Modulating the Binding Strength of Multiple Intermediates by Few‐Layer Fullerene Network Electron Buffer for Alkaline Hydrogen Evolution
The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 32; pp. e2506131 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.
By using covalently bonded 2D fullerene C60 network (2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs. |
---|---|
AbstractList | The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C 60 network (abbreviated 2D‐C 60 ) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C 60 , which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C 60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm −1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C 60 , metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D-C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D-C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as-prepared Ru NPs/2D-C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm-1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D-C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D-C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D-C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as-prepared Ru NPs/2D-C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm-1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D-C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C network (abbreviated 2D-C ) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D-C , which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as-prepared Ru NPs/2D-C catalyst exhibits a low overpotential of 24 mV at 10 mA cm and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D-C , metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. By using covalently bonded 2D fullerene C60 network (2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs. |
Author | Qiao, Sicong Yang, Shangfeng Liu, Dongming Wang, Xing Song, Li Chen, Xiang Ma, Hao Chen, Wei Sun, Yuanmiao Du, Pingwu Lu, Yalin Jin, Hongqiang Lv, Rongyao Yao, Yangrong |
Author_xml | – sequence: 1 givenname: Xing surname: Wang fullname: Wang, Xing organization: University of Science and Technology of China – sequence: 2 givenname: Xiang surname: Chen fullname: Chen, Xiang email: chxiang@mail.ustc.edu.cn organization: National University of Singapore – sequence: 3 givenname: Rongyao surname: Lv fullname: Lv, Rongyao organization: University of Science and Technology of China – sequence: 4 givenname: Hao surname: Ma fullname: Ma, Hao organization: Chinese Academy of Sciences – sequence: 5 givenname: Yangrong surname: Yao fullname: Yao, Yangrong organization: University of Science and Technology of China – sequence: 6 givenname: Hongqiang surname: Jin fullname: Jin, Hongqiang organization: National University of Singapore – sequence: 7 givenname: Sicong surname: Qiao fullname: Qiao, Sicong organization: University of Science and Technology of China – sequence: 8 givenname: Yuanmiao surname: Sun fullname: Sun, Yuanmiao email: sunym@siat.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Dongming surname: Liu fullname: Liu, Dongming organization: Anhui University of Technology – sequence: 10 givenname: Li surname: Song fullname: Song, Li organization: University of Science and Technology of China – sequence: 11 givenname: Pingwu surname: Du fullname: Du, Pingwu organization: University of Science and Technology of China – sequence: 12 givenname: Wei surname: Chen fullname: Chen, Wei email: phycw@nus.edu.sg organization: National University of Singapore – sequence: 13 givenname: Yalin surname: Lu fullname: Lu, Yalin organization: University of Science and Technology of China – sequence: 14 givenname: Shangfeng orcidid: 0000-0002-6931-9613 surname: Yang fullname: Yang, Shangfeng email: sfyang@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40511688$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0TtvFDEQB3ALBZEHtJTIEg3NXTy293FlEt2RSHukCNSrfYwvm_jsww9O21FT8Rn5JPh0ySHRpJopfv-xNXNKjow1SMh7YFNgjJ_7tdZTznjGchDwipxAqpO85LOjQw_smJx6_8CYAC6LN-RYsgwgL8sT8mtp-6ibMJgVDfdILwfT7_q74NCswj21ii6jDsNGI70xAd0a-6EJ6Gk70gVu__z8XTUjOrqIWmMKIf2CYWvdI51r7IKzhl5GpZJQ1tEL_djoIaHrsXd2hYbOf1gdw2DNW_JaNdrju6d6Rr4t5l-vrifV7eebq4tq0gnBYFKUKGSuUMoeWgY9UwAZzpqyVXkpscib9BjvW8FZwbmEnJVdpjJgLZYo25k4I5_2czfOfo_oQ70efIdaNwZt9LXgUMqiyCBP9ON_9MFGZ9LvkpLABRMZS-rDk4pt2k69ccO6cWP9vOUEpnvQOeu9Q3UgwOrdGevdGevDGVNgtg9sB43jC7q-W1bVv-xfuVaijw |
Cites_doi | 10.1002/anie.202209486 10.1002/anie.201710556 10.1002/smtd.202101040 10.1021/prechem.4c00036 10.1016/j.jechem.2020.06.065 10.1038/s41467-022-31660-2 10.1038/s41586-022-04771-5 10.1002/anie.202112398 10.1021/jacs.3c13676 10.1016/j.carbon.2012.08.022 10.1038/s41557-024-01626-6 10.1002/adfm.202106924 10.1021/acscatal.9b01637 10.1021/prechem.3c00033 10.1039/D1EE01395E 10.1002/adfm.202400185 10.1038/s41467-024-44721-5 10.1103/PhysRevB.65.155421 10.1002/adma.202200189 10.1002/adma.202110604 10.1002/anie.202209849 10.1038/nnano.2016.304 10.1126/science.1211934 10.1038/s44160-022-00232-z 10.1038/s41586-022-05532-0 10.1021/prechem.2c00011 10.1103/PhysRevB.61.13191 10.1021/acs.cgd.8b00186 10.1039/D0QM00295J 10.1002/aenm.201601251 10.1038/s41467-023-37404-0 10.1002/inf2.12287 10.1021/acs.chemrev.3c00712 10.1038/s41586-022-05401-w 10.1002/adma.19940061004 10.1038/s41563-023-01584-3 10.1126/science.abm9257 10.1002/anie.202311352 10.1002/anie.201905151 10.1039/D2CS01068B 10.1038/s41467-023-38126-z 10.1038/s41929-021-00663-5 10.1039/D0CY00540A 10.1016/j.nima.2021.165642 10.1038/nmat1223 10.1016/j.cej.2021.129842 10.1002/anie.202414149 10.1021/acssuschemeng.4c05296 10.1002/adma.202301369 10.1002/aenm.202302438 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202506131 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 40511688 10_1002_smll_202506131 SMLL202506131 |
Genre | researchArticle Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF LH4 SV3 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3301-78e346fe44d1b01d0f115e9a8bf684e76affe2db32072241608c5f510be8e4b93 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 17:05:04 EDT 2025 Fri Aug 29 01:47:22 EDT 2025 Thu Aug 28 04:48:26 EDT 2025 Wed Aug 27 16:26:47 EDT 2025 Wed Aug 20 09:40:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | metal‐support interaction electron buffer alkaline hydrogen evolution electrocatalysis fullerene |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3301-78e346fe44d1b01d0f115e9a8bf684e76affe2db32072241608c5f510be8e4b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6931-9613 |
PMID | 40511688 |
PQID | 3241230350 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3218477516 proquest_journals_3241230350 pubmed_primary_40511688 crossref_primary_10_1002_smll_202506131 wiley_primary_10_1002_smll_202506131_SMLL202506131 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 376 2011; 334 2017; 7 2019; 9 2021; 1013 2023; 13 2023; 35 2021; 4 2023; 14 2021; 420 2019; 58 2004; 3 2024; 53 2023; 1 2024; 124 2024; 34 2023; 2 2024; 12 2024; 146 2020; 10 2024; 15 2024; 16 2021; 14 2023; 62 2018; 18 2020; 4 2023; 22 2021; 55 2022; 4 2022; 61 2022; 6 2013; 51 2002; 65 2017; 12 2022; 34 2000; 61 2022; 13 2024; 2 2022; 32 2023; 614 2022; 606 2023; 613 2021; 60 2025; 64 2018; 57 1994; 6 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 64 year: 2025 publication-title: Angew. Chem., Int. Ed. – volume: 4 year: 2022 publication-title: InfoMat – volume: 14 start-page: 6428 year: 2021 publication-title: Energy Environ. Sci. – volume: 9 start-page: 9332 year: 2019 publication-title: ACS Catal. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2256 year: 2020 publication-title: Mater. Chem. Front. – volume: 18 start-page: 3877 year: 2018 publication-title: Cryst. Growth Des. – volume: 12 start-page: 441 year: 2017 publication-title: Nat. Nanotechnol. – volume: 6 year: 2022 publication-title: Small Methods – volume: 124 start-page: 5617 year: 2024 publication-title: Chem. Rev. – volume: 613 start-page: 71 year: 2023 publication-title: Nature – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 13 start-page: 3958 year: 2022 publication-title: Nat. Commun. – volume: 14 start-page: 1711 year: 2023 publication-title: Nat. Commun. – volume: 53 start-page: 2771 year: 2024 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 448 year: 2024 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 3 year: 2023 publication-title: Precis. Chem. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 606 start-page: 507 year: 2022 publication-title: Nature – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 10 start-page: 4673 year: 2020 publication-title: Catal. Sci. Technol. – volume: 4 start-page: 711 year: 2021 publication-title: Nat. Catal. – volume: 2 start-page: 480 year: 2024 publication-title: Precis. Chem. – volume: 1013 year: 2021 publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. – volume: 12 year: 2024 publication-title: ACS Sustainable Chem. Eng. – volume: 51 start-page: 143 year: 2013 publication-title: Carbon. – volume: 1 start-page: 497 year: 2023 publication-title: Precis. Chem. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 1022 year: 2023 publication-title: Nat. Mater. – volume: 55 start-page: 70 year: 2021 publication-title: J. Energy Chem. – volume: 65 year: 2002 publication-title: Phys. Rev. B – Condens. Matter Mater. Phys. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 101 year: 2023 publication-title: Nat. Synth. – volume: 3 start-page: 810 year: 2004 publication-title: Nat. Mater. – volume: 146 start-page: 4883 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 731 year: 1994 publication-title: Adv. Mater. – volume: 57 start-page: 7568 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 2460 year: 2023 publication-title: Nat. Commun. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1781 year: 2024 publication-title: Nat. Chem. – volume: 61 year: 2000 publication-title: Phys. Rev. B – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 376 start-page: 288 year: 2022 publication-title: Science – volume: 614 start-page: 95 year: 2023 publication-title: Nature – ident: e_1_2_7_9_1 doi: 10.1002/anie.202209486 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201710556 – ident: e_1_2_7_34_1 doi: 10.1002/smtd.202101040 – ident: e_1_2_7_27_1 doi: 10.1021/prechem.4c00036 – ident: e_1_2_7_17_1 doi: 10.1016/j.jechem.2020.06.065 – ident: e_1_2_7_45_1 doi: 10.1038/s41467-022-31660-2 – ident: e_1_2_7_29_1 doi: 10.1038/s41586-022-04771-5 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202112398 – ident: e_1_2_7_47_1 doi: 10.1021/jacs.3c13676 – ident: e_1_2_7_37_1 doi: 10.1016/j.carbon.2012.08.022 – ident: e_1_2_7_15_1 doi: 10.1038/s41557-024-01626-6 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.202106924 – ident: e_1_2_7_11_1 doi: 10.1021/acscatal.9b01637 – ident: e_1_2_7_7_1 doi: 10.1021/prechem.3c00033 – ident: e_1_2_7_43_1 doi: 10.1039/D1EE01395E – ident: e_1_2_7_16_1 doi: 10.1002/adfm.202400185 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-024-44721-5 – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevB.65.155421 – ident: e_1_2_7_25_1 doi: 10.1002/adma.202200189 – ident: e_1_2_7_46_1 doi: 10.1002/adma.202110604 – ident: e_1_2_7_44_1 doi: 10.1002/anie.202209849 – ident: e_1_2_7_10_1 doi: 10.1038/nnano.2016.304 – ident: e_1_2_7_1_1 doi: 10.1126/science.1211934 – ident: e_1_2_7_28_1 doi: 10.1038/s44160-022-00232-z – ident: e_1_2_7_36_1 doi: 10.1038/s41586-022-05532-0 – ident: e_1_2_7_13_1 doi: 10.1021/prechem.2c00011 – ident: e_1_2_7_39_1 doi: 10.1103/PhysRevB.61.13191 – ident: e_1_2_7_33_1 doi: 10.1021/acs.cgd.8b00186 – ident: e_1_2_7_19_1 doi: 10.1039/D0QM00295J – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201601251 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-023-37404-0 – ident: e_1_2_7_49_1 doi: 10.1002/inf2.12287 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.3c00712 – ident: e_1_2_7_30_1 doi: 10.1038/s41586-022-05401-w – ident: e_1_2_7_40_1 doi: 10.1002/adma.19940061004 – ident: e_1_2_7_3_1 doi: 10.1038/s41563-023-01584-3 – ident: e_1_2_7_14_1 doi: 10.1126/science.abm9257 – ident: e_1_2_7_31_1 doi: 10.1002/anie.202311352 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201905151 – ident: e_1_2_7_5_1 doi: 10.1039/D2CS01068B – ident: e_1_2_7_42_1 doi: 10.1038/s41467-023-38126-z – ident: e_1_2_7_4_1 doi: 10.1038/s41929-021-00663-5 – ident: e_1_2_7_41_1 doi: 10.1039/D0CY00540A – ident: e_1_2_7_35_1 doi: 10.1016/j.nima.2021.165642 – ident: e_1_2_7_48_1 doi: 10.1038/nmat1223 – ident: e_1_2_7_12_1 doi: 10.1016/j.cej.2021.129842 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202414149 – ident: e_1_2_7_32_1 doi: 10.1021/acssuschemeng.4c05296 – ident: e_1_2_7_50_1 doi: 10.1002/adma.202301369 – ident: e_1_2_7_20_1 doi: 10.1002/aenm.202302438 |
SSID | ssj0031247 |
Score | 2.4766204 |
Snippet | The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2506131 |
SubjectTerms | Adsorption alkaline hydrogen evolution Binding Buckminsterfullerene Buffers Charge density Charge transfer Desorption electrocatalysis electron buffer fullerene Fullerenes Hydrogen evolution reactions metal‐support interaction Nanoparticles Reaction kinetics Ruthenium |
Title | Modulating the Binding Strength of Multiple Intermediates by Few‐Layer Fullerene Network Electron Buffer for Alkaline Hydrogen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202506131 https://www.ncbi.nlm.nih.gov/pubmed/40511688 https://www.proquest.com/docview/3241230350 https://www.proquest.com/docview/3218477516 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T9xAEB5FVKQgPBLiQNAgIVEZ_Nhb2yVEdzpFdxQBJDpr115DBNgRdweCipqK38gvYWbtczgokJLOb-9rdr7Zmf0GYItMDqHZw1hEJnZF4uduIgWbKqEmfK-yxPB6x_BA9o_Fz5POyYtd_DU_RLvgxpJh52sWcKVHu39JQ0eXF-w6IBVOGontHw7YYlT0q-WPCkl52ewq9ITLxFtT1kYv2J19fVYrvYGas8jVqp7eJ1DTQtcRJ-c7k7Heye5e8Tn-T60WYaHBpbhXD6Ql-GDKZfj4gq1wBR6GVW6TfZWnSLAR93_bHTHIju3ydHyGVYHDJj4R7Uqj3ZZCWBb1LfbMzdP940ARxEe2e21WFjyoo9Cx22Tjwf0JJ2xBgtK4d3GuuELYv82vKhro2L1uBOUzHPe6Rz_6bpPKwc1CmkLcKDahkIURIve15-deQUjUJCrWhYyFiaSijwe5DgMvYlAhvTjrFDRfaBMboZPwC8yVVWm-AnqBCjK60gkV205SSVMkIY2pJEt0kecObE-7Mv1TM3akNTdzkHLrpm3rOrA-7em0kdxRSgCTlDn7Wx3YbG-TzLEjRZWmmvAzZBdHUceXDqzWI6T9FQFg35dx7EBg-_mdMqSHw8GgPfv2Ly-twTwf11GJ6zA3vpqY74SUxnrDSsMzXTAM0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOhfIooaVMJSROafPwOsmxRbtaINlDaSVukZ04bdWSVO0uqJx65sRv5Jcw4zxg4YAEx7zt2OP55uFvAF6SySE0RxiryMSuSPzSTaRgUyXUhO9VkRj2d2QzOT0Sbz-M-mxC3gvT8kMMDjeWDLtes4CzQ3r3J2vo1cdzjh2QDieVRAbQbS7rba2qg4FBKiT1Zeur0C0uU2_1vI1esLv8_LJe-gNsLmNXq3wm90H3zW5zTs52FnO9U3z5jdHxv_r1AFY7aIp77Vxag1umfgj3fiEsfARfs6a09b7qYyTkiPundlMMcmy7Pp6fYFNh1qUoonU22p0pBGdRX-PEfP5-8y1VhPKRTV9bmAVnbSI6jruCPLi_4JotSGga987PFPcIp9flZUNzHcefOll5DEeT8eHrqdtVc3CLkFYRN4pNKGRlhCh97fmlVxEYNYmKdSVjYSKp6OVBqcPAixhXSC8uRhUtGdrERugkfAIrdVObp4BeoIKCzoxCxeaTVNJUSUjTKikSXZWlA6_6scwvWtKOvKVnDnL-u_nwdx3Y7Ic674T3KieMSfqcQ64ObA-XSew4lqJq0yz4HjKNo2jkSwfW2ykyfIowsO_LOHYgsAP9lzbk77M0HY6e_ctDL-DO9DBL8_TN7N0G3OXzbZLiJqzMLxfmOQGnud6yovEDHFMQ6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiE4lDcECgwSEqe0eXid5NjSXS2wu0JApd4iO7YLaptU7S6onDhz4jfyS5hxsqELByQ45m3HM55vPONvAJ6RyyE0RxhdZvNQFLEJCynYVUk14XtVFZbXO6YzOd4Tr_YH-xd28bf8EP2CG2uGn69ZwU-M2_pFGnp2fMShAzLhZJHI_7ksZJSzXO--7QmkUrJevrwK3RIy89aStjFKtlafXzVLf2DNVejqbc_oOqhlq9uUk8PNxVxvVl9-I3T8n27dgPUOmOJ2K0k34ZKtb8G1C3SFt-HbtDG-2ld9gIQbceej3xKDHNmuD-YfsHE47RIU0S81-n0pBGZRn-PIfv7x9ftEEcZHdnx9WRactWnoOOzK8eDOgiu2IGFp3D46VNwhHJ-b04YkHYefOk25A3uj4fsX47Cr5RBWKc0hYZbbVEhnhTCxjmITOYKitlC5djIXNpOKXp4YnSZRxqiCxrIaOJowtM2t0EV6F9bqprb3AaNEJRWdGaSKnSeppHVFSkJVVIV2xgTwfDmU5UlL2VG25MxJyX-37P9uABvLkS471T0rCWGSNeeAawBP-8ukdBxJUbVtFnwPOcZZNohlAPdaCek_RQg4jmWeB5D4cf5LG8p308mkP3rwLw89gStvdkfl5OXs9UO4yqfbDMUNWJufLuwjQk1z_dgrxk_6hw-j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+Binding+Strength+of+Multiple+Intermediates+by+Few%E2%80%90Layer+Fullerene+Network+Electron+Buffer+for+Alkaline+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xing&rft.au=Chen%2C+Xiang&rft.au=Lv%2C+Rongyao&rft.au=Ma%2C+Hao&rft.date=2025-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202506131&rft.externalDBID=10.1002%252Fsmll.202506131&rft.externalDocID=SMLL202506131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |