Spectral asynchrony as a measure of ecosystem response diversity

Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem f...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 2
Main Authors Mazzochini, Guilherme G., Rowland, Lucy, Lira‐Martins, Demétrius, Barros, Fernanda de V., Flores, Bernardo M., Hirota, Marina, Pennington, R. Toby, Oliveira, Rafael S.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem functioning during extreme climatic events. However, incorporating such mechanisms into conservation decisions and ecosystem modelling requires scalable metrics that represent species diversity, which is currently lacking. To address this, we introduce spectral asynchrony, a metric that captures the spatial heterogeneity of species’ functional responses occurring in distinct pixels. Here, we use remote sensing datasets to investigate the relationship between spectral asynchrony and productivity responses of seasonally dry tropical forests (SDTF) to climatic fluctuations. Our findings reveal that spectral asynchrony is associated with increased resistance and recovery of SDTF productivity in following extreme drought years, as well as greater productivity stability over two decades. Furthermore, higher spectral asynchrony was associated with relatively wetter regions, suggesting that increasing aridity across SDTF could potentially reduce landscape heterogeneity and limit ecosystem resilience to increasing droughts in the future. Spectral asynchrony provides an easily measurable and monitorable metric for assessing ecosystem responses to global changes, reflecting and scaling‐up the effects of species diversity at the local level. Species diversity enhances ecosystem resilience by promoting asynchronous population responses during climatic fluctuations. Addressing the need for scalable metrics in conservation and ecosystem modelling, we introduce spectral asynchrony, a novel metric reflecting the spatial heterogeneity of species’ functional responses over time. Utilizing remote sensing, our study establishes the association between spectral asynchrony and enhanced resistance, recovery, and stability in seasonally dry tropical forests, offering a practical tool for assessing ecosystem responses to global changes.
AbstractList Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem functioning during extreme climatic events. However, incorporating such mechanisms into conservation decisions and ecosystem modelling requires scalable metrics that represent species diversity, which is currently lacking. To address this, we introduce spectral asynchrony, a metric that captures the spatial heterogeneity of species’ functional responses occurring in distinct pixels. Here, we use remote sensing datasets to investigate the relationship between spectral asynchrony and productivity responses of seasonally dry tropical forests (SDTF) to climatic fluctuations. Our findings reveal that spectral asynchrony is associated with increased resistance and recovery of SDTF productivity in following extreme drought years, as well as greater productivity stability over two decades. Furthermore, higher spectral asynchrony was associated with relatively wetter regions, suggesting that increasing aridity across SDTF could potentially reduce landscape heterogeneity and limit ecosystem resilience to increasing droughts in the future. Spectral asynchrony provides an easily measurable and monitorable metric for assessing ecosystem responses to global changes, reflecting and scaling‐up the effects of species diversity at the local level.
Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider range of responses to adverse conditions. This enables populations of different species to fluctuate asynchronously, maintaining ecosystem functioning during extreme climatic events. However, incorporating such mechanisms into conservation decisions and ecosystem modelling requires scalable metrics that represent species diversity, which is currently lacking. To address this, we introduce spectral asynchrony, a metric that captures the spatial heterogeneity of species’ functional responses occurring in distinct pixels. Here, we use remote sensing datasets to investigate the relationship between spectral asynchrony and productivity responses of seasonally dry tropical forests (SDTF) to climatic fluctuations. Our findings reveal that spectral asynchrony is associated with increased resistance and recovery of SDTF productivity in following extreme drought years, as well as greater productivity stability over two decades. Furthermore, higher spectral asynchrony was associated with relatively wetter regions, suggesting that increasing aridity across SDTF could potentially reduce landscape heterogeneity and limit ecosystem resilience to increasing droughts in the future. Spectral asynchrony provides an easily measurable and monitorable metric for assessing ecosystem responses to global changes, reflecting and scaling‐up the effects of species diversity at the local level. Species diversity enhances ecosystem resilience by promoting asynchronous population responses during climatic fluctuations. Addressing the need for scalable metrics in conservation and ecosystem modelling, we introduce spectral asynchrony, a novel metric reflecting the spatial heterogeneity of species’ functional responses over time. Utilizing remote sensing, our study establishes the association between spectral asynchrony and enhanced resistance, recovery, and stability in seasonally dry tropical forests, offering a practical tool for assessing ecosystem responses to global changes.
Author Flores, Bernardo M.
Hirota, Marina
Rowland, Lucy
Barros, Fernanda de V.
Mazzochini, Guilherme G.
Pennington, R. Toby
Lira‐Martins, Demétrius
Oliveira, Rafael S.
Author_xml – sequence: 1
  givenname: Guilherme G.
  orcidid: 0000-0002-6932-8544
  surname: Mazzochini
  fullname: Mazzochini, Guilherme G.
  email: gmazzochini@gmail.com
  organization: Universidade Estadual de Campinas (UNICAMP)
– sequence: 2
  givenname: Lucy
  orcidid: 0000-0002-0774-3216
  surname: Rowland
  fullname: Rowland, Lucy
  organization: University of Exeter
– sequence: 3
  givenname: Demétrius
  surname: Lira‐Martins
  fullname: Lira‐Martins, Demétrius
  organization: Universidade Estadual de Campinas (UNICAMP)
– sequence: 4
  givenname: Fernanda de V.
  orcidid: 0000-0003-3835-2020
  surname: Barros
  fullname: Barros, Fernanda de V.
  organization: University of Exeter
– sequence: 5
  givenname: Bernardo M.
  orcidid: 0000-0003-4555-5598
  surname: Flores
  fullname: Flores, Bernardo M.
  organization: Universidade Federal de Santa Catarina (UFSC)
– sequence: 6
  givenname: Marina
  surname: Hirota
  fullname: Hirota, Marina
  organization: Universidade Federal de Santa Catarina (UFSC)
– sequence: 7
  givenname: R. Toby
  surname: Pennington
  fullname: Pennington, R. Toby
  organization: Royal Botanic Garden Edinburgh
– sequence: 8
  givenname: Rafael S.
  surname: Oliveira
  fullname: Oliveira, Rafael S.
  organization: Universidade Estadual de Campinas (UNICAMP)
BookMark eNp1kD9PwzAQxS1UJNrCwDeIxAJDWv9L4m5ABQWpEgMwW45zBldJHOwUlG-PSzshuOVu-L33Tm-CRq1rAaFzgmckzvxNlzNSkIIfoTFheZZSLvLR7s54SjBhJ2gSwgZjzCjOx-j6uQPde1UnKgytfveuHeKZqKQBFbYeEmcS0C4MoYcm8RA61wZIKvsJPth-OEXHRtUBzg57il7v716WD-n6afW4vFmnmjHMUyjAFKasmDBUYcYMJ0oxw4gAg6lglVGV4SXTJc81GC4MBmWoWWSZMIALNkWXe9_Ou48thF42Nmioa9WC2wYZQzATxYKSiF78Qjdu69v4naSLmCio4Dtqvqe0dyF4MFLbXvXWtbEOW0uC5a5RGRuVP41GxdUvRedto_zwJ3tw_7I1DP-DcrW83Su-AQArh6w
CitedBy_id crossref_primary_10_3390_f15091533
crossref_primary_10_1088_1748_9326_ad545a
Cites_doi 10.1038/nplants.2016.24
10.1016/j.tree.2006.02.002
10.1016/j.tree.2015.12.010
10.1007/978-3-030-33157-3_3
10.1111/ecog.04434
10.1002/ecy.3332
10.1073/pnas.1920405117
10.1016/j.scitotenv.2017.07.237
10.5194/soil‐7‐217‐2021
10.1126/science.aab1833
10.1038/s41559‐021‐01451‐x
10.1038/s41561‐019‐0312‐z
10.1111/oik.04815
10.1590/S0100‐84042006000400013
10.1111/gcb.15712
10.1016/j.rse.2017.01.036
10.1007/s11104‐022‐05517‐y
10.1111/j.1461‐0248.2010.01509.x
10.1111/2041‐210X.13025
10.1088/1748‐9326/aa5968
10.1007/978-3-319-68339-3_15
10.1111/nph.17266
10.1002/joc.5086
10.1111/1365‐2745.13897
10.1038/nature16457
10.1126/sciadv.abl8214
10.1038/nclimate1633
10.1111/geb.12963
10.1038/nature16986
10.1038/s41559‐018‐0647‐7
10.1038/s41559‐020‐01329‐4
10.1002/ecs2.3824
10.1111/brv.12756
10.1126/science.aaf5080
10.1890/1540‐9295(2003)001[0488:RDECAR]2.0.CO;2
10.1073/pnas.1703928114
10.1016/j.rse.2020.112122
10.1016/j.ecolind.2016.07.039
10.1038/s41559‐018‐0551‐1
10.1111/ele.13456
10.1890/11‐0426.1
10.1126/science.1215855
10.1016/j.rse.2020.112197
10.1038/nature15539
10.1002/ece3.7949
10.1126/science.aad5068
10.1038/nature15374
10.1016/j.ecoinf.2010.06.001
10.1002/ecy.1507
10.1088/1748‐9326/ac9d4f
10.1890/08‐2244.1
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright © 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: Copyright © 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
DOI 10.1111/gcb.17174
DatabaseName CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage n/a
ExternalDocumentID 10_1111_gcb_17174
GCB17174
Genre article
GrantInformation_xml – fundername: Natural Environment Research Council (NERC)
  funderid: NE/N014022/1; NE/S000011/1
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  funderid: 2019/07773‐1; 2019/18145‐1; 2019/18176‐4
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
– fundername: Serrapilheira Institute
  funderid: Serra 1709‐18983
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-c3304-e7ef7fbd38f2a033f41aa3f318ef0283dfadf4b3cb46cef48f0eaf2f9558fe073
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Jul 11 18:21:43 EDT 2025
Sun Jul 13 05:00:37 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Tue Jul 01 05:20:52 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3304-e7ef7fbd38f2a033f41aa3f318ef0283dfadf4b3cb46cef48f0eaf2f9558fe073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3835-2020
0000-0002-6932-8544
0000-0002-0774-3216
0000-0003-4555-5598
PQID 2931882841
PQPubID 30327
PageCount 10
ParticipantIDs proquest_miscellaneous_3040387921
proquest_journals_2931882841
crossref_citationtrail_10_1111_gcb_17174
crossref_primary_10_1111_gcb_17174
wiley_primary_10_1111_gcb_17174_GCB17174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 27
2021; 7
2022; 110
2013; 3
2021; 5
2010; 13
2021; 102
2018; 127
2019; 12
2016; 97
2016; 31
2017; 192
2015; 528
2015; 526
2015; 349
2021; 96
2017; 114
2022; 476
2012; 93
2017; 72
2018; 9
2018; 2
2021; 12
2016; 2
2021; 11
2017; 37
2019; 42
2021; 255
2006; 21
2020
2022; 8
2017; 12
2019; 28
2016; 531
2016; 353
2006; 29
2020; 117
2017
2021; 252
2021; 230
2020; 23
2018; 618
2003; 1
2010; 91
2012; 336
2010; 5
2016; 351
2022; 17
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 526
  start-page: 574
  year: 2015
  end-page: 577
  article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes
  publication-title: Nature
– volume: 7
  start-page: 217
  year: 2021
  end-page: 240
  article-title: SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty
  publication-title: The Soil
– volume: 42
  start-page: 1353
  year: 2019
  end-page: 1359
  article-title: V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants
  publication-title: Ecography
– volume: 2
  start-page: 1579
  year: 2018
  end-page: 1587
  article-title: Multiple facets of biodiversity drive the diversity–stability relationship
  publication-title: Nature Ecology & Evolution
– volume: 91
  start-page: 299
  year: 2010
  end-page: 305
  article-title: A distance‐based framework for measuring functional diversity from multiple traits
  publication-title: Ecology
– volume: 336
  start-page: 1401
  year: 2012
  end-page: 1406
  article-title: The functions of biological diversity in an age of extinction
  publication-title: Science
– volume: 8
  year: 2022
  article-title: Plant diversity reduces satellite‐observed phenological variability in wetlands at a national scale
  publication-title: Science Advances
– volume: 127
  start-page: 865
  year: 2018
  article-title: Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity
  publication-title: Oikos
– volume: 13
  start-page: 1085
  year: 2010
  end-page: 1093
  article-title: Opposing effects of competitive exclusion on the phylogenetic structure of communities
  publication-title: Ecology Letters
– volume: 353
  start-page: 1383
  year: 2016
  end-page: 1387
  article-title: Plant diversity patterns in neotropical dry forests and their conservation implications
  publication-title: Science
– volume: 9
  start-page: 1799
  year: 2018
  end-page: 1809
  article-title: Understanding and assessing vegetation health by in situ species and remote‐sensing approaches
  publication-title: Methods in Ecology and Evolution
– volume: 5
  start-page: 46
  year: 2021
  end-page: 54
  article-title: Remote spectral detection of biodiversity effects on forest biomass
  publication-title: Nature Ecology & Evolution
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 1
  start-page: 488
  year: 2003
  end-page: 494
  article-title: Response diversity, ecosystem change, and resilience
  publication-title: Frontiers in Ecology and the Environment
– start-page: 43
  year: 2020
  end-page: 82
– volume: 11
  start-page: 11808
  year: 2021
  end-page: 11825
  article-title: Plant functional types broadly describe water use strategies in the Caatinga, a seasonally dry tropical forest in northeast Brazil
  publication-title: Ecology and Evolution
– volume: 12
  year: 2017
  article-title: Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?
  publication-title: Environmental Research Letters
– volume: 2
  start-page: 976
  year: 2018
  end-page: 982
  article-title: Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function
  publication-title: Nature Ecology & Evolution
– volume: 97
  start-page: 2212
  year: 2016
  end-page: 2222
  article-title: Deconstructing the relationships between phylogenetic diversity and ecology: A case study on ecosystem functioning
  publication-title: Ecology
– volume: 117
  start-page: 24345
  year: 2020
  end-page: 24351
  article-title: Synchrony matters more than species richness in plant community stability at a global scale
  publication-title: National Academy of Sciences of the United States of America
– volume: 29
  start-page: 627
  year: 2006
  end-page: 638
  article-title: Comportamento fenológico de espécies lenhosas em um cerrado sentido restrito de Brasília, DF
  publication-title: Brazilian Journal of Botany
– volume: 28
  start-page: 1430
  year: 2019
  end-page: 1439
  article-title: Plant phylogenetic diversity stabilizes large‐scale ecosystem productivity
  publication-title: Global Ecology and Biogeography
– volume: 349
  start-page: 528
  year: 2015
  end-page: 532
  article-title: Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models
  publication-title: Science
– volume: 27
  start-page: 4060
  year: 2021
  end-page: 4073
  article-title: The Brazilian Cerrado is becoming hotter and drier
  publication-title: Global Change Biology
– volume: 102
  year: 2021
  article-title: Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony
  publication-title: Ecology
– volume: 31
  start-page: 87
  year: 2016
  end-page: 89
  article-title: Resilience in the studies of biodiversity‐ecosystem functioning
  publication-title: Trends in Ecology & Evolution
– volume: 2
  year: 2016
  article-title: Monitoring plant functional diversity from space
  publication-title: Nature Plants
– volume: 5
  start-page: 318
  year: 2010
  end-page: 329
  article-title: Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges
  publication-title: Ecological Informatics
– volume: 96
  start-page: 2333
  year: 2021
  end-page: 2354
  article-title: Biodiversity as insurance: From concept to measurement and application
  publication-title: Biological Reviews
– volume: 23
  start-page: 757
  year: 2020
  end-page: 776
  article-title: Scaling‐up biodiversity‐ecosystem functioning research
  publication-title: Ecology Letters
– volume: 531
  start-page: 229
  year: 2016
  end-page: 232
  article-title: Sensitivity of global terrestrial ecosystems to climate variability
  publication-title: Nature
– volume: 12
  start-page: 174
  year: 2019
  end-page: 179
  article-title: Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall
  publication-title: Nature Geoscience
– volume: 12
  year: 2021
  article-title: Remotely sensed assessment of increasing chronic and episodic drought effects on a Costa Rican tropical dry forest
  publication-title: Ecosphere
– volume: 531
  start-page: E4
  year: 2016
  end-page: E5
  article-title: Dry‐season greening of Amazon forests
  publication-title: Nature
– volume: 252
  year: 2021
  article-title: Pantropical modelling of canopy functional traits using Sentinel‐2 remote sensing data
  publication-title: Remote Sensing of Environment
– volume: 351
  start-page: 972
  year: 2016
  end-page: 976
  article-title: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
  publication-title: Science
– volume: 110
  start-page: 1460
  year: 2022
  end-page: 1484
  article-title: Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales
  publication-title: Journal of Ecology
– start-page: 383
  year: 2017
  end-page: 410
– volume: 255
  year: 2021
  article-title: Satellite prediction of forest flowering phenology
  publication-title: Remote Sensing of Environment
– volume: 17
  year: 2022
  article-title: Seeing roots from space: Aboveground fingerprints of root depth in vegetation sensitivity to climate in dry biomes
  publication-title: Environmental Research Letters
– volume: 230
  start-page: 904
  year: 2021
  end-page: 923
  article-title: Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems
  publication-title: New Phytologist
– volume: 528
  start-page: 119
  year: 2015
  end-page: 122
  article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation
  publication-title: Nature
– volume: 93
  start-page: S223
  year: 2012
  end-page: S233
  article-title: Phylogenetic diversity promotes ecosystem stability
  publication-title: Ecology
– volume: 476
  start-page: 549
  year: 2022
  end-page: 588
  article-title: Soil properties and geomorphic processes influence vegetation composition, structure, and function in the Cerrado Domain
  publication-title: Plant and Soil
– volume: 5
  start-page: 896
  year: 2021
  end-page: 906
  article-title: Priority list of biodiversity metrics to observe from space
  publication-title: Nature Ecology & Evolution
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 192
  start-page: 114
  year: 2017
  end-page: 125
  article-title: The spectral variability hypothesis does not hold across landscapes
  publication-title: Remote Sensing of Environment
– volume: 114
  start-page: 10160
  year: 2017
  end-page: 10165
  article-title: Biodiversity promotes primary productivity and growing season lengthening at the landscape scale
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 618
  start-page: 665
  year: 2018
  end-page: 673
  article-title: Land surface phenology: What do we really ‘see’ from space?
  publication-title: Science of the Total Environment
– volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nature Climate Change
– volume: 72
  start-page: 234
  year: 2017
  end-page: 238
  article-title: Measuring Rao's Q diversity index from remote sensing: An open source solution
  publication-title: Ecological Indicators
– ident: e_1_2_8_21_1
  doi: 10.1038/nplants.2016.24
– ident: e_1_2_8_31_1
  doi: 10.1016/j.tree.2006.02.002
– ident: e_1_2_8_32_1
  doi: 10.1016/j.tree.2015.12.010
– ident: e_1_2_8_45_1
  doi: 10.1007/978-3-030-33157-3_3
– ident: e_1_2_8_22_1
  doi: 10.1111/ecog.04434
– ident: e_1_2_8_49_1
  doi: 10.1002/ecy.3332
– ident: e_1_2_8_48_1
  doi: 10.1073/pnas.1920405117
– ident: e_1_2_8_17_1
  doi: 10.1016/j.scitotenv.2017.07.237
– ident: e_1_2_8_36_1
  doi: 10.5194/soil‐7‐217‐2021
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aab1833
– ident: e_1_2_8_46_1
  doi: 10.1038/s41559‐021‐01451‐x
– ident: e_1_2_8_7_1
  doi: 10.1038/s41561‐019‐0312‐z
– ident: e_1_2_8_39_1
  doi: 10.1111/oik.04815
– ident: e_1_2_8_26_1
  doi: 10.1590/S0100‐84042006000400013
– ident: e_1_2_8_18_1
  doi: 10.1111/gcb.15712
– ident: e_1_2_8_42_1
  doi: 10.1016/j.rse.2017.01.036
– ident: e_1_2_8_27_1
  doi: 10.1007/s11104‐022‐05517‐y
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1461‐0248.2010.01509.x
– ident: e_1_2_8_25_1
  doi: 10.1111/2041‐210X.13025
– ident: e_1_2_8_3_1
  doi: 10.1088/1748‐9326/aa5968
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-319-68339-3_15
– ident: e_1_2_8_35_1
  doi: 10.1111/nph.17266
– ident: e_1_2_8_15_1
  doi: 10.1002/joc.5086
– ident: e_1_2_8_12_1
  doi: 10.1111/1365‐2745.13897
– ident: e_1_2_8_41_1
  doi: 10.1038/nature16457
– ident: e_1_2_8_13_1
  doi: 10.1126/sciadv.abl8214
– ident: e_1_2_8_9_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_8_30_1
  doi: 10.1111/geb.12963
– ident: e_1_2_8_44_1
  doi: 10.1038/nature16986
– ident: e_1_2_8_8_1
  doi: 10.1038/s41559‐018‐0647‐7
– ident: e_1_2_8_50_1
  doi: 10.1038/s41559‐020‐01329‐4
– ident: e_1_2_8_19_1
  doi: 10.1002/ecs2.3824
– ident: e_1_2_8_28_1
  doi: 10.1111/brv.12756
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aaf5080
– ident: e_1_2_8_14_1
  doi: 10.1890/1540‐9295(2003)001[0488:RDECAR]2.0.CO;2
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1703928114
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rse.2020.112122
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ecolind.2016.07.039
– ident: e_1_2_8_43_1
  doi: 10.1038/s41559‐018‐0551‐1
– ident: e_1_2_8_16_1
  doi: 10.1111/ele.13456
– ident: e_1_2_8_6_1
  doi: 10.1890/11‐0426.1
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1215855
– ident: e_1_2_8_11_1
  doi: 10.1016/j.rse.2020.112197
– ident: e_1_2_8_40_1
  doi: 10.1038/nature15539
– ident: e_1_2_8_51_1
  doi: 10.1002/ece3.7949
– ident: e_1_2_8_52_1
  doi: 10.1126/science.aad5068
– ident: e_1_2_8_20_1
  doi: 10.1038/nature15374
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ecoinf.2010.06.001
– ident: e_1_2_8_10_1
  doi: 10.1002/ecy.1507
– ident: e_1_2_8_23_1
  doi: 10.1088/1748‐9326/ac9d4f
– ident: e_1_2_8_24_1
  doi: 10.1890/08‐2244.1
SSID ssj0003206
Score 2.448237
Snippet Species diversity is crucial for promoting ecosystem resilience and stability. Species diversity promotes complementarity in resource use, resulting in a wider...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aridity
Biodiversity
biodiversity metrics
Biological Sciences
climatic variability
Complementarity
data collection
diversity‐stability hypothesis
Drought
drought resistance
dry environmental conditions
Dry forests
Ecological function
ecological resilience
Ecosystem assessment
ecosystem functioning
Ecosystem models
Ecosystem resilience
Ecosystems
Extreme drought
global change
Heterogeneity
landscapes
Patchiness
phenological responses
Productivity
Remote sensing
Resilience
seasonally dry tropical forests
Spatial heterogeneity
spatial variation
Species diversity
spectral variability hypothesis
Stability
Tropical forests
vegetation productivity
Title Spectral asynchrony as a measure of ecosystem response diversity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17174
https://www.proquest.com/docview/2931882841
https://www.proquest.com/docview/3040387921
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-NAEB5EOPDF86pi1ZM9EfGlpclu0gZfTotahN7DoeCDEHa3O8dxmkrTPtS_3pndpFU54bi3hExI9sfMfjM7-w3AEUrdTTJmAJAxOSiRskx5a1oq4b3CroliP9LDH-ngVl3fJXcrcFqfhQn8EIuAG2uGt9es4NqUr5T8lzXtiJwR5gLlXC0GRD-X1FEy9nU1I5koMjWRrFiFOItn8ebbtWgJMF_DVL_OXH6G-_oPQ3rJn_Zsatr2-R154382YQPWK_wpzsKE-QIrrmjAp1CRct6A7YvlwTcSqzS_bEBzSOh6PPFi4lj0H34T1PV3m_Cdi9hzxETocl5Yptud06XQ4jFEIMUYBbm5gTVaTEJarhOjOidkC24vL276g1ZVmaFlOf7Rcl2HXTQj2cNYd6REFWktkeyDQwYsI9QjVEZao1LrUPWw4zTGmCVJDx1ZlW1YLcaF2wERp9qZNNOZyzKFmGplUNmOYpIYgrK2CSf1GOW2oi3n6hkPee2-UC_mvhebcLgQfQpcHX8T2q8HOq_UtcwJ80TkavRU1IRvi8ekaLx7ogs3npU5tZu3-rOYZE78qH78kfyqf-4vdv9ddA_WYgJMISN8H1ank5n7SoBnag78zH4Bfp77tA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xpml72UYZWoENM02Il1ZN7KSNtAdYBXSD8jCBxAuKbNeHEJCifjx0fz13dtKyiUkTb4lyUeKPO__ufP4dwFeUup1kzAAgY3JQImWZ8tY0VMJ7hW0TxX6k-6dp71z9vEguluBbdRYm8EPMA26sGd5es4JzQPqRll9Z04zIG1Ev4CVX9PYO1a8FeZSMfWXNSCaKjE0kS14hzuOZv_rnarSAmI-Bql9pDt_BZfWPIcHkpjmdmKb9_Rd943Mb8R7elhBU7Ic5swJLrqjBq1CUclaDtYPF2TcSK5V_XIN6nwD2cOTFxI7o3l4T2vV3q7DHdew5aCL0eFZYZtyd0aXQ4i4EIcUQBXm6gThajEJmrhODKi3kA5wfHpx1e42yOEPDcgik4doO22gGsoOxbkmJKtJaIpkIh4xZBqgHqIy0RqXWoepgy2mMMUuSDjoyLGuwXAwL9xFEnGpn0kxnLssUYqqVQWVbinliCM3aOuxWg5TbkrmcC2jc5pUHQ72Y-16sw5e56H2g63hKaLMa6bzU2HFOsCcib6Ojojpszx-TrvEGii7ccDrOqd2825_FJLPrh_XfH8mPut_9xfr_i27B695Z_yQ_-XF6vAFvYsJPIUF8E5Yno6n7RPhnYj77af4AL1b_zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUCsuPLZFXV41CFVcdrWJnWwiLsDClkdBVVUkDpUi2_EgBGTRPg7Lr2dsJ7uAWqnqLVEmSuzx2N-Mx98A7CCX7Si1DAA8JAclENpS3qqGiOxeYVsFodP0xWV8ciXOrqPrGdirzsJ4fohJwM1ahpuvrYE_5vjCyG-0agbkjIh3MCfiVmKH9NHPKXcUD11hzYBHguaagJe0QjaNZ_Lq68VoijBf4lS30HQX4Xf1iz6_5K45GqqmfnrD3vifbViChRKAsgM_YpZhxhQ1eO9LUo5rsHI8PflGYqXpD2pQvyB43es7MfaVde5vCeu6u4-wb6vY25AJk4NxoS3f7pgumWQPPgTJesjIz_W00azv83INy6ukkE9w1T3-1TlplKUZGtoGQBqmbbCNKucJhrLFOYpASo40QRi0iCVHmaNQXCsRa4MiwZaRGGIaRQkamlZWYLboFeYzsDCWRsWpTE2aCsRYCoVCt4RliSEsq-uwW-ko0yVvuS2fcZ9V_gv1YuZ6sQ7bE9FHT9bxJ6H1StFZaa-DjEBPQL5GIoI6bE0ek6XZ7RNZmN5okFG77V5_GpLMrtPq3z-SfescuovVfxf9Ah9-HHWz76eX52swHxJ48tnh6zA77I_MBoGfodp0g_wZUNv-hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+asynchrony+as+a+measure+of+ecosystem+response+diversity&rft.jtitle=Global+change+biology&rft.au=Mazzochini%2C+Guilherme+G.&rft.au=Rowland%2C+Lucy&rft.au=Lira%E2%80%90Martins%2C+Dem%C3%A9trius&rft.au=Barros%2C+Fernanda+de+V.&rft.date=2024-02-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fgcb.17174&rft.externalDBID=10.1111%252Fgcb.17174&rft.externalDocID=GCB17174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon