Observations of canopy storage capacity and wet canopy evaporation in a humid boreal forest

Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 35; no. 2
Main Authors Hadiwijaya, Bram, Isabelle, Pierre‐Erik, Nadeau, Daniel F., Pepin, Steeve
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub‐daily and seasonal time scales in a humid boreal forest. This study relies on field‐based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir‐white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400‐m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow‐free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models. Measurements of canopy water balance components are performed in a humid balsam fir boreal forest during the snow‐free seasons of 2017 and 2018. The rate of change in water volume on the canopy was estimated with water balance and directly measured using stem compression system. Evapotranspiration partitioning was estimated with eddy‐covariance and sapflow measurements.
AbstractList Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub‐daily and seasonal time scales in a humid boreal forest. This study relies on field‐based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir‐white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400‐m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow‐free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub‐daily and seasonal time scales in a humid boreal forest. This study relies on field‐based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir‐white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400‐m 2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow‐free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub‐daily and seasonal time scales in a humid boreal forest. This study relies on field‐based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir‐white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400‐m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow‐free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models. Measurements of canopy water balance components are performed in a humid balsam fir boreal forest during the snow‐free seasons of 2017 and 2018. The rate of change in water volume on the canopy was estimated with water balance and directly measured using stem compression system. Evapotranspiration partitioning was estimated with eddy‐covariance and sapflow measurements.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub‐daily and seasonal time scales in a humid boreal forest. This study relies on field‐based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir‐white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400‐m² plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow‐free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.
Author Pepin, Steeve
Hadiwijaya, Bram
Isabelle, Pierre‐Erik
Nadeau, Daniel F.
Author_xml – sequence: 1
  givenname: Bram
  orcidid: 0000-0001-8828-3276
  surname: Hadiwijaya
  fullname: Hadiwijaya, Bram
  organization: Université Laval
– sequence: 2
  givenname: Pierre‐Erik
  orcidid: 0000-0002-2819-1377
  surname: Isabelle
  fullname: Isabelle, Pierre‐Erik
  organization: Université Laval
– sequence: 3
  givenname: Daniel F.
  orcidid: 0000-0002-4006-2623
  surname: Nadeau
  fullname: Nadeau, Daniel F.
  email: daniel.nadeau@gci.ulaval.ca
  organization: Université Laval
– sequence: 4
  givenname: Steeve
  surname: Pepin
  fullname: Pepin, Steeve
  organization: Université Laval
BookMark eNp1kD9PwzAQxS1UJNrCwDewxAJD6F3iJM6IEP8kJBhgQAyW49iQKo2DnbTKt8dQWCrQDaezf--d_WZk0tpWE3KMcI4A8eJ97M6RQYx7ZIpQFBECTydkCpynUQY8PyAz75cAwIDDlLw-lF67texr23pqDVWytd1IfW-dfNNh7KSq-5HKtqIb3f_e67XsAvElo3VLJX0fVnVFS-u0bKgJzfeHZN_Ixuujnz4nz9dXT5e30f3Dzd3lxX2kkgQwKlOe5TnEECdM5SWaVEuJSYXIyjg3pUpSkxSKK5SYMsaRhUNeVFVlTKKhSubkdOvbOfsxhMViVXulm0a22g5exGmKRZFnWRbQkx10aQfXhteJmBVxKM4wUIstpZz13mkjQgTff-2drBuBIL7CFiFs8R12UJztKDpXr6Qb_2R_3Dd1o8f_QXH78rhVfALbgZCg
CitedBy_id crossref_primary_10_1029_2020GL091919
crossref_primary_10_1038_s43247_022_00483_w
crossref_primary_10_1002_joc_8344
crossref_primary_10_1016_j_jhydrol_2023_130374
crossref_primary_10_1016_j_agrformet_2021_108410
crossref_primary_10_1002_hyp_14828
crossref_primary_10_1016_j_jhydrol_2024_131734
crossref_primary_10_1016_j_jhydrol_2025_132812
crossref_primary_10_1080_15481603_2024_2353982
crossref_primary_10_1016_j_agrformet_2025_110398
crossref_primary_10_5194_amt_17_3697_2024
crossref_primary_10_3390_f13081187
crossref_primary_10_2478_johh_2022_0015
crossref_primary_10_1016_j_ecolmodel_2024_110620
crossref_primary_10_1029_2024GL111634
Cites_doi 10.1029/96JD03325
10.1016/j.agrformet.2004.01.010
10.1111/j.1365-2486.2005.001002.x
10.1002/eco.276
10.1002/hyp.11397
10.1016/j.agrformet.2008.06.013
10.1002/hyp.7175
10.1016/j.foreco.2018.07.044
10.1016/j.agrformet.2016.07.001
10.1016/j.jhydrol.2007.09.041
10.2136/vzj2009.0158
10.1002/joc.3370130402
10.1002/qj.49710544304
10.1016/S0022-1694(96)03066-1
10.1023/A:1024148707239
10.1139/x03-027
10.1007/s00704-009-0216-8
10.1016/j.jhydrol.2010.02.004
10.1656/1092-6194(2006)13[131:VVOBWS]2.0.CO;2
10.1016/S0168-1923(00)00123-4
10.1029/2009WR007776
10.1002/hyp.7712
10.1016/S0022-1694(03)00024-6
10.1023/A:1001557022310
10.1002/hyp.10376
10.1016/S0168-1923(99)00126-4
10.1016/j.jhydrol.2004.06.043
10.1002/hyp.5563
10.1029/GM029p0058
10.1016/0022-1694(78)90131-2
10.1002/eco.2081
10.1002/hyp.5562
10.1016/S0168-1923(97)00012-9
10.1175/JHM596.1
10.1029/2001JD900070
10.1016/j.agrformet.2006.08.007
10.1016/S0168-1923(99)00008-8
10.1016/j.agrformet.2008.05.011
10.1002/wrcr.20271
10.1007/s004680000065
10.1139/cjfr-2013-0164
10.1016/j.agrformet.2005.03.003
10.1139/x84-129
10.1029/2008WR007074
10.1016/0022-1694(95)02697-N
10.1016/S0168-1923(00)00199-4
10.1016/S0022-1694(98)00200-5
10.4236/ojmh.2012.22005
10.1016/S0022-1694(01)00392-4
10.1890/06-0922.1
10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
10.1016/S0022-1694(96)03267-2
10.3390/f11020237
10.1016/j.advwatres.2005.07.017
10.1016/0168-1923(88)90067-6
10.1051/forest:2000158
10.1016/j.agrformet.2019.107813
10.1038/s41558-020-0763-7
10.1016/j.jhydrol.2014.06.007
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.14021
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage n/a
ExternalDocumentID 10_1002_hyp_14021
HYP14021
Genre article
GeographicLocations Quebec
GeographicLocations_xml – name: Quebec
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RDCPJ‐477125‐14
– fundername: Ouranos Consortium, Hydro‐Québec, Environment and Climate Change Canada
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3301-b58677020234c7b1f5eaa13d114b27fbc35f39c8c1a15448147fb89dddff3e0d3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Fri Jul 11 18:25:20 EDT 2025
Fri Jul 25 05:04:52 EDT 2025
Tue Jul 01 01:46:48 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Wed Jan 22 16:31:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3301-b58677020234c7b1f5eaa13d114b27fbc35f39c8c1a15448147fb89dddff3e0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4006-2623
0000-0001-8828-3276
0000-0002-2819-1377
PQID 2492929841
PQPubID 2034139
PageCount 19
ParticipantIDs proquest_miscellaneous_2551997666
proquest_journals_2492929841
crossref_citationtrail_10_1002_hyp_14021
crossref_primary_10_1002_hyp_14021
wiley_primary_10_1002_hyp_14021_HYP14021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1979; 105
1989; 117
2005; 130
2007; 347
2004; 124
1997; 86
1997; 197
2020; 280
2019; 12
2010; 101
2010; 385
1975
1974
1984; 29
1978; 38
2008; 148
2020; 11
2020; 10
2013; 6
1998; 89
1998; 212–213
2003; 276
2001; 106
1995; 170
2016; 228–229
1997; 102
2010; 24
1984; 14
2000; 14
2000; 57
2005; 302
2007; 8
2006; 29
1997; 190
1999; 94
1988; 42
2018; 32
2010; 9
2009; 23
2013; 49
2014; 517
2006; 13
2008; 18
1999; 98–99
2001; 247
2014; 44
2003; 33
1999
2018; 430
1993; 13
2003; 108
2005; 19
2012; 2
2015; 29
2010; 46
2004; 18
2000; 103
2006; 140
2019
2016
2008; 44
2005; 11
1967
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
Leyton L. (e_1_2_9_35_1) 1967
e_1_2_9_38_1
Rutter A. J. (e_1_2_9_51_1) 1975
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Bren L. (e_1_2_9_9_1) 2016
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 190
  start-page: 141
  issue: 1–2
  year: 1997
  end-page: 162
  article-title: Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models interception with an analytical model
  publication-title: Journal of Hydrology
– volume: 517
  start-page: 677
  year: 2014
  end-page: 690
  article-title: Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure, local and regional advection
  publication-title: Journal of Hydrology
– volume: 38
  start-page: 49
  issue: 1–2
  year: 1978
  end-page: 58
  article-title: An application of the Rutter model to the estimation of the interception loss from Thetford forest
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 974
  issue: 7
  year: 2006
  end-page: 986
  article-title: Storage of water on vegetation under simulated rainfall of varying intensity
  publication-title: Advances in Water Resources
– volume: 101
  start-page: 149
  year: 2010
  end-page: 160
  article-title: Energy balance closure for the LITFASS–2003 experiment
  publication-title: Theoretical and Applied Climatology
– volume: 148
  start-page: 1655
  issue: 11
  year: 2008
  end-page: 1667
  article-title: Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest
  publication-title: Agricultural and Forest Meteorology
– volume: 18
  start-page: 1507
  issue: 8
  year: 2004
  end-page: 1511
  article-title: The importance of interception and why we should delete the term evapotranspiration from our vocabulary
  publication-title: Hydrological Processes
– volume: 103
  start-page: 279
  issue: 3
  year: 2000
  end-page: 300
  article-title: Correcting eddy‐covariance flux underestimates over a grassland
  publication-title: Agricultural and Forest Meteorology
– volume: 9
  start-page: 1025
  issue: 4
  year: 2010
  end-page: 1033
  article-title: Insights from independent evapotranspiration estimates for closing the energy balance: A grassland case study
  publication-title: Vadose Zone Journal
– start-page: 163
  year: 1967
  end-page: 168
– volume: 124
  start-page: 171
  issue: 3–4
  year: 2004
  end-page: 191
  article-title: The dynamics of rainfall interception by a seasonal temperate rainforest
  publication-title: Agricultural and Forest Meteorology
– volume: 6
  start-page: 51
  issue: 1
  year: 2013
  end-page: 63
  article-title: Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: An ecosystem model based approach
  publication-title: Ecohydrology
– volume: 49
  start-page: 3243
  issue: 6
  year: 2013
  end-page: 3256
  article-title: Development and testing of a snow interceptometer to quantify canopy water storage and interception processes in the rain/snow transition zone of the North Cascades, Washington, USA
  publication-title: Water Resources Research
– volume: 18
  start-page: 1351
  issue: 6
  year: 2008
  end-page: 1367
  article-title: The energy balance closure problem: An overview
  publication-title: Ecological Applications
– volume: 197
  start-page: 70
  issue: 1–4
  year: 1997
  end-page: 87
  article-title: Evaporation components of a boreal forest: Variations during the growing season
  publication-title: Journal of Hydrology
– volume: 32
  start-page: 39
  issue: 1
  year: 2018
  end-page: 50
  article-title: Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations
  publication-title: Hydrological Processes
– volume: 117
  start-page: 536
  issue: 3
  year: 1989
  end-page: 549
  article-title: A simple parameterization of land surface processes for meteorological models
  publication-title: Monthly Weather Review
– volume: 8
  start-page: 862
  issue: 4
  year: 2007
  end-page: 880
  article-title: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction
  publication-title: Journal of Hydrometeorology
– volume: 14
  start-page: 722
  issue: 5
  year: 1984
  end-page: 730
  article-title: Interception de la pluie dans la sapinière à bouleau blanc, Forêt Montmorency
  publication-title: Canadian Journal of Forest Research
– volume: 29
  start-page: 2504
  issue: 11
  year: 2015
  end-page: 2520
  article-title: Evolution of forest precipitation water storage measurement methods
  publication-title: Hydrological Processes
– volume: 108
  start-page: 365
  issue: 3
  year: 2003
  end-page: 396
  article-title: Evaluating a model of evaporation and transpiration with observations in a partially wet douglas‐fir forest
  publication-title: Boundary‐Layer Meteorology
– volume: 98–99
  start-page: 595
  year: 1999
  end-page: 604
  article-title: Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest
  publication-title: Agricultural and Forest Meteorology
– volume: 89
  start-page: 109
  year: 1998
  end-page: 140
  article-title: Turbulent flux measurements above and below the overstory of a boreal aspen forest
  publication-title: Boundary‐Layer Meteorology
– volume: 2
  start-page: 29
  issue: 2
  year: 2012
  end-page: 40
  article-title: Assessing the efficacy of two indirect methods for quantifying canopy variables associated with the interception loss of rainfall in temperate hardwood forests
  publication-title: Open Journal of Modern Hydrology
– volume: 23
  start-page: 764
  issue: 5
  year: 2009
  end-page: 776
  article-title: Changes in stream water quality due to logging of the boreal forest in the Montmorency Forest, Québec
  publication-title: Hydrological Processes
– year: 2019
– volume: 106
  start-page: 153
  issue: 2
  year: 2001
  end-page: 168
  article-title: A comparison of methods for determining forest evapotranspiration and its components: Sap‐flow, soil water budget, eddy covariance and catchment water balance
  publication-title: Agricultural and Forest Meteorology
– volume: 105
  start-page: 43
  issue: 443
  year: 1979
  end-page: 55
  article-title: An analytical model of rainfall interception by forests
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 86
  start-page: 193
  issue: 3–4
  year: 1997
  end-page: 203
  article-title: Applicability of the eddy correlation method to measure sensible heat transfer to forest under rainfall conditions
  publication-title: Agricultural and Forest Meteorology
– volume: 13
  start-page: 347
  issue: 4
  year: 1993
  end-page: 370
  article-title: Class–A Canadian land surface scheme for GCMs, II. Vegetation model and coupled runs
  publication-title: International Journal of Climatology
– start-page: 49
  year: 1999
  end-page: 59
– volume: 106
  issue: D24
  year: 2001
  article-title: Intercomparison of BOREAS northern and southern study area surface fluxes in 1994
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 347
  start-page: 308
  issue: 3–4
  year: 2007
  end-page: 318
  article-title: Evaluation of canopy interception schemes in land surface models
  publication-title: Journal of Hydrology
– volume: 33
  start-page: 1046
  issue: 6
  year: 2003
  end-page: 1060
  article-title: Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario
  publication-title: Canadian Journal of Forest Research
– volume: 19
  start-page: 1355
  issue: 7
  year: 2005
  end-page: 1371
  article-title: Rainfall interception in a lower montane forest in Ecuador: Effects of canopy properties
  publication-title: Hydrological Processes
– volume: 102
  issue: D24
  year: 1997
  article-title: Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 276
  start-page: 12
  issue: 1–4
  year: 2003
  end-page: 19
  article-title: Average wet canopy evaporation for a Sitka spruce forest derived using the eddy correlation‐energy balance technique
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 131
  issue: 1
  year: 2006
  end-page: 137
  article-title: Vertical variation of bark water storage capacity of L. (Eastern white pine) in southern Illinois
  publication-title: Northeastern Naturalist
– volume: 170
  start-page: 79
  issue: 1–4
  year: 1995
  end-page: 86
  article-title: Estimating sparse forest rainfall interception with an analytical model
  publication-title: Journal of Hydrology
– volume: 42
  start-page: 63
  issue: 1
  year: 1988
  end-page: 73
  article-title: Spatial variability of throughfall and stemflow measurements in Amazonian rainforest
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  issue: 4
  year: 2019
  article-title: Rainfall partitioning varies across a forest age chronosequence in the southern Appalachian Mountains
  publication-title: Ecohydrology
– start-page: 11
  year: 1975
  end-page: 154
– volume: 302
  start-page: 137
  issue: 1–4
  year: 2005
  end-page: 153
  article-title: Rainfall generated stormflow response to clearcutting a boreal forest: Peak flow comparison with 50 world‐wide basin studies
  publication-title: Journal of Hydrology
– year: 2016
– volume: 130
  start-page: 113
  issue: 1–2
  year: 2005
  end-page: 129
  article-title: The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old‐growth Douglas‐fir forest
  publication-title: Agricultural and Forest Meteorology
– volume: 44
  start-page: 118
  issue: 2
  year: 2014
  end-page: 127
  article-title: Black spruce trees from pre‐origin stands have higher wood mechanical properties than those from older, irregular stands
  publication-title: Canadian Journal of Forest Research
– volume: 11
  start-page: 1424
  issue: 9
  year: 2005
  end-page: 1439
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm
  publication-title: Global Change Biology
– volume: 24
  start-page: 3011
  issue: 21
  year: 2010
  end-page: 3025
  article-title: Spatial and temporal variability of canopy and forest floor interception in a beech forest
  publication-title: Hydrological Processes
– volume: 11
  start-page: 237
  issue: 2
  year: 2020
  article-title: The dynamics of transpiration to evapotranspiration ratio under wet and dry canopy conditions in a humid boreal forest
  publication-title: Forests
– volume: 29
  start-page: 58
  year: 1984
  end-page: 72
  article-title: Modeling evapotranspiration for three‐dimensional global climate models
  publication-title: Climate Processes and Climate Sensitivity
– volume: 430
  start-page: 33
  year: 2018
  end-page: 42
  article-title: Dynamics of detrital carbon pools following harvesting of a humid eastern Canadian balsam fir boreal forest
  publication-title: Forest Ecology and Management
– volume: 94
  start-page: 149
  issue: 2
  year: 1999
  end-page: 158
  article-title: Estimates and measurements of evaporation from wet, sparse pine forest in Portugal
  publication-title: Agricultural and Forest Meteorology
– volume: 10
  start-page: 1
  year: 2020
  end-page: 6
  article-title: Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
  publication-title: Nature Climate Change
– volume: 212–213
  start-page: 36
  year: 1998
  end-page: 50
  article-title: Water storage and evaporation as constituents of rainfall interception
  publication-title: Journal of Hydrology
– year: 1974
– volume: 280
  year: 2020
  article-title: Impacts of high precipitation on the energy and water budgets of a humid boreal forest
  publication-title: Agricultural and Forest Meteorology
– volume: 46
  issue: 1
  year: 2010
  article-title: Sampling procedures for throughfall monitoring: A simulation study
  publication-title: Water Resources Research
– volume: 228–229
  start-page: 191
  year: 2016
  end-page: 204
  article-title: Evapotranspiration assessment of a mixed temperate forest by four methods: Eddy covariance, soil water budget, analytical and model
  publication-title: Agricultural and Forest Meteorology
– volume: 148
  start-page: 1719
  issue: 11
  year: 2008
  end-page: 1732
  article-title: Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements
  publication-title: Agricultural and Forest Meteorology
– volume: 385
  start-page: 65
  issue: 1–4
  year: 2010
  end-page: 75
  article-title: A new method for determining the throughfall fraction and throughfall depth in vegetation canopies
  publication-title: Journal of Hydrology
– volume: 247
  start-page: 230
  issue: 3–4
  year: 2001
  end-page: 238
  article-title: Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description
  publication-title: Journal of Hydrology
– volume: 44
  issue: 4
  year: 2008
  article-title: Tree rainfall interception measured by stem compression
  publication-title: Water Resources Research
– volume: 140
  start-page: 322
  issue: 1–4
  year: 2006
  end-page: 337
  article-title: Surface energy balance closure by the eddy covariance method above three boreal forest stands and implications for the measurement of the CO flux
  publication-title: Agricultural and Forest Meteorology
– volume: 57
  start-page: 755
  issue: 8
  year: 2000
  end-page: 765
  article-title: A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index
  publication-title: Annals of Forest Science
– volume: 14
  start-page: 424
  issue: 8
  year: 2000
  end-page: 428
  article-title: The effect of temperature on mechanical properties of standing lodgepole pine trees
  publication-title: Trees
– ident: e_1_2_9_2_1
  doi: 10.1029/96JD03325
– ident: e_1_2_9_36_1
  doi: 10.1016/j.agrformet.2004.01.010
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: e_1_2_9_21_1
  doi: 10.1002/eco.276
– ident: e_1_2_9_39_1
  doi: 10.1002/hyp.11397
– ident: e_1_2_9_44_1
  doi: 10.1016/j.agrformet.2008.06.013
– ident: e_1_2_9_57_1
  doi: 10.1002/hyp.7175
– ident: e_1_2_9_53_1
  doi: 10.1016/j.foreco.2018.07.044
– ident: e_1_2_9_55_1
  doi: 10.1016/j.agrformet.2016.07.001
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jhydrol.2007.09.041
– ident: e_1_2_9_65_1
  doi: 10.2136/vzj2009.0158
– ident: e_1_2_9_62_1
  doi: 10.1002/joc.3370130402
– ident: e_1_2_9_17_1
  doi: 10.1002/qj.49710544304
– ident: e_1_2_9_59_1
  doi: 10.1016/S0022-1694(96)03066-1
– ident: e_1_2_9_7_1
  doi: 10.1023/A:1024148707239
– ident: e_1_2_9_42_1
  doi: 10.1139/x03-027
– ident: e_1_2_9_14_1
  doi: 10.1007/s00704-009-0216-8
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jhydrol.2010.02.004
– ident: e_1_2_9_5_1
– ident: e_1_2_9_34_1
  doi: 10.1656/1092-6194(2006)13[131:VVOBWS]2.0.CO;2
– ident: e_1_2_9_58_1
  doi: 10.1016/S0168-1923(00)00123-4
– ident: e_1_2_9_66_1
  doi: 10.1029/2009WR007776
– ident: e_1_2_9_22_1
  doi: 10.1002/hyp.7712
– start-page: 11
  volume-title: Vegetation and the atmosphere
  year: 1975
  ident: e_1_2_9_51_1
– ident: e_1_2_9_46_1
– ident: e_1_2_9_60_1
  doi: 10.1016/S0022-1694(03)00024-6
– ident: e_1_2_9_6_1
  doi: 10.1023/A:1001557022310
– ident: e_1_2_9_15_1
  doi: 10.1002/hyp.10376
– ident: e_1_2_9_32_1
  doi: 10.1016/S0168-1923(99)00126-4
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jhydrol.2004.06.043
– ident: e_1_2_9_52_1
  doi: 10.1002/hyp.5563
– ident: e_1_2_9_10_1
  doi: 10.1029/GM029p0058
– ident: e_1_2_9_19_1
  doi: 10.1016/0022-1694(78)90131-2
– ident: e_1_2_9_8_1
  doi: 10.1002/eco.2081
– ident: e_1_2_9_12_1
  doi: 10.1002/hyp.5562
– ident: e_1_2_9_41_1
  doi: 10.1016/S0168-1923(97)00012-9
– ident: e_1_2_9_33_1
  doi: 10.1175/JHM596.1
– ident: e_1_2_9_3_1
  doi: 10.1029/2001JD900070
– ident: e_1_2_9_4_1
  doi: 10.1016/j.agrformet.2006.08.007
– ident: e_1_2_9_20_1
  doi: 10.1016/S0168-1923(99)00008-8
– ident: e_1_2_9_28_1
  doi: 10.1016/j.agrformet.2008.05.011
– ident: e_1_2_9_38_1
  doi: 10.1002/wrcr.20271
– ident: e_1_2_9_54_1
  doi: 10.1007/s004680000065
– ident: e_1_2_9_56_1
  doi: 10.1139/cjfr-2013-0164
– ident: e_1_2_9_47_1
  doi: 10.1016/j.agrformet.2005.03.003
– ident: e_1_2_9_45_1
  doi: 10.1139/x84-129
– start-page: 163
  volume-title: International symposium on forest hydrology
  year: 1967
  ident: e_1_2_9_35_1
– ident: e_1_2_9_16_1
  doi: 10.1029/2008WR007074
– ident: e_1_2_9_18_1
  doi: 10.1016/0022-1694(95)02697-N
– ident: e_1_2_9_64_1
  doi: 10.1016/S0168-1923(00)00199-4
– ident: e_1_2_9_31_1
  doi: 10.1016/S0022-1694(98)00200-5
– ident: e_1_2_9_40_1
– ident: e_1_2_9_48_1
  doi: 10.4236/ojmh.2012.22005
– ident: e_1_2_9_61_1
  doi: 10.1016/S0022-1694(01)00392-4
– ident: e_1_2_9_13_1
  doi: 10.1890/06-0922.1
– ident: e_1_2_9_43_1
  doi: 10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
– ident: e_1_2_9_24_1
  doi: 10.1016/S0022-1694(96)03267-2
– volume-title: Forest hydrology and catchment management: An Australian perspective
  year: 2016
  ident: e_1_2_9_9_1
– ident: e_1_2_9_26_1
  doi: 10.3390/f11020237
– ident: e_1_2_9_30_1
  doi: 10.1016/j.advwatres.2005.07.017
– ident: e_1_2_9_37_1
  doi: 10.1016/0168-1923(88)90067-6
– ident: e_1_2_9_23_1
  doi: 10.1051/forest:2000158
– ident: e_1_2_9_29_1
  doi: 10.1016/j.agrformet.2019.107813
– ident: e_1_2_9_27_1
  doi: 10.1038/s41558-020-0763-7
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jhydrol.2014.06.007
SSID ssj0004080
Score 2.422937
Snippet Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Annual precipitation
Atmospheric precipitations
Betula
boreal forest
Boreal forests
Canopies
Canopy
canopy evaporation
canopy water storage
Compression
Conifers
Covariance
Eddy covariance
Environmental monitoring
Evaporation
Evapotranspiration
Forest canopy
Forest humidity
Forests
Hydrologic models
Hydrology
Interception
Mean annual precipitation
Moisture content
Precipitation
Quebec
Rain
Rainfall
Rainfall interception
sap flow
stem compression
stemflow
Stems
Storage capacity
Storage conditions
surface storage
Surface water
Taiga
Throughfall
Transpiration
Understory
Water balance
Water content
water interception
Water storage
Title Observations of canopy storage capacity and wet canopy evaporation in a humid boreal forest
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14021
https://www.proquest.com/docview/2492929841
https://www.proquest.com/docview/2551997666
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jL_riXZxOieKDL93apld8EnEMwQviYKJQcisbalvcqsxf70l6mYqCSF_a5pQmOeckX9LT7yB0qHA9l8IzOAF3c1xLGgEjzAB7tkQI6wFPs-tfXHr9gXM-dIcNdFz9C1PwQ9Qbbsoz9HitHJyySXdOGjqaZeDmpv6JXMVqKUB0M6eOckydNQ2cyDU8M_ArViHT7tZPfp2L5gDzM0zV80xvGT1UNSzCSx47-ZR1-Ps38sZ_NmEFLZX4E58UBrOKGjJZQwtlKvTRbB3dX7F6o3aC0xhD36fZDKsoShh74BJW2QDdMU0EfpPTqly-0qw0JzxOMMWj_HksMJgYQFEM0BjavIEGvbPb075RZmAA1YHnG8xVdHemSrHucJ9ZsSsptYiARRSz_Zhx4sYk5AG3qGL1CSwHbgahECKOiTQF2UTNJE3kFsKWG_u26XNmE9-BQZVZDidx4BFqU2Zzv4WOKl1EvKQnV1kynqKCWNmOoLci3VstdFCLZgUnx09C7UqhUemWk0jRI8IROFC8XxeDQ6mvJDSRaQ4ygCFDAGmeB1XS2vv9JVH_7lqfbP9ddAct2iouRkd-t1Fz-pLLXQA2U7anLfgDfob0CQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DH-aLd3Feo_jgS7Vtehv4IuKod5ENJiIlt7KhdkU7Zf56T9LLVBRE-tI2KU1yzkm-k55-B6Edheu5FJ7BCZib41rSCBhhBuizJZrgD3iaXf_i0gs7zmnX7dbQQfkvTM4PUW24KcvQ87UycLUhvT9mDe2NUrBzU_1FPqkyemuH6mZMHuWYOm8amJFreGbgl7xCpr1fPfp1NRpDzM9AVa80rRl0X7YxDzB52BtmbI-_f6Nv_G8nZtF0AUHxYa4zc6gmk3lUL7Kh90YL6O6KVXu1L3gQYxj-QTrCKpASph-4BEcb0DumicBvMivL5StNC43C_QRT3Bs-9QUGLQM0igEdQ6cXUad13D4KjSIJA0gPjN9grmK8M1WWdYf7zIpdSalFBPhRzPZjxokbkyYPuEUVsU9gOXAzaAoh4phIU5AlNJEMErmMsOXGvm36nNnEd2BeZZbDSRx4hNqU2dxvoN1SGBEvGMpVoozHKOdWtiMYrUiPVgNtV1XTnJbjp0prpUSjwjJfIsWQCEfgQPFWVQw2pT6U0EQOhlAHYGQTcJrnQZO0-H5_SRTeXuuTlb9X3UT1sH1xHp2fXJ6toilbhcnoQPA1NJE9D-U64JyMbWh1_gC44Pgk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6ioL54i-sZxQdfqm2THotPoi7rLaKgKJScrKjdorvK-uudpMeqKIj0pe2kNMnMJF_S6TcIrRtcL5QMHUHA3WjgKSfmhDtgz56sw3ogtOz6J6dh84oeXgfXA2i7_Bcm54eoNtyMZ9jx2jh4JvVWnzS01cvAzV3zE_kQDd3YmPTeRZ87iro2bRp4UeCAOCpphVx_q3r062TUR5ifcaqdaBrj6K6sYh5f8rDZ7fBN8f6NvfGfbZhAYwUAxTu5xUyiAZVOoZEiF3qrN41uz3i1U_uC2xpD57ezHjZhlDD4wCUsswG7Y5ZK_KY6pVy9sqywJ3yfYoZb3ad7icHGAItiwMbQ5hl01di_3G06RQoG0B24vsMDw3fnmhzrVETc04FizCMSVlHcjzQXJNCkLmLhMUPrE3sUbsZ1KaXWRLmSzKLBtJ2qOYS9QEe-Gwnuk4jCqMo9KoiOQ8J8xn0R1dBGqYtEFPzkJk3GY5IzK_sJ9FZie6uG1qqiWU7K8VOhxVKhSeGXL4nhR4QjpiBercTgUeYzCUtVuwtlAETWAaWFIVTJau_3lyTNm3N7Mv_3oito-HyvkRwfnB4toFHfxMjYKPBFNNh57qolADkdvmyN-QP2tPbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observations+of+canopy+storage+capacity+and+wet+canopy+evaporation+in+a+humid+boreal+forest&rft.jtitle=Hydrological+processes&rft.au=Hadiwijaya%2C+Bram&rft.au=Pierre%E2%80%90Erik+Isabelle&rft.au=Nadeau%2C+Daniel+F&rft.au=Pepin%2C+Steeve&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1002%2Fhyp.14021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon