A single‐nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato
Summary Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and r...
Saved in:
Published in | The New phytologist Vol. 236; no. 3; pp. 989 - 1005 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lancaster
Wiley Subscription Services, Inc
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood.
In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress.
Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat‑ and Botrytis‐induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation.
Our findings suggest nucleotide polymorphism in cis‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants. |
---|---|
AbstractList | Summary
Natural variations in
cis
‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood.
In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of
WRKY33
are almost unchanged in cold‐sensitive cultivated tomato
Solanum lycopersicum
L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives
Solanum habrochaites
LA1777 and
Solanum pennellii
LA0716 under cold stress.
Overexpression of
SlWRKY33
or
ShWRKY33
positively regulates cold tolerance in tomato. Variant of the critical W‐box in
SlWRKY33
promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as
CDPK11
,
MYBS3
, and
BAG6
, thus enhancing cold tolerance. In addition, heat‑ and
Botrytis
‐induced
WRKY33
s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation.
Our findings suggest nucleotide polymorphism in
cis
‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants. Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood.In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress.Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat‑ and Botrytis‐induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation.Our findings suggest nucleotide polymorphism in cis‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants. Summary Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat‑ and Botrytis‐induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation. Our findings suggest nucleotide polymorphism in cis‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants. |
Author | Fotopoulos, Vasileios Zhou, Jie Liu, Chenxu Yang, Fengjun Guo, Mingyue Qi, Zhenyu Yu, Jingquan Lu, Gang Zou, Jinping |
Author_xml | – sequence: 1 givenname: Mingyue surname: Guo fullname: Guo, Mingyue organization: Zhejiang University – sequence: 2 givenname: Fengjun surname: Yang fullname: Yang, Fengjun organization: Zhejiang University – sequence: 3 givenname: Chenxu surname: Liu fullname: Liu, Chenxu organization: Zhejiang University – sequence: 4 givenname: Jinping surname: Zou fullname: Zou, Jinping organization: Zhejiang University – sequence: 5 givenname: Zhenyu surname: Qi fullname: Qi, Zhenyu organization: Zhejiang University – sequence: 6 givenname: Vasileios orcidid: 0000-0003-1205-2070 surname: Fotopoulos fullname: Fotopoulos, Vasileios organization: Cyprus University of Technology – sequence: 7 givenname: Gang orcidid: 0000-0002-0116-7561 surname: Lu fullname: Lu, Gang organization: Zhejiang University – sequence: 8 givenname: Jingquan orcidid: 0000-0002-7626-1165 surname: Yu fullname: Yu, Jingquan organization: Agricultural Ministry of China – sequence: 9 givenname: Jie orcidid: 0000-0002-8797-7214 surname: Zhou fullname: Zhou, Jie email: jie@zju.edu.cn organization: Zhejiang University |
BookMark | eNp10M1KHTEUB_AgFnq1XfQNAm7axWi-JjOzFFGvKCrSUl2FmJzxRjLJNMlU7q6P0Gfskzh6XQk9m8OB3zkc_jtoO8QACH2hZJ_OdRDG1T5tBeFbaEGF7KqW8mYbLQhhbSWFvP2IdnJ-JIR0tWQLlA5xduHBw78_f8NkPMTiLOAx-vUQ07hyecAu4J8353ec4zHFIRZI2GWsc47G6QIWP7mywmUF2ERvcYaQXXG_XVm_rJrJz8OrK3HQJX5CH3rtM3x-67vox8nx96NldXF1enZ0eFEZzgmveCNIW2tBu-ZeMN5bkNaC7ayWjEtGqDXQU8uIaXumSWcbIequaWxf874XHd9FXzd3569_TZCLGlw24L0OEKesmOxq1krJ65nuvaOPcUph_k6xhtGaUsHaWX3bKJNizgl6NSY36LRWlKiX9NWcvnpNf7YHG_vkPKz_D9Xl9XKz8Qxjb4oS |
CitedBy_id | crossref_primary_10_1111_tpj_16582 crossref_primary_10_1186_s12870_024_05320_0 crossref_primary_10_1016_j_plaphy_2023_108083 crossref_primary_10_1016_j_scienta_2023_112741 crossref_primary_10_1016_j_stress_2024_100390 crossref_primary_10_1038_s41467_023_40472_x crossref_primary_10_1111_pbi_14016 crossref_primary_10_1016_j_plaphy_2024_108670 crossref_primary_10_3389_fpls_2023_1113125 crossref_primary_10_1111_pce_14816 crossref_primary_10_3389_fpls_2024_1377899 crossref_primary_10_1111_pce_14703 crossref_primary_10_1016_j_stress_2024_100429 crossref_primary_10_1186_s12864_024_10523_8 crossref_primary_10_3390_cimb45040187 crossref_primary_10_1093_hr_uhae057 crossref_primary_10_1093_plphys_kiad578 crossref_primary_10_1016_j_envexpbot_2023_105467 crossref_primary_10_1093_hr_uhac227 crossref_primary_10_1038_s41598_024_58903_0 |
Cites_doi | 10.1016/j.cub.2021.08.023 10.1093/plcell/koab255 10.15252/embj.2019103256 10.1016/j.cell.2020.05.021 10.1007/s00425-011-1375-2 10.1016/j.cell.2021.02.001 10.3390/ijms22115856 10.1038/nmeth.3317 10.3389/fpls.2014.00174 10.1186/s12870-019-1922-8 10.1111/nph.15696 10.3390/genes12101638 10.1126/science.aal1556 10.1111/j.1365-313X.2004.02201.x 10.1073/pnas.1819769116 10.1046/j.1365-313x.2000.00787.x 10.1038/nrg3229 10.1104/pp.110.153015 10.1093/jxb/ert298 10.1038/s41467-021-25001-y 10.1111/pbi.13443 10.1073/pnas.0912670107 10.1093/jxb/erv221 10.1016/j.cell.2017.06.008 10.1104/pp.111.192641 10.1111/j.1365-313X.2006.02901.x 10.1093/jxb/ers296 10.1038/sj.hdy.6801000 10.1038/nbt.4273 10.1111/nph.16332 10.1104/pp.106.094292 10.1016/j.cell.2017.12.036 10.1093/genetics/141.3.1147 10.1016/j.plaphy.2012.07.010 10.1104/pp.18.01028 10.1093/bioinformatics/bty560 10.1038/s41467-020-19705-w 10.1016/j.cub.2018.07.029 10.1038/s41467-019-10602-5 10.1006/meth.2001.1262 10.1101/gad.290684.116 10.1093/plcell/koac137 10.1105/tpc.111.084996 10.1104/pp.114.251769 10.1038/s41467-021-27117-7 10.1126/science.134.3496.2102-a 10.1080/15548627.2020.1810426 10.1038/ng1784 10.1111/pce.13171 10.1016/j.cell.2016.08.029 10.1038/s41588-018-0116-x 10.1038/nature07895 10.1105/tpc.19.00971 10.1038/nrg3605 10.1038/ng.3117 10.1093/plcell/koab062 10.1093/bioinformatics/btv145 10.1016/S2095-3119(19)62824-8 10.1093/jxb/erq204 10.1016/j.pbi.2015.01.008 10.1186/gb-2010-11-2-r14 10.1016/j.cell.2017.12.019 10.1073/pnas.1913688117 10.1073/pnas.2021351118 10.1104/pp.20.01054 10.1080/07352689.2018.1441103 10.1111/jipb.12657 10.1111/nph.16540 10.1111/nph.14388 10.1139/g00-043 10.1105/tpc.17.00537 10.1016/j.tplants.2022.01.008 10.7554/eLife.07295 10.1105/tpc.111.089870 10.1016/j.tplants.2016.01.014 10.1111/nph.17020 10.1038/s41586-020-1997-2 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation. Copyright © 2022 New Phytologist Trust |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation. – notice: Copyright © 2022 New Phytologist Trust |
DBID | AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
DOI | 10.1111/nph.18403 |
DatabaseName | CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1005 |
ExternalDocumentID | 10_1111_nph_18403 NPH18403 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31922078; 31872089 – fundername: Fundamental Research Funds for the Central Universities funderid: 226‐2022‐00122 – fundername: Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study funderid: SN‐ZJU‐SIAS‐0011 – fundername: National Key Research and Development Program of China funderid: 2018YFD1000800 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AGUYK AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3303-374085a4197b423fde6dded9da6236201dcef1d20c8f2a09d7445977df53ff493 |
IEDL.DBID | DR2 |
ISSN | 0028-646X |
IngestDate | Sat Aug 17 02:19:04 EDT 2024 Thu Oct 10 19:55:16 EDT 2024 Fri Aug 23 04:12:02 EDT 2024 Sat Aug 24 00:54:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3303-374085a4197b423fde6dded9da6236201dcef1d20c8f2a09d7445977df53ff493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8797-7214 0000-0002-0116-7561 0000-0002-7626-1165 0000-0003-1205-2070 |
PQID | 2721511428 |
PQPubID | 2026848 |
PageCount | 1005 |
ParticipantIDs | proquest_miscellaneous_2695286635 proquest_journals_2721511428 crossref_primary_10_1111_nph_18403 wiley_primary_10_1111_nph_18403_NPH18403 |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | Lancaster |
PublicationPlace_xml | – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2012; 60 2021; 22 2010; 107 2019; 10 2007; 143 2006; 38 2000; 43 2015; 31 2013; 64 2019; 19 2016; 30 2018; 41 2020; 11 2008; 100 2012; 13 2017; 355 2011; 233 2020; 19 2010; 61 2014; 5 2013; 14 2021; 31 2018; 172 2021; 33 2017; 36 2021; 118 2020; 578 2022; 34 2019; 116 2010; 153 2018; 30 2011; 23 2018; 34 2018; 36 2012; 63 2015; 12 2018; 28 2004; 40 2015; 4 2020; 184 2000; 23 2015; 167 2020; 182 2021; 229 2020; 226 2020; 39 2017; 170 2016; 167 2021; 184 1961; 134 2014; 46 2020; 227 2018; 60 2020; 32 2001; 25 2017; 214 2019; 222 2009; 457 2015; 24 2021; 12 2022 2021; 17 2015; 66 2021; 19 2006; 48 2016; 21 2019; 179 2020; 117 2018; 50 2012; 159 1995; 141 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Knaap E (e_1_2_8_21_1) 2014; 5 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 24 start-page: 47 year: 2015 end-page: 53 article-title: Patterns of genomic changes with crop domestication and breeding publication-title: Current Opinion in Plant Biology – volume: 64 start-page: 5085 year: 2013 end-page: 5097 article-title: WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance publication-title: Journal of Experimental Botany – volume: 48 start-page: 592 year: 2006 end-page: 605 article-title: WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens publication-title: The Plant Journal – volume: 32 start-page: 2621 year: 2020 end-page: 2638 article-title: Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in publication-title: Plant Cell – volume: 172 start-page: 249 year: 2018 end-page: 261 article-title: Rewiring of the fruit metabolome in tomato breeding publication-title: Cell – volume: 41 start-page: 1762 year: 2018 end-page: 1775 article-title: The bZip transcription factor mediates ‐induced anthocyanin biosynthesis in tomato publication-title: Plant, Cell & Environment – volume: 118 year: 2021 article-title: SUMO enables substrate selectivity by mitogen‐activated protein kinases to regulate immunity in plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 159 start-page: 266 year: 2012 end-page: 285 article-title: WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward infection publication-title: Plant Physiology – volume: 182 start-page: 145 year: 2020 end-page: 161 article-title: Major impacts of widespread structural variation on gene expression and crop improvement in tomato publication-title: Cell – volume: 63 start-page: 6393 year: 2012 end-page: 6405 article-title: Ethylene‐responsive transcription factors interact with promoters of and involved in persimmon ( ) fruit de‐astringency publication-title: Journal of Experimental Botany – volume: 34 start-page: 503 year: 2022 end-page: 513 article-title: Quality control and evaluation of plant epigenomics data publication-title: Plant Cell – volume: 141 start-page: 1147 year: 1995 end-page: 1162 article-title: An introgression line population of in the cultivated tomato enables the identification and fine mapping of yield‐associated QTL publication-title: Genetics – volume: 38 start-page: 594 year: 2006 end-page: 597 article-title: A distant upstream enhancer at the maize domestication gene has pleiotropic effects on plant and inflorescent architecture publication-title: Nature Genetics – volume: 184 start-page: 1724 year: 2021 end-page: 1739 article-title: Conserved pleiotropy of an ancient plant homeobox gene uncovered by ‐regulatory dissection publication-title: Cell – volume: 12 start-page: 6892 year: 2021 article-title: Interaction of two MADS‐box genes leads to growth phenotype divergence of all‐flesh type of tomatoes publication-title: Nature Communications – year: 2022 article-title: Transcriptional regulatory network of plant cold‐stress responses publication-title: Trends in Plant Science – volume: 30 start-page: 652 year: 2018 end-page: 667 article-title: A plant phytosulfokine peptide initiates auxin‐dependent immunity through cytosolic Ca signaling in tomato publication-title: Plant Cell – volume: 11 start-page: R14 year: 2010 article-title: Gene ontology analysis for RNA‐seq: accounting for selection bias publication-title: Genome Biology – volume: 46 start-page: 1220 year: 2014 end-page: 1226 article-title: Genomic analyses provide insights into the history of tomato breeding publication-title: Nature Genetics – volume: 116 start-page: 3494 year: 2019 end-page: 3501 article-title: Natural variation in the gene confers chilling tolerance in rice and allowed adaptation to a temperate climate publication-title: Proceedings of the National Academy of Sciences, USA – volume: 170 start-page: 114 year: 2017 end-page: 126 article-title: A natural allele of a transcription factor in rice confers broad‐spectrum blast resistance publication-title: Cell – volume: 60 start-page: 780 year: 2018 end-page: 795 article-title: Insights into the regulation of C‐repeat binding factors in plant cold signaling publication-title: Journal of Integrative Plant Biology – volume: 214 start-page: 695 year: 2017 end-page: 705 article-title: B‐cell lymphoma2 (Bcl‐2)‐associated athanogene 7 (BAG7)‐mediated heat tolerance requires translocation, sumoylation and binding to WRKY29 publication-title: New Phytologist – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method publication-title: Methods – volume: 31 start-page: 2382 year: 2015 end-page: 2383 article-title: : an R/bioconductor package for ChIP peak annotation, comparison and visualization publication-title: Bioinformatics – volume: 22 start-page: 5856 year: 2021 article-title: The and genes are involved in multiple abiotic stress tolerances in publication-title: International Journal of Molecular Sciences – volume: 229 start-page: 106 year: 2021 end-page: 125 article-title: WRKY33 interacts with WRKY12 protein to up‐regulate during submergence induced hypoxia response in publication-title: New Phytologist – volume: 143 start-page: 707 year: 2007 end-page: 719 article-title: Modulation of ethylene responses affects plant salt‐stress responses publication-title: Plant Physiology – volume: 12 start-page: 357 year: 2015 end-page: 360 article-title: H : a fast spliced aligner with low memory requirements publication-title: Nature Methods – volume: 184 start-page: 2199 year: 2020 end-page: 2215 article-title: Regulation of a cytochrome P450 Gene by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance publication-title: Plant Physiology – volume: 34 start-page: 2833 year: 2022 end-page: 2851 article-title: The transcription factor negatively regulates cold tolerance in maize publication-title: Plant Cell – volume: 28 start-page: 3005 year: 2018 end-page: 3015 article-title: Stepwise ‐regulatory changes in contribute to maize flowering‐time adaptation publication-title: Current Biology – volume: 19 start-page: 352 year: 2019 article-title: Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in rice through RNA‐Seq analysis publication-title: BMC Plant Biology – volume: 19 start-page: 20 year: 2021 end-page: 22 article-title: Natural variations in contribute to the loss of salt tolerance during tomato domestication publication-title: Plant Biotechnology Journal – volume: 226 start-page: 189 year: 2020 end-page: 204 article-title: Reactive oxygen species dosage in chloroplasts can improve resistance towards by the induction of WRKY33 publication-title: New Phytologist – volume: 107 start-page: 6088 year: 2010 end-page: 6093 article-title: , an Bcl‐2‐associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response publication-title: Proceedings of the National Academy of Sciences, USA – volume: 100 start-page: 191 year: 2008 end-page: 199 article-title: Evaluating the role of natural selection in the evolution of gene regulation publication-title: Heredity – volume: 61 start-page: 3901 year: 2010 end-page: 3914 article-title: Male gametophyte‐specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in publication-title: Journal of Experimental Botany – volume: 233 start-page: 1237 year: 2011 end-page: 1252 article-title: WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance publication-title: Planta – volume: 23 start-page: 1639 year: 2011 end-page: 1653 article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in publication-title: Plant Cell – volume: 66 start-page: 4567 year: 2015 end-page: 4583 article-title: Characterization of the promoter and extended C‐terminal domain of WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses publication-title: Journal of Experimental Botany – volume: 43 start-page: 803 year: 2000 end-page: 813 article-title: Development of a set of near isogenic and backcross recombinant inbred lines containing most of the genome in a genetic background: a tool for gene mapping and gene discovery publication-title: Genome – volume: 23 start-page: 319 year: 2000 end-page: 327 article-title: Over‐expression of a single Ca ‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants publication-title: The Plant Journal – volume: 19 start-page: 120 year: 2020 end-page: 132 article-title: Domestication and breeding changed tomato fruit transcriptome publication-title: Journal of Integrative Agriculture – volume: 23 start-page: 3335 year: 2011 end-page: 3352 article-title: The basic Helix–Loop‐Helix transcription factor MYC2 directly represses expression during jasmonate‐mediated modulation of the root stem cell niche in publication-title: Plant Cell – volume: 13 start-page: 505 year: 2012 end-page: 516 article-title: Comparative studies of gene expression and the evolution of gene regulation publication-title: Nature Reviews. Genetics – volume: 50 start-page: 796 year: 2018 end-page: 802 article-title: Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits publication-title: Nature Genetics – volume: 12 start-page: 1638 year: 2021 article-title: Transcriptome profiling of maize ( L.) leaves reveals key cold‐responsive genes, transcription factors, and metabolic pathways regulating cold stress tolerance at the seedling stage publication-title: Genes – volume: 21 start-page: 506 year: 2016 end-page: 515 article-title: Lessons from domestication: targeting ‐regulatory elements for crop improvement publication-title: Trends in Plant Science – volume: 578 start-page: 572 year: 2020 end-page: 576 article-title: The strength and pattern of natural selection on gene expression in rice publication-title: Nature – volume: 457 start-page: 843 year: 2009 end-page: 848 article-title: The nature of selection during plant domestication publication-title: Nature – volume: 12 start-page: 4713 year: 2021 article-title: Natural variation in a type‐A response regulator confers maize chilling tolerance publication-title: Nature Communications – volume: 11 start-page: 5844 year: 2020 article-title: encodes a GA2‐oxidase that regulates fruit firmness in tomato publication-title: Nature Communications – volume: 179 start-page: 671 year: 2019 end-page: 685 article-title: BZR1 mediates brassinosteroid‐induced autophagy and nitrogen starvation in tomato publication-title: Plant Physiology – volume: 222 start-page: 1690 year: 2019 end-page: 1704 article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants publication-title: New Phytologist – volume: 31 start-page: 4788 year: 2021 end-page: 4799 article-title: Leaf form diversification in an ornamental heirloom tomato results from alterations in two different genes publication-title: Current Biology – volume: 39 year: 2020 article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na /K transporter publication-title: EMBO Journal – volume: 36 start-page: 1160 year: 2018 end-page: 1163 article-title: Domestication of wild tomato is accelerated by genome editing publication-title: Nature Biotechnology – volume: 134 start-page: 2102 year: 1961 article-title: New source of the gene governing jointless pedicel in tomato publication-title: Science – volume: 33 start-page: 1771 year: 2021 end-page: 1789 article-title: The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in publication-title: Plant Cell – volume: 355 start-page: 391 year: 2017 end-page: 394 article-title: A chemical genetic roadmap to improved tomato flavor publication-title: Science – volume: 117 start-page: 8187 year: 2020 end-page: 8195 article-title: regulates tomato fruit size through the floral meristem development network publication-title: Proceedings of the National Academy of Sciences, USA – volume: 17 start-page: 2093 year: 2021 end-page: 2110 article-title: Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens publication-title: Autophagy – volume: 227 start-page: 629 year: 2020 end-page: 640 article-title: Natural variation in the promoter of determines grain width and weight in rice publication-title: New Phytologist – volume: 153 start-page: 145 year: 2010 end-page: 158 article-title: A novel MYBS3‐dependent pathway confers cold tolerance in rice publication-title: Plant Physiology – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 36 start-page: 311 year: 2017 end-page: 335 article-title: The WRKY transcription factor family in model plants and crops publication-title: Critical Reviews in Plant Sciences – volume: 167 start-page: 295 year: 2015 end-page: 306 article-title: Regulation of specialized metabolism by WRKY transcription factors publication-title: Plant Physiology – volume: 10 start-page: 2632 year: 2019 article-title: Chromatin interaction maps reveal genetic regulation for quantitative traits in maize publication-title: Nature Communications – volume: 172 start-page: 6 year: 2018 end-page: 8 article-title: Tomato multiomics reveals consequences of crop domestication and improvement publication-title: Cell – volume: 60 start-page: 141 year: 2012 end-page: 149 article-title: Hydrogen peroxide is involved in the cold acclimation‐induced chilling tolerance of tomato plants publication-title: Plant Physiology and Biochemistry – volume: 34 start-page: 884 year: 2018 end-page: 890 article-title: F : an ultra‐fast all‐in‐one F preprocessor publication-title: Bioinformatics – volume: 30 start-page: 2370 year: 2016 end-page: 2375 article-title: Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity publication-title: Genes & Development – volume: 40 start-page: 213 year: 2004 end-page: 224 article-title: Expression of in tobacco induces an AvrRps4‐independent HR that requires EDS1, SGT1 and HSP90 publication-title: The Plant Journal – volume: 5 start-page: 227 year: 2014 article-title: What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape publication-title: Frontiers in Plant Science – volume: 5 start-page: 174 year: 2014 article-title: Role and regulation of autophagy in heat stress responses of tomato plants publication-title: Frontiers in Plant Science – volume: 14 start-page: 840 year: 2013 end-page: 852 article-title: Evolution of crop species: genetics of domestication and diversification publication-title: Nature Reviews. Genetics – volume: 4 year: 2015 article-title: Negative regulation of ABA signaling by WRKY33 is critical for immunity towards 2100 publication-title: eLife – ident: e_1_2_8_41_1 doi: 10.1016/j.cub.2021.08.023 – ident: e_1_2_8_51_1 doi: 10.1093/plcell/koab255 – ident: e_1_2_8_62_1 doi: 10.15252/embj.2019103256 – ident: e_1_2_8_2_1 doi: 10.1016/j.cell.2020.05.021 – ident: e_1_2_8_24_1 doi: 10.1007/s00425-011-1375-2 – ident: e_1_2_8_17_1 doi: 10.1016/j.cell.2021.02.001 – ident: e_1_2_8_3_1 doi: 10.3390/ijms22115856 – ident: e_1_2_8_20_1 doi: 10.1038/nmeth.3317 – ident: e_1_2_8_74_1 doi: 10.3389/fpls.2014.00174 – ident: e_1_2_8_43_1 doi: 10.1186/s12870-019-1922-8 – ident: e_1_2_8_10_1 doi: 10.1111/nph.15696 – ident: e_1_2_8_59_1 doi: 10.3390/genes12101638 – ident: e_1_2_8_56_1 doi: 10.1126/science.aal1556 – ident: e_1_2_8_71_1 doi: 10.1111/j.1365-313X.2004.02201.x – ident: e_1_2_8_36_1 doi: 10.1073/pnas.1819769116 – ident: e_1_2_8_48_1 doi: 10.1046/j.1365-313x.2000.00787.x – ident: e_1_2_8_46_1 doi: 10.1038/nrg3229 – ident: e_1_2_8_53_1 doi: 10.1104/pp.110.153015 – ident: e_1_2_8_64_1 doi: 10.1093/jxb/ert298 – ident: e_1_2_8_68_1 doi: 10.1038/s41467-021-25001-y – ident: e_1_2_8_61_1 doi: 10.1111/pbi.13443 – ident: e_1_2_8_63_1 doi: 10.1073/pnas.0912670107 – ident: e_1_2_8_75_1 doi: 10.1093/jxb/erv221 – ident: e_1_2_8_26_1 doi: 10.1016/j.cell.2017.06.008 – ident: e_1_2_8_4_1 doi: 10.1104/pp.111.192641 – ident: e_1_2_8_72_1 doi: 10.1111/j.1365-313X.2006.02901.x – volume: 5 start-page: 227 year: 2014 ident: e_1_2_8_21_1 article-title: What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape publication-title: Frontiers in Plant Science contributor: fullname: Knaap E – ident: e_1_2_8_39_1 doi: 10.1093/jxb/ers296 – ident: e_1_2_8_13_1 doi: 10.1038/sj.hdy.6801000 – ident: e_1_2_8_25_1 doi: 10.1038/nbt.4273 – ident: e_1_2_8_50_1 doi: 10.1111/nph.16332 – ident: e_1_2_8_5_1 doi: 10.1104/pp.106.094292 – ident: e_1_2_8_14_1 doi: 10.1016/j.cell.2017.12.036 – ident: e_1_2_8_12_1 doi: 10.1093/genetics/141.3.1147 – ident: e_1_2_8_73_1 doi: 10.1016/j.plaphy.2012.07.010 – ident: e_1_2_8_60_1 doi: 10.1104/pp.18.01028 – ident: e_1_2_8_8_1 doi: 10.1093/bioinformatics/bty560 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-020-19705-w – ident: e_1_2_8_16_1 doi: 10.1016/j.cub.2018.07.029 – ident: e_1_2_8_42_1 doi: 10.1038/s41467-019-10602-5 – ident: e_1_2_8_35_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_8_58_1 doi: 10.1101/gad.290684.116 – ident: e_1_2_8_28_1 doi: 10.1093/plcell/koac137 – ident: e_1_2_8_37_1 doi: 10.1105/tpc.111.084996 – ident: e_1_2_8_49_1 doi: 10.1104/pp.114.251769 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-021-27117-7 – ident: e_1_2_8_45_1 doi: 10.1126/science.134.3496.2102-a – ident: e_1_2_8_69_1 doi: 10.1080/15548627.2020.1810426 – ident: e_1_2_8_9_1 doi: 10.1038/ng1784 – ident: e_1_2_8_31_1 doi: 10.1111/pce.13171 – ident: e_1_2_8_78_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_8_11_1 doi: 10.1038/s41588-018-0116-x – ident: e_1_2_8_44_1 doi: 10.1038/nature07895 – ident: e_1_2_8_76_1 doi: 10.1105/tpc.19.00971 – ident: e_1_2_8_38_1 doi: 10.1038/nrg3605 – ident: e_1_2_8_29_1 doi: 10.1038/ng.3117 – ident: e_1_2_8_30_1 doi: 10.1093/plcell/koab062 – ident: e_1_2_8_66_1 doi: 10.1093/bioinformatics/btv145 – ident: e_1_2_8_32_1 doi: 10.1016/S2095-3119(19)62824-8 – ident: e_1_2_8_79_1 doi: 10.1093/jxb/erq204 – ident: e_1_2_8_52_1 doi: 10.1016/j.pbi.2015.01.008 – ident: e_1_2_8_65_1 doi: 10.1186/gb-2010-11-2-r14 – ident: e_1_2_8_77_1 doi: 10.1016/j.cell.2017.12.019 – ident: e_1_2_8_67_1 doi: 10.1073/pnas.1913688117 – ident: e_1_2_8_57_1 doi: 10.1073/pnas.2021351118 – ident: e_1_2_8_22_1 doi: 10.1104/pp.20.01054 – ident: e_1_2_8_6_1 doi: 10.1080/07352689.2018.1441103 – ident: e_1_2_8_33_1 doi: 10.1111/jipb.12657 – ident: e_1_2_8_47_1 doi: 10.1111/nph.16540 – ident: e_1_2_8_27_1 doi: 10.1111/nph.14388 – ident: e_1_2_8_40_1 doi: 10.1139/g00-043 – ident: e_1_2_8_70_1 doi: 10.1105/tpc.17.00537 – ident: e_1_2_8_19_1 doi: 10.1016/j.tplants.2022.01.008 – ident: e_1_2_8_34_1 doi: 10.7554/eLife.07295 – ident: e_1_2_8_7_1 doi: 10.1105/tpc.111.089870 – ident: e_1_2_8_54_1 doi: 10.1016/j.tplants.2016.01.014 – ident: e_1_2_8_55_1 doi: 10.1111/nph.17020 – ident: e_1_2_8_15_1 doi: 10.1038/s41586-020-1997-2 |
SSID | ssj0009562 |
Score | 2.5660696 |
Snippet | Summary
Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations... Summary Natural variations in cis ‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter... Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 989 |
SubjectTerms | Chromatin Cold Cold tolerance Cultivation Fruit cultivation Gene expression Gene sequencing Immunoprecipitation Kinases Mutation natural variation Nucleic acids Nucleotide sequence Nucleotides PCR Phenotypes Polymorphism promoter Promoters Regulatory sequences Reverse transcription Ribonucleic acid RNA Sensitivity Sequencing Solanum habrochaites Solanum lycopersicum Solanum pennellii Stress tomato Tomatoes Transcription Transcription factors WRKY33 W‐box |
Title | A single‐nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18403 https://www.proquest.com/docview/2721511428 https://search.proquest.com/docview/2695286635 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5C6KGX_iQp3SYNauihFy-7klaW6SltErYJDSUkZAsFY-uHLknsZe09pKc-Qp-xT9IZ2d5sCoHSm8EStjUzmk_jmW8A3iZ8JGxieCQToyLpjIhyLlXktZHKxgjhQxX_51M1vpDHk9FkDd53tTANP8Qy4EaWEfZrMvAsr1aMvJh979PxhJg-hyKmdK6DM75CuKt4x8CspJq0rEKUxbOced8X3QHMVZga_MzRU_jWvWGTXnLVX9R53_z4i7zxPz_hGTxp8SfbbxTmOay5YgMefSgRI95uwnyfUezg2v3--asgpuOynlrHZuX17U2JEplWN2xasMuzk69CsFlI5XNzNq1Y1orZWUahXYa4kqGOWVZRhnzTooKmEtMHNVTDcXWJaLncgoujw_OP46jtyhAZIagYLyZStEwOkzhHLOatU7hF2sRmiKQU4glrnB9aPjDa82yQ2FhKIrmzfiS8l4l4AetFWbiXwLT2yjkjtTXoTI3QAx8bL3Wmc6GctD3Y6-STzhryjbQ7tODapWHterDTSS5t7a9KeUxQhtjkevBmeRsth36HZIUrFzhGJSOuCXH14F0Q08MPSU-_jMPFq38fug2POdVKhMLFHViv5wv3GhFMne-iqn462Q0K-wdNlO9_ |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VFoleoHxULLTFIA5cstraXseRuBTaaqHtClWtWA4oSvwhVm2T1W72UE78BH4jv4QZJ9kulZAQt0ixlcQzz36ezDwDvE54X9jE8EgmRkXSGRHlXKrIayOVjZHChyr-k6EanMuPo_5oBd62tTC1PsQi4EbICPM1AZwC0ksoLybfurQ_EXdgDeEuCJb7p3xJclfxVoNZSTVqdIUoj2fR9c_V6IZiLhPVsNIcPoCv7TvWCSYX3XmVd833W_KN__sRG3C_oaBsr_aZh7Diikdw912JNPH6MUz3GIUPLt2vHz8LEjsuq7F1bFJeXl-VaJTx7IqNC_b59OiLEGwSsvnclI1nLGss7Syj6C5DasnQzSybUZJ8fUoFdSWxDzpTDdtVJRLm8gmcHx6cvR9EzcEMkRGC6vFi0kXL5G4S50jHvHUKZ0mb2AzJlEJKYY3zu5b3jPY86yU2lpJ07qzvC-9lIjZhtSgL9xSY1l45Z6S2BtdTI3TPx8ZLnelcKCdtB161Bkontf5G2u5bcOzSMHYd2GpNlzYQnKU8JjZDgnIdeLm4jeChPyJZ4co5tlFJn2siXR14E-z094ekw0-DcPHs35u-gHuDs5Pj9PjD8Og5rHMqnQh1jFuwWk3nbhsJTZXvBL_9DYti8p8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHpSDUC-WrYqGAQRy4ZLW1vY4jTi2wWiisqoqKRUKKEn-IVdsk2s0eyolH6DP2SZhxkmVBQkLcIsVWEo_H_tmZ-RvgRcKHwiaGRzIxKpLOiCjnUkVeG6lsjAgfsvg_TtT4RL6fDqcb8KrLhWn0IVYbbuQZYbwmB6-sX3PyovrWp-WJuAbXpcKuSkR0zNcUdxXvJJiVVNNWVojCeFZVf5-MfhHmOqeGiWa0DV-7V2ziS077yzrvm-9_qDf-5zfchlstgLL9psfcgQ1X3IUbByVC4sU9mO8z2jw4c1c_LguSOi7rmXWsKs8uzks0yWxxzmYF-3x8-EUIVoVYPjdnswXLWjs7y2hvlyFYMuxkli0oRL45o4KqktQHnaiG5eoScbm8Dyejt59ej6P2WIbICEHZeDGpomVyL4lzhDFvncIx0iY2Q5RSCBTWOL9n-cBoz7NBYmMpSeXO-qHwXiZiBzaLsnAPgGntlXNGamtwNjVCD3xsvNSZzoVy0vbgeWeftGrUN9Ju1YJtl4a268FuZ7m0dcBFymNiGZKT68Gz1W10HfofkhWuXGIZlQy5JuTqwctgpr8_JJ0cjcPFw38v-hRuHr0ZpR_eTQ4fwRanvImQxLgLm_V86R4jzdT5k9BrfwLKsfFO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single%E2%80%90nucleotide+polymorphism+in+WRKY33+promoter+is+associated+with+the+cold+sensitivity+in+cultivated+tomato&rft.jtitle=The+New+phytologist&rft.au=Guo%2C+Mingyue&rft.au=Yang%2C+Fengjun&rft.au=Liu%2C+Chenxu&rft.au=Zou%2C+Jinping&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=236&rft.issue=3&rft.spage=989&rft.epage=1005&rft_id=info:doi/10.1111%2Fnph.18403&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |