A map of the spatial distribution and tumour‐associated macrophage states in glioblastoma and grade 4 IDH‐mutant astrocytoma
Tumour‐associated macrophages (TAMs) abundantly infiltrate high‐grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)‐differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and...
Saved in:
Published in | The Journal of pathology Vol. 258; no. 2; pp. 121 - 135 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.10.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumour‐associated macrophages (TAMs) abundantly infiltrate high‐grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)‐differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte‐derived TAM (Mo‐TAM) and microglia‐derived TAM (Mg‐TAM) clusters across glioblastoma‐IDH‐wild type and astrocytoma‐IDH‐mutant‐grade 4 (Astro‐IDH‐mut‐G4). Single‐cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro‐IDH‐mut‐G4. Cell clustering, single‐cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM‐cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro‐IDH‐mut‐G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg‐TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg‐TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset‐specific markers identified spatial enrichment of distinct TAM clusters at peri‐vascular/necrotic areas in tumour parenchyma or at the tumour–brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo‐TAM‐inflammatory clusters, whereas Astro‐IDH‐mut‐G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH‐differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland. |
---|---|
AbstractList | Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland. Tumour‐associated macrophages (TAMs) abundantly infiltrate high‐grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)‐differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte‐derived TAM (Mo‐TAM) and microglia‐derived TAM (Mg‐TAM) clusters across glioblastoma‐IDH‐wild type and astrocytoma‐IDH‐mutant‐grade 4 (Astro‐IDH‐mut‐G4). Single‐cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro‐IDH‐mut‐G4. Cell clustering, single‐cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM‐cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro‐IDH‐mut‐G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg‐TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg‐TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset‐specific markers identified spatial enrichment of distinct TAM clusters at peri‐vascular/necrotic areas in tumour parenchyma or at the tumour–brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo‐TAM‐inflammatory clusters, whereas Astro‐IDH‐mut‐G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH‐differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland. Tumour‐associated macrophages (TAMs) abundantly infiltrate high‐grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)‐differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte‐derived TAM (Mo‐TAM) and microglia‐derived TAM (Mg‐TAM) clusters across glioblastoma‐ IDH ‐wild type and astrocytoma‐ IDH ‐mutant‐grade 4 (Astro‐IDH‐mut‐G4). Single‐cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro‐IDH‐mut‐G4. Cell clustering, single‐cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM‐cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro‐IDH‐mut‐G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg‐TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg‐TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset‐specific markers identified spatial enrichment of distinct TAM clusters at peri‐vascular/necrotic areas in tumour parenchyma or at the tumour–brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo‐TAM‐inflammatory clusters, whereas Astro‐IDH‐mut‐G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH‐differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland. |
Author | Yang, Kai‐Di Lv, Sheng‐Qing Guo, Ying Wang, Qiang‐Hu Wang, Wen‐Ying Li, Xue‐Gang Luo, Tao Luo, Chun‐Hua Yang, Xi Ping, Yi‐Fang Miao, Jing‐Ya Luo, Min Bian, Xiu‐Wu Cao, Mian‐Fu Chen, Cong Yang, Ying Yin, Wen Liu, Yu‐Qi Feng, Hua Zhang, Xiao‐Ning Li, Tian‐Ran Yang, Liu‐Qing Wang, Chao He, Zhi‐Cheng Zeng, Hui Zhou, Lei Liu, Qing Li, Fei Shi, Yu Mao, Min |
Author_xml | – sequence: 1 givenname: Wen surname: Yin fullname: Yin, Wen organization: Ministry of Education of China – sequence: 2 givenname: Yi‐Fang orcidid: 0000-0002-0699-8401 surname: Ping fullname: Ping, Yi‐Fang organization: Ministry of Education of China – sequence: 3 givenname: Fei surname: Li fullname: Li, Fei organization: Southwest Hospital, Third Military Medical University (Army Medical University) – sequence: 4 givenname: Sheng‐Qing surname: Lv fullname: Lv, Sheng‐Qing organization: Xinqiao Hospital, Third Military Medical University (Army Medical University) – sequence: 5 givenname: Xiao‐Ning surname: Zhang fullname: Zhang, Xiao‐Ning organization: Ministry of Education of China – sequence: 6 givenname: Xue‐Gang surname: Li fullname: Li, Xue‐Gang organization: Southwest Hospital, Third Military Medical University (Army Medical University) – sequence: 7 givenname: Ying surname: Guo fullname: Guo, Ying organization: Ministry of Education of China – sequence: 8 givenname: Qing surname: Liu fullname: Liu, Qing organization: Ministry of Education of China – sequence: 9 givenname: Tian‐Ran surname: Li fullname: Li, Tian‐Ran organization: Ministry of Education of China – sequence: 10 givenname: Liu‐Qing surname: Yang fullname: Yang, Liu‐Qing organization: Ministry of Education of China – sequence: 11 givenname: Kai‐Di surname: Yang fullname: Yang, Kai‐Di organization: Ministry of Education of China – sequence: 12 givenname: Yu‐Qi surname: Liu fullname: Liu, Yu‐Qi organization: Ministry of Education of China – sequence: 13 givenname: Chun‐Hua surname: Luo fullname: Luo, Chun‐Hua organization: Ministry of Education of China – sequence: 14 givenname: Tao orcidid: 0000-0001-9979-6587 surname: Luo fullname: Luo, Tao organization: Ministry of Education of China – sequence: 15 givenname: Wen‐Ying surname: Wang fullname: Wang, Wen‐Ying organization: Ministry of Education of China – sequence: 16 givenname: Min surname: Mao fullname: Mao, Min organization: Ministry of Education of China – sequence: 17 givenname: Min surname: Luo fullname: Luo, Min organization: Ministry of Education of China – sequence: 18 givenname: Zhi‐Cheng surname: He fullname: He, Zhi‐Cheng organization: Ministry of Education of China – sequence: 19 givenname: Mian‐Fu surname: Cao fullname: Cao, Mian‐Fu organization: Ministry of Education of China – sequence: 20 givenname: Cong surname: Chen fullname: Chen, Cong organization: Ministry of Education of China – sequence: 21 givenname: Jing‐Ya surname: Miao fullname: Miao, Jing‐Ya organization: Ministry of Education of China – sequence: 22 givenname: Hui surname: Zeng fullname: Zeng, Hui organization: Ministry of Education of China – sequence: 23 givenname: Chao surname: Wang fullname: Wang, Chao organization: Ministry of Education of China – sequence: 24 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: Ministry of Education of China – sequence: 25 givenname: Ying surname: Yang fullname: Yang, Ying organization: Ministry of Education of China – sequence: 26 givenname: Xi surname: Yang fullname: Yang, Xi organization: Ministry of Education of China – sequence: 27 givenname: Qiang‐Hu surname: Wang fullname: Wang, Qiang‐Hu organization: Nanjing Medical University – sequence: 28 givenname: Hua surname: Feng fullname: Feng, Hua organization: Southwest Hospital, Third Military Medical University (Army Medical University) – sequence: 29 givenname: Yu orcidid: 0000-0001-8436-604X surname: Shi fullname: Shi, Yu email: drshiyu@126.com organization: Ministry of Education of China – sequence: 30 givenname: Xiu‐Wu orcidid: 0000-0003-4383-0197 surname: Bian fullname: Bian, Xiu‐Wu email: bianxiuwu@263.net organization: Ministry of Education of China |
BookMark | eNp9kb9OHDEQh62ISDkIRd7AUhooFrz2_rHLEwkcElJSQG3Nee07o931YnsVXccj5Bl5EuaACgkqSzPfN_L85pAcjGG0hPwo2VnJGD-fIG_PaiWrL2RRMtUUSqrmgCywxwtRle03cpjSPWNMqbpekMclHWCiwdG8tTSh7qGnnU85-vWcfRgpjB3N8xDm-PT4H1IKxkO2HXomhmkLG_QyVhL1I930Pqx7SDkM8GJuInSWVvT61wr1Yc4wZor9GMxuD30nXx30yR6_vUfk7vL37cWquPlzdX2xvCmMEKwqDG8rxpXoStZJLBgujZAcpBVGKedc4zqj2rWpG2idELziom6t7JSrEBbiiJy8zp1ieJhtynrwydi-h9GGOWnetLIVGFyN6M936D0uP-LvNG-ZkrySokHq9JXCFFKK1ukp-gHiTpdM72-h97fQ-1sge_6ONR4jw3RzBN9_Zvzzvd19PFr_Xd6uXoxn9iOgvg |
CitedBy_id | crossref_primary_10_1002_glia_24456 crossref_primary_10_1186_s12943_024_01981_5 crossref_primary_10_1172_JCI163446 crossref_primary_10_3390_cells13211754 crossref_primary_10_1038_s41540_024_00478_7 crossref_primary_10_3389_fonc_2022_889351 crossref_primary_10_1016_j_semcancer_2024_07_005 crossref_primary_10_1002_cam4_6476 crossref_primary_10_1016_j_ccell_2024_05_001 crossref_primary_10_3389_fimmu_2024_1326753 crossref_primary_10_1007_s44194_024_00031_y crossref_primary_10_1016_j_ccell_2024_03_013 crossref_primary_10_3390_life14040443 crossref_primary_10_1093_noajnl_vdad101 crossref_primary_10_1016_j_molmed_2025_01_014 crossref_primary_10_1016_j_semcancer_2023_04_004 crossref_primary_10_1186_s12964_023_01424_6 crossref_primary_10_1093_neuonc_noad256 crossref_primary_10_1097_MD_0000000000035298 crossref_primary_10_1186_s12943_024_02064_1 crossref_primary_10_1016_j_celrep_2024_115149 crossref_primary_10_3389_fcimb_2023_1141034 |
Cites_doi | 10.1038/s41596-020-0292-x 10.1186/s40478-019-0665-y 10.1038/ni.2622 10.1016/j.cell.2021.12.043 10.1038/nri.2017.103 10.1002/jcp.22489 10.1002/art.41813 10.1038/s41593-020-00789-y 10.1038/nmeth.4463 10.1038/nn.4185 10.1016/j.jhep.2012.07.008 10.1038/s41467-021-21407-w 10.1172/JCI83987 10.1016/j.cell.2021.01.010 10.1016/j.cels.2019.03.003 10.1038/s41593-019-0393-4 10.1016/j.cels.2021.01.002 10.1158/2159-8290.CD-20-0603 10.1038/s41598-017-17204-5 10.1016/j.ccell.2021.05.002 10.1126/science.abi7377 10.1084/jem.20170355 10.1080/2162402X.2022.2030020 10.1038/s41568-021-00397-3 10.1038/ncomms15080 10.1093/neuonc/noab120 10.3389/fimmu.2018.01753 10.1126/science.aai8478 10.1038/nm1660 10.1016/j.cell.2019.05.031 10.1038/ni.3585 10.1158/0008-5472.CAN-16-2065 10.1016/j.ccell.2017.06.003 10.1016/j.cell.2019.06.024 10.18632/oncotarget.26863 10.1038/s41419-021-04308-0 10.1038/s41582-021-00463-2 10.1073/pnas.1525528113 10.1038/s41586-019-0924-x 10.3389/fnins.2021.682247 10.1073/pnas.2002476117 10.1038/ni.2992 10.1038/ni.3545 10.4161/onci.20637 10.1016/j.cell.2020.05.007 10.1038/s41571-021-00518-9 10.1038/sj.onc.1210743 10.1038/s41591-020-0752-4 10.1126/science.1254257 10.1038/ni.2353 10.1016/j.celrep.2015.09.073 10.3892/or.2016.5171 10.1016/j.cell.2020.04.055 10.3389/fimmu.2019.00131 |
ContentType | Journal Article |
Copyright | 2022 The Pathological Society of Great Britain and Ireland. Copyright © 2022 Pathological Society of Great Britain and Ireland |
Copyright_xml | – notice: 2022 The Pathological Society of Great Britain and Ireland. – notice: Copyright © 2022 Pathological Society of Great Britain and Ireland |
DBID | AAYXX CITATION 7QP 7QR 7T5 7TK 7TM 7TO 8FD FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1002/path.5984 |
DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1096-9896 |
EndPage | 135 |
ExternalDocumentID | 10_1002_path_5984 PATH5984 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFA1201000; 2021YFA1103000 – fundername: National Natural Science Foundation of China funderid: 82192890; 81922056 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1KJ 1L6 1OB 1OC 1ZS 29L 31~ 33P 3O- 3SF 3UE 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GSXLS H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M68 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 V2E VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 YQI YQJ ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QP 7QR 7T5 7TK 7TM 7TO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3304-c2740293d10d8304c28c382a8e3c99fff6fdc97bc56a7f33242357e8d9f44c233 |
IEDL.DBID | DR2 |
ISSN | 0022-3417 1096-9896 |
IngestDate | Fri Jul 11 09:40:32 EDT 2025 Wed Aug 13 00:01:30 EDT 2025 Thu Apr 24 22:53:07 EDT 2025 Tue Jul 01 04:21:21 EDT 2025 Wed Jan 22 16:23:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3304-c2740293d10d8304c28c382a8e3c99fff6fdc97bc56a7f33242357e8d9f44c233 |
Notes | No conflicts of interest were declared. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8436-604X 0000-0003-4383-0197 0000-0001-9979-6587 0000-0002-0699-8401 |
PQID | 2709824836 |
PQPubID | 1006392 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2678739845 proquest_journals_2709824836 crossref_primary_10_1002_path_5984 crossref_citationtrail_10_1002_path_5984 wiley_primary_10_1002_path_5984_PATH5984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | The Journal of pathology |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2022; 375 2021; 24 2017; 7 2017; 8 2021; 21 2021; 23 2019; 10 2019; 566 2020; 15 2012; 13 2012; 57 2017; 355 2016; 36 2018; 9 2013; 14 2019; 22 2017; 77 2021; 39 2017; 32 2008; 27 2016; 113 2014; 15 2022; 74 2019; 8 2015; 13 2019; 7 2016; 19 2020; 181 2021; 184 2016; 126 2016; 17 2017; 214 2007; 13 2011; 226 2021; 15 2022; 185 2021; 12 2012; 1 2021; 11 2017; 14 2017; 17 2021; 18 2021; 17 2020; 26 2020; 117 2022; 11 2019; 177 2019; 178 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 14: start-page: 1083 year: 2017 end-page: 1086 article-title: SCENIC: single‐cell regulatory network inference and clustering publication-title: Nat Methods – volume: 226: start-page: 1573 year: 2011 end-page: 1582 article-title: Peptidoglycan induces interleukin‐6 expression through the TLR2 receptor, JNK, c‐Jun, and AP‐1 pathways in microglia publication-title: J Cell Physiol – volume: 355: year: 2017 article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq publication-title: Science – volume: 10: start-page: 3129 year: 2019 end-page: 3143 article-title: Differential microglia and macrophage profiles in human IDH‐mutant and ‐wild type glioblastoma publication-title: Oncotarget – volume: 181: start-page: 1626 year: 2020 end-page: 1642.e20 article-title: Single‐cell mapping of human brain cancer reveals tumor‐specific instruction of tissue‐invading leukocytes publication-title: Cell – volume: 12: start-page: 1023 year: 2021 article-title: Chromatin accessibility analysis identifies the transcription factor ETV5 as a suppressor of adipose tissue macrophage activation in obesity publication-title: Cell Death Dis – volume: 344: start-page: 1396 year: 2014 end-page: 1401 article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science – volume: 13: start-page: 1308 year: 2007 end-page: 1315 article-title: Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease publication-title: Nat Med – volume: 214: start-page: 1913 year: 2017 end-page: 1923 article-title: The fate and lifespan of human monocyte subsets in steady state and systemic inflammation publication-title: J Exp Med – volume: 17: start-page: 1282 year: 2016 end-page: 1290 article-title: Glioma‐induced inhibition of caspase‐3 in microglia promotes a tumor‐supportive phenotype publication-title: Nat Immunol – volume: 178: start-page: 835 year: 2019 end-page: 849.e21 article-title: An integrative model of cellular states, plasticity, and genetics for glioblastoma publication-title: Cell – volume: 24: start-page: 595 year: 2021 end-page: 610 article-title: Single‐cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization publication-title: Nat Neurosci – volume: 117: start-page: 25712 year: 2020 end-page: 25721 article-title: Genetic landscape and autoimmunity of monocytes in developing Vogt–Koyanagi–Harada disease publication-title: Proc Natl Acad Sci U S A – volume: 32: start-page: 42 year: 2017 end-page: 56.e6 article-title: Tumor evolution of glioma‐intrinsic gene expression subtypes associates with immunological changes in the microenvironment publication-title: Cancer Cell – volume: 10: start-page: 131 year: 2019 article-title: Ferritin light chain confers protection against sepsis‐induced inflammation and organ injury publication-title: Front Immunol – volume: 11: start-page: 1286 year: 2021 end-page: 1305 article-title: Direct and indirect regulators of epithelial–mesenchymal transition‐mediated immunosuppression in breast carcinomas publication-title: Cancer Discov – volume: 177: start-page: 1888 year: 2019 end-page: 1902.e21 article-title: Comprehensive integration of single‐cell data publication-title: Cell – volume: 39: start-page: 779 year: 2021 end-page: 792.e11 article-title: Interactions between cancer cells and immune cells drive transitions to mesenchymal‐like states in glioblastoma publication-title: Cancer Cell – volume: 8: start-page: 329 year: 2019 end-page: 337.e4 article-title: DoubletFinder: doublet detection in single‐cell RNA sequencing data using artificial nearest neighbors publication-title: Cell Syst – volume: 14: start-page: 831 year: 2013 end-page: 839 article-title: The nuclear receptor LXRα controls the functional specialization of splenic macrophages publication-title: Nat Immunol – volume: 181: start-page: 1643 year: 2020 end-page: 1660.e17 article-title: Interrogation of the microenvironmental landscape in brain tumors reveals disease‐specific alterations of immune cells publication-title: Cell – volume: 27: start-page: 1320 year: 2008 end-page: 1326 article-title: Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells publication-title: Oncogene – volume: 9: start-page: 1753 year: 2018 article-title: The kaleidoscope of microglial phenotypes publication-title: Front Immunol – volume: 15: start-page: 1064 year: 2014 end-page: 1069 article-title: Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin publication-title: Nat Immunol – volume: 15: start-page: 1484 year: 2020 end-page: 1506 article-title: CellPhoneDB: inferring cell–cell communication from combined expression of multi‐subunit ligand–receptor complexes publication-title: Nat Protoc – volume: 7: start-page: 16878 year: 2017 article-title: QuPath: Open source software for digital pathology image analysis publication-title: Sci Rep – volume: 57: start-page: 1044 year: 2012 end-page: 1051 article-title: CXCR3‐dependent recruitment and CCR6‐mediated positioning of Th‐17 cells in the inflamed liver publication-title: J Hepatol – volume: 185: start-page: 729 year: 2022 end-page: 745.e20 article-title: Cellular architecture of human brain metastases publication-title: Cell – volume: 17: start-page: 243 year: 2021 end-page: 259 article-title: Multifaceted microglia – key players in primary brain tumour heterogeneity publication-title: Nat Rev Neurol – volume: 13: start-page: 744 year: 2012 end-page: 752 article-title: Stress‐induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin publication-title: Nat Immunol – volume: 26: start-page: 333 year: 2020 end-page: 340 article-title: An immune‐cell signature of bacterial sepsis publication-title: Nat Med – volume: 184: start-page: 792 year: 2021 end-page: 809.e23 article-title: A pan‐cancer single‐cell transcriptional atlas of tumor infiltrating myeloid cells publication-title: Cell – volume: 74: start-page: 329 year: 2022 end-page: 341 article-title: Expansion of Fcγ receptor IIIa‐positive macrophages, ficolin 1‐positive monocyte‐derived dendritic cells, and plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis publication-title: Arthritis Rheumatol – volume: 23: start-page: 1215 year: 2021 end-page: 1217 article-title: The 2021 WHO Classification of Tumors of the Central Nervous System: clinical implications publication-title: Neuro Oncol – volume: 18: start-page: 729 year: 2021 end-page: 744 article-title: The immune landscape of common CNS malignancies: implications for immunotherapy publication-title: Nat Rev Clin Oncol – volume: 566: start-page: 388 year: 2019 end-page: 392 article-title: Spatial and temporal heterogeneity of mouse and human microglia at single‐cell resolution publication-title: Nature – volume: 11: start-page: 2030020 year: 2022 article-title: Identification of a unique tumor cell subset employing myeloid transcriptional circuits to create an immunomodulatory microenvironment in glioblastoma publication-title: Oncoimmunology – volume: 21: start-page: 786 year: 2021 end-page: 802 article-title: Glial and myeloid heterogeneity in the brain tumour microenvironment publication-title: Nat Rev Cancer – volume: 113: start-page: E1738 year: 2016 end-page: E1746 article-title: New tools for studying microglia in the mouse and human CNS publication-title: Proc Natl Acad Sci U S A – volume: 12: start-page: 248 year: 2021 end-page: 262.e7 article-title: TAMEP are brain tumor parenchymal cells controlling neoplastic angiogenesis and progression publication-title: Cell Syst – volume: 7: start-page: 20 year: 2019 article-title: Comprehensive gene expression meta‐analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma publication-title: Acta Neuropathol Commun – volume: 17: start-page: 774 year: 2017 end-page: 785 article-title: Regulation of immunity and inflammation by hypoxia in immunological niches publication-title: Nat Rev Immunol – volume: 375: year: 2022 article-title: A single‐cell atlas of the normal and malformed human brain vasculature publication-title: Science – volume: 17: start-page: 1397 year: 2016 end-page: 1406 article-title: Sall1 is a transcriptional regulator defining microglia identity and function publication-title: Nat Immunol – volume: 22: start-page: 1021 year: 2019 end-page: 1035 article-title: A single‐cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment publication-title: Nat Neurosci – volume: 19: start-page: 20 year: 2016 end-page: 27 article-title: The role of microglia and macrophages in glioma maintenance and progression publication-title: Nat Neurosci – volume: 77: start-page: 4589 year: 2017 end-page: 4601 article-title: Glycerol‐3‐phosphate acyltransferase 1 promotes tumor cell migration and poor survival in ovarian carcinoma publication-title: Cancer Res – volume: 126: start-page: 1039 year: 2016 end-page: 1051 article-title: T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression publication-title: J Clin Invest – volume: 8: start-page: 15080 year: 2017 article-title: Tumour‐associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth publication-title: Nat Commun – volume: 15: year: 2021 article-title: Decreased MEF2A expression regulated by its enhancer methylation inhibits autophagy and may play an important role in the progression of Alzheimer's disease publication-title: Front Neurosci – volume: 1: start-page: 884 year: 2012 end-page: 893 article-title: Immunotherapy against the radial glia marker GLAST effectively triggers specific antitumor effectors without autoimmunity publication-title: Oncoimmunology – volume: 13: start-page: 1149 year: 2015 end-page: 1160 article-title: MicroRNA‐223 regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPβ publication-title: Cell Rep – volume: 36: start-page: 3522 year: 2016 end-page: 3528 article-title: Hypoxia and macrophages promote glioblastoma invasion by the CCL4–CCR5 axis publication-title: Oncol Rep – volume: 12: start-page: 1151 year: 2021 article-title: Single‐cell RNA sequencing reveals functional heterogeneity of glioma‐associated brain macrophages publication-title: Nat Commun – ident: e_1_2_8_55_1 doi: 10.1038/s41596-020-0292-x – ident: e_1_2_8_28_1 doi: 10.1186/s40478-019-0665-y – ident: e_1_2_8_36_1 doi: 10.1038/ni.2622 – ident: e_1_2_8_25_1 doi: 10.1016/j.cell.2021.12.043 – ident: e_1_2_8_26_1 doi: 10.1038/nri.2017.103 – ident: e_1_2_8_37_1 doi: 10.1002/jcp.22489 – ident: e_1_2_8_13_1 doi: 10.1002/art.41813 – ident: e_1_2_8_8_1 doi: 10.1038/s41593-020-00789-y – ident: e_1_2_8_34_1 doi: 10.1038/nmeth.4463 – ident: e_1_2_8_29_1 doi: 10.1038/nn.4185 – ident: e_1_2_8_50_1 doi: 10.1016/j.jhep.2012.07.008 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-021-21407-w – ident: e_1_2_8_19_1 doi: 10.1172/JCI83987 – ident: e_1_2_8_46_1 doi: 10.1016/j.cell.2021.01.010 – ident: e_1_2_8_11_1 doi: 10.1016/j.cels.2019.03.003 – ident: e_1_2_8_18_1 doi: 10.1038/s41593-019-0393-4 – ident: e_1_2_8_24_1 doi: 10.1016/j.cels.2021.01.002 – ident: e_1_2_8_52_1 doi: 10.1158/2159-8290.CD-20-0603 – ident: e_1_2_8_12_1 doi: 10.1038/s41598-017-17204-5 – ident: e_1_2_8_40_1 doi: 10.1016/j.ccell.2021.05.002 – ident: e_1_2_8_45_1 doi: 10.1126/science.abi7377 – ident: e_1_2_8_41_1 doi: 10.1084/jem.20170355 – ident: e_1_2_8_33_1 doi: 10.1080/2162402X.2022.2030020 – ident: e_1_2_8_47_1 doi: 10.1038/s41568-021-00397-3 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms15080 – ident: e_1_2_8_4_1 doi: 10.1093/neuonc/noab120 – ident: e_1_2_8_16_1 doi: 10.3389/fimmu.2018.01753 – ident: e_1_2_8_3_1 doi: 10.1126/science.aai8478 – ident: e_1_2_8_51_1 doi: 10.1038/nm1660 – ident: e_1_2_8_10_1 doi: 10.1016/j.cell.2019.05.031 – ident: e_1_2_8_15_1 doi: 10.1038/ni.3585 – ident: e_1_2_8_44_1 doi: 10.1158/0008-5472.CAN-16-2065 – ident: e_1_2_8_54_1 doi: 10.1016/j.ccell.2017.06.003 – ident: e_1_2_8_2_1 doi: 10.1016/j.cell.2019.06.024 – ident: e_1_2_8_5_1 doi: 10.18632/oncotarget.26863 – ident: e_1_2_8_38_1 doi: 10.1038/s41419-021-04308-0 – ident: e_1_2_8_27_1 doi: 10.1038/s41582-021-00463-2 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.1525528113 – ident: e_1_2_8_17_1 doi: 10.1038/s41586-019-0924-x – ident: e_1_2_8_39_1 doi: 10.3389/fnins.2021.682247 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.2002476117 – ident: e_1_2_8_21_1 doi: 10.1038/ni.2992 – ident: e_1_2_8_31_1 doi: 10.1038/ni.3545 – ident: e_1_2_8_49_1 doi: 10.4161/onci.20637 – ident: e_1_2_8_6_1 doi: 10.1016/j.cell.2020.05.007 – ident: e_1_2_8_32_1 doi: 10.1038/s41571-021-00518-9 – ident: e_1_2_8_43_1 doi: 10.1038/sj.onc.1210743 – ident: e_1_2_8_23_1 doi: 10.1038/s41591-020-0752-4 – ident: e_1_2_8_53_1 doi: 10.1126/science.1254257 – ident: e_1_2_8_20_1 doi: 10.1038/ni.2353 – ident: e_1_2_8_35_1 doi: 10.1016/j.celrep.2015.09.073 – ident: e_1_2_8_48_1 doi: 10.3892/or.2016.5171 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2020.04.055 – ident: e_1_2_8_22_1 doi: 10.3389/fimmu.2019.00131 |
SSID | ssj0009955 |
Score | 2.501772 |
Snippet | Tumour‐associated macrophages (TAMs) abundantly infiltrate high‐grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase... Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121 |
SubjectTerms | Angiogenesis Antigen presentation Astrocytoma Brain cancer Brain tumors Dendritic cells diffuse glioma Gene set enrichment analysis Glioblastoma Glioma Immunotherapy Inflammation Isocitrate dehydrogenase Macrophages Mesenchyme Microglia Monocytes Mutants Myeloid cells Parenchyma single‐cell transcriptomics Spatial distribution tumour‐associated macrophage |
Title | A map of the spatial distribution and tumour‐associated macrophage states in glioblastoma and grade 4 IDH‐mutant astrocytoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.5984 https://www.proquest.com/docview/2709824836 https://www.proquest.com/docview/2678739845 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQB8SFQiligSIX9dBLlpDEia2eVrSrLRJVVYHEoVLkX4rKJohNDnDaR-AZeRJmnJ9tqyKh3qJkxnE8tueLPf6GkPcZswZmPxUwYU2QaOsCwUIZGKYMIAQmjPVRvl_TyXlycsEulsjH7ixMww_RL7jhyPDzNQ5wqWaHC9JQzNg7ZIIjFyjGaiEg-r6gjhKCsZ4pPDnKOlahMDrsNf_0RQuA-TtM9X5m_Ir86GrYhJf8GtaVGur7v8gb__MT1slaiz_pqOkwG2TJFq_Jymm7w75J5iM6lTe0dBSQIZ1hvDWIG6TXbTNjUVkYWtVTKOlx_iBb81oDepgO7CdMUNQfU5rRq4JeXl-VChB6VU6l17y8lcbShH75NAH1aY1ZjCk8B0d6h0JvyPn489nxJGizNAQa10ICDf-1IYAGcxQaDjd0xHXMI8ltrIVwzqXOaJEpzVKZudgDOJZZboRLQDiOt8hyURZ2m1ApXSjxXELCVSK1UUxDFxOptEorwDYD8qGzV65bCnPMpHGdN-TLUY4tmmOLDshBL3rT8Hb8S2ivM3reDt1ZHmWh4FHC43RA3vWPYdDhToosbFmDDLj4LIYSsErews-_JP82Opvgxc7LRXfJaoQd1wcN7pHl6ra2bwH8VGrf9_InVjYGeg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALb8SWAgZx4JJtmtiJLXFZAVUKbYXQVuoFRX6Wqt2k6iYHOPUn8Bv5Jcw4jwUEEuIWxTOO4_Hjsz3-hpAXOXcWRj8dcelsxIzzkeSxiizXFhACl9YFL9-DrDhk74740Rp5NdyF6fghxg037BlhvMYOjhvSWyvWUAzZO-VSsCvkKkb0DguqjyvyKCk5H7nC2XY-8ArFydao-utstIKYPwPVMNPs3CKfhjJ2Dian07bRU_P1N_rG__2J2-RmD0HprGszd8iaq-6Sa_v9Ifs9cjmjC3VOa08BHNIlulyDuEWG3T44FlWVpU27gJy-X35TvYWdBT2MCPYZxigabiot6UlFj89Oag0gvakXKmgeXyjrKKO7bwpQX7QYyJhCOsylX1DoPjnceTt_XUR9oIbI4HZIZGBpGwNusNuxFfDCJMKkIlHCpUZK733mrZG5NjxTuU8DhuO5E1Z6BsJp-oCsV3XlHhKqlI8VXk1gQjNlrOYGWpnMlNNGA7yZkJeDwUrTs5hjMI2zsuNfTkqs0RJrdEKej6LnHXXHn4Q2B6uXfe9dlkkeS5EwkWYT8mxMhn6HhymqcnULMjDL5ynkgEUKJv77R8oPs3mBDxv_LvqUXC_m-3vl3u7B-0fkRoKtOPgQbpL15qJ1jwELNfpJaPI_AJwfCpU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceCO2LWAQBy7Zpomd2OK0YllteVQVaqUekCI_S0U3WXWTA5z6E_iN_BLGzmMBgYS4RcmM49hjzxd7_A3A85xZg7OfipiwJqLaukiwWEaGKYMIgQljQ5TvYTY_oW9O2ekGvOzPwrT8EMOCmx8ZYb72A3xp3N6aNNRn7B0zwek1uE6zmHuTnn5Yc0cJwdhAFU73855WKE72BtVfndEaYf6MU4Ojmd2Cj30V2_iSz-OmVmP99Tf2xv_8httwswOgZNJazB3YsOVd2HrfbbHfg6sJWcglqRxBaEhWPuAaxY3n1-1SYxFZGlI3Cyzp-9U32fWvNajn84F9whmKhHNKK3JekrOL80ohRK-rhQyaZ5fSWELJwXSO6ovGpzEm-Bw96RcvdB9OZq-PX82jLk1DpP1iSKTxxzZG1GD2Y8Pxhk64TnkiuU21EM65zBktcqVZJnOXBgTHcsuNcBSF0_QBbJZVaR8CkdLF0h9MoFxRqY1iGm1MZNIqrRDcjOBF31-F7jjMfSqNi6JlX04K36KFb9ERPBtEly1xx5-EdvtOL7qxuyqSPBY8oTzNRvB0eIyjzm-lyNJWDcqgj89TLMFXKfTw319SHE2O5_5i-99Fn8DW0XRWvDs4fLsDNxJvwyGAcBc268vGPkIgVKvHweB_AKO2CU0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+map+of+the+spatial+distribution+and+tumour-associated+macrophage+states+in+glioblastoma+and+grade+4+IDH-mutant+astrocytoma&rft.jtitle=The+Journal+of+pathology&rft.au=Yin%2C+Wen&rft.au=Ping%2C+Yi-Fang&rft.au=Li%2C+Fei&rft.au=Lv%2C+Sheng-Qing&rft.date=2022-10-01&rft.issn=1096-9896&rft.eissn=1096-9896&rft.volume=258&rft.issue=2&rft.spage=121&rft_id=info:doi/10.1002%2Fpath.5984&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon |