page: 383
  year: 2015
  end-page: 396
  article-title: Combining mechanical control of couch grass ( L.) with reduced tillage in early autumn and cover crops to decrease nitrogen and phosphorus leaching
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 372
  start-page: 27
  year: 2013
  end-page: 37
  article-title: The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types
  publication-title: Plant and Soil
– volume: 321
  start-page: 5
  year: 2009
  end-page: 33
  article-title: Carbon flow in the rhizosphere: Carbon trading at the soil–root interface
  publication-title: Plant and Soil
– volume: 101
  start-page: 187
  year: 1976
  end-page: 197
  article-title: A semi‐automated method for the determination of inorganic, organic and total phosphate in sediments
  publication-title: Analyst
– start-page: 403
  year: 1982
  end-page: 430
– volume: 2
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils
  publication-title: Springer Plus
– volume: 517
  start-page: 447
  year: 2014
  end-page: 457
  article-title: Phosphorus and carbon competitive sorption–desorption and associated non‐point loss respond to natural rainfall events
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 1091
  year: 2011
  end-page: 1093
  article-title: Agricultural microbial resources: Private property or global commons?
  publication-title: Nature Biotechnology
– volume: 321
  start-page: 305
  year: 2009
  end-page: 339
  article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms
  publication-title: Plant and Soil
– volume: 34
  start-page: 617
  year: 2002
  end-page: 622
  article-title: Turnover of biomass C and P in soil following incorporation of glucose or ryegrass
  publication-title: Soil Biology & Biochemistry
– year: 2000
– volume: 34
  start-page: 31
  issue: 1
  year: 2001
  end-page: 41
  article-title: Kinetics of microbial phosphorus uptake in cultivated soils
  publication-title: Biology and Fertility of Soils
– volume: 103
  start-page: 512
  year: 2016
  end-page: 521
  article-title: Effects of soil type and composition of rhizodeposits on rhizosphere priming phenomena
  publication-title: Soil Biology & Biochemistry
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Global Change Biology
– start-page: 869
  year: 1993
  end-page: 919
– volume: 256
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long‐term fertilization for single and double cropping systems
  publication-title: Agriculture, Ecosystems & Environment
– volume: 349
  start-page: 157
  year: 2011
  end-page: 167
  article-title: Integrated soil and plant phosphorus management for crop and environment in China: A review
  publication-title: Plant and Soil
– volume: 113
  start-page: 22
  year: 2017
  end-page: 28
  article-title: Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top‐and sub‐soils
  publication-title: Applied Soil Ecology
– volume: 56
  start-page: 99
  year: 2007
  end-page: 105
  article-title: The impact of lime admixture into trench backfill on the variation of phosphorus in drainage outflow
  publication-title: Irrigation and Drainage
– volume: 104
  start-page: 20666
  year: 2007
  end-page: 20671
  article-title: The emergence of land change science for global environmental change and sustainability
  publication-title: Proceedings of the National Academy of Sciences
– volume: 401
  start-page: 1
  year: 2016
  end-page: 6
  article-title: Phosphorus in soils and plants‐facing phosphorus scarcity
  publication-title: Plant and Soil
– volume: 18
  start-page: 128
  year: 2018
  end-page: 135
  article-title: Does repeated biochar incorporation induce further soil priming effect?
  publication-title: Journal of Soils and Sediments
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  article-title: Biochar stability in soil: Meta‐analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
– volume: 106
  start-page: 51
  year: 2017
  end-page: 60
  article-title: Microbially‐mediated P fluxes in calcareous soils as a function of water‐extractable phosphate
  publication-title: Soil Biology & Biochemistry
– volume: 72
  start-page: 313
  year: 2010
  end-page: 327
  article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?
  publication-title: FEMS Microbial Ecology
– volume: 120
  start-page: 345
  year: 2011
  end-page: 351
  article-title: Maize hybrids less dependent on high plant densities improve resource‐use efficiency in rain fed and irrigated conditions
  publication-title: Field Crops Research
– volume: 156
  start-page: 989
  year: 2011
  end-page: 996
  article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus
  publication-title: Plant Physiology
– ident: e_1_2_7_17_1
  doi: 10.1007/s00374-008-0288-0
– ident: e_1_2_7_15_1
  doi: 10.1016/j.chemosphere.2016.12.042
– ident: e_1_2_7_35_1
  doi: 10.1111/gcb.13850
– ident: e_1_2_7_2_1
  doi: 10.1111/sum.12290
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ejsobi.2015.12.007
– ident: e_1_2_7_7_1
  doi: 10.1016/0038-0717(82)90001-3
– ident: e_1_2_7_19_1
  doi: 10.1051/agro:2006011
– ident: e_1_2_7_13_1
  doi: 10.2134/jeq2000.00472425002900010013x
– ident: e_1_2_7_49_1
  doi: 10.1111/gcbb.12266
– ident: e_1_2_7_10_1
  doi: 10.2134/jeq2004.6780
– ident: e_1_2_7_29_1
  doi: 10.1016/j.apsoil.2017.01.008
– ident: e_1_2_7_39_1
  doi: 10.1002/ird.288
– ident: e_1_2_7_30_1
  doi: 10.1016/S0003-2670(00)88254-9
– ident: e_1_2_7_8_1
  doi: 10.1016/j.soilbio.2009.03.018
– ident: e_1_2_7_46_1
  doi: 10.1073/pnas.0704119104
– start-page: 403
  volume-title: Methods of soil analysis. Part 2: Chemical and microbiological properties
  year: 1982
  ident: e_1_2_7_34_1
  doi: 10.2134/agronmonogr9.2.2ed.c24
– ident: e_1_2_7_12_1
  doi: 10.1007/s11104-016-2846-9
– ident: e_1_2_7_27_1
  doi: 10.1080/01904167.2012.689911
– ident: e_1_2_7_32_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_7_6_1
  doi: 10.1111/1365-2664.12351
– ident: e_1_2_7_23_1
  doi: 10.1007/s11104-011-0909-5
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jhydrol.2014.05.057
– ident: e_1_2_7_20_1
  doi: 10.1038/nbt.2056
– ident: e_1_2_7_33_1
  doi: 10.1007/s003740100362
– ident: e_1_2_7_31_1
  doi: 10.1016/j.soilbio.2016.12.004
– ident: e_1_2_7_4_1
  doi: 10.1039/an9760100187
– ident: e_1_2_7_3_1
  doi: 10.1007/s10705-015-9712-7
– ident: e_1_2_7_28_1
  doi: 10.1007/s11368-017-1705-5
– volume-title: Methods of phosphorus analysis for soils, sediments, residuals, and waters
  year: 2000
  ident: e_1_2_7_36_1
– volume-title: Soil and agricultural chemistry analysis
  year: 1986
  ident: e_1_2_7_42_1
– ident: e_1_2_7_5_1
  doi: 10.1007/s11104-013-1696-y
– start-page: 869
  volume-title: Methods of soil analysis. Part 3‐chemical methods
  year: 1993
  ident: e_1_2_7_43_1
– ident: e_1_2_7_24_1
  doi: 10.1007/s13280-015-0633-0
– ident: e_1_2_7_22_1
  doi: 10.1016/S0038-0717(00)00084-5
– ident: e_1_2_7_41_1
  doi: 10.1186/2193-1801-2-587
– ident: e_1_2_7_45_1
  doi: 10.1016/j.fcr.2010.11.006
– ident: e_1_2_7_16_1
  doi: 10.1007/s11104-009-9925-0
– ident: e_1_2_7_54_1
  doi: 10.1007/s11104-009-0263-z
– ident: e_1_2_7_40_1
  doi: 10.1016/j.soilbio.2016.12.016
– ident: e_1_2_7_52_1
  doi: 10.3389/fmicb.2018.00104
– ident: e_1_2_7_18_1
  doi: 10.1016/j.agee.2018.01.006
– ident: e_1_2_7_25_1
  doi: 10.1016/j.apsoil.2009.03.006
– ident: e_1_2_7_44_1
  doi: 10.1016/j.geoderma.2015.03.020
– ident: e_1_2_7_21_1
  doi: 10.1016/S0038-0717(01)00218-8
– ident: e_1_2_7_37_1
  doi: 10.1007/s11104-009-9895-2
– ident: e_1_2_7_26_1
  doi: 10.1016/j.soilbio.2016.10.002
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1574-6941.2010.00860.x
– ident: e_1_2_7_48_1
  doi: 10.1073/pnas.1320054111
– ident: e_1_2_7_50_1
  doi: 10.1007/s11104-006-9165-5
– ident: e_1_2_7_53_1
  doi: 10.1016/j.soilbio.2014.03.004
– ident: e_1_2_7_51_1
  doi: 10.2134/jeq2012.0463
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_7_38_1
  doi: 10.1104/pp.111.175448
SSID ssj0021760
Score 2.402219
Snippet Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms administrative management
Bacterial leaching
Biomass
Calcium chloride
Carbon
carbon addition
Environmental impact
Farming systems
Immobilization
Intensive farming
Leaching
losses from soil
microbial biomass
microbial immobilization
Organic phosphorus
Phosphorus
phosphorus accumulation
phosphorus loss
risk
Soil
Soil erosion
Soil microorganisms
soil organic carbon
Soils
Title Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12585
https://www.proquest.com/docview/2425789772
https://www.proquest.com/docview/2552038796
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFA7iyT2suuvirLrExYOXDk2adFI8DcOKCHpYVvAglCRNtTjbSjtzUP9530t_7OyygnhoKfSVpHl5yfeS974QcuSsYjphBka_2AYiUy5QiVaB1EY4mUgzEZg7fHEZn12J82t5vUZO-lyYlh9iWHBDy_DjNRq4Ns2KkYOixjA7K0wwx1gtBEQ_B-ooQNpxt74CHnMY8Y5VCKN4hi__nov-AMxVmOrnmdNNctPXsA0vuR8vF2Zsn_4hb3znL2yRjx3-pNO2w2yTNVd-Ih-mt3XHweE-k-eZrk1VUgw1QrXRGuldXUPnyMbraFMVc_pwVzVw1cuGmkdalAg-cdmB_i48tROUgZn9AM1XRYuSFn3MPNVDoSDcMko3O-Tq9Mev2VnQndEQ2AiGikDpxGXhhMdaZdyCu6viBDBDbpTItWUqzlkkZCasyhkPnZ0IE6oMgEEchSKC-xeyXlal2yVUOSu5k1ZE1iINnGZG6jzJmGCc5RMzIse9tlLbEZjjORrztHdkoD1T354j8n0QfWhZO_4ntN-rPO0Mt0m9B6YAFPMRORxeg8nhPoouXbUEGSk57vonMVTJ6_f1QlKYHP3D17eL7pENjl69DwreJ-uLeukOAPoszDffx18AUYkC3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeeKMuLWAQSFyy2njtrHPgULVUW_o4oFbqLdiOQ6MuSZXsCrX8Jf4K_4kZ58GCQOLSA4dEkTKKncx7Mv4M8MpZFeo4NGj9IhuIVLlAxVoFUhvhZCzNRNDa4cOjaHoi3p_K0xX41q2FafAh-oIbaYa316TgVJBe0nLk1BDds-paKvfd5RdM2Oq3ezvI3dec77473p4G7Z4CgcXMXQZKxy4dTXikVcotpmcqitHHZUaJTNtQRVk4FjIVVmUhHzk7EWakUnRkEeb9Yzzjc2_ATdpBnJD6dz70YFUY20dtRQdz9NGYtzhG1DfUT_VX7_czpF0OjL1n270L37tv0jS0nA8XczO0V7_BRf4vH-0e3GlDbLbV6MR9WHHFA1jb-lS1MCPuIXzd1pUpC0bdVCSZrCIEW1ezGQEOO1aX-YxdnJU1HtWiZuaS5QXF11RZYZ9zj16FYxB4AWYfy6R5wfJuWQDT_aBI3IBm14_g5Fre_jGsFmXh1oEpZyV30oqxtYR0p0MjdRanoQh5mE3MAN504pHYFqOdtgqZJV2uhvxLPP8G8LInvWiASf5EtNnJWNLapjrxSabCuJ8P4EV_G60K_SrShSsXSCMlp8aGOMIpeYH6-yAJ-n9_8eTfSZ_Drenx4UFysHe0vwG3ORUxfA_0JqzOq4V7ipHe3DzzCsbg43UL5w-dcF1H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Ni9QwFH-sK4ge_BZHV42i4KVDk0ky6cHDsuOw6-oi4sLeapKmWhzboZ1BVv8k_xX_KF_SD0dR8LIHDy2FPpq07_v15ReAx84qqhNq0PpJG_FMuUglWkVCG-5EIsyU-7XDr47k_jF_cSJOtuBbvxamxYcYCm5eM4K99gq-zPINJUdGjdE7q76j8tCdfsZ8rXl2MEPmPmFs_vzt3n7UbSkQWUzcRaR04rJ4yqRWGbOYnSmZoIvLjeK5tlTJnE64yLhVOWWxs1NuYpWhH5OY9k_wjM89B-e5jBO_T8TszYBVhaG97Ao6mKLHE9bBGPm2oWGqvzq_nxHtZlwcHNv8CnzvP0nbz_JxvF6Zsf3yG1rkf_LNrsLlLsAmu61GXIMtV16HS7vv6w5kxN2Ar3u6NlVJfC-Vl0tSe_xa15CFhxt2pKmKBVl-qBo86nVDzCkpSh9d-7oK-VQE7Cocw0MXYO6xSVqUpOgXBRA9DIrELWR2cxOOz-Ttb8F2WZXuNhDlrGBOWD6x1uPcaWqEzpOMcspoPjUjeNpLR2o7hHa_Ucgi7TM15F8a-DeCRwPpsoUl-RPRTi9iaWeZmjSkmAqjfjaCh8NttCn-R5EuXbVGGiGYb2tIJE4pyNPfB0nR-4eLO_9O-gAuvJ7N05cHR4d34SLzFYzQAL0D26t67e5hmLcy94N6EXh31rL5AxArW_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+addition+reduces+labile+soil+phosphorus+by+increasing+microbial+biomass+phosphorus+in+intensive+agricultural+systems&rft.jtitle=Soil+use+and+management&rft.au=Xu%2C+Zhen&rft.au=Qu%2C+Mingshan&rft.au=Liu%2C+Shenglin&rft.au=Duan%2C+Yisheng&rft.date=2020-07-01&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=36&rft.issue=3&rft.spage=536&rft.epage=546&rft_id=info:doi/10.1111%2Fsum.12585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sum_12585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon