A single‐nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato

Summary Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and r...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 236; no. 3; pp. 989 - 1005
Main Authors Guo, Mingyue, Yang, Fengjun, Liu, Chenxu, Zou, Jinping, Qi, Zhenyu, Fotopoulos, Vasileios, Lu, Gang, Yu, Jingquan, Zhou, Jie
Format Journal Article
LanguageEnglish
Published Lancaster Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat‑ and Botrytis‐induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation. Our findings suggest nucleotide polymorphism in cis‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.
AbstractList Summary Natural variations in cis ‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11 , MYBS3 , and BAG6 , thus enhancing cold tolerance. In addition, heat‑ and Botrytis ‐induced WRKY33 s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation. Our findings suggest nucleotide polymorphism in cis ‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.
Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood.In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress.Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat‑ and Botrytis‐induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation.Our findings suggest nucleotide polymorphism in cis‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.
Summary Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA‐sequencing (RNA‐Seq) data and reverse transcription quantitative real‐time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold‐sensitive cultivated tomato Solanum lycopersicum L. ‘Ailsa Craig’ but are significantly induced in cold‐tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W‐box in SlWRKY33 promoter results in the loss of self‐transcription function of SlWRKY33 under cold stress. Analysis integrating RNA‐Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat‑ and Botrytis‐induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W‐box variation. Our findings suggest nucleotide polymorphism in cis‐regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.
Author Fotopoulos, Vasileios
Zhou, Jie
Liu, Chenxu
Yang, Fengjun
Guo, Mingyue
Qi, Zhenyu
Yu, Jingquan
Lu, Gang
Zou, Jinping
Author_xml – sequence: 1
  givenname: Mingyue
  surname: Guo
  fullname: Guo, Mingyue
  organization: Zhejiang University
– sequence: 2
  givenname: Fengjun
  surname: Yang
  fullname: Yang, Fengjun
  organization: Zhejiang University
– sequence: 3
  givenname: Chenxu
  surname: Liu
  fullname: Liu, Chenxu
  organization: Zhejiang University
– sequence: 4
  givenname: Jinping
  surname: Zou
  fullname: Zou, Jinping
  organization: Zhejiang University
– sequence: 5
  givenname: Zhenyu
  surname: Qi
  fullname: Qi, Zhenyu
  organization: Zhejiang University
– sequence: 6
  givenname: Vasileios
  orcidid: 0000-0003-1205-2070
  surname: Fotopoulos
  fullname: Fotopoulos, Vasileios
  organization: Cyprus University of Technology
– sequence: 7
  givenname: Gang
  orcidid: 0000-0002-0116-7561
  surname: Lu
  fullname: Lu, Gang
  organization: Zhejiang University
– sequence: 8
  givenname: Jingquan
  orcidid: 0000-0002-7626-1165
  surname: Yu
  fullname: Yu, Jingquan
  organization: Agricultural Ministry of China
– sequence: 9
  givenname: Jie
  orcidid: 0000-0002-8797-7214
  surname: Zhou
  fullname: Zhou, Jie
