Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls‐Modulated Hydrogen Migration over Nonreducible Oxides

The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on w...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 37; no. 13; pp. e2500371 - n/a
Main Authors Xu, Shi‐Lin, Wang, Wei, Li, Hao‐Tong, Gao, Yu‐Xiang, Min, Yuan, Liu, Peigen, Zheng, Xusheng, Liu, Dong‐Feng, Chen, Jie‐Jie, Yu, Han‐Qing, Zhou, Xiao, Wu, Yuen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202500371

Cover

Loading…
Abstract The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. Hydrogen spillover is considered to play a major role in ubiquitous technologies involving hydrogen. However, its application in Earth‐abundant widely‐used non‐reducible oxides is severely limited by much shorter migration distances of atomic hydrogen compared to those in reducible oxides. This study presents a surface hydroxyl modulation strategy to enhance hydrogen migration over nonreducible oxides, promoting electrocatalytic hydrogenation for water purification.
AbstractList The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu 1 /SiO 2 ) is designed and uncover that the surface hydroxyls on SiO 2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu 1 /SiO 2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu 1 /SiO 2 . This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu /SiO ) is designed and uncover that the surface hydroxyls on SiO can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu /SiO catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu /SiO . This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. Hydrogen spillover is considered to play a major role in ubiquitous technologies involving hydrogen. However, its application in Earth‐abundant widely‐used non‐reducible oxides is severely limited by much shorter migration distances of atomic hydrogen compared to those in reducible oxides. This study presents a surface hydroxyl modulation strategy to enhance hydrogen migration over nonreducible oxides, promoting electrocatalytic hydrogenation for water purification.
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
Author Liu, Peigen
Li, Hao‐Tong
Xu, Shi‐Lin
Wang, Wei
Wu, Yuen
Gao, Yu‐Xiang
Zhou, Xiao
Zheng, Xusheng
Liu, Dong‐Feng
Min, Yuan
Chen, Jie‐Jie
Yu, Han‐Qing
Author_xml – sequence: 1
  givenname: Shi‐Lin
  surname: Xu
  fullname: Xu, Shi‐Lin
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Hao‐Tong
  surname: Li
  fullname: Li, Hao‐Tong
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Yu‐Xiang
  surname: Gao
  fullname: Gao, Yu‐Xiang
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Yuan
  surname: Min
  fullname: Min, Yuan
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Peigen
  surname: Liu
  fullname: Liu, Peigen
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Xusheng
  surname: Zheng
  fullname: Zheng, Xusheng
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Dong‐Feng
  surname: Liu
  fullname: Liu, Dong‐Feng
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Jie‐Jie
  surname: Chen
  fullname: Chen, Jie‐Jie
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Han‐Qing
  surname: Yu
  fullname: Yu, Han‐Qing
  email: hqyu@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Xiao
  surname: Zhou
  fullname: Zhou, Xiao
  email: zhoux08@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Yuen
  orcidid: 0000-0001-9524-2843
  surname: Wu
  fullname: Wu, Yuen
  email: yuenwu@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39962838$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P3DAQBmCrApVl6bVHFKmXXrKM48Sxj1vKl7RbDqXnyB8TFOSNwU4oufUn8Bv5JWQVoBIXTnN53tFo3n2y0_oWCflKYUEBsiNlN2qRQVYAsJJ-IjNaZDTNQRY7ZAaSFankudgj-zHeAIDkwD-TPSYlzwQTMxJPHJoueKM65YauMcn5YIO_xlZ1jW-TH97HDm2ih-R3H2plcAIPg4tP_x7X3vZObcFrLFk312HK-nsMyS_fBrS9abTD5PKhsRgPyG6tXMQvL3NO_pyeXB2fp6vLs4vj5So1jAFNi8KUNMt1kZc1Ndbk2ipFtRTcSiUUtyjQUCFyobXlVENtCmuRidLYsmaCzcn3ae9t8Hc9xq7aNNGgc6pF38eKUS4g4yzb0m_v6I3vQzteNyqRSxDj40Z1-KJ6vUFb3YZmo8JQvb5zBIsJmOBjDFi_EQrVtq9q21f11tcYkFPgb-Nw-EBXy5_r5f_sM9y5m_U
Cites_doi 10.1016/j.apsusc.2023.157854
10.1021/jp212274y
10.1073/pnas.1722263115
10.1021/jacs.3c01638
10.1038/s41467-023-40412-9
10.1002/adma.202307799
10.1038/s41929-023-00996-3
10.1021/jacs.3c02483
10.1021/cr200346z
10.1039/D2CP04722E
10.1038/s44221-022-00002-3
10.1016/j.nxmate.2024.100104
10.1038/s41565-022-01277-z
10.1038/s41929-023-01040-0
10.1038/s41565-020-0746-x
10.1021/acs.jpcc.1c02998
10.1016/j.apcatb.2021.120590
10.1002/anie.202407810
10.1021/acs.jpcc.7b03733
10.1016/j.apcatb.2022.121730
10.1021/acscatal.2c06074
10.1021/acsnano.2c11338
10.1038/s41586-022-05251-6
10.1002/anie.202200211
10.1021/cr500077e
10.1038/s41467-022-33007-3
10.1021/acs.jpcc.6b03065
10.1038/s41467-024-47836-x
10.1021/acs.chemmater.2c01493
10.1038/s41467-023-36044-8
10.1021/acsnano.2c12817
10.1002/anie.201908122
10.1038/s41467-020-20619-w
10.1038/s41467-018-05757-6
10.1002/adma.201701139
10.1038/s41565-024-01669-3
10.1038/nature20782
10.1016/j.apcatb.2022.122076
10.1038/s41563-019-0571-5
10.1002/anie.202401386
10.1002/anie.202316874
10.1038/ncomms4370
10.1126/science.adi3416
10.1038/s41467-022-29045-6
10.1021/acscatal.1c04419
10.1016/j.watres.2015.01.025
10.1021/acs.est.6b00652
10.1002/smll.202302414
10.1038/s41467-021-23696-7
10.1038/s41467-021-23750-4
10.1038/s41467-021-27698-3
10.1038/s41467-022-28843-2
10.1002/adma.202312616
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202500371
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39962838
10_1002_adma_202500371
ADMA202500371
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Hefei National Synchrotron Radiation Laboratory
  funderid: KY2400000029
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2021YFA1500404
– fundername: National Natural Science Foundation of China
  funderid: 52100195; 52192684; 52027815; 51821006; 92261105; 22221003
– fundername: Hefei National Synchrotron Radiation Laboratory
  grantid: KY2400000029
– fundername: National Natural Science Foundation of China
  grantid: 22221003
– fundername: National Natural Science Foundation of China
  grantid: 52192684
– fundername: National Natural Science Foundation of China
  grantid: 52027815
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2021YFA1500404
– fundername: National Natural Science Foundation of China
  grantid: 51821006
– fundername: National Natural Science Foundation of China
  grantid: 92261105
– fundername: National Natural Science Foundation of China
  grantid: 52100195
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
53G
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LH4
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3301-55c7124b547f1cdc4bdaa1b986d9a8a6de8ec18848bbd61b0fc5dde387cd7f383
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:19:52 EDT 2025
Fri Jul 25 21:13:24 EDT 2025
Mon Jul 21 05:28:12 EDT 2025
Tue Jul 01 05:12:39 EDT 2025
Wed Apr 02 09:51:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords surface hydroxyls
electrocatalytic hydrogenation
hydrogen migration
nonreducible oxides
single‐atom catalysts
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3301-55c7124b547f1cdc4bdaa1b986d9a8a6de8ec18848bbd61b0fc5dde387cd7f383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9524-2843
PMID 39962838
PQID 3184908606
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3168026328
proquest_journals_3184908606
pubmed_primary_39962838
crossref_primary_10_1002_adma_202500371
wiley_primary_10_1002_adma_202500371_ADMA202500371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2024 2024 2012; 63 36 116
2014 2021 2023; 114 12 1
2023 2023; 6 14
2023; 14
2024 2016; 63 120
2023; 17
2023 2021; 13 298
2023; 18
2023; 6
2021; 125
2023; 381
2015; 72
2023; 322
2023; 145
2019; 58
2016; 50
2014 2020 2024; 5 15 36
2022; 317
2022 2017; 611 29
2024 2021; 15 11
2024; 19
2020; 19
2023; 25
2021; 12
2024 2022; 63 34
2022; 61
2023 2023 2024; 17 19 3
2012 2017; 112 541
2018; 115
2022; 13
2023; 636
2021 2018 2017; 12 9 121
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 25
  start-page: 6121
  year: 2023
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 1130
  year: 2024
  publication-title: Nat. Nanotechnol.
– volume: 381
  start-page: 886
  year: 2023
  publication-title: Science
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 2890
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 160
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 50
  start-page: 5857
  year: 2016
  publication-title: Environ. Sci. Technol.
– volume: 112 541
  start-page: 2714 68
  year: 2012 2017
  publication-title: Chem. Rev. Nature
– volume: 12
  start-page: 3502
  year: 2021
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 317
  year: 2022
  publication-title: Appl. Catal. B: Environ. Energy
– volume: 12 9 121
  start-page: 3342 3367
  year: 2021 2018 2017
  publication-title: Nat. Commun. Nat. Commun. J. Phys. Chem. C
– volume: 15 11
  start-page: 3874
  year: 2024 2021
  publication-title: Nat. Commun. ACS Catal.
– volume: 13
  start-page: 5382
  year: 2022
  publication-title: Nat. Commun.
– volume: 322
  year: 2023
  publication-title: Appl. Catal. B: Environ. Energy
– volume: 5 15 36
  start-page: 3370 848
  year: 2014 2020 2024
  publication-title: Nat. Commun. Nat. Nanotechnol. Adv. Mater.
– volume: 114 12 1
  start-page: 8720 303 95
  year: 2014 2021 2023
  publication-title: Chem. Rev. Nat. Commun. Nat. Water.
– volume: 63 36 116
  year: 2024 2024 2012
  publication-title: Angew. Chem., Int. Ed. Adv. Mater. J. Phys. Chem. C
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 145
  start-page: 8656
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 6 14
  start-page: 1062 613
  year: 2023 2023
  publication-title: Nat. Catal. Nat. Commun.
– volume: 63 34
  start-page: 7042
  year: 2024 2022
  publication-title: Angew. Chem., Int. Ed. Chem. Mater.
– volume: 13
  start-page: 1189
  year: 2022
  publication-title: Nat. Commun.
– volume: 611 29
  start-page: 284
  year: 2022 2017
  publication-title: Nature Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 17 19 3
  start-page: 2923
  year: 2023 2023 2024
  publication-title: ACS Nano Small Next Mater.
– volume: 13
  start-page: 1457
  year: 2022
  publication-title: Nat. Commun.
– volume: 17
  start-page: 5025
  year: 2023
  publication-title: ACS Nano
– volume: 636
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 436
  year: 2020
  publication-title: Nat. Mater.
– volume: 63 120
  year: 2024 2016
  publication-title: Angew. Chem., Int. Ed. J. Phys. Chem. C
– volume: 6
  start-page: 710
  year: 2023
  publication-title: Nat. Catal.
– volume: 14
  start-page: 4615
  year: 2023
  publication-title: Nat. Commun.
– volume: 13 298
  start-page: 4003
  year: 2023 2021
  publication-title: ACS Catal. Appl. Catal. B: Environ. Energy
– volume: 72
  start-page: 281
  year: 2015
  publication-title: Water Res.
– volume: 13
  start-page: 58
  year: 2022
  publication-title: Nat. Commun.
– ident: e_1_2_7_27_1
  doi: 10.1016/j.apsusc.2023.157854
– ident: e_1_2_7_4_3
  doi: 10.1021/jp212274y
– ident: e_1_2_7_10_1
  doi: 10.1073/pnas.1722263115
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.3c01638
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-023-40412-9
– ident: e_1_2_7_4_2
  doi: 10.1002/adma.202307799
– ident: e_1_2_7_8_1
  doi: 10.1038/s41929-023-00996-3
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.3c02483
– ident: e_1_2_7_2_1
  doi: 10.1021/cr200346z
– ident: e_1_2_7_13_1
  doi: 10.1039/D2CP04722E
– ident: e_1_2_7_11_3
  doi: 10.1038/s44221-022-00002-3
– ident: e_1_2_7_1_3
  doi: 10.1016/j.nxmate.2024.100104
– ident: e_1_2_7_35_1
  doi: 10.1038/s41565-022-01277-z
– ident: e_1_2_7_15_1
  doi: 10.1038/s41929-023-01040-0
– ident: e_1_2_7_3_2
  doi: 10.1038/s41565-020-0746-x
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.jpcc.1c02998
– ident: e_1_2_7_26_2
  doi: 10.1016/j.apcatb.2021.120590
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202407810
– ident: e_1_2_7_5_3
  doi: 10.1021/acs.jpcc.7b03733
– ident: e_1_2_7_34_1
  doi: 10.1016/j.apcatb.2022.121730
– ident: e_1_2_7_26_1
  doi: 10.1021/acscatal.2c06074
– ident: e_1_2_7_1_1
  doi: 10.1021/acsnano.2c11338
– ident: e_1_2_7_9_1
  doi: 10.1038/s41586-022-05251-6
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202200211
– ident: e_1_2_7_11_1
  doi: 10.1021/cr500077e
– ident: e_1_2_7_30_1
  doi: 10.1038/s41467-022-33007-3
– ident: e_1_2_7_25_2
  doi: 10.1021/acs.jpcc.6b03065
– ident: e_1_2_7_7_1
  doi: 10.1038/s41467-024-47836-x
– ident: e_1_2_7_21_2
  doi: 10.1021/acs.chemmater.2c01493
– ident: e_1_2_7_15_2
  doi: 10.1038/s41467-023-36044-8
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.2c12817
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201908122
– ident: e_1_2_7_11_2
  doi: 10.1038/s41467-020-20619-w
– ident: e_1_2_7_5_2
  doi: 10.1038/s41467-018-05757-6
– ident: e_1_2_7_9_2
  doi: 10.1002/adma.201701139
– ident: e_1_2_7_22_1
  doi: 10.1038/s41565-024-01669-3
– ident: e_1_2_7_2_2
  doi: 10.1038/nature20782
– ident: e_1_2_7_36_1
  doi: 10.1016/j.apcatb.2022.122076
– ident: e_1_2_7_17_1
  doi: 10.1038/s41563-019-0571-5
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.202401386
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202316874
– ident: e_1_2_7_3_1
  doi: 10.1038/ncomms4370
– ident: e_1_2_7_29_1
  doi: 10.1126/science.adi3416
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-022-29045-6
– ident: e_1_2_7_7_2
  doi: 10.1021/acscatal.1c04419
– ident: e_1_2_7_32_1
  doi: 10.1016/j.watres.2015.01.025
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.est.6b00652
– ident: e_1_2_7_1_2
  doi: 10.1002/smll.202302414
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-021-23696-7
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-021-23750-4
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-021-27698-3
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-022-28843-2
– ident: e_1_2_7_3_3
  doi: 10.1002/adma.202312616
SSID ssj0009606
Score 2.5378342
Snippet The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2500371
SubjectTerms Catalysis
Catalysts
Channels
Copper
Dechlorination
Electrocatalysts
electrocatalytic hydrogenation
Hydrodechlorination
Hydrogen
hydrogen migration
Hydrogenation
nonreducible oxides
Silicon dioxide
single‐atom catalysts
surface hydroxyls
Title Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls‐Modulated Hydrogen Migration over Nonreducible Oxides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202500371
https://www.ncbi.nlm.nih.gov/pubmed/39962838
https://www.proquest.com/docview/3184908606
https://www.proquest.com/docview/3168026328
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v8wbEQSfOtesbdLHeWMIm6AO9lZyqwxllXUF55M_wd_oL_EkWavTB0HfWnJC05yTky_JOV8QOop8wQgPtWfyIr2AEu7FsIDzooZIUyJUzGy6WKcbtXvBVT_sf8nid_wQ1YabGRnWX5sBzkV-8kkaypXlDYIp3LDOgRM2AVsGFd188kcZeG7J9pqhF0cBK1kbG-RktvrsrPQDas4iVzv1XC4jXjbaRZw81IuxqMuXb3yO__mrFbQ0xaW45QxpFc3p4Rpa_MJWuI7yC3dljt3xmYAcbk_UKAMLtNrFp5lNGMFigm-LUcqldgLPk8f8_fWtkylzVRgIlNVwZ3DvDBCbQFLczcCWVSEH4lHj6-eB0vkG6l1e3J21vemdDZ5sgq_wwlBSgAwiDGjqSyUDoTj3BahcxZzxSGmmpc9YwIRQYCiNVIbgYZuMSkVTWC5vovlhNtTbCBPKKRVNGkguATamTFBBFPeDNIxlFJMaOi51ljw5ao7EkTCTxHRjUnVjDe2VKk2mQzRPwJmZQ0-wkBo6rIphcJkTEz7UWWFkItYwjPashracKVSfAmQXATaDEmIV-ksbktZ5p1W97fyl0i5aMM8ubmgPzY9Hhd4HSDQWB9bsPwAazQWs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvFsWChgJiVPajTeJnePShxZoFglaiVvkV9CKaoN2N1KXEz-hv7G_hBl7k3bhgATHxLbieB7-_JhvAF5nsZZcpS6iuMgoEVxFOS7goqyvq4prm0sfLlaMs9Fp8v5L2t4mpFiYwA_RbbiRZXh_TQZOG9J7V6yhynriIJzDiXbuJtyitN6UxODg0xWDFAF0T7c3SKM8S2TL29jne-vt1-elP8DmOnb1k8_RPdBtt8Odk2-7zULvmh-_MTr-13_dh7sraMqGQZcewA03fQib1wgLH8H8MGTN8Zs-S6zHRks7q1EJvYDZ29rHjDC9ZJ-bWaWMCxXOl2fzy58XRW0pWxhWaJuxYvI16CCju6RsXKM628ZM9JljH88n1s0fw-nR4cn-KFqlbYjMAN1FlKZGIGrQaSKq2FiTaKtUrFHqNldSZdZJZ2IpE6m1RV3pVyZFJzuQwlhR4Yp5Czam9dQ9AcaFEkIPRGKUQeRYSS00typOqjQ3Wc578KYVWvk9sHOUgYeZlzSMZTeMPdhpZVqurHReoj-jc09UkR686orRvujQRE1d3VCdTPaJ1F72YDvoQvcpBHcZwjMs4V6if-lDOTwoht3T039p9BJuj06K4_L43fjDM7hD78M1oh3YWMwa9xwR0kK_8DbwC2cECcY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CISH2wH1QGGAkJJ6yNW5iO4_dpSqXFgRM2lvkK6o2NVPbSCtP_AR-437Jju0mW-EBCR4THyuOz8WfL-czwBuWKkFlbhOfF5lknMqkwAlcwrrKOapMIUK62GjMhkfZ--P8-FoWf-SHaBfcvGeEeO0d_My43SvSUGkCbxAO4Z517ibcyhh6jIdFX64IpDw-D2x7vTwpWCYa2sYu3V2vvz4s_YE116FrGHsG90A2rY5HTk526oXa0T9-I3T8n9-6D3dXwJT0oyU9gBt2-hA2r9EVPoL5YbwzJyz5LFGODJdmVqEJBvWSvSpkjBC1JF_rmZPaRoHz5en84uevUWX8XWEo0FQjo8n3aIHEnyQl4wqN2dR6ok4t-XQ-MXb-GI4Gh9_2h8nq0oZE9zBYJHmuOWIGlWfcpdroTBkpU4U6N4UUkhkrrE6FyIRSBi2l63SOIbYnuDbc4Xx5Czam1dQ-BUK55Fz1eKalRtzohOKKGplmLi80K2gH3jY6K88iN0cZWZhp6buxbLuxA9uNSsuVj85LjGZ-1xMtpAOv22L0Lr9lIqe2qr0ME11PaS868CSaQvsphHYMwRmW0KDQv7Sh7B-M-u3Ts3-p9Apufz4YlB_fjT88hzv-dTxDtA0bi1ltXyA8WqiXwQMuAWDdCH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Hydrogenation+Boosted+by+Surface+Hydroxyls%E2%80%90Modulated+Hydrogen+Migration+over+Nonreducible+Oxides&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Shi%E2%80%90Lin&rft.au=Wang%2C+Wei&rft.au=Li%2C+Hao%E2%80%90Tong&rft.au=Gao%2C+Yu%E2%80%90Xiang&rft.date=2025-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202500371&rft.externalDBID=10.1002%252Fadma.202500371&rft.externalDocID=ADMA202500371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon