Modulating the Binding Strength of Multiple Intermediates by Few‐Layer Fullerene Network Electron Buffer for Alkaline Hydrogen Evolution

The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 32; pp. e2506131 - n/a
Main Authors Wang, Xing, Chen, Xiang, Lv, Rongyao, Ma, Hao, Yao, Yangrong, Jin, Hongqiang, Qiao, Sicong, Sun, Yuanmiao, Liu, Dongming, Song, Li, Du, Pingwu, Chen, Wei, Lu, Yalin, Yang, Shangfeng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. By using covalently bonded 2D fullerene C60 network (2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs.
AbstractList The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C 60 network (abbreviated 2D‐C 60 ) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C 60 , which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C 60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm −1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C 60 , metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.
The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D-C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D-C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as-prepared Ru NPs/2D-C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm-1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D-C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D-C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D-C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as-prepared Ru NPs/2D-C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm-1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D-C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.
The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C network (abbreviated 2D-C ) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D-C , which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as-prepared Ru NPs/2D-C catalyst exhibits a low overpotential of 24 mV at 10 mA cm and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D-C , metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.
The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity.
The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves extraordinary adsorption and desorption of multiple oxygenated intermediates. Herein, by using covalently bonded 2D fullerene C60 network (abbreviated 2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. The as‐prepared Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs toward the alkaline HER. The kinetics studies and theoretical calculations reveal that, thanks to the reversible charge transfer among 2D‐C60, metal, and intermediates during the HER process, the binding strengths of both H and OH species on the Ru surface are weakened, affording an accelerated HER kinetics process and improved HER activity. By using covalently bonded 2D fullerene C60 network (2D‐C60) as a unique support of Ru nanoparticles (NPs), the binding strengths of the key intermediates in the alkaline HER process are successfully modulated owing to the electron buffering effect of 2D‐C60, which can dynamically buffer the change of charge density on metal active sites resulted from the adsorption and desorption of intermediates. Ru NPs/2D‐C60 catalyst exhibits a low overpotential of 24 mV at 10 mA cm−1 and eight times higher intrinsic activity than Ru NPs.
Author Qiao, Sicong
Yang, Shangfeng
Liu, Dongming
Wang, Xing
Song, Li
Chen, Xiang
Ma, Hao
Chen, Wei
Sun, Yuanmiao
Du, Pingwu
Lu, Yalin
Jin, Hongqiang
Lv, Rongyao
Yao, Yangrong
Author_xml – sequence: 1
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  email: chxiang@mail.ustc.edu.cn
  organization: National University of Singapore
– sequence: 3
  givenname: Rongyao
  surname: Lv
  fullname: Lv, Rongyao
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Hao
  surname: Ma
  fullname: Ma, Hao
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yangrong
  surname: Yao
  fullname: Yao, Yangrong
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Hongqiang
  surname: Jin
  fullname: Jin, Hongqiang
  organization: National University of Singapore
– sequence: 7
  givenname: Sicong
  surname: Qiao
  fullname: Qiao, Sicong
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Yuanmiao
  surname: Sun
  fullname: Sun, Yuanmiao
  email: sunym@siat.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Dongming
  surname: Liu
  fullname: Liu, Dongming
  organization: Anhui University of Technology
– sequence: 10
  givenname: Li
  surname: Song
  fullname: Song, Li
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Pingwu
  surname: Du
  fullname: Du, Pingwu
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: phycw@nus.edu.sg
  organization: National University of Singapore
– sequence: 13
  givenname: Yalin
  surname: Lu
  fullname: Lu, Yalin
  organization: University of Science and Technology of China
– sequence: 14
  givenname: Shangfeng
  orcidid: 0000-0002-6931-9613
  surname: Yang
  fullname: Yang, Shangfeng
  email: sfyang@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40511688$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtvFDEQB3ALBZEHtJTIEg3NXTy293FlEt2RSHukCNSrfYwvm_jsww9O21FT8Rn5JPh0ySHRpJopfv-xNXNKjow1SMh7YFNgjJ_7tdZTznjGchDwipxAqpO85LOjQw_smJx6_8CYAC6LN-RYsgwgL8sT8mtp-6ibMJgVDfdILwfT7_q74NCswj21ii6jDsNGI70xAd0a-6EJ6Gk70gVu__z8XTUjOrqIWmMKIf2CYWvdI51r7IKzhl5GpZJQ1tEL_djoIaHrsXd2hYbOf1gdw2DNW_JaNdrju6d6Rr4t5l-vrifV7eebq4tq0gnBYFKUKGSuUMoeWgY9UwAZzpqyVXkpscib9BjvW8FZwbmEnJVdpjJgLZYo25k4I5_2czfOfo_oQ70efIdaNwZt9LXgUMqiyCBP9ON_9MFGZ9LvkpLABRMZS-rDk4pt2k69ccO6cWP9vOUEpnvQOeu9Q3UgwOrdGevdGevDGVNgtg9sB43jC7q-W1bVv-xfuVaijw
Cites_doi 10.1002/anie.202209486
10.1002/anie.201710556
10.1002/smtd.202101040
10.1021/prechem.4c00036
10.1016/j.jechem.2020.06.065
10.1038/s41467-022-31660-2
10.1038/s41586-022-04771-5
10.1002/anie.202112398
10.1021/jacs.3c13676
10.1016/j.carbon.2012.08.022
10.1038/s41557-024-01626-6
10.1002/adfm.202106924
10.1021/acscatal.9b01637
10.1021/prechem.3c00033
10.1039/D1EE01395E
10.1002/adfm.202400185
10.1038/s41467-024-44721-5
10.1103/PhysRevB.65.155421
10.1002/adma.202200189
10.1002/adma.202110604
10.1002/anie.202209849
10.1038/nnano.2016.304
10.1126/science.1211934
10.1038/s44160-022-00232-z
10.1038/s41586-022-05532-0
10.1021/prechem.2c00011
10.1103/PhysRevB.61.13191
10.1021/acs.cgd.8b00186
10.1039/D0QM00295J
10.1002/aenm.201601251
10.1038/s41467-023-37404-0
10.1002/inf2.12287
10.1021/acs.chemrev.3c00712
10.1038/s41586-022-05401-w
10.1002/adma.19940061004
10.1038/s41563-023-01584-3
10.1126/science.abm9257
10.1002/anie.202311352
10.1002/anie.201905151
10.1039/D2CS01068B
10.1038/s41467-023-38126-z
10.1038/s41929-021-00663-5
10.1039/D0CY00540A
10.1016/j.nima.2021.165642
10.1038/nmat1223
10.1016/j.cej.2021.129842
10.1002/anie.202414149
10.1021/acssuschemeng.4c05296
10.1002/adma.202301369
10.1002/aenm.202302438
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202506131
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 40511688
10_1002_smll_202506131
SMLL202506131
Genre researchArticle
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
LH4
SV3
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3301-78e346fe44d1b01d0f115e9a8bf684e76affe2db32072241608c5f510be8e4b93
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 17:05:04 EDT 2025
Fri Aug 29 01:47:22 EDT 2025
Thu Aug 28 04:48:26 EDT 2025
Wed Aug 27 16:26:47 EDT 2025
Wed Aug 20 09:40:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords metal‐support interaction
electron buffer
alkaline hydrogen evolution
electrocatalysis
fullerene
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3301-78e346fe44d1b01d0f115e9a8bf684e76affe2db32072241608c5f510be8e4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6931-9613
PMID 40511688
PQID 3241230350
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_3218477516
proquest_journals_3241230350
pubmed_primary_40511688
crossref_primary_10_1002_smll_202506131
wiley_primary_10_1002_smll_202506131_SMLL202506131
PublicationCentury 2000
PublicationDate 2025-Aug
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 376
2011; 334
2017; 7
2019; 9
2021; 1013
2023; 13
2023; 35
2021; 4
2023; 14
2021; 420
2019; 58
2004; 3
2024; 53
2023; 1
2024; 124
2024; 34
2023; 2
2024; 12
2024; 146
2020; 10
2024; 15
2024; 16
2021; 14
2023; 62
2018; 18
2020; 4
2023; 22
2021; 55
2022; 4
2022; 61
2022; 6
2013; 51
2002; 65
2017; 12
2022; 34
2000; 61
2022; 13
2024; 2
2022; 32
2023; 614
2022; 606
2023; 613
2021; 60
2025; 64
2018; 57
1994; 6
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 64
  year: 2025
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 14
  start-page: 6428
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 9332
  year: 2019
  publication-title: ACS Catal.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 2256
  year: 2020
  publication-title: Mater. Chem. Front.
– volume: 18
  start-page: 3877
  year: 2018
  publication-title: Cryst. Growth Des.
– volume: 12
  start-page: 441
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 124
  start-page: 5617
  year: 2024
  publication-title: Chem. Rev.
– volume: 613
  start-page: 71
  year: 2023
  publication-title: Nature
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3958
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1711
  year: 2023
  publication-title: Nat. Commun.
– volume: 53
  start-page: 2771
  year: 2024
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 448
  year: 2024
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 3
  year: 2023
  publication-title: Precis. Chem.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 606
  start-page: 507
  year: 2022
  publication-title: Nature
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4673
  year: 2020
  publication-title: Catal. Sci. Technol.
– volume: 4
  start-page: 711
  year: 2021
  publication-title: Nat. Catal.
– volume: 2
  start-page: 480
  year: 2024
  publication-title: Precis. Chem.
– volume: 1013
  year: 2021
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
– volume: 12
  year: 2024
  publication-title: ACS Sustainable Chem. Eng.
– volume: 51
  start-page: 143
  year: 2013
  publication-title: Carbon.
– volume: 1
  start-page: 497
  year: 2023
  publication-title: Precis. Chem.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 1022
  year: 2023
  publication-title: Nat. Mater.
– volume: 55
  start-page: 70
  year: 2021
  publication-title: J. Energy Chem.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. B – Condens. Matter Mater. Phys.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 101
  year: 2023
  publication-title: Nat. Synth.
– volume: 3
  start-page: 810
  year: 2004
  publication-title: Nat. Mater.
– volume: 146
  start-page: 4883
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 731
  year: 1994
  publication-title: Adv. Mater.
– volume: 57
  start-page: 7568
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 2460
  year: 2023
  publication-title: Nat. Commun.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1781
  year: 2024
  publication-title: Nat. Chem.
– volume: 61
  year: 2000
  publication-title: Phys. Rev. B
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 376
  start-page: 288
  year: 2022
  publication-title: Science
– volume: 614
  start-page: 95
  year: 2023
  publication-title: Nature
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202209486
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201710556
– ident: e_1_2_7_34_1
  doi: 10.1002/smtd.202101040
– ident: e_1_2_7_27_1
  doi: 10.1021/prechem.4c00036
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jechem.2020.06.065
– ident: e_1_2_7_45_1
  doi: 10.1038/s41467-022-31660-2
– ident: e_1_2_7_29_1
  doi: 10.1038/s41586-022-04771-5
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202112398
– ident: e_1_2_7_47_1
  doi: 10.1021/jacs.3c13676
– ident: e_1_2_7_37_1
  doi: 10.1016/j.carbon.2012.08.022
– ident: e_1_2_7_15_1
  doi: 10.1038/s41557-024-01626-6
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.202106924
– ident: e_1_2_7_11_1
  doi: 10.1021/acscatal.9b01637
– ident: e_1_2_7_7_1
  doi: 10.1021/prechem.3c00033
– ident: e_1_2_7_43_1
  doi: 10.1039/D1EE01395E
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.202400185
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-024-44721-5
– ident: e_1_2_7_38_1
  doi: 10.1103/PhysRevB.65.155421
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.202200189
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.202110604
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.202209849
– ident: e_1_2_7_10_1
  doi: 10.1038/nnano.2016.304
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1211934
– ident: e_1_2_7_28_1
  doi: 10.1038/s44160-022-00232-z
– ident: e_1_2_7_36_1
  doi: 10.1038/s41586-022-05532-0
– ident: e_1_2_7_13_1
  doi: 10.1021/prechem.2c00011
– ident: e_1_2_7_39_1
  doi: 10.1103/PhysRevB.61.13191
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.cgd.8b00186
– ident: e_1_2_7_19_1
  doi: 10.1039/D0QM00295J
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201601251
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-023-37404-0
– ident: e_1_2_7_49_1
  doi: 10.1002/inf2.12287
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.3c00712
– ident: e_1_2_7_30_1
  doi: 10.1038/s41586-022-05401-w
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.19940061004
– ident: e_1_2_7_3_1
  doi: 10.1038/s41563-023-01584-3
– ident: e_1_2_7_14_1
  doi: 10.1126/science.abm9257
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202311352
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201905151
– ident: e_1_2_7_5_1
  doi: 10.1039/D2CS01068B
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-023-38126-z
– ident: e_1_2_7_4_1
  doi: 10.1038/s41929-021-00663-5
– ident: e_1_2_7_41_1
  doi: 10.1039/D0CY00540A
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nima.2021.165642
– ident: e_1_2_7_48_1
  doi: 10.1038/nmat1223
– ident: e_1_2_7_12_1
  doi: 10.1016/j.cej.2021.129842
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202414149
– ident: e_1_2_7_32_1
  doi: 10.1021/acssuschemeng.4c05296
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.202301369
– ident: e_1_2_7_20_1
  doi: 10.1002/aenm.202302438
SSID ssj0031247
Score 2.4766204
Snippet The reaction kinetics for electrochemical hydrogen evolution reaction (HER) in an alkaline medium is more sluggish than in acid because it involves...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2506131
SubjectTerms Adsorption
alkaline hydrogen evolution
Binding
Buckminsterfullerene
Buffers
Charge density
Charge transfer
Desorption
electrocatalysis
electron buffer
fullerene
Fullerenes
Hydrogen evolution reactions
metal‐support interaction
Nanoparticles
Reaction kinetics
Ruthenium
Title Modulating the Binding Strength of Multiple Intermediates by Few‐Layer Fullerene Network Electron Buffer for Alkaline Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202506131
https://www.ncbi.nlm.nih.gov/pubmed/40511688
https://www.proquest.com/docview/3241230350
https://www.proquest.com/docview/3218477516
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T9xAEB5FVKQgPBLiQNAgIVEZ_Nhb2yVEdzpFdxQBJDpr115DBNgRdweCipqK38gvYWbtczgokJLOb-9rdr7Zmf0GYItMDqHZw1hEJnZF4uduIgWbKqEmfK-yxPB6x_BA9o_Fz5POyYtd_DU_RLvgxpJh52sWcKVHu39JQ0eXF-w6IBVOGontHw7YYlT0q-WPCkl52ewq9ITLxFtT1kYv2J19fVYrvYGas8jVqp7eJ1DTQtcRJ-c7k7Heye5e8Tn-T60WYaHBpbhXD6Ql-GDKZfj4gq1wBR6GVW6TfZWnSLAR93_bHTHIju3ydHyGVYHDJj4R7Uqj3ZZCWBb1LfbMzdP940ARxEe2e21WFjyoo9Cx22Tjwf0JJ2xBgtK4d3GuuELYv82vKhro2L1uBOUzHPe6Rz_6bpPKwc1CmkLcKDahkIURIve15-deQUjUJCrWhYyFiaSijwe5DgMvYlAhvTjrFDRfaBMboZPwC8yVVWm-AnqBCjK60gkV205SSVMkIY2pJEt0kecObE-7Mv1TM3akNTdzkHLrpm3rOrA-7em0kdxRSgCTlDn7Wx3YbG-TzLEjRZWmmvAzZBdHUceXDqzWI6T9FQFg35dx7EBg-_mdMqSHw8GgPfv2Ly-twTwf11GJ6zA3vpqY74SUxnrDSsMzXTAM0A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOhfIooaVMJSROafPwOsmxRbtaINlDaSVukZ04bdWSVO0uqJx65sRv5Jcw4zxg4YAEx7zt2OP55uFvAF6SySE0RxiryMSuSPzSTaRgUyXUhO9VkRj2d2QzOT0Sbz-M-mxC3gvT8kMMDjeWDLtes4CzQ3r3J2vo1cdzjh2QDieVRAbQbS7rba2qg4FBKiT1Zeur0C0uU2_1vI1esLv8_LJe-gNsLmNXq3wm90H3zW5zTs52FnO9U3z5jdHxv_r1AFY7aIp77Vxag1umfgj3fiEsfARfs6a09b7qYyTkiPundlMMcmy7Pp6fYFNh1qUoonU22p0pBGdRX-PEfP5-8y1VhPKRTV9bmAVnbSI6jruCPLi_4JotSGga987PFPcIp9flZUNzHcefOll5DEeT8eHrqdtVc3CLkFYRN4pNKGRlhCh97fmlVxEYNYmKdSVjYSKp6OVBqcPAixhXSC8uRhUtGdrERugkfAIrdVObp4BeoIKCzoxCxeaTVNJUSUjTKikSXZWlA6_6scwvWtKOvKVnDnL-u_nwdx3Y7Ic674T3KieMSfqcQ64ObA-XSew4lqJq0yz4HjKNo2jkSwfW2ykyfIowsO_LOHYgsAP9lzbk77M0HY6e_ctDL-DO9DBL8_TN7N0G3OXzbZLiJqzMLxfmOQGnud6yovEDHFMQ6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiE4lDcECgwSEqe0eXid5NjSXS2wu0JApd4iO7YLaptU7S6onDhz4jfyS5hxsqELByQ45m3HM55vPONvAJ6RyyE0RxhdZvNQFLEJCynYVUk14XtVFZbXO6YzOd4Tr_YH-xd28bf8EP2CG2uGn69ZwU-M2_pFGnp2fMShAzLhZJHI_7ksZJSzXO--7QmkUrJevrwK3RIy89aStjFKtlafXzVLf2DNVejqbc_oOqhlq9uUk8PNxVxvVl9-I3T8n27dgPUOmOJ2K0k34ZKtb8G1C3SFt-HbtDG-2ld9gIQbceej3xKDHNmuD-YfsHE47RIU0S81-n0pBGZRn-PIfv7x9ftEEcZHdnx9WRactWnoOOzK8eDOgiu2IGFp3D46VNwhHJ-b04YkHYefOk25A3uj4fsX47Cr5RBWKc0hYZbbVEhnhTCxjmITOYKitlC5djIXNpOKXp4YnSZRxqiCxrIaOJowtM2t0EV6F9bqprb3AaNEJRWdGaSKnSeppHVFSkJVVIV2xgTwfDmU5UlL2VG25MxJyX-37P9uABvLkS471T0rCWGSNeeAawBP-8ukdBxJUbVtFnwPOcZZNohlAPdaCek_RQg4jmWeB5D4cf5LG8p308mkP3rwLw89gStvdkfl5OXs9UO4yqfbDMUNWJufLuwjQk1z_dgrxk_6hw-j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+Binding+Strength+of+Multiple+Intermediates+by+Few%E2%80%90Layer+Fullerene+Network+Electron+Buffer+for+Alkaline+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xing&rft.au=Chen%2C+Xiang&rft.au=Lv%2C+Rongyao&rft.au=Ma%2C+Hao&rft.date=2025-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202506131&rft.externalDBID=10.1002%252Fsmll.202506131&rft.externalDocID=SMLL202506131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon