Development of a method for flood detection based on Sentinel‐1 images and classifier algorithms
Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and infrastructure. It is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activ...
Saved in:
Published in | Water and environment journal : WEJ Vol. 35; no. 3; pp. 924 - 929 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and infrastructure. It is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services and human health. Real‐time monitoring systems play a key role in flood risk reduction and disaster response decisions. Studies have shown that using earth observation data for flood monitoring and timely actions based on good quality information reduces damages. In this paper, after thresholding, a machine learning algorithm and an object‐based classification method were used to classify the SAR data. Thresholding helps detect regions in the flooded areas. A comparison of the results showed that the machine learning algorithm obtained significant results. Because of the results obtained, the usefulness of Sentinel‐1 images as a baseline data for the improvement of the methodological guide is appreciated and should be used as a new source to monitor the flood risks. |
---|---|
AbstractList | Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and infrastructure. It is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services and human health. Real‐time monitoring systems play a key role in flood risk reduction and disaster response decisions. Studies have shown that using earth observation data for flood monitoring and timely actions based on good quality information reduces damages. In this paper, after thresholding, a machine learning algorithm and an object‐based classification method were used to classify the SAR data. Thresholding helps detect regions in the flooded areas. A comparison of the results showed that the machine learning algorithm obtained significant results. Because of the results obtained, the usefulness of Sentinel‐1 images as a baseline data for the improvement of the methodological guide is appreciated and should be used as a new source to monitor the flood risks. |
Author | Sharifi, Alireza |
Author_xml | – sequence: 1 givenname: Alireza orcidid: 0000-0001-7110-7516 surname: Sharifi fullname: Sharifi, Alireza email: a_sharifi@sru.ac.ir organization: Shahid Rajaee Teacher Training University |
BookMark | eNp9kL1OwzAUhS0EEqUw8AaWWGAotePESUYE5U9IDIAYLce-pq6cuNgpVTcegWfkSTAUMSDBXe4ZvnN079lBm53vAKF9So5pmvESZsc04xXdQANa5uWIFzXb_NFVsY12YpwRkpc15wPUnMELOD9voeuxN1jiFvqp19j4gI3zSWnoQfXWd7iRETRO4i7RtgP3_vpGsW3lE0QsO42VkzFaYyFg6Z58sP20jbtoy0gXYe97D9HD-eT-9HJ0c3txdXpyM1KMETqqqrLWTdkYw5jRBACk0jUANZTppGTdqLwAAgpqRaDkTGa51oZIUxe6lGyIDte58-CfFxB70dqowDnZgV9EkXHG84oXBUnowS905hehS9eJrOC0qjNGykQdrSkVfIwBjJiH9GxYCUrEZ9sitS2-2k7s-BerbC8_W-uDtO4_x9I6WP0dLR4n12vHB0IPlc0 |
CitedBy_id | crossref_primary_10_1142_S0219649224500825 crossref_primary_10_1007_s12524_021_01362_1 crossref_primary_10_1007_s10668_021_02097_2 crossref_primary_10_1016_j_prime_2023_100360 crossref_primary_10_1038_s41598_023_50863_1 crossref_primary_10_1016_j_bdr_2023_100415 crossref_primary_10_1111_wej_12892 crossref_primary_10_1109_JSTARS_2023_3288743 crossref_primary_10_1016_j_prime_2023_100323 crossref_primary_10_1109_JSTARS_2023_3242310 crossref_primary_10_1108_AEAT_07_2022_0199 crossref_primary_10_1117_1_JRS_17_046501 crossref_primary_10_1016_j_sigpro_2023_109150 crossref_primary_10_3390_app12157811 crossref_primary_10_1016_j_rse_2024_114017 crossref_primary_10_1016_j_infrared_2023_105092 crossref_primary_10_1109_JSTARS_2023_3336924 crossref_primary_10_1007_s12665_024_12005_2 crossref_primary_10_1016_j_ejrs_2024_01_001 crossref_primary_10_3390_app112110104 crossref_primary_10_1016_j_compag_2024_108768 crossref_primary_10_1016_j_ejrs_2024_01_002 crossref_primary_10_1002_dac_5703 crossref_primary_10_1007_s12145_023_01196_0 crossref_primary_10_1016_j_prime_2024_100611 crossref_primary_10_1016_j_ejrs_2023_09_002 crossref_primary_10_1007_s10661_023_11425_0 crossref_primary_10_1016_j_bdr_2024_100425 crossref_primary_10_1109_JSTARS_2023_3317488 crossref_primary_10_3390_s23198088 crossref_primary_10_1007_s11119_023_10103_y crossref_primary_10_1007_s10661_023_10918_2 crossref_primary_10_1007_s12524_021_01399_2 crossref_primary_10_1016_j_isprsjprs_2024_03_004 crossref_primary_10_1016_j_rama_2024_11_007 crossref_primary_10_1016_j_heliyon_2023_e21172 crossref_primary_10_1038_s41598_023_43667_w crossref_primary_10_1016_j_bdr_2023_100416 crossref_primary_10_1016_j_bdr_2023_100417 crossref_primary_10_1007_s10661_023_11224_7 crossref_primary_10_1016_j_heliyon_2023_e21908 crossref_primary_10_1109_JSTARS_2023_3239756 crossref_primary_10_1016_j_scitotenv_2023_162285 crossref_primary_10_1109_JSTARS_2023_3328389 crossref_primary_10_3390_su162310730 |
Cites_doi | 10.1108/AEAT-02-2020-0030 10.1016/j.pce.2010.12.009 10.1002/jsfa.10568 10.1016/j.ejrs.2017.10.002 10.1007/s10666-019-09664-y 10.1109/JSTARS.2012.2215310 10.1080/01431161.2016.1192304 10.1007/s11069-019-03617-0 10.1016/j.jag.2014.12.001 10.1007/978-90-481-9618-0_3 10.1007/s12524-014-0423-3 10.1080/01431161.2019.1577999 10.1007/s11676-017-0578-1 10.1007/s12524-020-01155-y 10.1016/j.rse.2020.111664 10.2112/JCOASTRES-D-14-00160.1 10.1007/s12524-019-01057-8 10.3390/rs11131581 10.5194/isprs-archives-XLII-3-W8-497-2019 |
ContentType | Journal Article |
Copyright | 2020 CIWEM 2021 CIWEM |
Copyright_xml | – notice: 2020 CIWEM – notice: 2021 CIWEM |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI 7S9 L.6 |
DOI | 10.1111/wej.12681 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1747-6593 |
EndPage | 929 |
ExternalDocumentID | 10_1111_wej_12681 WEJ12681 |
Genre | article |
GrantInformation_xml | – fundername: Shahid Rajaee Teacher Training University funderid: 19059 |
GroupedDBID | --- .3N .DC .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 4P2 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EDH EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 YCJ ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QH 7ST 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3301-8879db7bff33fd0eeeacd9ee1f13dcd9a9bc45e0ece9c0e763a24ddf0af95d7a3 |
IEDL.DBID | DR2 |
ISSN | 1747-6585 |
IngestDate | Fri Jul 11 18:35:32 EDT 2025 Wed Aug 13 10:46:36 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Tue Jul 01 01:25:01 EDT 2025 Wed Jan 22 16:27:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3301-8879db7bff33fd0eeeacd9ee1f13dcd9a9bc45e0ece9c0e763a24ddf0af95d7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7110-7516 |
PQID | 2561892307 |
PQPubID | 756427 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2636486550 proquest_journals_2561892307 crossref_primary_10_1111_wej_12681 crossref_citationtrail_10_1111_wej_12681 wiley_primary_10_1111_wej_12681_WEJ12681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Water and environment journal : WEJ |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 38 2020a; 48 2019; 40 2020; 240 2015; 314 2011 2019; 30 2019; 96 2019; 11 2020; 92 2015; 43 2020c 2019 2020; 48 2020; 25 2011; 36 2018; 21 2020b; 100 1975; 9 2012; 5 2016; 37 2016; 14 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Goodman J.W. (e_1_2_6_3_1) 1975; 9 e_1_2_6_9_1 e_1_2_6_8_1 Sharifi A. (e_1_2_6_15_1) 2020 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 Sharifi A. (e_1_2_6_16_1) 2016; 14 e_1_2_6_17_1 e_1_2_6_18_1 |
References_xml | – volume: 48 start-page: 1289 issue: 9 year: 2020a end-page: 1296 article-title: Flood mapping using relevance vector machine and SAR data: a case study from Aqqala, Iran publication-title: Journal of the Indian Society of Remote Sensing – volume: 30 start-page: 31 issue: 1 year: 2019 end-page: 44 article-title: How does Cariniana estrellensis respond to different irradiance levels? publication-title: Journal of Forestry Research – volume: 92 start-page: 1073 issue: 7 year: 2020 end-page: 1083 article-title: Remote sensing satellite's attitude control system: rapid performance sizing for passive scan imaging mode publication-title: Aircraft Engineering and Aerospace Technology – volume: 100 start-page: 5191 issue: 14 year: 2020b end-page: 5196 article-title: Remotely sensed vegetation indices for crop nutrition mapping publication-title: Journal of the Science of Food and Agriculture – volume: 314 start-page: 1005 year: 2015 end-page: 1013 article-title: Remote sensing of floods and flood‐prone areas: an overview publication-title: Journal of Coastal Research – volume: 40 start-page: 5050 issue: 13 year: 2019 end-page: 5077 article-title: Automatic extraction of flood inundation areas from SAR images: a case study of Jilin, China during the 2017 flood disaster publication-title: International Journal of Remote Sensing – volume: 9 year: 1975 article-title: Statistical properties of laser speckle patterns publication-title: Laser Speckle and Related Phenomena – volume: 25 start-page: 97 issue: 1 year: 2020 end-page: 114 article-title: Hydrodynamic modeling for flood hazard assessment in a data scarce region: a case study of Bharathapuzha river basin publication-title: Environmental Modeling and Assessment – volume: 11 issue: 13 year: 2019 article-title: Operational flood mapping using multi‐temporal Sentinel‐1 SAR images: a case study from Bangladesh publication-title: Remote Sensing – volume: 48 start-page: 11 issue: 1 year: 2020 end-page: 19 article-title: Application of sentinel‐1 data to estimate height and biomass of rice crop in Astaneh‐ye Ashrafiyeh, Iran publication-title: Journal of the Indian Society of Remote Sensing – volume: 38 start-page: 15 year: 2015 end-page: 24 article-title: Flood detection from multi‐temporal SAR data using harmonic analysis and change detection publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 21 start-page: S37 year: 2018 end-page: S41 article-title: Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India publication-title: Egyptian Journal of Remote Sensing and Space Science – year: 2020c article-title: Yield prediction with machine learning algorithms and satellite images publication-title: Journal of the Science of Food and Agriculture – volume: 240 year: 2020 article-title: Rapid and robust monitoring of flood events using Sentinel‐1 and Landsat data on the Google Earth Engine publication-title: Remote Sensing of Environment – volume: 36 start-page: 241 issue: 7‐8 year: 2011 end-page: 252 article-title: Towards an automated SAR‐based flood monitoring system: Lessons learned from two case studies publication-title: Physics and Chemistry of the Earth – volume: 96 start-page: 1335 issue: 3 year: 2019 end-page: 1365 article-title: ‘Application of the coupled TOPSIS–Mahalanobis distance for multi‐hazard‐based management of the target districts of the Golestan Province, Iran publication-title: Natural Hazards – start-page: 19 year: 2011 end-page: 29 – volume: 37 start-page: 2990 issue: 13 year: 2016 end-page: 3004 article-title: Sentinel‐1‐based flood mapping: a fully automated processing chain publication-title: International Journal of Remote Sensing – year: 2019 – volume: 5 start-page: 1344 issue: 5 year: 2012 end-page: 1355 article-title: Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 14 start-page: 125 issue: 2 year: 2016 end-page: 137 article-title: Development of an allometric model to estimate above‐ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran publication-title: Caspian Journal of Environmental Sciences – volume: 43 start-page: 339 issue: 2 year: 2015 end-page: 346 article-title: Speckle reduction of PolSAR images in forest regions using fast ICA algorithm publication-title: Journal of the Indian Society of Remote Sensing – year: 2020 ident: e_1_2_6_15_1 article-title: Yield prediction with machine learning algorithms and satellite images publication-title: Journal of the Science of Food and Agriculture – ident: e_1_2_6_6_1 doi: 10.1108/AEAT-02-2020-0030 – ident: e_1_2_6_8_1 doi: 10.1016/j.pce.2010.12.009 – ident: e_1_2_6_14_1 doi: 10.1002/jsfa.10568 – ident: e_1_2_6_11_1 doi: 10.1016/j.ejrs.2017.10.002 – volume: 9 start-page: 57 year: 1975 ident: e_1_2_6_3_1 article-title: Statistical properties of laser speckle patterns publication-title: Laser Speckle and Related Phenomena – ident: e_1_2_6_4_1 doi: 10.1007/s10666-019-09664-y – ident: e_1_2_6_9_1 doi: 10.1109/JSTARS.2012.2215310 – ident: e_1_2_6_21_1 doi: 10.1080/01431161.2016.1192304 – ident: e_1_2_6_19_1 doi: 10.1007/s11069-019-03617-0 – ident: e_1_2_6_12_1 doi: 10.1016/j.jag.2014.12.001 – ident: e_1_2_6_7_1 doi: 10.1007/978-90-481-9618-0_3 – ident: e_1_2_6_17_1 doi: 10.1007/s12524-014-0423-3 – ident: e_1_2_6_23_1 doi: 10.1080/01431161.2019.1577999 – ident: e_1_2_6_10_1 doi: 10.1007/s11676-017-0578-1 – ident: e_1_2_6_13_1 doi: 10.1007/s12524-020-01155-y – ident: e_1_2_6_2_1 doi: 10.1016/j.rse.2020.111664 – volume: 14 start-page: 125 issue: 2 year: 2016 ident: e_1_2_6_16_1 article-title: Development of an allometric model to estimate above‐ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran publication-title: Caspian Journal of Environmental Sciences – ident: e_1_2_6_5_1 doi: 10.2112/JCOASTRES-D-14-00160.1 – ident: e_1_2_6_18_1 doi: 10.1007/s12524-019-01057-8 – ident: e_1_2_6_22_1 doi: 10.3390/rs11131581 – ident: e_1_2_6_20_1 doi: 10.5194/isprs-archives-XLII-3-W8-497-2019 |
SSID | ssj0047966 |
Score | 2.422515 |
Snippet | Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 924 |
SubjectTerms | Algorithms Baseline studies classifiers Damage Disaster management Disasters Economic activities Ecosystem services ecosystems environment Environmental risk flood detection Flooded areas Floods human health Hydrologic data Hydrology ICA algorithm infrastructure Learning algorithms Machine learning Monitoring systems Natural disasters Risk management Risk reduction Sentinel‐1 water Water management |
Title | Development of a method for flood detection based on Sentinel‐1 images and classifier algorithms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwej.12681 https://www.proquest.com/docview/2561892307 https://www.proquest.com/docview/2636486550 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSx0xEA_iqT1U-w-f2pIWD72s7L5kdw2eSlFEaA-tUg-FZZJM6kPdJ759CJ78CH5GP4kz2T99LRVKb4GdZbOZzMwvyW8mQmwZ8GUWIE1y9DrRADoxYCBR-Y4KwA7Q8dbA5y_FwbE-PMlPlsRunwvT1ocYNtzYMqK_ZgMHO1sw8mskMx8XMe2auVoMiL4OpaN0aeI5JQHuMqEom3dVhZjFM7z5eyz6BTAXYWqMM_sr4kffw5ZecrY9b-y2u_mjeON__sKqeNbhT_mxnTDPxRLWL8TThaqEL4VdIBLJaZAg22umJeFbGZjoLj02kcJVS46CXlLjG9OOqEP3t3eZnFyQm5pJqL10DM8ngaKvhPOf06tJc3oxeyWO9_eOPh0k3VUMiVPkAhJyRcbb0oagVPApIvlrbxCzkClPLTDW6RxTdGhciuS0YKy9DykEk_sS1GuxXE9rXBOSIAE4hDEpxWpVlCZkvCZVNgcknemR-NArpXJdnXK-LuO86tcrNGxVHLaReD-IXrbFOf4mtNlrtursc1YR0Mt2DJPgR-Ld8Jgsi49LoMbpnGQKVWjO202pS1GNj3-k-r53GBvr_y66IZ6MmSAT2YSbYrm5muMbQjiNfRun8gNDcvo- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5V9dWsAgkLikSmInWR84INpq-3uAVvQWHHtMV7RZ1M2qghOPwIPwKrwET8JM_lgQSFx64GYpVuLY8_ON_XkG4Ik2Lou8CYMEnQqUMSrQRptAJkPpDRtAy1sDe_vp6FBtHyVHC_C1uwvT5IfoN9xYM2p7zQrOG9JzWn6OpOdxOoxaSuUOfjyngG36fGudVvdpHG9uHLwcBW1NgcBS5B4FpFPaFVnhvZTehYhkeJxGjHwkHbWMLqxKMESL2oZI2mdi5ZwPjdeJy4yk916Cy1xBnDP1r7_qk1WpTNcnowTxs4D8etLmMWLeUD_UX73fT0g7D4xrz7Z5Hb51c9IQWt6vzapizX76LV3k_zJpN2CphdjiRaMTN2EBy1twbS7x4m0o5rhSYuKFEU0lbUEQXnjm8guHVc1SKwU7eieo8ZqZVTQD3z9_icT4lCzxVJjSCcsRyNgTwBDm5N3kbFwdn07vwOGF_ORdWCwnJS6DINRjLJqYpKBQMs20jzjslkVikIREDeBZJwW5bVOxc0WQk7wLyWiZ8nqZBvC47_qhyT_yp06rnSjlrQma5oRlo6Fmnv8AHvWPyXjwiZApcTKjPqlMFV9NDmlItdz8_SP5m43tunHv37s-hCujg73dfHdrf2cFrsbMB6rJk6uwWJ3N8D4Buqp4UOuRgLcXLYM_AOn_Xl8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48EYsFDAIJC6p8nCS9YEDYrvqAyoEVPSWTuwxXbXNVt2sKjjxE_gf_BV-Bb-EsfNgQSBx6YGbpViJY8_jG_vzDMBjhSaPLIZBSkYGElEGChUGSTpMLDoDqN3WwKvtbH1Hbu6mu0vwtbsL0-SH6DfcnGZ4e-0U_NjYBSU_JVbzOBtGLaNyiz6ecrw2e7Yx4sV9EsfjtXcv1oO2pECgOXCPAlYpZcq8tDZJrAmJ2O4YRRTZKDHcQlVqmVJImpQOiZUPY2mMDdGq1OSY8HvPwXmZhcrViRi96XNVyVz5g1FG-HnAbj1t0xg52lA_1F-d309Eu4iLvWMbX4Fv3ZQ0fJaD1XldrupPv2WL_E_m7CpcbgG2eN5oxDVYouo6XFpIu3gDygWmlJhagaKpoy0YwAvrmPzCUO05apVwbt4Ibrx1vCqegO-fv0RicsR2eCawMkK7-GNiGV4IPPwwPZnU-0ezm7BzJj95C5araUW3QTDmQU0YsxCUMslyZSMXdCdlisQyIgfwtBOCQreJ2F09kMOiC8h4mQq_TAN41Hc9brKP_KnTSidJRWuAZgUj2WioHMt_AA_7x2w63HkQVjSdc58syaS7mBzykLzY_P0jxfu1Td-48-9dH8CF16Nx8XJje-suXIwdGcgzJ1dguT6Z0z1Gc3V532uRgL2zFsEfc6NdDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+method+for+flood+detection+based+on+Sentinel%E2%80%901+images+and+classifier+algorithms&rft.jtitle=Water+and+environment+journal+%3A+WEJ&rft.au=Sharifi%2C+Alireza&rft.date=2021-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1747-6585&rft.eissn=1747-6593&rft.volume=35&rft.issue=3&rft.spage=924&rft.epage=929&rft_id=info:doi/10.1111%2Fwej.12681&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1747-6585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1747-6585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1747-6585&client=summon |