Development of a method for flood detection based on Sentinel‐1 images and classifier algorithms

Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and infrastructure. It is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activ...

Full description

Saved in:
Bibliographic Details
Published inWater and environment journal : WEJ Vol. 35; no. 3; pp. 924 - 929
Main Author Sharifi, Alireza
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and infrastructure. It is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services and human health. Real‐time monitoring systems play a key role in flood risk reduction and disaster response decisions. Studies have shown that using earth observation data for flood monitoring and timely actions based on good quality information reduces damages. In this paper, after thresholding, a machine learning algorithm and an object‐based classification method were used to classify the SAR data. Thresholding helps detect regions in the flooded areas. A comparison of the results showed that the machine learning algorithm obtained significant results. Because of the results obtained, the usefulness of Sentinel‐1 images as a baseline data for the improvement of the methodological guide is appreciated and should be used as a new source to monitor the flood risks.
AbstractList Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and infrastructure. It is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services and human health. Real‐time monitoring systems play a key role in flood risk reduction and disaster response decisions. Studies have shown that using earth observation data for flood monitoring and timely actions based on good quality information reduces damages. In this paper, after thresholding, a machine learning algorithm and an object‐based classification method were used to classify the SAR data. Thresholding helps detect regions in the flooded areas. A comparison of the results showed that the machine learning algorithm obtained significant results. Because of the results obtained, the usefulness of Sentinel‐1 images as a baseline data for the improvement of the methodological guide is appreciated and should be used as a new source to monitor the flood risks.
Author Sharifi, Alireza
Author_xml – sequence: 1
  givenname: Alireza
  orcidid: 0000-0001-7110-7516
  surname: Sharifi
  fullname: Sharifi, Alireza
  email: a_sharifi@sru.ac.ir
  organization: Shahid Rajaee Teacher Training University
BookMark eNp9kL1OwzAUhS0EEqUw8AaWWGAotePESUYE5U9IDIAYLce-pq6cuNgpVTcegWfkSTAUMSDBXe4ZvnN079lBm53vAKF9So5pmvESZsc04xXdQANa5uWIFzXb_NFVsY12YpwRkpc15wPUnMELOD9voeuxN1jiFvqp19j4gI3zSWnoQfXWd7iRETRO4i7RtgP3_vpGsW3lE0QsO42VkzFaYyFg6Z58sP20jbtoy0gXYe97D9HD-eT-9HJ0c3txdXpyM1KMETqqqrLWTdkYw5jRBACk0jUANZTppGTdqLwAAgpqRaDkTGa51oZIUxe6lGyIDte58-CfFxB70dqowDnZgV9EkXHG84oXBUnowS905hehS9eJrOC0qjNGykQdrSkVfIwBjJiH9GxYCUrEZ9sitS2-2k7s-BerbC8_W-uDtO4_x9I6WP0dLR4n12vHB0IPlc0
CitedBy_id crossref_primary_10_1142_S0219649224500825
crossref_primary_10_1007_s12524_021_01362_1
crossref_primary_10_1007_s10668_021_02097_2
crossref_primary_10_1016_j_prime_2023_100360
crossref_primary_10_1038_s41598_023_50863_1
crossref_primary_10_1016_j_bdr_2023_100415
crossref_primary_10_1111_wej_12892
crossref_primary_10_1109_JSTARS_2023_3288743
crossref_primary_10_1016_j_prime_2023_100323
crossref_primary_10_1109_JSTARS_2023_3242310
crossref_primary_10_1108_AEAT_07_2022_0199
crossref_primary_10_1117_1_JRS_17_046501
crossref_primary_10_1016_j_sigpro_2023_109150
crossref_primary_10_3390_app12157811
crossref_primary_10_1016_j_rse_2024_114017
crossref_primary_10_1016_j_infrared_2023_105092
crossref_primary_10_1109_JSTARS_2023_3336924
crossref_primary_10_1007_s12665_024_12005_2
crossref_primary_10_1016_j_ejrs_2024_01_001
crossref_primary_10_3390_app112110104
crossref_primary_10_1016_j_compag_2024_108768
crossref_primary_10_1016_j_ejrs_2024_01_002
crossref_primary_10_1002_dac_5703
crossref_primary_10_1007_s12145_023_01196_0
crossref_primary_10_1016_j_prime_2024_100611
crossref_primary_10_1016_j_ejrs_2023_09_002
crossref_primary_10_1007_s10661_023_11425_0
crossref_primary_10_1016_j_bdr_2024_100425
crossref_primary_10_1109_JSTARS_2023_3317488
crossref_primary_10_3390_s23198088
crossref_primary_10_1007_s11119_023_10103_y
crossref_primary_10_1007_s10661_023_10918_2
crossref_primary_10_1007_s12524_021_01399_2
crossref_primary_10_1016_j_isprsjprs_2024_03_004
crossref_primary_10_1016_j_rama_2024_11_007
crossref_primary_10_1016_j_heliyon_2023_e21172
crossref_primary_10_1038_s41598_023_43667_w
crossref_primary_10_1016_j_bdr_2023_100416
crossref_primary_10_1016_j_bdr_2023_100417
crossref_primary_10_1007_s10661_023_11224_7
crossref_primary_10_1016_j_heliyon_2023_e21908
crossref_primary_10_1109_JSTARS_2023_3239756
crossref_primary_10_1016_j_scitotenv_2023_162285
crossref_primary_10_1109_JSTARS_2023_3328389
crossref_primary_10_3390_su162310730
Cites_doi 10.1108/AEAT-02-2020-0030
10.1016/j.pce.2010.12.009
10.1002/jsfa.10568
10.1016/j.ejrs.2017.10.002
10.1007/s10666-019-09664-y
10.1109/JSTARS.2012.2215310
10.1080/01431161.2016.1192304
10.1007/s11069-019-03617-0
10.1016/j.jag.2014.12.001
10.1007/978-90-481-9618-0_3
10.1007/s12524-014-0423-3
10.1080/01431161.2019.1577999
10.1007/s11676-017-0578-1
10.1007/s12524-020-01155-y
10.1016/j.rse.2020.111664
10.2112/JCOASTRES-D-14-00160.1
10.1007/s12524-019-01057-8
10.3390/rs11131581
10.5194/isprs-archives-XLII-3-W8-497-2019
ContentType Journal Article
Copyright 2020 CIWEM
2021 CIWEM
Copyright_xml – notice: 2020 CIWEM
– notice: 2021 CIWEM
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
7S9
L.6
DOI 10.1111/wej.12681
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1747-6593
EndPage 929
ExternalDocumentID 10_1111_wej_12681
WEJ12681
Genre article
GrantInformation_xml – fundername: Shahid Rajaee Teacher Training University
  funderid: 19059
GroupedDBID ---
.3N
.DC
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
YCJ
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7ST
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3301-8879db7bff33fd0eeeacd9ee1f13dcd9a9bc45e0ece9c0e763a24ddf0af95d7a3
IEDL.DBID DR2
ISSN 1747-6585
IngestDate Fri Jul 11 18:35:32 EDT 2025
Wed Aug 13 10:46:36 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Tue Jul 01 01:25:01 EDT 2025
Wed Jan 22 16:27:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3301-8879db7bff33fd0eeeacd9ee1f13dcd9a9bc45e0ece9c0e763a24ddf0af95d7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7110-7516
PQID 2561892307
PQPubID 756427
PageCount 6
ParticipantIDs proquest_miscellaneous_2636486550
proquest_journals_2561892307
crossref_primary_10_1111_wej_12681
crossref_citationtrail_10_1111_wej_12681
wiley_primary_10_1111_wej_12681_WEJ12681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Water and environment journal : WEJ
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 38
2020a; 48
2019; 40
2020; 240
2015; 314
2011
2019; 30
2019; 96
2019; 11
2020; 92
2015; 43
2020c
2019
2020; 48
2020; 25
2011; 36
2018; 21
2020b; 100
1975; 9
2012; 5
2016; 37
2016; 14
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Goodman J.W. (e_1_2_6_3_1) 1975; 9
e_1_2_6_9_1
e_1_2_6_8_1
Sharifi A. (e_1_2_6_15_1) 2020
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
Sharifi A. (e_1_2_6_16_1) 2016; 14
e_1_2_6_17_1
e_1_2_6_18_1
References_xml – volume: 48
  start-page: 1289
  issue: 9
  year: 2020a
  end-page: 1296
  article-title: Flood mapping using relevance vector machine and SAR data: a case study from Aqqala, Iran
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 30
  start-page: 31
  issue: 1
  year: 2019
  end-page: 44
  article-title: How does Cariniana estrellensis respond to different irradiance levels?
  publication-title: Journal of Forestry Research
– volume: 92
  start-page: 1073
  issue: 7
  year: 2020
  end-page: 1083
  article-title: Remote sensing satellite's attitude control system: rapid performance sizing for passive scan imaging mode
  publication-title: Aircraft Engineering and Aerospace Technology
– volume: 100
  start-page: 5191
  issue: 14
  year: 2020b
  end-page: 5196
  article-title: Remotely sensed vegetation indices for crop nutrition mapping
  publication-title: Journal of the Science of Food and Agriculture
– volume: 314
  start-page: 1005
  year: 2015
  end-page: 1013
  article-title: Remote sensing of floods and flood‐prone areas: an overview
  publication-title: Journal of Coastal Research
– volume: 40
  start-page: 5050
  issue: 13
  year: 2019
  end-page: 5077
  article-title: Automatic extraction of flood inundation areas from SAR images: a case study of Jilin, China during the 2017 flood disaster
  publication-title: International Journal of Remote Sensing
– volume: 9
  year: 1975
  article-title: Statistical properties of laser speckle patterns
  publication-title: Laser Speckle and Related Phenomena
– volume: 25
  start-page: 97
  issue: 1
  year: 2020
  end-page: 114
  article-title: Hydrodynamic modeling for flood hazard assessment in a data scarce region: a case study of Bharathapuzha river basin
  publication-title: Environmental Modeling and Assessment
– volume: 11
  issue: 13
  year: 2019
  article-title: Operational flood mapping using multi‐temporal Sentinel‐1 SAR images: a case study from Bangladesh
  publication-title: Remote Sensing
– volume: 48
  start-page: 11
  issue: 1
  year: 2020
  end-page: 19
  article-title: Application of sentinel‐1 data to estimate height and biomass of rice crop in Astaneh‐ye Ashrafiyeh, Iran
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 38
  start-page: 15
  year: 2015
  end-page: 24
  article-title: Flood detection from multi‐temporal SAR data using harmonic analysis and change detection
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 21
  start-page: S37
  year: 2018
  end-page: S41
  article-title: Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India
  publication-title: Egyptian Journal of Remote Sensing and Space Science
– year: 2020c
  article-title: Yield prediction with machine learning algorithms and satellite images
  publication-title: Journal of the Science of Food and Agriculture
– volume: 240
  year: 2020
  article-title: Rapid and robust monitoring of flood events using Sentinel‐1 and Landsat data on the Google Earth Engine
  publication-title: Remote Sensing of Environment
– volume: 36
  start-page: 241
  issue: 7‐8
  year: 2011
  end-page: 252
  article-title: Towards an automated SAR‐based flood monitoring system: Lessons learned from two case studies
  publication-title: Physics and Chemistry of the Earth
– volume: 96
  start-page: 1335
  issue: 3
  year: 2019
  end-page: 1365
  article-title: ‘Application of the coupled TOPSIS–Mahalanobis distance for multi‐hazard‐based management of the target districts of the Golestan Province, Iran
  publication-title: Natural Hazards
– start-page: 19
  year: 2011
  end-page: 29
– volume: 37
  start-page: 2990
  issue: 13
  year: 2016
  end-page: 3004
  article-title: Sentinel‐1‐based flood mapping: a fully automated processing chain
  publication-title: International Journal of Remote Sensing
– year: 2019
– volume: 5
  start-page: 1344
  issue: 5
  year: 2012
  end-page: 1355
  article-title: Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 14
  start-page: 125
  issue: 2
  year: 2016
  end-page: 137
  article-title: Development of an allometric model to estimate above‐ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran
  publication-title: Caspian Journal of Environmental Sciences
– volume: 43
  start-page: 339
  issue: 2
  year: 2015
  end-page: 346
  article-title: Speckle reduction of PolSAR images in forest regions using fast ICA algorithm
  publication-title: Journal of the Indian Society of Remote Sensing
– year: 2020
  ident: e_1_2_6_15_1
  article-title: Yield prediction with machine learning algorithms and satellite images
  publication-title: Journal of the Science of Food and Agriculture
– ident: e_1_2_6_6_1
  doi: 10.1108/AEAT-02-2020-0030
– ident: e_1_2_6_8_1
  doi: 10.1016/j.pce.2010.12.009
– ident: e_1_2_6_14_1
  doi: 10.1002/jsfa.10568
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ejrs.2017.10.002
– volume: 9
  start-page: 57
  year: 1975
  ident: e_1_2_6_3_1
  article-title: Statistical properties of laser speckle patterns
  publication-title: Laser Speckle and Related Phenomena
– ident: e_1_2_6_4_1
  doi: 10.1007/s10666-019-09664-y
– ident: e_1_2_6_9_1
  doi: 10.1109/JSTARS.2012.2215310
– ident: e_1_2_6_21_1
  doi: 10.1080/01431161.2016.1192304
– ident: e_1_2_6_19_1
  doi: 10.1007/s11069-019-03617-0
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jag.2014.12.001
– ident: e_1_2_6_7_1
  doi: 10.1007/978-90-481-9618-0_3
– ident: e_1_2_6_17_1
  doi: 10.1007/s12524-014-0423-3
– ident: e_1_2_6_23_1
  doi: 10.1080/01431161.2019.1577999
– ident: e_1_2_6_10_1
  doi: 10.1007/s11676-017-0578-1
– ident: e_1_2_6_13_1
  doi: 10.1007/s12524-020-01155-y
– ident: e_1_2_6_2_1
  doi: 10.1016/j.rse.2020.111664
– volume: 14
  start-page: 125
  issue: 2
  year: 2016
  ident: e_1_2_6_16_1
  article-title: Development of an allometric model to estimate above‐ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran
  publication-title: Caspian Journal of Environmental Sciences
– ident: e_1_2_6_5_1
  doi: 10.2112/JCOASTRES-D-14-00160.1
– ident: e_1_2_6_18_1
  doi: 10.1007/s12524-019-01057-8
– ident: e_1_2_6_22_1
  doi: 10.3390/rs11131581
– ident: e_1_2_6_20_1
  doi: 10.5194/isprs-archives-XLII-3-W8-497-2019
SSID ssj0047966
Score 2.422515
Snippet Floods are one of the most devastating natural disasters in the world, displacing millions of people each year and causing severe damage to people's lives and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 924
SubjectTerms Algorithms
Baseline studies
classifiers
Damage
Disaster management
Disasters
Economic activities
Ecosystem services
ecosystems
environment
Environmental risk
flood detection
Flooded areas
Floods
human health
Hydrologic data
Hydrology
ICA algorithm
infrastructure
Learning algorithms
Machine learning
Monitoring systems
Natural disasters
Risk management
Risk reduction
Sentinel‐1
water
Water management
Title Development of a method for flood detection based on Sentinel‐1 images and classifier algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwej.12681
https://www.proquest.com/docview/2561892307
https://www.proquest.com/docview/2636486550
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSx0xEA_iqT1U-w-f2pIWD72s7L5kdw2eSlFEaA-tUg-FZZJM6kPdJ759CJ78CH5GP4kz2T99LRVKb4GdZbOZzMwvyW8mQmwZ8GUWIE1y9DrRADoxYCBR-Y4KwA7Q8dbA5y_FwbE-PMlPlsRunwvT1ocYNtzYMqK_ZgMHO1sw8mskMx8XMe2auVoMiL4OpaN0aeI5JQHuMqEom3dVhZjFM7z5eyz6BTAXYWqMM_sr4kffw5ZecrY9b-y2u_mjeON__sKqeNbhT_mxnTDPxRLWL8TThaqEL4VdIBLJaZAg22umJeFbGZjoLj02kcJVS46CXlLjG9OOqEP3t3eZnFyQm5pJqL10DM8ngaKvhPOf06tJc3oxeyWO9_eOPh0k3VUMiVPkAhJyRcbb0oagVPApIvlrbxCzkClPLTDW6RxTdGhciuS0YKy9DykEk_sS1GuxXE9rXBOSIAE4hDEpxWpVlCZkvCZVNgcknemR-NArpXJdnXK-LuO86tcrNGxVHLaReD-IXrbFOf4mtNlrtursc1YR0Mt2DJPgR-Ld8Jgsi49LoMbpnGQKVWjO202pS1GNj3-k-r53GBvr_y66IZ6MmSAT2YSbYrm5muMbQjiNfRun8gNDcvo-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5V9dWsAgkLikSmInWR84INpq-3uAVvQWHHtMV7RZ1M2qghOPwIPwKrwET8JM_lgQSFx64GYpVuLY8_ON_XkG4Ik2Lou8CYMEnQqUMSrQRptAJkPpDRtAy1sDe_vp6FBtHyVHC_C1uwvT5IfoN9xYM2p7zQrOG9JzWn6OpOdxOoxaSuUOfjyngG36fGudVvdpHG9uHLwcBW1NgcBS5B4FpFPaFVnhvZTehYhkeJxGjHwkHbWMLqxKMESL2oZI2mdi5ZwPjdeJy4yk916Cy1xBnDP1r7_qk1WpTNcnowTxs4D8etLmMWLeUD_UX73fT0g7D4xrz7Z5Hb51c9IQWt6vzapizX76LV3k_zJpN2CphdjiRaMTN2EBy1twbS7x4m0o5rhSYuKFEU0lbUEQXnjm8guHVc1SKwU7eieo8ZqZVTQD3z9_icT4lCzxVJjSCcsRyNgTwBDm5N3kbFwdn07vwOGF_ORdWCwnJS6DINRjLJqYpKBQMs20jzjslkVikIREDeBZJwW5bVOxc0WQk7wLyWiZ8nqZBvC47_qhyT_yp06rnSjlrQma5oRlo6Fmnv8AHvWPyXjwiZApcTKjPqlMFV9NDmlItdz8_SP5m43tunHv37s-hCujg73dfHdrf2cFrsbMB6rJk6uwWJ3N8D4Buqp4UOuRgLcXLYM_AOn_Xl8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48EYsFDAIJC6p8nCS9YEDYrvqAyoEVPSWTuwxXbXNVt2sKjjxE_gf_BV-Bb-EsfNgQSBx6YGbpViJY8_jG_vzDMBjhSaPLIZBSkYGElEGChUGSTpMLDoDqN3WwKvtbH1Hbu6mu0vwtbsL0-SH6DfcnGZ4e-0U_NjYBSU_JVbzOBtGLaNyiz6ecrw2e7Yx4sV9EsfjtXcv1oO2pECgOXCPAlYpZcq8tDZJrAmJ2O4YRRTZKDHcQlVqmVJImpQOiZUPY2mMDdGq1OSY8HvPwXmZhcrViRi96XNVyVz5g1FG-HnAbj1t0xg52lA_1F-d309Eu4iLvWMbX4Fv3ZQ0fJaD1XldrupPv2WL_E_m7CpcbgG2eN5oxDVYouo6XFpIu3gDygWmlJhagaKpoy0YwAvrmPzCUO05apVwbt4Ibrx1vCqegO-fv0RicsR2eCawMkK7-GNiGV4IPPwwPZnU-0ezm7BzJj95C5araUW3QTDmQU0YsxCUMslyZSMXdCdlisQyIgfwtBOCQreJ2F09kMOiC8h4mQq_TAN41Hc9brKP_KnTSidJRWuAZgUj2WioHMt_AA_7x2w63HkQVjSdc58syaS7mBzykLzY_P0jxfu1Td-48-9dH8CF16Nx8XJje-suXIwdGcgzJ1dguT6Z0z1Gc3V532uRgL2zFsEfc6NdDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+method+for+flood+detection+based+on+Sentinel%E2%80%901+images+and+classifier+algorithms&rft.jtitle=Water+and+environment+journal+%3A+WEJ&rft.au=Sharifi%2C+Alireza&rft.date=2021-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1747-6585&rft.eissn=1747-6593&rft.volume=35&rft.issue=3&rft.spage=924&rft.epage=929&rft_id=info:doi/10.1111%2Fwej.12681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1747-6585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1747-6585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1747-6585&client=summon