  email: jie@zju.edu.cn
  organization: Zhejiang University
BookMark eNp10M1KHTEUB_AgFnq1XfQNAm7axWi-JjOzFFGvKCrSUl2FmJzxRjLJNMlU7q6P0Gfskzh6XQk9m8OB3zkc_jtoO8QACH2hZJ_OdRDG1T5tBeFbaEGF7KqW8mYbLQhhbSWFvP2IdnJ-JIR0tWQLlA5xduHBw78_f8NkPMTiLOAx-vUQ07hyecAu4J8353ec4zHFIRZI2GWsc47G6QIWP7mywmUF2ERvcYaQXXG_XVm_rJrJz8OrK3HQJX5CH3rtM3x-67vox8nx96NldXF1enZ0eFEZzgmveCNIW2tBu-ZeMN5bkNaC7ayWjEtGqDXQU8uIaXumSWcbIequaWxf874XHd9FXzd3569_TZCLGlw24L0OEKesmOxq1krJ65nuvaOPcUph_k6xhtGaUsHaWX3bKJNizgl6NSY36LRWlKiX9NWcvnpNf7YHG_vkPKz_D9Xl9XKz8Qxjb4oS
CitedBy_id crossref_primary_10_1111_tpj_16582
crossref_primary_10_1186_s12870_024_05320_0
crossref_primary_10_1016_j_plaphy_2023_108083
crossref_primary_10_1016_j_scienta_2023_112741
crossref_primary_10_1016_j_stress_2024_100390
crossref_primary_10_1038_s41467_023_40472_x
crossref_primary_10_1111_pbi_14016
crossref_primary_10_1016_j_plaphy_2024_108670
crossref_primary_10_3389_fpls_2023_1113125
crossref_primary_10_1111_pce_14816
crossref_primary_10_3389_fpls_2024_1377899
crossref_primary_10_1111_pce_14703
crossref_primary_10_1016_j_stress_2024_100429
crossref_primary_10_1186_s12864_024_10523_8
crossref_primary_10_3390_cimb45040187
crossref_primary_10_1093_hr_uhae057
crossref_primary_10_1093_plphys_kiad578
crossref_primary_10_1016_j_envexpbot_2023_105467
crossref_primary_10_1093_hr_uhac227
crossref_primary_10_1038_s41598_024_58903_0
Cites_doi 10.1016/j.cub.2021.08.023
10.1093/plcell/koab255
10.15252/embj.2019103256
10.1016/j.cell.2020.05.021
10.1007/s00425-011-1375-2
10.1016/j.cell.2021.02.001
10.3390/ijms22115856
10.1038/nmeth.3317
10.3389/fpls.2014.00174
10.1186/s12870-019-1922-8
10.1111/nph.15696
10.3390/genes12101638
10.1126/science.aal1556
10.1111/j.1365-313X.2004.02201.x
10.1073/pnas.1819769116
10.1046/j.1365-313x.2000.00787.x
10.1038/nrg3229
10.1104/pp.110.153015
10.1093/jxb/ert298
10.1038/s41467-021-25001-y
10.1111/pbi.13443
10.1073/pnas.0912670107
10.1093/jxb/erv221
10.1016/j.cell.2017.06.008
10.1104/pp.111.192641
10.1111/j.1365-313X.2006.02901.x
10.1093/jxb/ers296
10.1038/sj.hdy.6801000
10.1038/nbt.4273
10.1111/nph.16332
10.1104/pp.106.094292
10.1016/j.cell.2017.12.036
10.1093/genetics/141.3.1147
10.1016/j.plaphy.2012.07.010
10.1104/pp.18.01028
10.1093/bioinformatics/bty560
10.1038/s41467-020-19705-w
10.1016/j.cub.2018.07.029
10.1038/s41467-019-10602-5
10.1006/meth.2001.1262
10.1101/gad.290684.116
10.1093/plcell/koac137
10.1105/tpc.111.084996
10.1104/pp.114.251769
10.1038/s41467-021-27117-7
10.1126/science.134.3496.2102-a
10.1080/15548627.2020.1810426
10.1038/ng1784
10.1111/pce.13171
10.1016/j.cell.2016.08.029
10.1038/s41588-018-0116-x
10.1038/nature07895
10.1105/tpc.19.00971
10.1038/nrg3605
10.1038/ng.3117
10.1093/plcell/koab062
10.1093/bioinformatics/btv145
10.1016/S2095-3119(19)62824-8
10.1093/jxb/erq204
10.1016/j.pbi.2015.01.008
10.1186/gb-2010-11-2-r14
10.1016/j.cell.2017.12.019
10.1073/pnas.1913688117
10.1073/pnas.2021351118
10.1104/pp.20.01054
10.1080/07352689.2018.1441103
10.1111/jipb.12657
10.1111/nph.16540
10.1111/nph.14388
10.1139/g00-043
10.1105/tpc.17.00537
10.1016/j.tplants.2022.01.008
10.7554/eLife.07295
10.1105/tpc.111.089870
10.1016/j.tplants.2016.01.014
10.1111/nph.17020
10.1038/s41586-020-1997-2
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation.
Copyright © 2022 New Phytologist Trust
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation.
– notice: Copyright © 2022 New Phytologist Trust
DBID AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.18403
DatabaseName CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1005
ExternalDocumentID 10_1111_nph_18403
NPH18403
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31922078; 31872089
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 226‐2022‐00122
– fundername: Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study
  funderid: SN‐ZJU‐SIAS‐0011
– fundername: National Key Research and Development Program of China
  funderid: 2018YFD1000800
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AGUYK
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3303-374085a4197b423fde6dded9da6236201dcef1d20c8f2a09d7445977df53ff493
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Sat Aug 17 02:19:04 EDT 2024
Thu Oct 10 19:55:16 EDT 2024
Fri Aug 23 04:12:02 EDT 2024
Sat Aug 24 00:54:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3303-374085a4197b423fde6dded9da6236201dcef1d20c8f2a09d7445977df53ff493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8797-7214
0000-0002-0116-7561
0000-0002-7626-1165
0000-0003-1205-2070
PQID 2721511428
PQPubID 2026848
PageCount 1005
ParticipantIDs proquest_miscellaneous_2695286635
proquest_journals_2721511428
crossref_primary_10_1111_nph_18403
wiley_primary_10_1111_nph_18403_NPH18403
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Lancaster
PublicationPlace_xml – name: Lancaster
PublicationTitle The New phytologist
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2012; 60
2021; 22
2010; 107
2019; 10
2007; 143
2006; 38
2000; 43
2015; 31
2013; 64
2019; 19
2016; 30
2018; 41
2020; 11
2008; 100
2012; 13
2017; 355
2011; 233
2020; 19
2010; 61
2014; 5
2013; 14
2021; 31
2018; 172
2021; 33
2017; 36
2021; 118
2020; 578
2022; 34
2019; 116
2010; 153
2018; 30
2011; 23
2018; 34
2018; 36
2012; 63
2015; 12
2018; 28
2004; 40
2015; 4
2020; 184
2000; 23
2015; 167
2020; 182
2021; 229
2020; 226
2020; 39
2017; 170
2016; 167
2021; 184
1961; 134
2014; 46
2020; 227
2018; 60
2020; 32
2001; 25
2017; 214
2019; 222
2009; 457
2015; 24
2021; 12
2022
2021; 17
2015; 66
2021; 19
2006; 48
2016; 21
2019; 179
2020; 117
2018; 50
2012; 159
1995; 141
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
Knaap E (e_1_2_8_21_1) 2014; 5
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 24
  start-page: 47
  year: 2015
  end-page: 53
  article-title: Patterns of genomic changes with crop domestication and breeding
  publication-title: Current Opinion in Plant Biology
– volume: 64
  start-page: 5085
  year: 2013
  end-page: 5097
  article-title: WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance
  publication-title: Journal of Experimental Botany
– volume: 48
  start-page: 592
  year: 2006
  end-page: 605
  article-title: WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens
  publication-title: The Plant Journal
– volume: 32
  start-page: 2621
  year: 2020
  end-page: 2638
  article-title: Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in
  publication-title: Plant Cell
– volume: 172
  start-page: 249
  year: 2018
  end-page: 261
  article-title: Rewiring of the fruit metabolome in tomato breeding
  publication-title: Cell
– volume: 41
  start-page: 1762
  year: 2018
  end-page: 1775
  article-title: The bZip transcription factor mediates ‐induced anthocyanin biosynthesis in tomato
  publication-title: Plant, Cell & Environment
– volume: 118
  year: 2021
  article-title: SUMO enables substrate selectivity by mitogen‐activated protein kinases to regulate immunity in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 159
  start-page: 266
  year: 2012
  end-page: 285
  article-title: WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward infection
  publication-title: Plant Physiology
– volume: 182
  start-page: 145
  year: 2020
  end-page: 161
  article-title: Major impacts of widespread structural variation on gene expression and crop improvement in tomato
  publication-title: Cell
– volume: 63
  start-page: 6393
  year: 2012
  end-page: 6405
  article-title: Ethylene‐responsive transcription factors interact with promoters of and involved in persimmon ( ) fruit de‐astringency
  publication-title: Journal of Experimental Botany
– volume: 34
  start-page: 503
  year: 2022
  end-page: 513
  article-title: Quality control and evaluation of plant epigenomics data
  publication-title: Plant Cell
– volume: 141
  start-page: 1147
  year: 1995
  end-page: 1162
  article-title: An introgression line population of in the cultivated tomato enables the identification and fine mapping of yield‐associated QTL
  publication-title: Genetics
– volume: 38
  start-page: 594
  year: 2006
  end-page: 597
  article-title: A distant upstream enhancer at the maize domestication gene has pleiotropic effects on plant and inflorescent architecture
  publication-title: Nature Genetics
– volume: 184
  start-page: 1724
  year: 2021
  end-page: 1739
  article-title: Conserved pleiotropy of an ancient plant homeobox gene uncovered by ‐regulatory dissection
  publication-title: Cell
– volume: 12
  start-page: 6892
  year: 2021
  article-title: Interaction of two MADS‐box genes leads to growth phenotype divergence of all‐flesh type of tomatoes
  publication-title: Nature Communications
– year: 2022
  article-title: Transcriptional regulatory network of plant cold‐stress responses
  publication-title: Trends in Plant Science
– volume: 30
  start-page: 652
  year: 2018
  end-page: 667
  article-title: A plant phytosulfokine peptide initiates auxin‐dependent immunity through cytosolic Ca signaling in tomato
  publication-title: Plant Cell
– volume: 11
  start-page: R14
  year: 2010
  article-title: Gene ontology analysis for RNA‐seq: accounting for selection bias
  publication-title: Genome Biology
– volume: 46
  start-page: 1220
  year: 2014
  end-page: 1226
  article-title: Genomic analyses provide insights into the history of tomato breeding
  publication-title: Nature Genetics
– volume: 116
  start-page: 3494
  year: 2019
  end-page: 3501
  article-title: Natural variation in the gene confers chilling tolerance in rice and allowed adaptation to a temperate climate
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 170
  start-page: 114
  year: 2017
  end-page: 126
  article-title: A natural allele of a transcription factor in rice confers broad‐spectrum blast resistance
  publication-title: Cell
– volume: 60
  start-page: 780
  year: 2018
  end-page: 795
  article-title: Insights into the regulation of C‐repeat binding factors in plant cold signaling
  publication-title: Journal of Integrative Plant Biology
– volume: 214
  start-page: 695
  year: 2017
  end-page: 705
  article-title: B‐cell lymphoma2 (Bcl‐2)‐associated athanogene 7 (BAG7)‐mediated heat tolerance requires translocation, sumoylation and binding to WRKY29
  publication-title: New Phytologist
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method
  publication-title: Methods
– volume: 31
  start-page: 2382
  year: 2015
  end-page: 2383
  article-title: : an R/bioconductor package for ChIP peak annotation, comparison and visualization
  publication-title: Bioinformatics
– volume: 22
  start-page: 5856
  year: 2021
  article-title: The and genes are involved in multiple abiotic stress tolerances in
  publication-title: International Journal of Molecular Sciences
– volume: 229
  start-page: 106
  year: 2021
  end-page: 125
  article-title: WRKY33 interacts with WRKY12 protein to up‐regulate during submergence induced hypoxia response in
  publication-title: New Phytologist
– volume: 143
  start-page: 707
  year: 2007
  end-page: 719
  article-title: Modulation of ethylene responses affects plant salt‐stress responses
  publication-title: Plant Physiology
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  article-title: H : a fast spliced aligner with low memory requirements
  publication-title: Nature Methods
– volume: 184
  start-page: 2199
  year: 2020
  end-page: 2215
  article-title: Regulation of a cytochrome P450 Gene by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance
  publication-title: Plant Physiology
– volume: 34
  start-page: 2833
  year: 2022
  end-page: 2851
  article-title: The transcription factor negatively regulates cold tolerance in maize
  publication-title: Plant Cell
– volume: 28
  start-page: 3005
  year: 2018
  end-page: 3015
  article-title: Stepwise ‐regulatory changes in contribute to maize flowering‐time adaptation
  publication-title: Current Biology
– volume: 19
  start-page: 352
  year: 2019
  article-title: Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in rice through RNA‐Seq analysis
  publication-title: BMC Plant Biology
– volume: 19
  start-page: 20
  year: 2021
  end-page: 22
  article-title: Natural variations in contribute to the loss of salt tolerance during tomato domestication
  publication-title: Plant Biotechnology Journal
– volume: 226
  start-page: 189
  year: 2020
  end-page: 204
  article-title: Reactive oxygen species dosage in chloroplasts can improve resistance towards by the induction of WRKY33
  publication-title: New Phytologist
– volume: 107
  start-page: 6088
  year: 2010
  end-page: 6093
  article-title: , an Bcl‐2‐associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 100
  start-page: 191
  year: 2008
  end-page: 199
  article-title: Evaluating the role of natural selection in the evolution of gene regulation
  publication-title: Heredity
– volume: 61
  start-page: 3901
  year: 2010
  end-page: 3914
  article-title: Male gametophyte‐specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in
  publication-title: Journal of Experimental Botany
– volume: 233
  start-page: 1237
  year: 2011
  end-page: 1252
  article-title: WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance
  publication-title: Planta
– volume: 23
  start-page: 1639
  year: 2011
  end-page: 1653
  article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in
  publication-title: Plant Cell
– volume: 66
  start-page: 4567
  year: 2015
  end-page: 4583
  article-title: Characterization of the promoter and extended C‐terminal domain of WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses
  publication-title: Journal of Experimental Botany
– volume: 43
  start-page: 803
  year: 2000
  end-page: 813
  article-title: Development of a set of near isogenic and backcross recombinant inbred lines containing most of the genome in a genetic background: a tool for gene mapping and gene discovery
  publication-title: Genome
– volume: 23
  start-page: 319
  year: 2000
  end-page: 327
  article-title: Over‐expression of a single Ca ‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants
  publication-title: The Plant Journal
– volume: 19
  start-page: 120
  year: 2020
  end-page: 132
  article-title: Domestication and breeding changed tomato fruit transcriptome
  publication-title: Journal of Integrative Agriculture
– volume: 23
  start-page: 3335
  year: 2011
  end-page: 3352
  article-title: The basic Helix–Loop‐Helix transcription factor MYC2 directly represses expression during jasmonate‐mediated modulation of the root stem cell niche in
  publication-title: Plant Cell
– volume: 13
  start-page: 505
  year: 2012
  end-page: 516
  article-title: Comparative studies of gene expression and the evolution of gene regulation
  publication-title: Nature Reviews. Genetics
– volume: 50
  start-page: 796
  year: 2018
  end-page: 802
  article-title: Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits
  publication-title: Nature Genetics
– volume: 12
  start-page: 1638
  year: 2021
  article-title: Transcriptome profiling of maize ( L.) leaves reveals key cold‐responsive genes, transcription factors, and metabolic pathways regulating cold stress tolerance at the seedling stage
  publication-title: Genes
– volume: 21
  start-page: 506
  year: 2016
  end-page: 515
  article-title: Lessons from domestication: targeting ‐regulatory elements for crop improvement
  publication-title: Trends in Plant Science
– volume: 578
  start-page: 572
  year: 2020
  end-page: 576
  article-title: The strength and pattern of natural selection on gene expression in rice
  publication-title: Nature
– volume: 457
  start-page: 843
  year: 2009
  end-page: 848
  article-title: The nature of selection during plant domestication
  publication-title: Nature
– volume: 12
  start-page: 4713
  year: 2021
  article-title: Natural variation in a type‐A response regulator confers maize chilling tolerance
  publication-title: Nature Communications
– volume: 11
  start-page: 5844
  year: 2020
  article-title: encodes a GA2‐oxidase that regulates fruit firmness in tomato
  publication-title: Nature Communications
– volume: 179
  start-page: 671
  year: 2019
  end-page: 685
  article-title: BZR1 mediates brassinosteroid‐induced autophagy and nitrogen starvation in tomato
  publication-title: Plant Physiology
– volume: 222
  start-page: 1690
  year: 2019
  end-page: 1704
  article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants
  publication-title: New Phytologist
– volume: 31
  start-page: 4788
  year: 2021
  end-page: 4799
  article-title: Leaf form diversification in an ornamental heirloom tomato results from alterations in two different genes
  publication-title: Current Biology
– volume: 39
  year: 2020
  article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na /K transporter
  publication-title: EMBO Journal
– volume: 36
  start-page: 1160
  year: 2018
  end-page: 1163
  article-title: Domestication of wild tomato is accelerated by genome editing
  publication-title: Nature Biotechnology
– volume: 134
  start-page: 2102
  year: 1961
  article-title: New source of the gene governing jointless pedicel in tomato
  publication-title: Science
– volume: 33
  start-page: 1771
  year: 2021
  end-page: 1789
  article-title: The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in
  publication-title: Plant Cell
– volume: 355
  start-page: 391
  year: 2017
  end-page: 394
  article-title: A chemical genetic roadmap to improved tomato flavor
  publication-title: Science
– volume: 117
  start-page: 8187
  year: 2020
  end-page: 8195
  article-title: regulates tomato fruit size through the floral meristem development network
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 17
  start-page: 2093
  year: 2021
  end-page: 2110
  article-title: Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens
  publication-title: Autophagy
– volume: 227
  start-page: 629
  year: 2020
  end-page: 640
  article-title: Natural variation in the promoter of determines grain width and weight in rice
  publication-title: New Phytologist
– volume: 153
  start-page: 145
  year: 2010
  end-page: 158
  article-title: A novel MYBS3‐dependent pathway confers cold tolerance in rice
  publication-title: Plant Physiology
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 36
  start-page: 311
  year: 2017
  end-page: 335
  article-title: The WRKY transcription factor family in model plants and crops
  publication-title: Critical Reviews in Plant Sciences
– volume: 167
  start-page: 295
  year: 2015
  end-page: 306
  article-title: Regulation of specialized metabolism by WRKY transcription factors
  publication-title: Plant Physiology
– volume: 10
  start-page: 2632
  year: 2019
  article-title: Chromatin interaction maps reveal genetic regulation for quantitative traits in maize
  publication-title: Nature Communications
– volume: 172
  start-page: 6
  year: 2018
  end-page: 8
  article-title: Tomato multiomics reveals consequences of crop domestication and improvement
  publication-title: Cell
– volume: 60
  start-page: 141
  year: 2012
  end-page: 149
  article-title: Hydrogen peroxide is involved in the cold acclimation‐induced chilling tolerance of tomato plants
  publication-title: Plant Physiology and Biochemistry
– volume: 34
  start-page: 884
  year: 2018
  end-page: 890
  article-title: F : an ultra‐fast all‐in‐one F preprocessor
  publication-title: Bioinformatics
– volume: 30
  start-page: 2370
  year: 2016
  end-page: 2375
  article-title: Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity
  publication-title: Genes & Development
– volume: 40
  start-page: 213
  year: 2004
  end-page: 224
  article-title: Expression of in tobacco induces an AvrRps4‐independent HR that requires EDS1, SGT1 and HSP90
  publication-title: The Plant Journal
– volume: 5
  start-page: 227
  year: 2014
  article-title: What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape
  publication-title: Frontiers in Plant Science
– volume: 5
  start-page: 174
  year: 2014
  article-title: Role and regulation of autophagy in heat stress responses of tomato plants
  publication-title: Frontiers in Plant Science
– volume: 14
  start-page: 840
  year: 2013
  end-page: 852
  article-title: Evolution of crop species: genetics of domestication and diversification
  publication-title: Nature Reviews. Genetics
– volume: 4
  year: 2015
  article-title: Negative regulation of ABA signaling by WRKY33 is critical for immunity towards 2100
  publication-title: eLife
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cub.2021.08.023
– ident: e_1_2_8_51_1
  doi: 10.1093/plcell/koab255
– ident: e_1_2_8_62_1
  doi: 10.15252/embj.2019103256
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cell.2020.05.021
– ident: e_1_2_8_24_1
  doi: 10.1007/s00425-011-1375-2
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cell.2021.02.001
– ident: e_1_2_8_3_1
  doi: 10.3390/ijms22115856
– ident: e_1_2_8_20_1
  doi: 10.1038/nmeth.3317
– ident: e_1_2_8_74_1
  doi: 10.3389/fpls.2014.00174
– ident: e_1_2_8_43_1
  doi: 10.1186/s12870-019-1922-8
– ident: e_1_2_8_10_1
  doi: 10.1111/nph.15696
– ident: e_1_2_8_59_1
  doi: 10.3390/genes12101638
– ident: e_1_2_8_56_1
  doi: 10.1126/science.aal1556
– ident: e_1_2_8_71_1
  doi: 10.1111/j.1365-313X.2004.02201.x
– ident: e_1_2_8_36_1
  doi: 10.1073/pnas.1819769116
– ident: e_1_2_8_48_1
  doi: 10.1046/j.1365-313x.2000.00787.x
– ident: e_1_2_8_46_1
  doi: 10.1038/nrg3229
– ident: e_1_2_8_53_1
  doi: 10.1104/pp.110.153015
– ident: e_1_2_8_64_1
  doi: 10.1093/jxb/ert298
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467-021-25001-y
– ident: e_1_2_8_61_1
  doi: 10.1111/pbi.13443
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.0912670107
– ident: e_1_2_8_75_1
  doi: 10.1093/jxb/erv221
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cell.2017.06.008
– ident: e_1_2_8_4_1
  doi: 10.1104/pp.111.192641
– ident: e_1_2_8_72_1
  doi: 10.1111/j.1365-313X.2006.02901.x
– volume: 5
  start-page: 227
  year: 2014
  ident: e_1_2_8_21_1
  article-title: What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape
  publication-title: Frontiers in Plant Science
  contributor:
    fullname: Knaap E
– ident: e_1_2_8_39_1
  doi: 10.1093/jxb/ers296
– ident: e_1_2_8_13_1
  doi: 10.1038/sj.hdy.6801000
– ident: e_1_2_8_25_1
  doi: 10.1038/nbt.4273
– ident: e_1_2_8_50_1
  doi: 10.1111/nph.16332
– ident: e_1_2_8_5_1
  doi: 10.1104/pp.106.094292
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cell.2017.12.036
– ident: e_1_2_8_12_1
  doi: 10.1093/genetics/141.3.1147
– ident: e_1_2_8_73_1
  doi: 10.1016/j.plaphy.2012.07.010
– ident: e_1_2_8_60_1
  doi: 10.1104/pp.18.01028
– ident: e_1_2_8_8_1
  doi: 10.1093/bioinformatics/bty560
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-020-19705-w
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cub.2018.07.029
– ident: e_1_2_8_42_1
  doi: 10.1038/s41467-019-10602-5
– ident: e_1_2_8_35_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_8_58_1
  doi: 10.1101/gad.290684.116
– ident: e_1_2_8_28_1
  doi: 10.1093/plcell/koac137
– ident: e_1_2_8_37_1
  doi: 10.1105/tpc.111.084996
– ident: e_1_2_8_49_1
  doi: 10.1104/pp.114.251769
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-021-27117-7
– ident: e_1_2_8_45_1
  doi: 10.1126/science.134.3496.2102-a
– ident: e_1_2_8_69_1
  doi: 10.1080/15548627.2020.1810426
– ident: e_1_2_8_9_1
  doi: 10.1038/ng1784
– ident: e_1_2_8_31_1
  doi: 10.1111/pce.13171
– ident: e_1_2_8_78_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_8_11_1
  doi: 10.1038/s41588-018-0116-x
– ident: e_1_2_8_44_1
  doi: 10.1038/nature07895
– ident: e_1_2_8_76_1
  doi: 10.1105/tpc.19.00971
– ident: e_1_2_8_38_1
  doi: 10.1038/nrg3605
– ident: e_1_2_8_29_1
  doi: 10.1038/ng.3117
– ident: e_1_2_8_30_1
  doi: 10.1093/plcell/koab062
– ident: e_1_2_8_66_1
  doi: 10.1093/bioinformatics/btv145
– ident: e_1_2_8_32_1
  doi: 10.1016/S2095-3119(19)62824-8
– ident: e_1_2_8_79_1
  doi: 10.1093/jxb/erq204
– ident: e_1_2_8_52_1
  doi: 10.1016/j.pbi.2015.01.008
– ident: e_1_2_8_65_1
  doi: 10.1186/gb-2010-11-2-r14
– ident: e_1_2_8_77_1
  doi: 10.1016/j.cell.2017.12.019
– ident: e_1_2_8_67_1
  doi: 10.1073/pnas.1913688117
– ident: e_1_2_8_57_1
  doi: 10.1073/pnas.2021351118
– ident: e_1_2_8_22_1
  doi: 10.1104/pp.20.01054
– ident: e_1_2_8_6_1
  doi: 10.1080/07352689.2018.1441103
– ident: e_1_2_8_33_1
  doi: 10.1111/jipb.12657
– ident: e_1_2_8_47_1
  doi: 10.1111/nph.16540
– ident: e_1_2_8_27_1
  doi: 10.1111/nph.14388
– ident: e_1_2_8_40_1
  doi: 10.1139/g00-043
– ident: e_1_2_8_70_1
  doi: 10.1105/tpc.17.00537
– ident: e_1_2_8_19_1
  doi: 10.1016/j.tplants.2022.01.008
– ident: e_1_2_8_34_1
  doi: 10.7554/eLife.07295
– ident: e_1_2_8_7_1
  doi: 10.1105/tpc.111.089870
– ident: e_1_2_8_54_1
  doi: 10.1016/j.tplants.2016.01.014
– ident: e_1_2_8_55_1
  doi: 10.1111/nph.17020
– ident: e_1_2_8_15_1
  doi: 10.1038/s41586-020-1997-2
SSID ssj0009562
Score 2.5660696
Snippet Summary Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations...
Summary Natural variations in cis ‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter...
Natural variations in cis‐regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 989
SubjectTerms Chromatin
Cold
Cold tolerance
Cultivation
Fruit cultivation
Gene expression
Gene sequencing
Immunoprecipitation
Kinases
Mutation
natural variation
Nucleic acids
Nucleotide sequence
Nucleotides
PCR
Phenotypes
Polymorphism
promoter
Promoters
Regulatory sequences
Reverse transcription
Ribonucleic acid
RNA
Sensitivity
Sequencing
Solanum habrochaites
Solanum lycopersicum
Solanum pennellii
Stress
tomato
Tomatoes
Transcription
Transcription factors
WRKY33
W‐box
Title A single‐nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18403
https://www.proquest.com/docview/2721511428
https://search.proquest.com/docview/2695286635
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5C6KGX_iQp3SYNauihFy-7klaW6SltErYJDSUkZAsFY-uHLknsZe09pKc-Qp-xT9IZ2d5sCoHSm8EStjUzmk_jmW8A3iZ8JGxieCQToyLpjIhyLlXktZHKxgjhQxX_51M1vpDHk9FkDd53tTANP8Qy4EaWEfZrMvAsr1aMvJh979PxhJg-hyKmdK6DM75CuKt4x8CspJq0rEKUxbOced8X3QHMVZga_MzRU_jWvWGTXnLVX9R53_z4i7zxPz_hGTxp8SfbbxTmOay5YgMefSgRI95uwnyfUezg2v3--asgpuOynlrHZuX17U2JEplWN2xasMuzk69CsFlI5XNzNq1Y1orZWUahXYa4kqGOWVZRhnzTooKmEtMHNVTDcXWJaLncgoujw_OP46jtyhAZIagYLyZStEwOkzhHLOatU7hF2sRmiKQU4glrnB9aPjDa82yQ2FhKIrmzfiS8l4l4AetFWbiXwLT2yjkjtTXoTI3QAx8bL3Wmc6GctD3Y6-STzhryjbQ7tODapWHterDTSS5t7a9KeUxQhtjkevBmeRsth36HZIUrFzhGJSOuCXH14F0Q08MPSU-_jMPFq38fug2POdVKhMLFHViv5wv3GhFMne-iqn462Q0K-wdNlO9_
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VFoleoHxULLTFIA5cstraXseRuBTaaqHtClWtWA4oSvwhVm2T1W72UE78BH4jv4QZJ9kulZAQt0ixlcQzz36ezDwDvE54X9jE8EgmRkXSGRHlXKrIayOVjZHChyr-k6EanMuPo_5oBd62tTC1PsQi4EbICPM1AZwC0ksoLybfurQ_EXdgDeEuCJb7p3xJclfxVoNZSTVqdIUoj2fR9c_V6IZiLhPVsNIcPoCv7TvWCSYX3XmVd833W_KN__sRG3C_oaBsr_aZh7Diikdw912JNPH6MUz3GIUPLt2vHz8LEjsuq7F1bFJeXl-VaJTx7IqNC_b59OiLEGwSsvnclI1nLGss7Syj6C5DasnQzSybUZJ8fUoFdSWxDzpTDdtVJRLm8gmcHx6cvR9EzcEMkRGC6vFi0kXL5G4S50jHvHUKZ0mb2AzJlEJKYY3zu5b3jPY86yU2lpJ07qzvC-9lIjZhtSgL9xSY1l45Z6S2BtdTI3TPx8ZLnelcKCdtB161Bkontf5G2u5bcOzSMHYd2GpNlzYQnKU8JjZDgnIdeLm4jeChPyJZ4co5tlFJn2siXR14E-z094ekw0-DcPHs35u-gHuDs5Pj9PjD8Og5rHMqnQh1jFuwWk3nbhsJTZXvBL_9DYti8p8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHpSDUC-WrYqGAQRy4ZLW1vY4jTi2wWiisqoqKRUKKEn-IVdsk2s0eyolH6DP2SZhxkmVBQkLcIsVWEo_H_tmZ-RvgRcKHwiaGRzIxKpLOiCjnUkVeG6lsjAgfsvg_TtT4RL6fDqcb8KrLhWn0IVYbbuQZYbwmB6-sX3PyovrWp-WJuAbXpcKuSkR0zNcUdxXvJJiVVNNWVojCeFZVf5-MfhHmOqeGiWa0DV-7V2ziS077yzrvm-9_qDf-5zfchlstgLL9psfcgQ1X3IUbByVC4sU9mO8z2jw4c1c_LguSOi7rmXWsKs8uzks0yWxxzmYF-3x8-EUIVoVYPjdnswXLWjs7y2hvlyFYMuxkli0oRL45o4KqktQHnaiG5eoScbm8Dyejt59ej6P2WIbICEHZeDGpomVyL4lzhDFvncIx0iY2Q5RSCBTWOL9n-cBoz7NBYmMpSeXO-qHwXiZiBzaLsnAPgGntlXNGamtwNjVCD3xsvNSZzoVy0vbgeWeftGrUN9Ju1YJtl4a268FuZ7m0dcBFymNiGZKT68Gz1W10HfofkhWuXGIZlQy5JuTqwctgpr8_JJ0cjcPFw38v-hRuHr0ZpR_eTQ4fwRanvImQxLgLm_V86R4jzdT5k9BrfwLKsfFO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single%E2%80%90nucleotide+polymorphism+in+WRKY33+promoter+is+associated+with+the+cold+sensitivity+in+cultivated+tomato&rft.jtitle=The+New+phytologist&rft.au=Guo%2C+Mingyue&rft.au=Yang%2C+Fengjun&rft.au=Liu%2C+Chenxu&rft.au=Zou%2C+Jinping&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=236&rft.issue=3&rft.spage=989&rft.epage=1005&rft_id=info:doi/10.1111%2Fnph.18403&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon