Spectral asynchrony as a measure of ecosystem response diversity
Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem f...
Saved in:
Published in | Global change biology Vol. 30; no. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem functioning during extreme climatic events. However, incorporating such mechanisms into conservation decisions and ecosystem modelling requires scalable metrics that represent species diversity, which is currently lacking. To address this, we introduce spectral asynchrony, a metric that captures the spatial heterogeneity of species’ functional responses occurring in distinct pixels. Here, we use remote sensing datasets to investigate the relationship between spectral asynchrony and productivity responses of seasonally dry tropical forests (SDTF) to climatic fluctuations. Our findings reveal that spectral asynchrony is associated with increased resistance and recovery of SDTF productivity in following extreme drought years, as well as greater productivity stability over two decades. Furthermore, higher spectral asynchrony was associated with relatively wetter regions, suggesting that increasing aridity across SDTF could potentially reduce landscape heterogeneity and limit ecosystem resilience to increasing droughts in the future. Spectral asynchrony provides an easily measurable and monitorable metric for assessing ecosystem responses to global changes, reflecting and scaling‐up the effects of species diversity at the local level.
Species diversity enhances ecosystem resilience by promoting asynchronous population responses during climatic fluctuations. Addressing the need for scalable metrics in conservation and ecosystem modelling, we introduce spectral asynchrony, a novel metric reflecting the spatial heterogeneity of species’ functional responses over time. Utilizing remote sensing, our study establishes the association between spectral asynchrony and enhanced resistance, recovery, and stability in seasonally dry tropical forests, offering a practical tool for assessing ecosystem responses to global changes. |
---|---|
AbstractList | Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem functioning during extreme climatic events. However, incorporating such mechanisms into conservation decisions and ecosystem modelling requires scalable metrics that represent species diversity, which is currently lacking. To address this, we introduce spectral asynchrony, a metric that captures the spatial heterogeneity of species’ functional responses occurring in distinct pixels. Here, we use remote sensing datasets to investigate the relationship between spectral asynchrony and productivity responses of seasonally dry tropical forests (SDTF) to climatic fluctuations. Our findings reveal that spectral asynchrony is associated with increased resistance and recovery of SDTF productivity in following extreme drought years, as well as greater productivity stability over two decades. Furthermore, higher spectral asynchrony was associated with relatively wetter regions, suggesting that increasing aridity across SDTF could potentially reduce landscape heterogeneity and limit ecosystem resilience to increasing droughts in the future. Spectral asynchrony provides an easily measurable and monitorable metric for assessing ecosystem responses to global changes, reflecting and scaling‐up the effects of species diversity at the local level. Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem functioning during extreme climatic events. However, incorporating such mechanisms into conservation decisions and ecosystem modelling requires scalable metrics that represent species diversity, which is currently lacking. To address this, we introduce spectral asynchrony, a metric that captures the spatial heterogeneity of species’ functional responses occurring in distinct pixels. Here, we use remote sensing datasets to investigate the relationship between spectral asynchrony and productivity responses of seasonally dry tropical forests (SDTF) to climatic fluctuations. Our findings reveal that spectral asynchrony is associated with increased resistance and recovery of SDTF productivity in following extreme drought years, as well as greater productivity stability over two decades. Furthermore, higher spectral asynchrony was associated with relatively wetter regions, suggesting that increasing aridity across SDTF could potentially reduce landscape heterogeneity and limit ecosystem resilience to increasing droughts in the future. Spectral asynchrony provides an easily measurable and monitorable metric for assessing ecosystem responses to global changes, reflecting and scaling‐up the effects of species diversity at the local level. Species diversity enhances ecosystem resilience by promoting asynchronous population responses during climatic fluctuations. Addressing the need for scalable metrics in conservation and ecosystem modelling, we introduce spectral asynchrony, a novel metric reflecting the spatial heterogeneity of species’ functional responses over time. Utilizing remote sensing, our study establishes the association between spectral asynchrony and enhanced resistance, recovery, and stability in seasonally dry tropical forests, offering a practical tool for assessing ecosystem responses to global changes. |
Author | Flores, Bernardo M. Hirota, Marina Rowland, Lucy Barros, Fernanda de V. Mazzochini, Guilherme G. Pennington, R. Toby Lira‐Martins, Demétrius Oliveira, Rafael S. |
Author_xml | – sequence: 1 givenname: Guilherme G. orcidid: 0000-0002-6932-8544 surname: Mazzochini fullname: Mazzochini, Guilherme G. email: gmazzochini@gmail.com organization: Universidade Estadual de Campinas (UNICAMP) – sequence: 2 givenname: Lucy orcidid: 0000-0002-0774-3216 surname: Rowland fullname: Rowland, Lucy organization: University of Exeter – sequence: 3 givenname: Demétrius surname: Lira‐Martins fullname: Lira‐Martins, Demétrius organization: Universidade Estadual de Campinas (UNICAMP) – sequence: 4 givenname: Fernanda de V. orcidid: 0000-0003-3835-2020 surname: Barros fullname: Barros, Fernanda de V. organization: University of Exeter – sequence: 5 givenname: Bernardo M. orcidid: 0000-0003-4555-5598 surname: Flores fullname: Flores, Bernardo M. organization: Universidade Federal de Santa Catarina (UFSC) – sequence: 6 givenname: Marina surname: Hirota fullname: Hirota, Marina organization: Universidade Federal de Santa Catarina (UFSC) – sequence: 7 givenname: R. Toby surname: Pennington fullname: Pennington, R. Toby organization: Royal Botanic Garden Edinburgh – sequence: 8 givenname: Rafael S. surname: Oliveira fullname: Oliveira, Rafael S. organization: Universidade Estadual de Campinas (UNICAMP) |
BookMark | eNp1kD9PwzAQxS1UJNrCwDeIxAJDWv9L4m5ABQWpEgMwW45zBldJHOwUlG-PSzshuOVu-L33Tm-CRq1rAaFzgmckzvxNlzNSkIIfoTFheZZSLvLR7s54SjBhJ2gSwgZjzCjOx-j6uQPde1UnKgytfveuHeKZqKQBFbYeEmcS0C4MoYcm8RA61wZIKvsJPth-OEXHRtUBzg57il7v716WD-n6afW4vFmnmjHMUyjAFKasmDBUYcYMJ0oxw4gAg6lglVGV4SXTJc81GC4MBmWoWWSZMIALNkWXe9_Ou48thF42Nmioa9WC2wYZQzATxYKSiF78Qjdu69v4naSLmCio4Dtqvqe0dyF4MFLbXvXWtbEOW0uC5a5RGRuVP41GxdUvRedto_zwJ3tw_7I1DP-DcrW83Su-AQArh6w |
CitedBy_id | crossref_primary_10_3390_f15091533 crossref_primary_10_1088_1748_9326_ad545a |
Cites_doi | 10.1038/nplants.2016.24 10.1016/j.tree.2006.02.002 10.1016/j.tree.2015.12.010 10.1007/978-3-030-33157-3_3 10.1111/ecog.04434 10.1002/ecy.3332 10.1073/pnas.1920405117 10.1016/j.scitotenv.2017.07.237 10.5194/soil‐7‐217‐2021 10.1126/science.aab1833 10.1038/s41559‐021‐01451‐x 10.1038/s41561‐019‐0312‐z 10.1111/oik.04815 10.1590/S0100‐84042006000400013 10.1111/gcb.15712 10.1016/j.rse.2017.01.036 10.1007/s11104‐022‐05517‐y 10.1111/j.1461‐0248.2010.01509.x 10.1111/2041‐210X.13025 10.1088/1748‐9326/aa5968 10.1007/978-3-319-68339-3_15 10.1111/nph.17266 10.1002/joc.5086 10.1111/1365‐2745.13897 10.1038/nature16457 10.1126/sciadv.abl8214 10.1038/nclimate1633 10.1111/geb.12963 10.1038/nature16986 10.1038/s41559‐018‐0647‐7 10.1038/s41559‐020‐01329‐4 10.1002/ecs2.3824 10.1111/brv.12756 10.1126/science.aaf5080 10.1890/1540‐9295(2003)001[0488:RDECAR]2.0.CO;2 10.1073/pnas.1703928114 10.1016/j.rse.2020.112122 10.1016/j.ecolind.2016.07.039 10.1038/s41559‐018‐0551‐1 10.1111/ele.13456 10.1890/11‐0426.1 10.1126/science.1215855 10.1016/j.rse.2020.112197 10.1038/nature15539 10.1002/ece3.7949 10.1126/science.aad5068 10.1038/nature15374 10.1016/j.ecoinf.2010.06.001 10.1002/ecy.1507 10.1088/1748‐9326/ac9d4f 10.1890/08‐2244.1 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. Copyright © 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: Copyright © 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7S9 L.6 |
DOI | 10.1111/gcb.17174 |
DatabaseName | CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | n/a |
ExternalDocumentID | 10_1111_gcb_17174 GCB17174 |
Genre | article |
GrantInformation_xml | – fundername: Natural Environment Research Council (NERC) funderid: NE/N014022/1; NE/S000011/1 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) funderid: 2019/07773‐1; 2019/18145‐1; 2019/18176‐4 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – fundername: Serrapilheira Institute funderid: Serra 1709‐18983 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SN 7UA C1K F1W H97 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c3304-e7ef7fbd38f2a033f41aa3f318ef0283dfadf4b3cb46cef48f0eaf2f9558fe073 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Jul 11 18:21:43 EDT 2025 Sun Jul 13 05:00:37 EDT 2025 Thu Apr 24 22:50:36 EDT 2025 Tue Jul 01 05:20:52 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3304-e7ef7fbd38f2a033f41aa3f318ef0283dfadf4b3cb46cef48f0eaf2f9558fe073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3835-2020 0000-0002-6932-8544 0000-0002-0774-3216 0000-0003-4555-5598 |
PQID | 2931882841 |
PQPubID | 30327 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3040387921 proquest_journals_2931882841 crossref_citationtrail_10_1111_gcb_17174 crossref_primary_10_1111_gcb_17174 wiley_primary_10_1111_gcb_17174_GCB17174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global change biology |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2021; 27 2021; 7 2022; 110 2013; 3 2021; 5 2010; 13 2021; 102 2018; 127 2019; 12 2016; 97 2016; 31 2017; 192 2015; 528 2015; 526 2015; 349 2021; 96 2017; 114 2022; 476 2012; 93 2017; 72 2018; 9 2018; 2 2021; 12 2016; 2 2021; 11 2017; 37 2019; 42 2021; 255 2006; 21 2020 2022; 8 2017; 12 2019; 28 2016; 531 2016; 353 2006; 29 2020; 117 2017 2021; 252 2021; 230 2020; 23 2018; 618 2003; 1 2010; 91 2012; 336 2010; 5 2016; 351 2022; 17 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 526 start-page: 574 year: 2015 end-page: 577 article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes publication-title: Nature – volume: 7 start-page: 217 year: 2021 end-page: 240 article-title: SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty publication-title: The Soil – volume: 42 start-page: 1353 year: 2019 end-page: 1359 article-title: V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants publication-title: Ecography – volume: 2 start-page: 1579 year: 2018 end-page: 1587 article-title: Multiple facets of biodiversity drive the diversity–stability relationship publication-title: Nature Ecology & Evolution – volume: 91 start-page: 299 year: 2010 end-page: 305 article-title: A distance‐based framework for measuring functional diversity from multiple traits publication-title: Ecology – volume: 336 start-page: 1401 year: 2012 end-page: 1406 article-title: The functions of biological diversity in an age of extinction publication-title: Science – volume: 8 year: 2022 article-title: Plant diversity reduces satellite‐observed phenological variability in wetlands at a national scale publication-title: Science Advances – volume: 127 start-page: 865 year: 2018 article-title: Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity publication-title: Oikos – volume: 13 start-page: 1085 year: 2010 end-page: 1093 article-title: Opposing effects of competitive exclusion on the phylogenetic structure of communities publication-title: Ecology Letters – volume: 353 start-page: 1383 year: 2016 end-page: 1387 article-title: Plant diversity patterns in neotropical dry forests and their conservation implications publication-title: Science – volume: 9 start-page: 1799 year: 2018 end-page: 1809 article-title: Understanding and assessing vegetation health by in situ species and remote‐sensing approaches publication-title: Methods in Ecology and Evolution – volume: 5 start-page: 46 year: 2021 end-page: 54 article-title: Remote spectral detection of biodiversity effects on forest biomass publication-title: Nature Ecology & Evolution – volume: 37 start-page: 4302 year: 2017 end-page: 4315 article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 1 start-page: 488 year: 2003 end-page: 494 article-title: Response diversity, ecosystem change, and resilience publication-title: Frontiers in Ecology and the Environment – start-page: 43 year: 2020 end-page: 82 – volume: 11 start-page: 11808 year: 2021 end-page: 11825 article-title: Plant functional types broadly describe water use strategies in the Caatinga, a seasonally dry tropical forest in northeast Brazil publication-title: Ecology and Evolution – volume: 12 year: 2017 article-title: Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? publication-title: Environmental Research Letters – volume: 2 start-page: 976 year: 2018 end-page: 982 article-title: Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function publication-title: Nature Ecology & Evolution – volume: 97 start-page: 2212 year: 2016 end-page: 2222 article-title: Deconstructing the relationships between phylogenetic diversity and ecology: A case study on ecosystem functioning publication-title: Ecology – volume: 117 start-page: 24345 year: 2020 end-page: 24351 article-title: Synchrony matters more than species richness in plant community stability at a global scale publication-title: National Academy of Sciences of the United States of America – volume: 29 start-page: 627 year: 2006 end-page: 638 article-title: Comportamento fenológico de espécies lenhosas em um cerrado sentido restrito de Brasília, DF publication-title: Brazilian Journal of Botany – volume: 28 start-page: 1430 year: 2019 end-page: 1439 article-title: Plant phylogenetic diversity stabilizes large‐scale ecosystem productivity publication-title: Global Ecology and Biogeography – volume: 349 start-page: 528 year: 2015 end-page: 532 article-title: Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models publication-title: Science – volume: 27 start-page: 4060 year: 2021 end-page: 4073 article-title: The Brazilian Cerrado is becoming hotter and drier publication-title: Global Change Biology – volume: 102 year: 2021 article-title: Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony publication-title: Ecology – volume: 31 start-page: 87 year: 2016 end-page: 89 article-title: Resilience in the studies of biodiversity‐ecosystem functioning publication-title: Trends in Ecology & Evolution – volume: 2 year: 2016 article-title: Monitoring plant functional diversity from space publication-title: Nature Plants – volume: 5 start-page: 318 year: 2010 end-page: 329 article-title: Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges publication-title: Ecological Informatics – volume: 96 start-page: 2333 year: 2021 end-page: 2354 article-title: Biodiversity as insurance: From concept to measurement and application publication-title: Biological Reviews – volume: 23 start-page: 757 year: 2020 end-page: 776 article-title: Scaling‐up biodiversity‐ecosystem functioning research publication-title: Ecology Letters – volume: 531 start-page: 229 year: 2016 end-page: 232 article-title: Sensitivity of global terrestrial ecosystems to climate variability publication-title: Nature – volume: 12 start-page: 174 year: 2019 end-page: 179 article-title: Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall publication-title: Nature Geoscience – volume: 12 year: 2021 article-title: Remotely sensed assessment of increasing chronic and episodic drought effects on a Costa Rican tropical dry forest publication-title: Ecosphere – volume: 531 start-page: E4 year: 2016 end-page: E5 article-title: Dry‐season greening of Amazon forests publication-title: Nature – volume: 252 year: 2021 article-title: Pantropical modelling of canopy functional traits using Sentinel‐2 remote sensing data publication-title: Remote Sensing of Environment – volume: 351 start-page: 972 year: 2016 end-page: 976 article-title: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests publication-title: Science – volume: 110 start-page: 1460 year: 2022 end-page: 1484 article-title: Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales publication-title: Journal of Ecology – start-page: 383 year: 2017 end-page: 410 – volume: 255 year: 2021 article-title: Satellite prediction of forest flowering phenology publication-title: Remote Sensing of Environment – volume: 17 year: 2022 article-title: Seeing roots from space: Aboveground fingerprints of root depth in vegetation sensitivity to climate in dry biomes publication-title: Environmental Research Letters – volume: 230 start-page: 904 year: 2021 end-page: 923 article-title: Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems publication-title: New Phytologist – volume: 528 start-page: 119 year: 2015 end-page: 122 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 93 start-page: S223 year: 2012 end-page: S233 article-title: Phylogenetic diversity promotes ecosystem stability publication-title: Ecology – volume: 476 start-page: 549 year: 2022 end-page: 588 article-title: Soil properties and geomorphic processes influence vegetation composition, structure, and function in the Cerrado Domain publication-title: Plant and Soil – volume: 5 start-page: 896 year: 2021 end-page: 906 article-title: Priority list of biodiversity metrics to observe from space publication-title: Nature Ecology & Evolution – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 192 start-page: 114 year: 2017 end-page: 125 article-title: The spectral variability hypothesis does not hold across landscapes publication-title: Remote Sensing of Environment – volume: 114 start-page: 10160 year: 2017 end-page: 10165 article-title: Biodiversity promotes primary productivity and growing season lengthening at the landscape scale publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 618 start-page: 665 year: 2018 end-page: 673 article-title: Land surface phenology: What do we really ‘see’ from space? publication-title: Science of the Total Environment – volume: 3 start-page: 52 year: 2013 end-page: 58 article-title: Increasing drought under global warming in observations and models publication-title: Nature Climate Change – volume: 72 start-page: 234 year: 2017 end-page: 238 article-title: Measuring Rao's Q diversity index from remote sensing: An open source solution publication-title: Ecological Indicators – ident: e_1_2_8_21_1 doi: 10.1038/nplants.2016.24 – ident: e_1_2_8_31_1 doi: 10.1016/j.tree.2006.02.002 – ident: e_1_2_8_32_1 doi: 10.1016/j.tree.2015.12.010 – ident: e_1_2_8_45_1 doi: 10.1007/978-3-030-33157-3_3 – ident: e_1_2_8_22_1 doi: 10.1111/ecog.04434 – ident: e_1_2_8_49_1 doi: 10.1002/ecy.3332 – ident: e_1_2_8_48_1 doi: 10.1073/pnas.1920405117 – ident: e_1_2_8_17_1 doi: 10.1016/j.scitotenv.2017.07.237 – ident: e_1_2_8_36_1 doi: 10.5194/soil‐7‐217‐2021 – ident: e_1_2_8_4_1 doi: 10.1126/science.aab1833 – ident: e_1_2_8_46_1 doi: 10.1038/s41559‐021‐01451‐x – ident: e_1_2_8_7_1 doi: 10.1038/s41561‐019‐0312‐z – ident: e_1_2_8_39_1 doi: 10.1111/oik.04815 – ident: e_1_2_8_26_1 doi: 10.1590/S0100‐84042006000400013 – ident: e_1_2_8_18_1 doi: 10.1111/gcb.15712 – ident: e_1_2_8_42_1 doi: 10.1016/j.rse.2017.01.036 – ident: e_1_2_8_27_1 doi: 10.1007/s11104‐022‐05517‐y – ident: e_1_2_8_29_1 doi: 10.1111/j.1461‐0248.2010.01509.x – ident: e_1_2_8_25_1 doi: 10.1111/2041‐210X.13025 – ident: e_1_2_8_3_1 doi: 10.1088/1748‐9326/aa5968 – ident: e_1_2_8_47_1 doi: 10.1007/978-3-319-68339-3_15 – ident: e_1_2_8_35_1 doi: 10.1111/nph.17266 – ident: e_1_2_8_15_1 doi: 10.1002/joc.5086 – ident: e_1_2_8_12_1 doi: 10.1111/1365‐2745.13897 – ident: e_1_2_8_41_1 doi: 10.1038/nature16457 – ident: e_1_2_8_13_1 doi: 10.1126/sciadv.abl8214 – ident: e_1_2_8_9_1 doi: 10.1038/nclimate1633 – ident: e_1_2_8_30_1 doi: 10.1111/geb.12963 – ident: e_1_2_8_44_1 doi: 10.1038/nature16986 – ident: e_1_2_8_8_1 doi: 10.1038/s41559‐018‐0647‐7 – ident: e_1_2_8_50_1 doi: 10.1038/s41559‐020‐01329‐4 – ident: e_1_2_8_19_1 doi: 10.1002/ecs2.3824 – ident: e_1_2_8_28_1 doi: 10.1111/brv.12756 – ident: e_1_2_8_5_1 doi: 10.1126/science.aaf5080 – ident: e_1_2_8_14_1 doi: 10.1890/1540‐9295(2003)001[0488:RDECAR]2.0.CO;2 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1703928114 – ident: e_1_2_8_2_1 doi: 10.1016/j.rse.2020.112122 – ident: e_1_2_8_38_1 doi: 10.1016/j.ecolind.2016.07.039 – ident: e_1_2_8_43_1 doi: 10.1038/s41559‐018‐0551‐1 – ident: e_1_2_8_16_1 doi: 10.1111/ele.13456 – ident: e_1_2_8_6_1 doi: 10.1890/11‐0426.1 – ident: e_1_2_8_33_1 doi: 10.1126/science.1215855 – ident: e_1_2_8_11_1 doi: 10.1016/j.rse.2020.112197 – ident: e_1_2_8_40_1 doi: 10.1038/nature15539 – ident: e_1_2_8_51_1 doi: 10.1002/ece3.7949 – ident: e_1_2_8_52_1 doi: 10.1126/science.aad5068 – ident: e_1_2_8_20_1 doi: 10.1038/nature15374 – ident: e_1_2_8_37_1 doi: 10.1016/j.ecoinf.2010.06.001 – ident: e_1_2_8_10_1 doi: 10.1002/ecy.1507 – ident: e_1_2_8_23_1 doi: 10.1088/1748‐9326/ac9d4f – ident: e_1_2_8_24_1 doi: 10.1890/08‐2244.1 |
SSID | ssj0003206 |
Score | 2.448237 |
Snippet | Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aridity Biodiversity biodiversity metrics Biological Sciences climatic variability Complementarity data collection diversity‐stability hypothesis Drought drought resistance dry environmental conditions Dry forests Ecological function ecological resilience Ecosystem assessment ecosystem functioning Ecosystem models Ecosystem resilience Ecosystems Extreme drought global change Heterogeneity landscapes Patchiness phenological responses Productivity Remote sensing Resilience seasonally dry tropical forests Spatial heterogeneity spatial variation Species diversity spectral variability hypothesis Stability Tropical forests vegetation productivity |
Title | Spectral asynchrony as a measure of ecosystem response diversity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17174 https://www.proquest.com/docview/2931882841 https://www.proquest.com/docview/3040387921 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-NAEB5EOPDF86pi1ZM9EfGlpclu0gZfTotahN7DoeCDEHa3O8dxmkrTPtS_3pndpFU54bi3hExI9sfMfjM7-w3AEUrdTTJmAJAxOSiRskx5a1oq4b3CroliP9LDH-ngVl3fJXcrcFqfhQn8EIuAG2uGt9es4NqUr5T8lzXtiJwR5gLlXC0GRD-X1FEy9nU1I5koMjWRrFiFOItn8ebbtWgJMF_DVL_OXH6G-_oPQ3rJn_Zsatr2-R154382YQPWK_wpzsKE-QIrrmjAp1CRct6A7YvlwTcSqzS_bEBzSOh6PPFi4lj0H34T1PV3m_Cdi9hzxETocl5Yptud06XQ4jFEIMUYBbm5gTVaTEJarhOjOidkC24vL276g1ZVmaFlOf7Rcl2HXTQj2cNYd6REFWktkeyDQwYsI9QjVEZao1LrUPWw4zTGmCVJDx1ZlW1YLcaF2wERp9qZNNOZyzKFmGplUNmOYpIYgrK2CSf1GOW2oi3n6hkPee2-UC_mvhebcLgQfQpcHX8T2q8HOq_UtcwJ80TkavRU1IRvi8ekaLx7ogs3npU5tZu3-rOYZE78qH78kfyqf-4vdv9ddA_WYgJMISN8H1ank5n7SoBnag78zH4Bfp77tA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xpml72UYZWoENM02Il1ZN7KSNtAdYBXSD8jCBxAuKbNeHEJCifjx0fz13dtKyiUkTb4lyUeKPO__ufP4dwFeUup1kzAAgY3JQImWZ8tY0VMJ7hW0TxX6k-6dp71z9vEguluBbdRYm8EPMA26sGd5es4JzQPqRll9Z04zIG1Ev4CVX9PYO1a8FeZSMfWXNSCaKjE0kS14hzuOZv_rnarSAmI-Bql9pDt_BZfWPIcHkpjmdmKb9_Rd943Mb8R7elhBU7Ic5swJLrqjBq1CUclaDtYPF2TcSK5V_XIN6nwD2cOTFxI7o3l4T2vV3q7DHdew5aCL0eFZYZtyd0aXQ4i4EIcUQBXm6gThajEJmrhODKi3kA5wfHpx1e42yOEPDcgik4doO22gGsoOxbkmJKtJaIpkIh4xZBqgHqIy0RqXWoepgy2mMMUuSDjoyLGuwXAwL9xFEnGpn0kxnLssUYqqVQWVbinliCM3aOuxWg5TbkrmcC2jc5pUHQ72Y-16sw5e56H2g63hKaLMa6bzU2HFOsCcib6Ojojpszx-TrvEGii7ccDrOqd2825_FJLPrh_XfH8mPut_9xfr_i27B695Z_yQ_-XF6vAFvYsJPIUF8E5Yno6n7RPhnYj77af4AL1b_zw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUCsuPLZFXV41CFVcdrWJnWwiLsDClkdBVVUkDpUi2_EgBGTRPg7Lr2dsJ7uAWqnqLVEmSuzx2N-Mx98A7CCX7Si1DAA8JAclENpS3qqGiOxeYVsFodP0xWV8ciXOrqPrGdirzsJ4fohJwM1ahpuvrYE_5vjCyG-0agbkjIh3MCfiVmKH9NHPKXcUD11hzYBHguaagJe0QjaNZ_Lq68VoijBf4lS30HQX4Xf1iz6_5K45GqqmfnrD3vifbViChRKAsgM_YpZhxhQ1eO9LUo5rsHI8PflGYqXpD2pQvyB43es7MfaVde5vCeu6u4-wb6vY25AJk4NxoS3f7pgumWQPPgTJesjIz_W00azv83INy6ukkE9w1T3-1TlplKUZGtoGQBqmbbCNKucJhrLFOYpASo40QRi0iCVHmaNQXCsRa4MiwZaRGGIaRQkamlZWYLboFeYzsDCWRsWpTE2aCsRYCoVCt4RliSEsq-uwW-ko0yVvuS2fcZ9V_gv1YuZ6sQ7bE9FHT9bxJ6H1StFZaa-DjEBPQL5GIoI6bE0ek6XZ7RNZmN5okFG77V5_GpLMrtPq3z-SfescuovVfxf9Ah9-HHWz76eX52swHxJ48tnh6zA77I_MBoGfodp0g_wZUNv-hw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+asynchrony+as+a+measure+of+ecosystem+response+diversity&rft.jtitle=Global+change+biology&rft.au=Mazzochini%2C+Guilherme+G.&rft.au=Rowland%2C+Lucy&rft.au=Lira%E2%80%90Martins%2C+Dem%C3%A9trius&rft.au=Barros%2C+Fernanda+de+V.&rft.date=2024-02-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fgcb.17174&rft.externalDBID=10.1111%252Fgcb.17174&rft.externalDocID=GCB17174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |