Dynamic Modulation of Keto‐Enol Tautomerism in Electrolytes for Aqueous Zinc Batteries

The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 25; pp. e202502893 - n/a
Main Authors Song, Li, Yang, Xiaolong, Zheng, Xinhua, Wang, Mingming, Luo, Ruihao, Jiang, Taoli, Zhao, Guili, Shen, Dongyang, Ye, Lyuzhou, Chen, Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.06.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm−2/10 mAh cm−2, and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm−2/10 mAh cm−2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g−1, and the Zn||Br2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode. Description: The reversibility of the Zn anode is dramatically improved by dynamic modulation of the keto‐enol tautomerism of β‐dicarbonyl electrolyte additives for suppressing the adverse reactions in this work.
AbstractList The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn 2+ , enhancing the kinetics of Zn 2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm −2 /10 mAh cm −2 , and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm −2 /10 mAh cm −2 . Further, this dynamic modulation enables Zn||V 2 O 5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g −1 , and the Zn||Br 2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode.
The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrites' growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. After desolvation, the enol form of additives can react with by-products, further weakening passivation and morphological variation. Consequently, the Zn anode with optimal additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm-2/10 mAh cm-2, Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm-2/10 mAh cm-2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g-1, and the Zn||Br2 pouch cells deliver a high capacity of ~ 180 mAh. This study offers an original perspective on the dynamic regulation of the Zn anode.The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrites' growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. After desolvation, the enol form of additives can react with by-products, further weakening passivation and morphological variation. Consequently, the Zn anode with optimal additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm-2/10 mAh cm-2, Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm-2/10 mAh cm-2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g-1, and the Zn||Br2 pouch cells deliver a high capacity of ~ 180 mAh. This study offers an original perspective on the dynamic regulation of the Zn anode.
The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn , enhancing the kinetics of Zn transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm /10 mAh cm , and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm /10 mAh cm . Further, this dynamic modulation enables Zn||V O full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g , and the Zn||Br pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode.
The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm−2/10 mAh cm−2, and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm−2/10 mAh cm−2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g−1, and the Zn||Br2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode. Description: The reversibility of the Zn anode is dramatically improved by dynamic modulation of the keto‐enol tautomerism of β‐dicarbonyl electrolyte additives for suppressing the adverse reactions in this work.
The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the side reactions, thus improving the reversibility of the Zn anode. Density functional theory calculations and experimental results demonstrate the keto form of additives can be adsorbed on the Zn anode, inhibiting dendrite growth, while the enol form can serve as a bidentate ligand to participate in the construction of solvation sheath for Zn2+, enhancing the kinetics of Zn2+ transport, simultaneously suppressing water activity and reducing HER and corrosion. Consequently, the Zn anode with optimal electrolyte additive achieves high reversibility, where Zn||Zn symmetric cells operate over 4000 h at 10 mA cm−2/10 mAh cm−2, and Zn||Cu asymmetric cells have a life for 930 h at 10 mA cm−2/10 mAh cm−2. Further, this dynamic modulation enables Zn||V2O5 full cells to work over 5000 cycles with a capacity retention of 83% at 5 A g−1, and the Zn||Br2 pouch cells deliver a high capacity of ∼180 mAh. This study offers an original perspective on the dynamic regulation of electrolytes for Zn anode.
Author Chen, Wei
Yang, Xiaolong
Zhao, Guili
Zheng, Xinhua
Wang, Mingming
Luo, Ruihao
Jiang, Taoli
Song, Li
Ye, Lyuzhou
Shen, Dongyang
Author_xml – sequence: 1
  givenname: Li
  surname: Song
  fullname: Song, Li
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Xiaolong
  surname: Yang
  fullname: Yang, Xiaolong
  organization: Hefei Gotion High‐tech Power Energy Co. Ltd
– sequence: 3
  givenname: Xinhua
  surname: Zheng
  fullname: Zheng, Xinhua
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Mingming
  surname: Wang
  fullname: Wang, Mingming
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Ruihao
  surname: Luo
  fullname: Luo, Ruihao
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Taoli
  surname: Jiang
  fullname: Jiang, Taoli
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Guili
  surname: Zhao
  fullname: Zhao, Guili
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Dongyang
  surname: Shen
  fullname: Shen, Dongyang
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Lyuzhou
  surname: Ye
  fullname: Ye, Lyuzhou
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: weichen1@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40126929$$D View this record in MEDLINE/PubMed
BookMark eNqF0btOHDEUBmArAoVL0qaMLKWhmeXYnotPuVmWiwKkIVKUxvJ4PZLRjE3sGaHteASekSfBqwUipaGyi-8c_frPAdnxwVtCvjCYMQB-rL2zMw68Ai5RfCD7rOKsEE0jdvK_FKJoZMX2yEFKt9lLCfVHslcC4zVy3Ce_T9ZeD87Qq7Caej264Gno6A87hqeHx6UPPb3R0xgGG10aqPN02VszxtCvR5toFyKd_51smBL947yh3_U4ZmrTJ7Lb6T7Zzy_vIfl1urxZnBeXP88uFvPLwggBosAWV41G2VgDDVY1shpk2bEW6xZA28bKFgwwjUIwhNJ0rAPDalwx4Cg7cUiOtnvvYshB0qgGl4zte-03qZRgElCWuZxMv_1Hb8MUfU6nBM_1NQwrzOrri5rawa7UXXSDjmv12lkGsy0wMaQUbfdGGKjNUdTmKOrtKHkAtwP3rrfrd7SaX18s_80-A9Qrjys
Cites_doi 10.1021/ic50113a024
10.1002/aenm.202001599
10.1016/B978-0-08-010821-6.50007-7
10.26599/NRE.2024.9120115
10.1016/j.jcis.2024.07.253
10.1002/aenm.202102780
10.1002/adsu.202000082
10.1016/j.jechem.2023.05.021
10.1002/aenm.202302828
10.1002/adma.202300620
10.1002/adfm.202412547
10.1002/cey2.67
10.1021/jp031243r
10.1002/aenm.202270060
10.1016/j.cej.2024.157431
10.1016/j.esci.2024.100330
10.1039/D3SC05334B
10.1016/j.jcis.2025.02.026
10.1002/ange.202318496
10.1039/D4TA07230H
10.1016/j.molstruc.2015.08.022
10.1002/adfm.202112091
10.1038/s41467-023-38384-x
10.1021/acs.jpcb.5b08020
10.1016/j.mtener.2020.100563
10.1016/j.jcis.2024.09.127
10.1002/bte2.20230063
10.1002/smtd.202200597
10.1039/D2TA09875J
10.1002/adma.202100445
10.1016/j.ensm.2022.02.019
10.1002/anie.202301570
10.1016/j.jcis.2024.08.022
10.1039/D3TA05814J
10.1038/s41467-018-04060-8
10.1039/C9EE00596J
10.1016/j.ensm.2023.102800
10.1002/adfm.202304878
10.1039/P29860000515
10.1016/j.scib.2023.04.020
10.1002/adma.201400719
10.1039/D0CC03639K
10.1016/j.ssi.2025.116817
10.34133/energymatadv.0035
10.1002/anie.202212839
10.1002/adma.201604685
10.1021/ic50123a045
10.1016/j.ensm.2021.04.027
10.1149/1.2404060
10.1002/aenm.202102982
10.1016/j.electacta.2025.145685
10.1002/adma.202206963
10.1002/ange.202422547
10.1002/smll.202411755
10.1002/adma.202206754
10.1016/j.jpowsour.2024.235667
10.1016/j.ensm.2022.10.051
10.1002/smtd.202300268
10.1002/anie.202302701
10.1002/anie.202212695
10.1021/acs.energyfuels.4c02287
10.1039/b714708b
10.1002/aenm.202102010
10.1016/j.ensm.2023.102903
10.1039/D1EE00308A
10.1021/ja01872a016
10.1002/adma.202208630
10.1002/adfm.202211917
10.1039/D3EE00925D
10.1038/s41893-023-01172-y
10.1002/adma.202007416
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202502893
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 40126929
10_1002_anie_202502893
ANIE202502893
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52471242; 92372122; 22203083
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2060000040; GG2060127001; KY2060000150; WK9990000169
– fundername: Joint Laboratory for USTC and Yanchang Petroleum
  funderid: 2022ZK‐03
– fundername: Fundamental Research Funds for the Central Universities
  grantid: KY2060000150
– fundername: National Natural Science Foundation of China
  grantid: 92372122
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WK9990000169
– fundername: National Natural Science Foundation of China
  grantid: 52471242
– fundername: National Natural Science Foundation of China
  grantid: 22203083
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WK2060000040
– fundername: Fundamental Research Funds for the Central Universities
  grantid: GG2060127001
– fundername: Joint Laboratory for USTC and Yanchang Petroleum
  grantid: 2022ZK-03
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3303-9b9d7a987ec07956916084f1b96b00ae7e8b0c01a9331904cf1f0c169d10298f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:27:02 EDT 2025
Sat Jul 12 03:05:12 EDT 2025
Mon Jul 21 06:02:08 EDT 2025
Thu Jul 03 08:30:38 EDT 2025
Tue Jun 17 09:32:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Aqueous zinc batteries
β‐dicarbonyl additives
Dynamic modulation
Keto‐enol tautomerism
Large‐scale energy storage
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3303-9b9d7a987ec07956916084f1b96b00ae7e8b0c01a9331904cf1f0c169d10298f3
Notes Both authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40126929
PQID 3228971959
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_3180984893
proquest_journals_3228971959
pubmed_primary_40126929
crossref_primary_10_1002_anie_202502893
wiley_primary_10_1002_anie_202502893_ANIE202502893
PublicationCentury 2000
PublicationDate June 17, 2025
PublicationDateYYYYMMDD 2025-06-17
PublicationDate_xml – month: 06
  year: 2025
  text: June 17, 2025
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2023; 33
2023; 4
2024; 500
2023; 6
1973; 12
2019; 12
1976
2014; 26
2008; 32
2020; 56
2025; 35
2020; 10
2024
2024; 38
2025; 678
2025; 677
2020; 18
2025; 514
2023; 62
2018; 9
2025; 686
2020; 4
2023; 68
2020; 2
2021; 33
2024; 8
2021; 39
2015; 1101
2022; 34
2022; 32
2024; 3
1972; 11
21
2023; 54
1972; 119
2025; 137
2023; 13
2023; 14
2023; 11
2023; 59
2023; 16
1986; II
2022; 47
2006
2017; 29
2025; 13
2024; 12
2024; 15
2004; 108
2023; 61
2021; 14
2023; 84
2025; 422
2021; 11
2022; 61
2022; 6
1939; 61
2022; 12
1964
2015; 119
2024; 136
2025; 625
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_68_1
Tewari K. (e_1_2_8_26_1) 1976
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
He Y. (e_1_2_8_18_1); 21
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 3609
  year: 2021
  end-page: 3620
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 203
  year: 2022
  end-page: 210
  publication-title: Energy Storage Mater.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1656
  year: 2018
  end-page: 1666
  publication-title: Nat. Commun.
– volume: 54
  start-page: 374
  year: 2023
  end-page: 381
  publication-title: Energy Storage Mater.
– volume: 422
  year: 2025
  publication-title: Solid State Ionics
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 13
  start-page: 2174
  year: 2025
  end-page: 2186
  publication-title: J. Mater. Chem. A
– volume: 68
  start-page: 998
  year: 2023
  end-page: 1007
  publication-title: Sci. Bull.
– volume: 61
  start-page: 590
  year: 1939
  end-page: 596
  publication-title: J. Am. Chem. Soc.
– volume: 61
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 8057
  year: 2023
  end-page: 8065
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2024
  publication-title: Small Methods
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 39
  start-page: 365
  year: 2021
  end-page: 394
  publication-title: Energy Storage Mater.
– volume: 38
  start-page: 12510
  year: 2024
  end-page: 12527
  publication-title: Energy Fuels
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 678
  start-page: 934
  year: 2025
  end-page: 947
  publication-title: J. Colloid Inter. Sci.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1101
  start-page: 162
  year: 2015
  end-page: 169
  publication-title: J. Mol. Struct.
– volume: 3
  year: 2024
  publication-title: Nano Res. Energy
– volume: 677
  start-page: 645
  year: 2025
  end-page: 654
  publication-title: J. Collid Inter. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1474
  year: 2023
  end-page: 1484
  publication-title: Nat. Sustain.
– volume: 4
  year: 2020
  publication-title: Adv. Sustainable Syst.
– volume: 677
  start-page: 885
  year: 2025
  end-page: 894
  publication-title: J. Collid Inter. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 119
  start-page: 1620
  year: 1972
  end-page: 1628
  publication-title: J. Electrochem. Soc.
– year: 1976
– volume: 12
  start-page: 968
  year: 2024
  end-page: 978
  publication-title: J. Mater. Chem. A
– volume: 137
  year: 2025
  publication-title: Angew. Chem. Int. Ed.
– volume: 108
  start-page: 2750
  year: 2004
  end-page: 2757
  publication-title: J. Phys. Chem. A
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  year: 2024
  publication-title: Battery Energy
– year: 1964
– volume: 56
  start-page: 12985
  year: 2020
  end-page: 12988
  publication-title: Chem. Commun. (Cambridge, U. K.)
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: II
  start-page: 515
  year: 1986
  end-page: 520
  publication-title: J. Chem. Soc. Perkin Trans.
– volume: 18
  year: 2020
  publication-title: Mater. Today Energy
– volume: 35
  year: 2025
  publication-title: Adv. Funct. Mater.
– volume: 686
  start-page: 960
  year: 2025
  end-page: 969
  publication-title: J. Collid Inter. Sci.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1193
  year: 1973
  end-page: 1195
  publication-title: Inorg. Chem.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 5794
  year: 2014
  end-page: 5800
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1573
  year: 1972
  end-page: 1578
  publication-title: Inorg. Chem.
– volume: 32
  start-page: 694
  year: 2008
  publication-title: New J. Chem.
– volume: 12
  start-page: 1938
  year: 2019
  end-page: 1949
  publication-title: Energy Environ. Sci.
– volume: 500
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 21
  publication-title: Small
– volume: 514
  year: 2025
  publication-title: Electrochim. Acta
– volume: 84
  start-page: 62
  year: 2023
  end-page: 72
  publication-title: J. Energy Chem.
– volume: 119
  start-page: 14750
  year: 2015
  end-page: 14755
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 0035
  year: 2023
  publication-title: Energy Material Advances
– year: 2024
  publication-title: eScience
– volume: 15
  start-page: 1488
  year: 2024
  end-page: 1497
  publication-title: Chem. Sci.
– volume: 59
  year: 2023
  publication-title: Energy Storage Mater.
– year: 2006
– volume: 625
  year: 2025
  publication-title: J. Power Sources
– volume: 16
  start-page: 2723
  year: 2023
  end-page: 2731
  publication-title: Energy Environ. Sci.
– volume: 136
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 540
  year: 2020
  end-page: 560
  publication-title: Carbon Energy
– volume: 14
  start-page: 2720
  year: 2023
  end-page: 2730
  publication-title: Nat. Commun.
– ident: e_1_2_8_32_1
  doi: 10.1021/ic50113a024
– ident: e_1_2_8_7_1
  doi: 10.1002/aenm.202001599
– volume-title: A textbook of organic chemistry
  year: 1976
  ident: e_1_2_8_26_1
– ident: e_1_2_8_50_1
  doi: 10.1016/B978-0-08-010821-6.50007-7
– ident: e_1_2_8_27_1
  doi: 10.26599/NRE.2024.9120115
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jcis.2024.07.253
– ident: e_1_2_8_59_1
  doi: 10.1002/aenm.202102780
– ident: e_1_2_8_4_1
  doi: 10.1002/adsu.202000082
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jechem.2023.05.021
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.202302828
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202300620
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.202412547
– ident: e_1_2_8_1_1
  doi: 10.1002/cey2.67
– ident: e_1_2_8_25_1
  doi: 10.1021/jp031243r
– ident: e_1_2_8_55_1
  doi: 10.1002/aenm.202270060
– ident: e_1_2_8_72_1
  doi: 10.1016/j.cej.2024.157431
– ident: e_1_2_8_40_1
– ident: e_1_2_8_69_1
  doi: 10.1016/j.esci.2024.100330
– ident: e_1_2_8_16_1
  doi: 10.1039/D3SC05334B
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jcis.2025.02.026
– ident: e_1_2_8_35_1
  doi: 10.1002/ange.202318496
– ident: e_1_2_8_21_1
  doi: 10.1039/D4TA07230H
– ident: e_1_2_8_41_1
  doi: 10.1016/j.molstruc.2015.08.022
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.202112091
– ident: e_1_2_8_45_1
  doi: 10.1038/s41467-023-38384-x
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.jpcb.5b08020
– ident: e_1_2_8_14_1
  doi: 10.1016/j.mtener.2020.100563
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jcis.2024.09.127
– ident: e_1_2_8_8_1
  doi: 10.1002/bte2.20230063
– ident: e_1_2_8_71_1
  doi: 10.1002/smtd.202200597
– ident: e_1_2_8_37_1
  doi: 10.1039/D2TA09875J
– ident: e_1_2_8_67_1
  doi: 10.1002/adma.202100445
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ensm.2022.02.019
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.202301570
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jcis.2024.08.022
– ident: e_1_2_8_49_1
  doi: 10.1039/D3TA05814J
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_8_70_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ensm.2023.102800
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.202304878
– ident: e_1_2_8_39_1
  doi: 10.1039/P29860000515
– ident: e_1_2_8_10_1
  doi: 10.1016/j.scib.2023.04.020
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201400719
– ident: e_1_2_8_44_1
  doi: 10.1039/D0CC03639K
– ident: e_1_2_8_63_1
  doi: 10.1016/j.ssi.2025.116817
– ident: e_1_2_8_28_1
  doi: 10.34133/energymatadv.0035
– ident: e_1_2_8_56_1
  doi: 10.1002/anie.202212839
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201604685
– ident: e_1_2_8_31_1
  doi: 10.1021/ic50123a045
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ensm.2021.04.027
– ident: e_1_2_8_6_1
  doi: 10.1149/1.2404060
– ident: e_1_2_8_57_1
  doi: 10.1002/aenm.202102982
– ident: e_1_2_8_23_1
  doi: 10.1016/j.electacta.2025.145685
– ident: e_1_2_8_61_1
  doi: 10.1002/adma.202206963
– ident: e_1_2_8_17_1
  doi: 10.1002/ange.202422547
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.202212839
– volume: 21
  ident: e_1_2_8_18_1
  publication-title: Small
  doi: 10.1002/smll.202411755
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.202206754
– ident: e_1_2_8_62_1
  doi: 10.1016/j.jpowsour.2024.235667
– ident: e_1_2_8_51_1
  doi: 10.1021/ic50113a024
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ensm.2022.10.051
– ident: e_1_2_8_12_1
  doi: 10.1002/smtd.202300268
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.202302701
– ident: e_1_2_8_58_1
  doi: 10.1002/anie.202212695
– ident: e_1_2_8_74_1
  doi: 10.1021/acs.energyfuels.4c02287
– ident: e_1_2_8_38_1
  doi: 10.1039/b714708b
– ident: e_1_2_8_60_1
  doi: 10.1002/aenm.202102010
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ensm.2023.102903
– ident: e_1_2_8_65_1
  doi: 10.1039/D1EE00308A
– ident: e_1_2_8_42_1
  doi: 10.1021/ja01872a016
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.202208630
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202211917
– ident: e_1_2_8_3_1
  doi: 10.1039/D3EE00925D
– ident: e_1_2_8_48_1
  doi: 10.1038/s41893-023-01172-y
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.202007416
SSID ssj0028806
Score 2.4910247
Snippet The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol‐keto tautomerism to inhibit the...
The reversibility of zinc (Zn) anode is subject to adverse reactions. Herein we design a dynamic modulation strategy via enol-keto tautomerism to inhibit the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202502893
SubjectTerms Aqueous electrolytes
Aqueous zinc batteries
Density functional theory
Dynamic modulation
Electrolytes
Electrolytic cells
Keto‐enol tautomerism
Large‐scale energy storage
Modulation
Sheaths
Side reactions
Solvation
Tautomerism
Vanadium pentoxide
Water activity
Zinc
β‐dicarbonyl additives
Title Dynamic Modulation of Keto‐Enol Tautomerism in Electrolytes for Aqueous Zinc Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202502893
https://www.ncbi.nlm.nih.gov/pubmed/40126929
https://www.proquest.com/docview/3228971959
https://www.proquest.com/docview/3180984893
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl3Lhp5SyQCsjIfUUsGNvHB9XdBE_ggMCacUlcmxHQoUEsdkDnHgEnpEnYSbehG45VIJbosiJ7ZnxfBN7viFkp6-MkK5fRAK8RSSVZ1EKuCEqnJDWsTRPLSYnn54lh5fyeNQf_ZXFH_ghuh9uaBnNeo0GbvLx3htpKGZgQ3wHLhxiBqT7xANbiIrOO_6oGJQzpBcJEWEV-pa1kcV7s81nvdI7qDmLXBvXc7BETNvpcOLkz-6kznft4z98jp8Z1TJZnOJSOgiKtELmfPmVfNlvy8GtktHvULuenlZuWvKLVgU98XX18vQ8LKsbemEmdYU7QONbel3SYaiwc_MAaJYCNqYDGG41GdOr69LSQOwJcfo3cnkwvNg_jKZlGSIrwOFFOtdOGZ0qb5mC8AoAJktlwXOdgA0br3yaM8u40QLsm0lb8IJZnmjHke-9EGtkvqxKv05oUigujefWctCYxBkmneaurz004tb3yK9WLNldYN_IAs9ynOFMZd1M9chWK7VsaoXjDBarVCukz-mR7e4xzBtuipgSh5wJJDBLZfOK70Ha3acg9owTwI89Ejcy-08fssHZ0bC72_hIo02ygNd4Fo2rLTJf30_8D0A9df6z0exXDe35Dg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRL-YeFAkZC4pTWjr1xfFyVrba0uwe0lSouVmI7UkVJKjZ7gBOPwDPyJMzEm6CFAxIck8hJ7JnxfGN7vgF4PdaFVH5cJRK9RaJ04EmOuCGpvFTO87zMHSUnzxfZ7Fy9uxj3pwkpFybyQwwLbmQZ3XxNBk4L0oe_WEMpBRsDPPThGDTIm3CLynp3UdX7gUEqRfWMCUZSJlSHvudt5Onhdvttv_QH2NzGrp3zOb4DZf_b8czJx4N1Wx64r78xOv5Xv-7C3gaasknUpXtwI9T3Yfeorwj3AC7exvL1bN74TdUv1lTsNLTNj2_fp3VzxZbFum1oE2j1iV3WbBqL7Fx9QUDLEB6zCfa3Wa_Yh8vascjtiaH6Qzg_ni6PZsmmMkPiJPq8xJTG68LkOjiuMcJCjMlzVYnSZGjGRdAhL7njojASTZwrV4mKO5EZL4jyvZKPYKdu6vAEWFZpoYognBOoNJkvuPJG-LEJ2Ei4MII3vVzsdSTgsJFqObU0UnYYqRHs92KzG0NcWZyvcqOJQWcEr4bHOG60L1LU1GUricMsV90rHkdxD5_C8DPNEEKOIO2E9pd_sJPFyXS4evovjV7C7mw5P7NnJ4vTZ3Cb7tPRNKH3Yaf9vA7PEQS15YtOzX8Co7j9KQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSNAL_y1bChgJiVNaO_bG9nHV3VVL6QqhVlpxsRz_SBUlqdjsAU48As_Ik3Qcb0K3HJDgmERObM-M55vY8w1Cb4bCMO6GIWPgLTIuPMkk4IYsOMatI7KUNiYnn8yKwzP-bj6cX8viT_wQ_Q-3aBnteh0N_NKF_d-koTEDG-I7cOEQM7Db6A4viIx6Pf7YE0jloJ0pv4ixLJah72gbSb6_3n7dLf2BNdeha-t7pg-Q6Xqdjpx83ls25Z79foPQ8X-G9RDdXwFTPEqa9Ajd8tVjdO-gqwf3BM3HqXg9PqndquYXrgM-9k3968fPSVVf4FOzbOq4BbT4gs8rPEkldi6-AZzFAI7xCIZbLxf403llcWL2hED9KTqbTk4PDrNVXYbMMvB4mSqVE0ZJ4S0REF8BwiSSB1qqAozYeOFlSSyhRjEwcMJtoIFYWihHI-F7YFtoo6or_wzhIgjKjafWUlCZwhnCnaJuqDw0otYP0NtOLPoy0W_oRLSc6zhTup-pAdrtpKZXZrjQsFpJJSJ_zgC97h_DvMVdEVPFIWsWGcwkb1-xnaTdfwqCz7wAADlAeSuzv_RBj2ZHk_5q518avUJ3P4yn-v3R7Pg52oy347k0KnbRRvN16V8AAmrKl62SXwHEuPvh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Modulation+of+Keto-Enol+Tautomerism+in+Electrolytes+for+Aqueous+Zinc+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Wei&rft.au=Song%2C+Li&rft.au=Yang%2C+Xiaolong&rft.au=Zheng%2C+Xinhua&rft.date=2025-06-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202502893&rft_id=info:doi/10.1002%2Fanie.202502893&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon