Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer

Summary In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle subject to parametric uncertainties and external disturbances. First, the original cascaded dynamics of a quadrotor unmanned aerial vehicle...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 28; no. 7; pp. 2700 - 2719
Main Authors Shao, Xingling, Liu, Jun, Cao, Huiliang, Shen, Chong, Wang, Honglun
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle subject to parametric uncertainties and external disturbances. First, the original cascaded dynamics of a quadrotor unmanned aerial vehicle is formulated in a strict form with lumped disturbances to facilitate the backstepping design. Second, based on the separate outer‐ and inner‐loop control methodologies, the extended state observers are constructed to online estimate the unmeasurable velocity states and lumped disturbances existed in translational and rotational dynamics, respectively. Third, to overcome the problem of “explosion of complexity” inherent in backstepping control, the technique of dynamic surface control is utilized for trajectory tracking and attitude stabilization, and with the velocity and disturbance estimates incorporated into the dynamic surface control, a robust dynamic surface flight controller that guarantees asymptotic tracking in the presence of lumped disturbances is synthesized. In addition, the stability analysis is given, showing that the present robust controller can ensure the ultimate boundedness of all signals in the closed‐loop system and make the tracking errors arbitrarily small. Finally, comparisons and extensive simulations under different flight scenarios are performed to validate the effectiveness and superiority of the proposed scheme in accurate tracking performance and enhanced antidisturbance capability.
AbstractList In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle subject to parametric uncertainties and external disturbances. First, the original cascaded dynamics of a quadrotor unmanned aerial vehicle is formulated in a strict form with lumped disturbances to facilitate the backstepping design. Second, based on the separate outer‐ and inner‐loop control methodologies, the extended state observers are constructed to online estimate the unmeasurable velocity states and lumped disturbances existed in translational and rotational dynamics, respectively. Third, to overcome the problem of “explosion of complexity” inherent in backstepping control, the technique of dynamic surface control is utilized for trajectory tracking and attitude stabilization, and with the velocity and disturbance estimates incorporated into the dynamic surface control, a robust dynamic surface flight controller that guarantees asymptotic tracking in the presence of lumped disturbances is synthesized. In addition, the stability analysis is given, showing that the present robust controller can ensure the ultimate boundedness of all signals in the closed‐loop system and make the tracking errors arbitrarily small. Finally, comparisons and extensive simulations under different flight scenarios are performed to validate the effectiveness and superiority of the proposed scheme in accurate tracking performance and enhanced antidisturbance capability.
Summary In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle subject to parametric uncertainties and external disturbances. First, the original cascaded dynamics of a quadrotor unmanned aerial vehicle is formulated in a strict form with lumped disturbances to facilitate the backstepping design. Second, based on the separate outer‐ and inner‐loop control methodologies, the extended state observers are constructed to online estimate the unmeasurable velocity states and lumped disturbances existed in translational and rotational dynamics, respectively. Third, to overcome the problem of “explosion of complexity” inherent in backstepping control, the technique of dynamic surface control is utilized for trajectory tracking and attitude stabilization, and with the velocity and disturbance estimates incorporated into the dynamic surface control, a robust dynamic surface flight controller that guarantees asymptotic tracking in the presence of lumped disturbances is synthesized. In addition, the stability analysis is given, showing that the present robust controller can ensure the ultimate boundedness of all signals in the closed‐loop system and make the tracking errors arbitrarily small. Finally, comparisons and extensive simulations under different flight scenarios are performed to validate the effectiveness and superiority of the proposed scheme in accurate tracking performance and enhanced antidisturbance capability.
Author Cao, Huiliang
Shen, Chong
Wang, Honglun
Shao, Xingling
Liu, Jun
Author_xml – sequence: 1
  givenname: Xingling
  orcidid: 0000-0002-9811-8845
  surname: Shao
  fullname: Shao, Xingling
  email: huanying3557913@sina.com
  organization: North University of China
– sequence: 2
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: North University of China
– sequence: 3
  givenname: Huiliang
  surname: Cao
  fullname: Cao, Huiliang
  organization: North University of China
– sequence: 4
  givenname: Chong
  surname: Shen
  fullname: Shen, Chong
  organization: North University of China
– sequence: 5
  givenname: Honglun
  surname: Wang
  fullname: Wang, Honglun
  organization: Beihang University
BookMark eNp1kN1LwzAUxYNMcJuCf0LAF18689WueRzDLxgKY_oa0vRWMrdmS9Jp_3tb55Po0z1wf-dc7hmhQe1qQOiSkgklhN342kwEEeIEDSmRMqGMy0GvhUxyyfgZGoWwJqTbMTFExdIVTYi4bGu9tQaHxlfaAI5er8FE59temndbv2Hj6ujdBlfOY433jS696wj8MnvFB6sxfEaoSyhxiDoCdkUAfwB_jk4rvQlw8TPHaHV3u5o_JIvn-8f5bJEYzolIRFbxTBOdScGAG5qDgXRK8orSgmlDSs0LWQghTSV1WpisJKnRgvGpnOaM8zG6OsbuvNs3EKJau8bX3UXFCOVUpllOO-r6SBnvQvBQqZ23W-1bRYnqC1RdgaovsEMnv1Bju8ds34K2m78MydHwYTfQ_huslk_zb_4L2OGEGQ
CitedBy_id crossref_primary_10_1080_23335777_2020_1727960
crossref_primary_10_1016_j_ymssp_2018_11_001
crossref_primary_10_1016_j_isatra_2020_03_019
crossref_primary_10_1108_EC_02_2021_0098
crossref_primary_10_1016_j_ast_2024_109596
crossref_primary_10_3390_act13060217
crossref_primary_10_1109_ACCESS_2019_2931646
crossref_primary_10_1109_TFUZZ_2019_2900610
crossref_primary_10_1155_2021_8859681
crossref_primary_10_1109_TII_2020_2968345
crossref_primary_10_1016_j_isatra_2020_01_010
crossref_primary_10_1177_09544100231219910
crossref_primary_10_1016_j_isatra_2019_11_004
crossref_primary_10_1016_j_ifacol_2023_03_057
crossref_primary_10_1080_02670836_2019_1594553
crossref_primary_10_1007_s11071_019_04882_1
crossref_primary_10_1007_s10846_021_01452_9
crossref_primary_10_1007_s11768_018_8114_1
crossref_primary_10_1007_s11071_024_09945_6
crossref_primary_10_1007_s12555_019_0878_7
crossref_primary_10_1016_j_cja_2021_03_019
crossref_primary_10_1177_09596518221135680
crossref_primary_10_1177_1077546319892752
crossref_primary_10_1049_cth2_12611
crossref_primary_10_1002_rnc_6871
crossref_primary_10_1038_s41598_024_69911_5
crossref_primary_10_1016_j_isatra_2020_11_007
crossref_primary_10_1016_j_asoc_2019_105753
crossref_primary_10_1017_S0263574718000486
crossref_primary_10_3390_s22145082
crossref_primary_10_1016_j_eswa_2020_114504
crossref_primary_10_1016_j_ast_2019_105424
crossref_primary_10_1142_S2737480723500152
crossref_primary_10_1109_TNNLS_2022_3166531
crossref_primary_10_1155_2020_8820907
crossref_primary_10_1016_j_ast_2022_107847
crossref_primary_10_1007_s40313_022_00955_6
crossref_primary_10_1016_j_isatra_2024_01_005
crossref_primary_10_1007_s11071_020_05942_7
crossref_primary_10_1109_ACCESS_2020_2974526
crossref_primary_10_1109_ACCESS_2020_2971018
crossref_primary_10_1016_j_automatica_2025_112123
crossref_primary_10_1016_j_apm_2021_04_010
crossref_primary_10_1007_s10846_020_01166_4
crossref_primary_10_1016_j_fss_2020_08_005
crossref_primary_10_1002_rnc_4626
crossref_primary_10_3390_math11244876
crossref_primary_10_1007_s11071_021_06332_3
crossref_primary_10_1007_s40435_022_01111_3
crossref_primary_10_3390_drones8030072
crossref_primary_10_1109_TCSII_2021_3069967
crossref_primary_10_1177_00202940241252724
crossref_primary_10_1177_1729881420940473
crossref_primary_10_1016_j_ast_2020_105968
crossref_primary_10_1016_j_engappai_2023_107832
crossref_primary_10_1109_ACCESS_2020_2964013
crossref_primary_10_1016_j_engappai_2022_104724
crossref_primary_10_1016_j_isatra_2018_08_005
crossref_primary_10_3390_app9235184
crossref_primary_10_1007_s11071_023_08349_2
crossref_primary_10_3390_drones8080409
crossref_primary_10_1016_j_ast_2019_03_001
crossref_primary_10_1080_00207721_2020_1803438
crossref_primary_10_3390_app12063060
crossref_primary_10_1109_ACCESS_2019_2901295
crossref_primary_10_18100_ijamec_698462
crossref_primary_10_1002_rnc_5960
crossref_primary_10_1108_IR_09_2020_0184
crossref_primary_10_3390_drones7120700
crossref_primary_10_1007_s12555_019_0853_3
crossref_primary_10_1007_s11431_022_2410_1
crossref_primary_10_1016_j_isatra_2024_02_028
crossref_primary_10_1109_JSYST_2020_3022901
crossref_primary_10_3390_drones8080387
crossref_primary_10_1016_j_amc_2021_126693
crossref_primary_10_1016_j_ast_2018_12_013
crossref_primary_10_1016_j_ast_2022_107825
crossref_primary_10_1049_iet_cta_2019_1363
crossref_primary_10_1002_rnc_5272
crossref_primary_10_1155_2022_1457532
crossref_primary_10_3389_fnbot_2019_00117
crossref_primary_10_1109_TFUZZ_2022_3193440
crossref_primary_10_1109_ACCESS_2023_3263528
crossref_primary_10_3390_a16050229
crossref_primary_10_1016_j_ast_2022_108064
crossref_primary_10_1016_j_amc_2022_127694
crossref_primary_10_3390_machines10080617
crossref_primary_10_1002_adc2_24
crossref_primary_10_29137_umagd_828384
crossref_primary_10_3390_aerospace9090518
crossref_primary_10_1109_JAS_2020_1003012
crossref_primary_10_1155_2021_6663946
crossref_primary_10_1002_rnc_7086
crossref_primary_10_1016_j_amc_2020_125667
crossref_primary_10_1016_j_isatra_2018_11_048
crossref_primary_10_1016_j_jfranklin_2020_03_021
crossref_primary_10_1016_j_ast_2019_06_029
crossref_primary_10_1016_j_ast_2020_106157
crossref_primary_10_1177_09596518241246825
crossref_primary_10_1007_s12555_018_0909_9
crossref_primary_10_1002_rnc_7123
crossref_primary_10_3390_aerospace11020149
crossref_primary_10_1002_rnc_4912
crossref_primary_10_1109_TNNLS_2022_3224029
crossref_primary_10_1155_2019_3106732
crossref_primary_10_1016_j_ast_2019_105620
crossref_primary_10_1007_s10846_024_02168_2
crossref_primary_10_1016_j_ymssp_2020_106774
crossref_primary_10_1007_s11071_018_4700_5
crossref_primary_10_1109_ACCESS_2018_2876558
crossref_primary_10_1007_s40815_022_01361_5
crossref_primary_10_1016_j_ast_2019_105629
crossref_primary_10_1049_iet_cta_2019_0488
crossref_primary_10_5937_fme2303298S
crossref_primary_10_1016_j_ifacol_2024_11_123
crossref_primary_10_1007_s00521_020_05357_w
crossref_primary_10_3390_app10062064
crossref_primary_10_1109_ACCESS_2020_3017522
crossref_primary_10_1109_ACCESS_2022_3165093
crossref_primary_10_1080_03772063_2020_1799872
crossref_primary_10_1002_rnc_6387
crossref_primary_10_1016_j_ast_2019_04_003
crossref_primary_10_1002_asjc_3350
crossref_primary_10_1007_s12555_020_0812_z
crossref_primary_10_15625_2525_2518_18131
crossref_primary_10_1016_j_amc_2021_126264
crossref_primary_10_1016_j_ast_2019_06_014
crossref_primary_10_1109_ACCESS_2019_2933405
crossref_primary_10_1155_2020_8537198
crossref_primary_10_1002_acs_3742
crossref_primary_10_1080_00207179_2021_1912393
crossref_primary_10_1016_j_isatra_2020_10_039
crossref_primary_10_1007_s10846_021_01450_x
crossref_primary_10_1109_ACCESS_2020_3027854
crossref_primary_10_3390_s20247084
crossref_primary_10_1016_j_amc_2021_126898
crossref_primary_10_1016_j_asoc_2021_108024
crossref_primary_10_1049_cth2_12035
crossref_primary_10_1002_rnc_6334
crossref_primary_10_1002_rnc_5760
crossref_primary_10_1049_cth2_12159
crossref_primary_10_1177_09544100241262689
crossref_primary_10_1109_ACCESS_2019_2944469
crossref_primary_10_1109_TMECH_2019_2898098
crossref_primary_10_1155_2020_9531354
crossref_primary_10_1007_s10846_021_01325_1
crossref_primary_10_1177_1687814019827157
crossref_primary_10_1109_TIE_2020_3026297
crossref_primary_10_1155_2020_8879364
crossref_primary_10_1080_21642583_2018_1539931
crossref_primary_10_3390_math10081346
crossref_primary_10_1002_rnc_4777
crossref_primary_10_1002_rnc_6833
crossref_primary_10_1177_0142331220935710
crossref_primary_10_1007_s12555_018_0500_4
crossref_primary_10_1016_j_isatra_2023_12_009
crossref_primary_10_1109_ACCESS_2019_2951282
crossref_primary_10_1007_s40435_023_01158_w
crossref_primary_10_1016_j_jfranklin_2022_09_008
crossref_primary_10_1142_S2737480724500079
crossref_primary_10_1177_0954410021999547
Cites_doi 10.2514/1.43768
10.1109/ICMECH.2009.4957154
10.1016/j.cnsns.2013.02.002
10.1109/TIE.2016.2585080
10.1109/CONIELECOMP.2013.6525781
10.1002/rnc.3583
10.1016/j.conengprac.2013.12.017
10.1002/rnc.3290
10.1016/j.sna.2014.03.011
10.1016/j.cnsns.2011.07.009
10.1109/TNNLS.2015.2462127
10.1016/j.isatra.2014.06.010
10.1016/j.isatra.2017.01.020
10.1109/IROS.2004.1389776
10.1109/TNN.2004.839354
10.3788/OPE.20142209.2431
10.1002/rob.20414
10.1016/j.ins.2016.10.018
10.1109/CDC.2006.377548
10.1177/0142331215608427
10.1109/MRA.2012.2206473
10.1007/s11071-016-2760-y
10.1109/TAC.2000.880994
10.1007/s11071-015-1955-y
10.1016/j.ins.2016.06.010
10.1115/1.4005364
10.1016/j.isatra.2014.03.010
10.1016/j.isatra.2014.01.004
10.1016/j.cnsns.2011.09.011
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.4044
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 2719
ExternalDocumentID 10_1002_rnc_4044
RNC4044
Genre article
GrantInformation_xml – fundername: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
– fundername: Shanxi Province Science Foundation for Youths
  funderid: 201701D221123
– fundername: North University of China College Fund
  funderid: 2017023
– fundername: National Natural Science Foundation of China
  funderid: 61673042
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3304-46f36a0a6942e3c18ece5708f11b2ac0da3b9b449cf9a5bc6d05ca4237978233
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:15:11 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Thu Apr 24 03:18:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3304-46f36a0a6942e3c18ece5708f11b2ac0da3b9b449cf9a5bc6d05ca4237978233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9811-8845
PQID 2013195681
PQPubID 1026344
PageCount 20
ParticipantIDs proquest_journals_2013195681
crossref_primary_10_1002_rnc_4044
crossref_citationtrail_10_1002_rnc_4044
wiley_primary_10_1002_rnc_4044_RNC4044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 May 2018
PublicationDateYYYYMMDD 2018-05-10
PublicationDate_xml – month: 05
  year: 2018
  text: 10 May 2018
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2000; 45
2017; 27
2017; 67
2015; 54
2009
2014; 26
2012; 19
2006
2014; 24
2004
2016; 369
2012; 17
2003
2015; 80
2017; 376
2016; 38
2014; 22
2014; 211
2013; 18
2015; 25
2009; 32
2012; 134
2016; 85
2016; 63
2012; 29
2014
2013
2005; 16
2016; 27
2014; 53
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Yao J (e_1_2_8_27_1) 2014; 24
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2009
– volume: 17
  start-page: 1813
  issue: 4
  year: 2012
  end-page: 1823
  article-title: High‐order sliding mode controller with backstepping design for aeroelastic systems
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 27
  start-page: 535
  issue: 4
  year: 2017
  end-page: 546
  article-title: Adaptive dynamic surface control for uncertain nonaffine nonlinear systems
  publication-title: Int J Robust Nonlinear Control
– volume: 63
  start-page: 6909
  issue: 11
  year: 2016
  end-page: 6920
  article-title: Backstepping control of electro‐hydraulic system based on extended‐state‐observer with plant dynamics largely unknown
  publication-title: IEEE Trans Ind Electron
– volume: 22
  start-page: 2431
  issue: 9
  year: 2014
  end-page: 2437
  article-title: Interference and inhibition of lift fluctuation on quadrotor aircraft
  publication-title: Opt Precis Eng
– year: 2003
– volume: 32
  start-page: 1954
  issue: 6
  year: 2009
  end-page: 1958
  article-title: Nonlinear hierarchical flight controller for unmanned rotorcraft: design, stability, and experiments
  publication-title: J Guid Dyn
– volume: 29
  start-page: 315
  issue: 2
  year: 2012
  end-page: 378
  article-title: Survey of advances in guidance, navigation and control of unmanned rotorcraft systems
  publication-title: J Field Robot
– volume: 16
  start-page: 195
  issue: 1
  year: 2005
  end-page: 202
  article-title: Neural network‐based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict‐feedback form
  publication-title: IEEE Trans Neural Netw
– volume: 24
  start-page: 993
  issue: 6
  year: 2014
  end-page: 1015
  article-title: Extended‐state‐observer‐based output feedback nonlinear robust control of hydraulic systems with backstepping
  publication-title: IEEE Trans Ind Electron
– volume: 369
  start-page: 748
  year: 2016
  end-page: 764
  article-title: Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach
  publication-title: Inform Sci
– volume: 45
  start-page: 1893
  issue: 10
  year: 2000
  end-page: 1899
  article-title: Dynamic surface control for a class of nonlinear systems
  publication-title: IEEE Trans Autom Control
– volume: 38
  start-page: 529
  issue: 5
  year: 2016
  end-page: 554
  article-title: Feedback control strategies for quadrotor‐type aerial robots: a survey
  publication-title: Trans Inst Meas Control.
– year: 2014
– volume: 67
  start-page: 466
  year: 2017
  end-page: 475
  article-title: Disturbance observer based hierarchical control of coaxial‐rotor UAV
  publication-title: ISA Trans
– volume: 19
  start-page: 46
  year: 2012
  end-page: 56
  article-title: Towards a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue
  publication-title: IEEE Robot Autom Mag
– volume: 85
  start-page: 1281
  issue: 2
  year: 2016
  end-page: 1295
  article-title: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer
  publication-title: Nonlinear Dyn
– volume: 25
  start-page: 3714
  issue: 18
  year: 2015
  end-page: 3731
  article-title: Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method
  publication-title: Int J Robust Nonlinear Control
– volume: 134
  start-page: 024505‐1
  issue: 2
  year: 2012
  end-page: 024505‐6
  article-title: On validation of extended state observer through analysis and experimentation
  publication-title: J Dyn Syst Meas Control Trans ASME
– volume: 17
  start-page: 1344
  issue: 3
  year: 2012
  end-page: 1354
  article-title: Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 27
  start-page: 1969
  issue: 9
  year: 2016
  end-page: 1975
  article-title: Adaptive neural control for a class of pure‐feedback nonlinear systems via dynamic surface technique
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2006
– year: 2004
– volume: 80
  start-page: 1463
  issue: 3
  year: 2015
  end-page: 1481
  article-title: Nonlinear augmented observer design and application to quadrotor aircraft
  publication-title: Nonlinear Dyn
– volume: 54
  start-page: 27
  issue: 1
  year: 2015
  end-page: 38
  article-title: Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties
  publication-title: ISA Trans
– volume: 211
  start-page: 67
  year: 2014
  end-page: 77
  article-title: High‐performance trajectory tracking control of a quadrotor
  publication-title: Sensors Actuators A Phys
– volume: 53
  start-page: 725
  issue: 3
  year: 2014
  end-page: 731
  article-title: Position and attitude tracking control for a quadrotor UAV
  publication-title: ISA Trans
– volume: 376
  start-page: 172
  year: 2017
  end-page: 189
  article-title: Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping
  publication-title: Inform Sci
– volume: 53
  start-page: 1350
  issue: 4
  year: 2014
  end-page: 1356
  article-title: Second order sliding mode control for a quadrotor UAV
  publication-title: ISA Trans
– volume: 26
  start-page: 1
  year: 2014
  end-page: 10
  article-title: A nonlinear quadrotor trajectory tracking controller with disturbance rejection
  publication-title: Control Eng Pract
– volume: 18
  start-page: 2885
  issue: 10
  year: 2013
  end-page: 2899
  article-title: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2013
– ident: e_1_2_8_30_1
  doi: 10.2514/1.43768
– ident: e_1_2_8_9_1
  doi: 10.1109/ICMECH.2009.4957154
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cnsns.2013.02.002
– ident: e_1_2_8_28_1
  doi: 10.1109/TIE.2016.2585080
– ident: e_1_2_8_7_1
  doi: 10.1109/CONIELECOMP.2013.6525781
– ident: e_1_2_8_19_1
  doi: 10.1002/rnc.3583
– ident: e_1_2_8_23_1
  doi: 10.1016/j.conengprac.2013.12.017
– ident: e_1_2_8_31_1
  doi: 10.1002/rnc.3290
– ident: e_1_2_8_24_1
  doi: 10.1016/j.sna.2014.03.011
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cnsns.2011.07.009
– ident: e_1_2_8_22_1
  doi: 10.1109/TNNLS.2015.2462127
– ident: e_1_2_8_33_1
  doi: 10.1016/j.isatra.2014.06.010
– ident: e_1_2_8_25_1
  doi: 10.1016/j.isatra.2017.01.020
– ident: e_1_2_8_5_1
– ident: e_1_2_8_6_1
  doi: 10.1109/IROS.2004.1389776
– ident: e_1_2_8_20_1
  doi: 10.1109/TNN.2004.839354
– ident: e_1_2_8_34_1
  doi: 10.3788/OPE.20142209.2431
– ident: e_1_2_8_4_1
  doi: 10.1002/rob.20414
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ins.2016.10.018
– ident: e_1_2_8_10_1
  doi: 10.1109/CDC.2006.377548
– ident: e_1_2_8_2_1
  doi: 10.1177/0142331215608427
– volume: 24
  start-page: 993
  issue: 6
  year: 2014
  ident: e_1_2_8_27_1
  article-title: Extended‐state‐observer‐based output feedback nonlinear robust control of hydraulic systems with backstepping
  publication-title: IEEE Trans Ind Electron
– ident: e_1_2_8_3_1
  doi: 10.1109/MRA.2012.2206473
– ident: e_1_2_8_11_1
  doi: 10.1007/s11071-016-2760-y
– ident: e_1_2_8_18_1
  doi: 10.1109/TAC.2000.880994
– ident: e_1_2_8_29_1
  doi: 10.1007/s11071-015-1955-y
– ident: e_1_2_8_8_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ins.2016.06.010
– ident: e_1_2_8_32_1
  doi: 10.1115/1.4005364
– ident: e_1_2_8_14_1
  doi: 10.1016/j.isatra.2014.03.010
– ident: e_1_2_8_13_1
  doi: 10.1016/j.isatra.2014.01.004
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cnsns.2011.09.011
– ident: e_1_2_8_26_1
SSID ssj0009924
Score 2.572182
Snippet Summary In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial...
In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2700
SubjectTerms Airborne observation
Attitude stability
Control stability
Disturbances
dynamic surface control (DSC)
explosion of complexity
extended state observer (ESO)
quadrotor unmanned aerial vehicle (UAV)
Robust control
Stability analysis
State observers
Tracking control
Tracking errors
Trajectory analysis
Trajectory control
Unmanned aerial vehicles
Unmanned helicopters
unmeasurable velocity states
Title Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4044
https://www.proquest.com/docview/2013195681
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_iSQ9-i_OLCKKnbG3SZs1RhiIedhibDDyUJE3ADzbtWkH_evPSdlNREE_t4aW0eXnNLz_e-z2ETrnm1hrGSBbzhETMaKKEzghl3axrMy1j6bN8-_x6FN2M43GdVQm1MJU-xJxwg8jw_2sIcKlmnYVoaO7iJwoikAKFVC3AQ4OFcpQQVT9bB4BJ4kBMozsb0E4z8OtOtICXn0Gq32Wu1tFd835VcsljuyxUW79_k2783wdsoLUafOKLarVsoiUz2UKrnyQJt5EaTFU5K3BWdarHszK3Uhtc5PLBE_xvcKuBYMd1mjt2uBdL_FLKLJ86Czy6uMWv9xI3BDv2VUt4qoABNvkOGl5dDnvXpO7DQDSwHSTilnEZSC4iapgOE6NN3A0SG4aKSh1kkimhokhoK2SsNM-CWEvIt3FHVMrYLlqeTCdmD2EjoK7OKgP1ddqdfCi3YSASw0IbUq5a6LxxSaprjXJolfGUVurKNHWTlsKktdDJ3PK50uX4weaw8WpaR-YspSAwBDWSYQudeff8Oj4d9Htw3f-r4QFacY9PiBd3PUTLRV6aI4dZCnXsV-cHDw3p_A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAP5a1uC62RUDkZEtvxxuoJIdBSYA-rpeKAFNmOLfHQbptNKpVfj-0kLKAiIU7JYawkHk_8-dPMNwA7XHNrDaU4T3iKGTUaK6FzTGg379pcy0SGLN8-712wn5fJ5Qz8aGthan2IR8LNR0b4X_sA94T0_lQ1tHABxCLGZmHeN_QO56nBVDtKiLqjrYPAOHUwplWejch-O_L5XjQFmE9hathnjpfgqn3DOr3kdq8q1Z6-fyHe-M5PWIaPDf5EB_WCWYEZM1qFD09UCddADcaqmpQor5vVo0lVWKkNKgt5Ezj-f_5We44dNZnuyEFfJNGfSubF2Fmgi4Nf6O-1RC3HjkLhEhorTwKbYh2Gx0fDwx5uWjFg7QkPzLilXEaSC0YM1XFqtEm6UWrjWBGpo1xSJRRjQlshE6V5HiVa-pQbd0ollG7A3Gg8Mp8AGeFL66wyvsROu8MP4TaORGpobGPCVQd2W59kupEp990y7rJaYJlkbtIyP2kd2H60_F1Lc_zHZrN1a9YE5yQjXmPIl0nGHfge_PPq-GzQP_TXz281_AYLveH5WXZ20j_9AovuUSkOWq-bMFcWldlyEKZUX8NSfQCpTu4X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5UC2Ifar3R9dKOIPo0bjIzmc08irrYKossKkIfwlyhVXY1mxT01zuTi6tiofiUPJwhyZw5mW8-zvkOwDbX3DlLKTYJTzGjVmMltMGE9kzPGS0TWWX5DvjxBft5lVw1WZWhFqbWh3gi3EJkVP_rEOC3xnWnoqG5jx8WMTYDHxmP0rCiD4dT6Sgh6oa2HgHj1KOYVng2It125MutaIovn6PUapvpL8Cv9gXr7JLrvbJQe_rhlXbj-77gC3xu0Cfar5fLInywoyX49EyTcBnUcKzKSYFM3aoeTcrcSW1Rkcs_FcN_H251YNhRk-eOPPBFEt2V0uRjb4Eu9i_R398StQw7qsqW0FgFCtjmK3DePzo_OMZNIwasA92BGXeUy0hywYilOk6ttkkvSl0cKyJ1ZCRVQjEmtBMyUZqbKNEyJNz4MyqhdBVmR-OR_QrIilBY55QNBXbaH30Id3EkUktjFxOuOrDbuiTTjUh56JVxk9XyyiTzk5aFSevA1pPlbS3M8YbNRuvVrAnNSUaCwlAokow7sFO555_js-HgIFzX_tfwO8ydHfaz0x-Dk3WY909KcSX0ugGzRV7aTY9fCvWtWqiPD9_szw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+dynamic+surface+trajectory+tracking+control+for+a+quadrotor+UAV+via+extended+state+observer&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Shao%2C+Xingling&rft.au=Liu%2C+Jun&rft.au=Cao%2C+Huiliang&rft.au=Shen%2C+Chong&rft.date=2018-05-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=28&rft.issue=7&rft.spage=2700&rft.epage=2719&rft_id=info:doi/10.1002%2Frnc.4044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon