Dynamic Modulation of Keto‐Enol Tautomerism in Electrolytes for Aqueous Zinc Batteries
The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 25; pp. e202502893 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.06.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm−2/10 mAh cm−2, and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm−2/10 mAh cm−2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g−1, and the Zn||Br2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode.
Description: The reversibility of the Zn anode is dramatically improved by dynamic modulation of the keto‐enol tautomerism of β‐dicarbonyl electrolyte additives for suppressing the adverse reactions in this work. |
---|---|
AbstractList | The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn 2+ , enhancing the kinetics of Zn 2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm −2 /10 mAh cm −2 , and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm −2 /10 mAh cm −2 . Further, this dynamic modulation enables Zn||V 2 O 5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g −1 , and the Zn||Br 2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode. The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrites' growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. After desolvation, the enol form of additives can react with by-products, further weakening passivation and morphological variation. Consequently, the Zn anode with optimal additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm-2/10 mAh cm-2, Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm-2/10 mAh cm-2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g-1, and the Zn||Br2 pouch cells deliver a high capacity of ~ 180 mAh. This study offers an original perspective on the dynamic regulation of the Zn anode.The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrites' growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. After desolvation, the enol form of additives can react with by-products, further weakening passivation and morphological variation. Consequently, the Zn anode with optimal additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm-2/10 mAh cm-2, Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm-2/10 mAh cm-2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g-1, and the Zn||Br2 pouch cells deliver a high capacity of ~ 180 mAh. This study offers an original perspective on the dynamic regulation of the Zn anode. The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn , enhancing the kinetics of Zn transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm /10 mAh cm , and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm /10 mAh cm . Further, this dynamic modulation enables Zn||V O full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g , and the Zn||Br pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode. The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm−2/10 mAh cm−2, and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm−2/10 mAh cm−2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g−1, and the Zn||Br2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode. Description: The reversibility of the Zn anode is dramatically improved by dynamic modulation of the keto‐enol tautomerism of β‐dicarbonyl electrolyte additives for suppressing the adverse reactions in this work. The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm−2/10 mAh cm−2, and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm−2/10 mAh cm−2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g−1, and the Zn||Br2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode. |
Author | Chen, Wei Yang, Xiaolong Zhao, Guili Zheng, Xinhua Wang, Mingming Luo, Ruihao Jiang, Taoli Song, Li Ye, Lyuzhou Shen, Dongyang |
Author_xml | – sequence: 1 givenname: Li surname: Song fullname: Song, Li organization: University of Science and Technology of China – sequence: 2 givenname: Xiaolong surname: Yang fullname: Yang, Xiaolong organization: Hefei Gotion High‐tech Power Energy Co. Ltd – sequence: 3 givenname: Xinhua surname: Zheng fullname: Zheng, Xinhua organization: University of Science and Technology of China – sequence: 4 givenname: Mingming surname: Wang fullname: Wang, Mingming organization: University of Science and Technology of China – sequence: 5 givenname: Ruihao surname: Luo fullname: Luo, Ruihao organization: University of Science and Technology of China – sequence: 6 givenname: Taoli surname: Jiang fullname: Jiang, Taoli organization: University of Science and Technology of China – sequence: 7 givenname: Guili surname: Zhao fullname: Zhao, Guili organization: University of Science and Technology of China – sequence: 8 givenname: Dongyang surname: Shen fullname: Shen, Dongyang organization: University of Science and Technology of China – sequence: 9 givenname: Lyuzhou surname: Ye fullname: Ye, Lyuzhou organization: University of Science and Technology of China – sequence: 10 givenname: Wei surname: Chen fullname: Chen, Wei email: weichen1@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40126929$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btOHDEUBmArAoVL0qaMLKWhmeXYnotPuVmWiwKkIVKUxvJ4PZLRjE3sGaHteASekSfBqwUipaGyi-8c_frPAdnxwVtCvjCYMQB-rL2zMw68Ai5RfCD7rOKsEE0jdvK_FKJoZMX2yEFKt9lLCfVHslcC4zVy3Ce_T9ZeD87Qq7Caej264Gno6A87hqeHx6UPPb3R0xgGG10aqPN02VszxtCvR5toFyKd_51smBL947yh3_U4ZmrTJ7Lb6T7Zzy_vIfl1urxZnBeXP88uFvPLwggBosAWV41G2VgDDVY1shpk2bEW6xZA28bKFgwwjUIwhNJ0rAPDalwx4Cg7cUiOtnvvYshB0qgGl4zte-03qZRgElCWuZxMv_1Hb8MUfU6nBM_1NQwrzOrri5rawa7UXXSDjmv12lkGsy0wMaQUbfdGGKjNUdTmKOrtKHkAtwP3rrfrd7SaX18s_80-A9Qrjys |
Cites_doi | 10.1021/ic50113a024 10.1002/aenm.202001599 10.1016/B978-0-08-010821-6.50007-7 10.26599/NRE.2024.9120115 10.1016/j.jcis.2024.07.253 10.1002/aenm.202102780 10.1002/adsu.202000082 10.1016/j.jechem.2023.05.021 10.1002/aenm.202302828 10.1002/adma.202300620 10.1002/adfm.202412547 10.1002/cey2.67 10.1021/jp031243r 10.1002/aenm.202270060 10.1016/j.cej.2024.157431 10.1016/j.esci.2024.100330 10.1039/D3SC05334B 10.1016/j.jcis.2025.02.026 10.1002/ange.202318496 10.1039/D4TA07230H 10.1016/j.molstruc.2015.08.022 10.1002/adfm.202112091 10.1038/s41467-023-38384-x 10.1021/acs.jpcb.5b08020 10.1016/j.mtener.2020.100563 10.1016/j.jcis.2024.09.127 10.1002/bte2.20230063 10.1002/smtd.202200597 10.1039/D2TA09875J 10.1002/adma.202100445 10.1016/j.ensm.2022.02.019 10.1002/anie.202301570 10.1016/j.jcis.2024.08.022 10.1039/D3TA05814J 10.1038/s41467-018-04060-8 10.1039/C9EE00596J 10.1016/j.ensm.2023.102800 10.1002/adfm.202304878 10.1039/P29860000515 10.1016/j.scib.2023.04.020 10.1002/adma.201400719 10.1039/D0CC03639K 10.1016/j.ssi.2025.116817 10.34133/energymatadv.0035 10.1002/anie.202212839 10.1002/adma.201604685 10.1021/ic50123a045 10.1016/j.ensm.2021.04.027 10.1149/1.2404060 10.1002/aenm.202102982 10.1016/j.electacta.2025.145685 10.1002/adma.202206963 10.1002/ange.202422547 10.1002/smll.202411755 10.1002/adma.202206754 10.1016/j.jpowsour.2024.235667 10.1016/j.ensm.2022.10.051 10.1002/smtd.202300268 10.1002/anie.202302701 10.1002/anie.202212695 10.1021/acs.energyfuels.4c02287 10.1039/b714708b 10.1002/aenm.202102010 10.1016/j.ensm.2023.102903 10.1039/D1EE00308A 10.1021/ja01872a016 10.1002/adma.202208630 10.1002/adfm.202211917 10.1039/D3EE00925D 10.1038/s41893-023-01172-y 10.1002/adma.202007416 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202502893 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 40126929 10_1002_anie_202502893 ANIE202502893 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52471242; 92372122; 22203083 – fundername: Fundamental Research Funds for the Central Universities funderid: WK2060000040; GG2060127001; KY2060000150; WK9990000169 – fundername: Joint Laboratory for USTC and Yanchang Petroleum funderid: 2022ZK‐03 – fundername: Fundamental Research Funds for the Central Universities grantid: KY2060000150 – fundername: National Natural Science Foundation of China grantid: 92372122 – fundername: Fundamental Research Funds for the Central Universities grantid: WK9990000169 – fundername: National Natural Science Foundation of China grantid: 52471242 – fundername: National Natural Science Foundation of China grantid: 22203083 – fundername: Fundamental Research Funds for the Central Universities grantid: WK2060000040 – fundername: Fundamental Research Funds for the Central Universities grantid: GG2060127001 – fundername: Joint Laboratory for USTC and Yanchang Petroleum grantid: 2022ZK-03 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3303-9b9d7a987ec07956916084f1b96b00ae7e8b0c01a9331904cf1f0c169d10298f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:27:02 EDT 2025 Sat Jul 12 03:05:12 EDT 2025 Mon Jul 21 06:02:08 EDT 2025 Thu Jul 03 08:30:38 EDT 2025 Tue Jun 17 09:32:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Aqueous zinc batteries β‐dicarbonyl additives Dynamic modulation Keto‐enol tautomerism Large‐scale energy storage |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3303-9b9d7a987ec07956916084f1b96b00ae7e8b0c01a9331904cf1f0c169d10298f3 |
Notes | Both authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 40126929 |
PQID | 3228971959 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3180984893 proquest_journals_3228971959 pubmed_primary_40126929 crossref_primary_10_1002_anie_202502893 wiley_primary_10_1002_anie_202502893_ANIE202502893 |
PublicationCentury | 2000 |
PublicationDate | June 17, 2025 |
PublicationDateYYYYMMDD | 2025-06-17 |
PublicationDate_xml | – month: 06 year: 2025 text: June 17, 2025 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2023; 33 2023; 4 2024; 500 2023; 6 1973; 12 2019; 12 1976 2014; 26 2008; 32 2020; 56 2025; 35 2020; 10 2024 2024; 38 2025; 678 2025; 677 2020; 18 2025; 514 2023; 62 2018; 9 2025; 686 2020; 4 2023; 68 2020; 2 2021; 33 2024; 8 2021; 39 2015; 1101 2022; 34 2022; 32 2024; 3 1972; 11 21 2023; 54 1972; 119 2025; 137 2023; 13 2023; 14 2023; 11 2023; 59 2023; 16 1986; II 2022; 47 2006 2017; 29 2025; 13 2024; 12 2024; 15 2004; 108 2023; 61 2021; 14 2023; 84 2025; 422 2021; 11 2022; 61 2022; 6 1939; 61 2022; 12 1964 2015; 119 2024; 136 2025; 625 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_68_1 Tewari K. (e_1_2_8_26_1) 1976 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 He Y. (e_1_2_8_18_1); 21 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 14 start-page: 3609 year: 2021 end-page: 3620 publication-title: Energy Environ. Sci. – volume: 47 start-page: 203 year: 2022 end-page: 210 publication-title: Energy Storage Mater. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1656 year: 2018 end-page: 1666 publication-title: Nat. Commun. – volume: 54 start-page: 374 year: 2023 end-page: 381 publication-title: Energy Storage Mater. – volume: 422 year: 2025 publication-title: Solid State Ionics – volume: 6 year: 2022 publication-title: Small Methods – volume: 13 start-page: 2174 year: 2025 end-page: 2186 publication-title: J. Mater. Chem. A – volume: 68 start-page: 998 year: 2023 end-page: 1007 publication-title: Sci. Bull. – volume: 61 start-page: 590 year: 1939 end-page: 596 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2023 publication-title: Energy Storage Mater. – volume: 11 start-page: 8057 year: 2023 end-page: 8065 publication-title: J. Mater. Chem. A – volume: 8 year: 2024 publication-title: Small Methods – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 39 start-page: 365 year: 2021 end-page: 394 publication-title: Energy Storage Mater. – volume: 38 start-page: 12510 year: 2024 end-page: 12527 publication-title: Energy Fuels – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 678 start-page: 934 year: 2025 end-page: 947 publication-title: J. Colloid Inter. Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1101 start-page: 162 year: 2015 end-page: 169 publication-title: J. Mol. Struct. – volume: 3 year: 2024 publication-title: Nano Res. Energy – volume: 677 start-page: 645 year: 2025 end-page: 654 publication-title: J. Collid Inter. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1474 year: 2023 end-page: 1484 publication-title: Nat. Sustain. – volume: 4 year: 2020 publication-title: Adv. Sustainable Syst. – volume: 677 start-page: 885 year: 2025 end-page: 894 publication-title: J. Collid Inter. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 119 start-page: 1620 year: 1972 end-page: 1628 publication-title: J. Electrochem. Soc. – year: 1976 – volume: 12 start-page: 968 year: 2024 end-page: 978 publication-title: J. Mater. Chem. A – volume: 137 year: 2025 publication-title: Angew. Chem. Int. Ed. – volume: 108 start-page: 2750 year: 2004 end-page: 2757 publication-title: J. Phys. Chem. A – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 3 year: 2024 publication-title: Battery Energy – year: 1964 – volume: 56 start-page: 12985 year: 2020 end-page: 12988 publication-title: Chem. Commun. (Cambridge, U. K.) – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: II start-page: 515 year: 1986 end-page: 520 publication-title: J. Chem. Soc. Perkin Trans. – volume: 18 year: 2020 publication-title: Mater. Today Energy – volume: 35 year: 2025 publication-title: Adv. Funct. Mater. – volume: 686 start-page: 960 year: 2025 end-page: 969 publication-title: J. Collid Inter. Sci. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 12 start-page: 1193 year: 1973 end-page: 1195 publication-title: Inorg. Chem. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 26 start-page: 5794 year: 2014 end-page: 5800 publication-title: Adv. Mater. – volume: 11 start-page: 1573 year: 1972 end-page: 1578 publication-title: Inorg. Chem. – volume: 32 start-page: 694 year: 2008 publication-title: New J. Chem. – volume: 12 start-page: 1938 year: 2019 end-page: 1949 publication-title: Energy Environ. Sci. – volume: 500 year: 2024 publication-title: Chem. Eng. J. – volume: 21 publication-title: Small – volume: 514 year: 2025 publication-title: Electrochim. Acta – volume: 84 start-page: 62 year: 2023 end-page: 72 publication-title: J. Energy Chem. – volume: 119 start-page: 14750 year: 2015 end-page: 14755 publication-title: J. Phys. Chem. B – volume: 4 start-page: 0035 year: 2023 publication-title: Energy Material Advances – year: 2024 publication-title: eScience – volume: 15 start-page: 1488 year: 2024 end-page: 1497 publication-title: Chem. Sci. – volume: 59 year: 2023 publication-title: Energy Storage Mater. – year: 2006 – volume: 625 year: 2025 publication-title: J. Power Sources – volume: 16 start-page: 2723 year: 2023 end-page: 2731 publication-title: Energy Environ. Sci. – volume: 136 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 540 year: 2020 end-page: 560 publication-title: Carbon Energy – volume: 14 start-page: 2720 year: 2023 end-page: 2730 publication-title: Nat. Commun. – ident: e_1_2_8_32_1 doi: 10.1021/ic50113a024 – ident: e_1_2_8_7_1 doi: 10.1002/aenm.202001599 – volume-title: A textbook of organic chemistry year: 1976 ident: e_1_2_8_26_1 – ident: e_1_2_8_50_1 doi: 10.1016/B978-0-08-010821-6.50007-7 – ident: e_1_2_8_27_1 doi: 10.26599/NRE.2024.9120115 – ident: e_1_2_8_46_1 doi: 10.1016/j.jcis.2024.07.253 – ident: e_1_2_8_59_1 doi: 10.1002/aenm.202102780 – ident: e_1_2_8_4_1 doi: 10.1002/adsu.202000082 – ident: e_1_2_8_30_1 doi: 10.1016/j.jechem.2023.05.021 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.202302828 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202300620 – ident: e_1_2_8_68_1 doi: 10.1002/adfm.202412547 – ident: e_1_2_8_1_1 doi: 10.1002/cey2.67 – ident: e_1_2_8_25_1 doi: 10.1021/jp031243r – ident: e_1_2_8_55_1 doi: 10.1002/aenm.202270060 – ident: e_1_2_8_72_1 doi: 10.1016/j.cej.2024.157431 – ident: e_1_2_8_40_1 – ident: e_1_2_8_69_1 doi: 10.1016/j.esci.2024.100330 – ident: e_1_2_8_16_1 doi: 10.1039/D3SC05334B – ident: e_1_2_8_47_1 doi: 10.1016/j.jcis.2025.02.026 – ident: e_1_2_8_35_1 doi: 10.1002/ange.202318496 – ident: e_1_2_8_21_1 doi: 10.1039/D4TA07230H – ident: e_1_2_8_41_1 doi: 10.1016/j.molstruc.2015.08.022 – ident: e_1_2_8_66_1 doi: 10.1002/adfm.202112091 – ident: e_1_2_8_45_1 doi: 10.1038/s41467-023-38384-x – ident: e_1_2_8_43_1 doi: 10.1021/acs.jpcb.5b08020 – ident: e_1_2_8_14_1 doi: 10.1016/j.mtener.2020.100563 – ident: e_1_2_8_20_1 doi: 10.1016/j.jcis.2024.09.127 – ident: e_1_2_8_8_1 doi: 10.1002/bte2.20230063 – ident: e_1_2_8_71_1 doi: 10.1002/smtd.202200597 – ident: e_1_2_8_37_1 doi: 10.1039/D2TA09875J – ident: e_1_2_8_67_1 doi: 10.1002/adma.202100445 – ident: e_1_2_8_13_1 doi: 10.1016/j.ensm.2022.02.019 – ident: e_1_2_8_29_1 doi: 10.1002/anie.202301570 – ident: e_1_2_8_22_1 doi: 10.1016/j.jcis.2024.08.022 – ident: e_1_2_8_49_1 doi: 10.1039/D3TA05814J – ident: e_1_2_8_52_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_8_70_1 doi: 10.1039/C9EE00596J – ident: e_1_2_8_54_1 doi: 10.1016/j.ensm.2023.102800 – ident: e_1_2_8_2_1 doi: 10.1002/adfm.202304878 – ident: e_1_2_8_39_1 doi: 10.1039/P29860000515 – ident: e_1_2_8_10_1 doi: 10.1016/j.scib.2023.04.020 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201400719 – ident: e_1_2_8_44_1 doi: 10.1039/D0CC03639K – ident: e_1_2_8_63_1 doi: 10.1016/j.ssi.2025.116817 – ident: e_1_2_8_28_1 doi: 10.34133/energymatadv.0035 – ident: e_1_2_8_56_1 doi: 10.1002/anie.202212839 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201604685 – ident: e_1_2_8_31_1 doi: 10.1021/ic50123a045 – ident: e_1_2_8_5_1 doi: 10.1016/j.ensm.2021.04.027 – ident: e_1_2_8_6_1 doi: 10.1149/1.2404060 – ident: e_1_2_8_57_1 doi: 10.1002/aenm.202102982 – ident: e_1_2_8_23_1 doi: 10.1016/j.electacta.2025.145685 – ident: e_1_2_8_61_1 doi: 10.1002/adma.202206963 – ident: e_1_2_8_17_1 doi: 10.1002/ange.202422547 – ident: e_1_2_8_34_1 doi: 10.1002/anie.202212839 – volume: 21 ident: e_1_2_8_18_1 publication-title: Small doi: 10.1002/smll.202411755 – ident: e_1_2_8_73_1 doi: 10.1002/adma.202206754 – ident: e_1_2_8_62_1 doi: 10.1016/j.jpowsour.2024.235667 – ident: e_1_2_8_51_1 doi: 10.1021/ic50113a024 – ident: e_1_2_8_36_1 doi: 10.1016/j.ensm.2022.10.051 – ident: e_1_2_8_12_1 doi: 10.1002/smtd.202300268 – ident: e_1_2_8_24_1 doi: 10.1002/anie.202302701 – ident: e_1_2_8_58_1 doi: 10.1002/anie.202212695 – ident: e_1_2_8_74_1 doi: 10.1021/acs.energyfuels.4c02287 – ident: e_1_2_8_38_1 doi: 10.1039/b714708b – ident: e_1_2_8_60_1 doi: 10.1002/aenm.202102010 – ident: e_1_2_8_11_1 doi: 10.1016/j.ensm.2023.102903 – ident: e_1_2_8_65_1 doi: 10.1039/D1EE00308A – ident: e_1_2_8_42_1 doi: 10.1021/ja01872a016 – ident: e_1_2_8_53_1 doi: 10.1002/adma.202208630 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202211917 – ident: e_1_2_8_3_1 doi: 10.1039/D3EE00925D – ident: e_1_2_8_48_1 doi: 10.1038/s41893-023-01172-y – ident: e_1_2_8_64_1 doi: 10.1002/adma.202007416 |
SSID | ssj0028806 |
Score | 2.4910247 |
Snippet | The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the... The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202502893 |
SubjectTerms | Aqueous electrolytes Aqueous zinc batteries Density functional theory Dynamic modulation Electrolytes Electrolytic cells Keto‐enol tautomerism Large‐scale energy storage Modulation Sheaths Side reactions Solvation Tautomerism Vanadium pentoxide Water activity Zinc β‐dicarbonyl additives |
Title | Dynamic Modulation of Keto‐Enol Tautomerism in Electrolytes for Aqueous Zinc Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202502893 https://www.ncbi.nlm.nih.gov/pubmed/40126929 https://www.proquest.com/docview/3228971959 https://www.proquest.com/docview/3180984893 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl3Lhp5SyQCsjIfUUsGNvHB9XdBE_ggMCacUlcmxHQoUEsdkDnHgEnpEnYSbehG45VIJbosiJ7ZnxfBN7viFkp6-MkK5fRAK8RSSVZ1EKuCEqnJDWsTRPLSYnn54lh5fyeNQf_ZXFH_ghuh9uaBnNeo0GbvLx3htpKGZgQ3wHLhxiBqT7xANbiIrOO_6oGJQzpBcJEWEV-pa1kcV7s81nvdI7qDmLXBvXc7BETNvpcOLkz-6kznft4z98jp8Z1TJZnOJSOgiKtELmfPmVfNlvy8GtktHvULuenlZuWvKLVgU98XX18vQ8LKsbemEmdYU7QONbel3SYaiwc_MAaJYCNqYDGG41GdOr69LSQOwJcfo3cnkwvNg_jKZlGSIrwOFFOtdOGZ0qb5mC8AoAJktlwXOdgA0br3yaM8u40QLsm0lb8IJZnmjHke-9EGtkvqxKv05oUigujefWctCYxBkmneaurz004tb3yK9WLNldYN_IAs9ynOFMZd1M9chWK7VsaoXjDBarVCukz-mR7e4xzBtuipgSh5wJJDBLZfOK70Ha3acg9owTwI89Ejcy-08fssHZ0bC72_hIo02ygNd4Fo2rLTJf30_8D0A9df6z0exXDe35Dg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRL-YeFAkZC4pTWjr1xfFyVrba0uwe0lSouVmI7UkVJKjZ7gBOPwDPyJMzEm6CFAxIck8hJ7JnxfGN7vgF4PdaFVH5cJRK9RaJ04EmOuCGpvFTO87zMHSUnzxfZ7Fy9uxj3pwkpFybyQwwLbmQZ3XxNBk4L0oe_WEMpBRsDPPThGDTIm3CLynp3UdX7gUEqRfWMCUZSJlSHvudt5Onhdvttv_QH2NzGrp3zOb4DZf_b8czJx4N1Wx64r78xOv5Xv-7C3gaasknUpXtwI9T3Yfeorwj3AC7exvL1bN74TdUv1lTsNLTNj2_fp3VzxZbFum1oE2j1iV3WbBqL7Fx9QUDLEB6zCfa3Wa_Yh8vascjtiaH6Qzg_ni6PZsmmMkPiJPq8xJTG68LkOjiuMcJCjMlzVYnSZGjGRdAhL7njojASTZwrV4mKO5EZL4jyvZKPYKdu6vAEWFZpoYognBOoNJkvuPJG-LEJ2Ei4MII3vVzsdSTgsJFqObU0UnYYqRHs92KzG0NcWZyvcqOJQWcEr4bHOG60L1LU1GUricMsV90rHkdxD5_C8DPNEEKOIO2E9pd_sJPFyXS4evovjV7C7mw5P7NnJ4vTZ3Cb7tPRNKH3Yaf9vA7PEQS15YtOzX8Co7j9KQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSNAL_y1bChgJiVNaO_bG9nHV3VVL6QqhVlpxsRz_SBUlqdjsAU48As_Ik3Qcb0K3HJDgmERObM-M55vY8w1Cb4bCMO6GIWPgLTIuPMkk4IYsOMatI7KUNiYnn8yKwzP-bj6cX8viT_wQ_Q-3aBnteh0N_NKF_d-koTEDG-I7cOEQM7Db6A4viIx6Pf7YE0jloJ0pv4ixLJah72gbSb6_3n7dLf2BNdeha-t7pg-Q6Xqdjpx83ls25Z79foPQ8X-G9RDdXwFTPEqa9Ajd8tVjdO-gqwf3BM3HqXg9PqndquYXrgM-9k3968fPSVVf4FOzbOq4BbT4gs8rPEkldi6-AZzFAI7xCIZbLxf403llcWL2hED9KTqbTk4PDrNVXYbMMvB4mSqVE0ZJ4S0REF8BwiSSB1qqAozYeOFlSSyhRjEwcMJtoIFYWihHI-F7YFtoo6or_wzhIgjKjafWUlCZwhnCnaJuqDw0otYP0NtOLPoy0W_oRLSc6zhTup-pAdrtpKZXZrjQsFpJJSJ_zgC97h_DvMVdEVPFIWsWGcwkb1-xnaTdfwqCz7wAADlAeSuzv_RBj2ZHk_5q518avUJ3P4yn-v3R7Pg52oy347k0KnbRRvN16V8AAmrKl62SXwHEuPvh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Modulation+of+Keto-Enol+Tautomerism+in+Electrolytes+for+Aqueous+Zinc+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Wei&rft.au=Song%2C+Li&rft.au=Yang%2C+Xiaolong&rft.au=Zheng%2C+Xinhua&rft.date=2025-06-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202502893&rft_id=info:doi/10.1002%2Fanie.202502893&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |