Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls‐Modulated Hydrogen Migration over Nonreducible Oxides
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on w...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 37; no. 13; pp. e2500371 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202500371 |
Cover
Loading…
Abstract | The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
Hydrogen spillover is considered to play a major role in ubiquitous technologies involving hydrogen. However, its application in Earth‐abundant widely‐used non‐reducible oxides is severely limited by much shorter migration distances of atomic hydrogen compared to those in reducible oxides. This study presents a surface hydroxyl modulation strategy to enhance hydrogen migration over nonreducible oxides, promoting electrocatalytic hydrogenation for water purification. |
---|---|
AbstractList | The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu 1 /SiO 2 ) is designed and uncover that the surface hydroxyls on SiO 2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu 1 /SiO 2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu 1 /SiO 2 . This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu /SiO ) is designed and uncover that the surface hydroxyls on SiO can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu /SiO catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu /SiO . This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls‐assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely‐used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide‐anchored copper single‐atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen‐species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. Hydrogen spillover is considered to play a major role in ubiquitous technologies involving hydrogen. However, its application in Earth‐abundant widely‐used non‐reducible oxides is severely limited by much shorter migration distances of atomic hydrogen compared to those in reducible oxides. This study presents a surface hydroxyl modulation strategy to enhance hydrogen migration over nonreducible oxides, promoting electrocatalytic hydrogenation for water purification. The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts. |
Author | Liu, Peigen Li, Hao‐Tong Xu, Shi‐Lin Wang, Wei Wu, Yuen Gao, Yu‐Xiang Zhou, Xiao Zheng, Xusheng Liu, Dong‐Feng Min, Yuan Chen, Jie‐Jie Yu, Han‐Qing |
Author_xml | – sequence: 1 givenname: Shi‐Lin surname: Xu fullname: Xu, Shi‐Lin organization: University of Science and Technology of China – sequence: 2 givenname: Wei surname: Wang fullname: Wang, Wei organization: University of Science and Technology of China – sequence: 3 givenname: Hao‐Tong surname: Li fullname: Li, Hao‐Tong organization: University of Science and Technology of China – sequence: 4 givenname: Yu‐Xiang surname: Gao fullname: Gao, Yu‐Xiang organization: University of Science and Technology of China – sequence: 5 givenname: Yuan surname: Min fullname: Min, Yuan organization: University of Science and Technology of China – sequence: 6 givenname: Peigen surname: Liu fullname: Liu, Peigen organization: University of Science and Technology of China – sequence: 7 givenname: Xusheng surname: Zheng fullname: Zheng, Xusheng organization: University of Science and Technology of China – sequence: 8 givenname: Dong‐Feng surname: Liu fullname: Liu, Dong‐Feng organization: University of Science and Technology of China – sequence: 9 givenname: Jie‐Jie surname: Chen fullname: Chen, Jie‐Jie organization: University of Science and Technology of China – sequence: 10 givenname: Han‐Qing surname: Yu fullname: Yu, Han‐Qing email: hqyu@ustc.edu.cn organization: University of Science and Technology of China – sequence: 11 givenname: Xiao surname: Zhou fullname: Zhou, Xiao email: zhoux08@ustc.edu.cn organization: University of Science and Technology of China – sequence: 12 givenname: Yuen orcidid: 0000-0001-9524-2843 surname: Wu fullname: Wu, Yuen email: yuenwu@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39962838$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1P3DAQBmCrApVl6bVHFKmXXrKM48Sxj1vKl7RbDqXnyB8TFOSNwU4oufUn8Bv5JWQVoBIXTnN53tFo3n2y0_oWCflKYUEBsiNlN2qRQVYAsJJ-IjNaZDTNQRY7ZAaSFankudgj-zHeAIDkwD-TPSYlzwQTMxJPHJoueKM65YauMcn5YIO_xlZ1jW-TH97HDm2ih-R3H2plcAIPg4tP_x7X3vZObcFrLFk312HK-nsMyS_fBrS9abTD5PKhsRgPyG6tXMQvL3NO_pyeXB2fp6vLs4vj5So1jAFNi8KUNMt1kZc1Ndbk2ipFtRTcSiUUtyjQUCFyobXlVENtCmuRidLYsmaCzcn3ae9t8Hc9xq7aNNGgc6pF38eKUS4g4yzb0m_v6I3vQzteNyqRSxDj40Z1-KJ6vUFb3YZmo8JQvb5zBIsJmOBjDFi_EQrVtq9q21f11tcYkFPgb-Nw-EBXy5_r5f_sM9y5m_U |
Cites_doi | 10.1016/j.apsusc.2023.157854 10.1021/jp212274y 10.1073/pnas.1722263115 10.1021/jacs.3c01638 10.1038/s41467-023-40412-9 10.1002/adma.202307799 10.1038/s41929-023-00996-3 10.1021/jacs.3c02483 10.1021/cr200346z 10.1039/D2CP04722E 10.1038/s44221-022-00002-3 10.1016/j.nxmate.2024.100104 10.1038/s41565-022-01277-z 10.1038/s41929-023-01040-0 10.1038/s41565-020-0746-x 10.1021/acs.jpcc.1c02998 10.1016/j.apcatb.2021.120590 10.1002/anie.202407810 10.1021/acs.jpcc.7b03733 10.1016/j.apcatb.2022.121730 10.1021/acscatal.2c06074 10.1021/acsnano.2c11338 10.1038/s41586-022-05251-6 10.1002/anie.202200211 10.1021/cr500077e 10.1038/s41467-022-33007-3 10.1021/acs.jpcc.6b03065 10.1038/s41467-024-47836-x 10.1021/acs.chemmater.2c01493 10.1038/s41467-023-36044-8 10.1021/acsnano.2c12817 10.1002/anie.201908122 10.1038/s41467-020-20619-w 10.1038/s41467-018-05757-6 10.1002/adma.201701139 10.1038/s41565-024-01669-3 10.1038/nature20782 10.1016/j.apcatb.2022.122076 10.1038/s41563-019-0571-5 10.1002/anie.202401386 10.1002/anie.202316874 10.1038/ncomms4370 10.1126/science.adi3416 10.1038/s41467-022-29045-6 10.1021/acscatal.1c04419 10.1016/j.watres.2015.01.025 10.1021/acs.est.6b00652 10.1002/smll.202302414 10.1038/s41467-021-23696-7 10.1038/s41467-021-23750-4 10.1038/s41467-021-27698-3 10.1038/s41467-022-28843-2 10.1002/adma.202312616 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202500371 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39962838 10_1002_adma_202500371 ADMA202500371 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Hefei National Synchrotron Radiation Laboratory funderid: KY2400000029 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2021YFA1500404 – fundername: National Natural Science Foundation of China funderid: 52100195; 52192684; 52027815; 51821006; 92261105; 22221003 – fundername: Hefei National Synchrotron Radiation Laboratory grantid: KY2400000029 – fundername: National Natural Science Foundation of China grantid: 22221003 – fundername: National Natural Science Foundation of China grantid: 52192684 – fundername: National Natural Science Foundation of China grantid: 52027815 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2021YFA1500404 – fundername: National Natural Science Foundation of China grantid: 51821006 – fundername: National Natural Science Foundation of China grantid: 92261105 – fundername: National Natural Science Foundation of China grantid: 52100195 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LH4 LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3301-55c7124b547f1cdc4bdaa1b986d9a8a6de8ec18848bbd61b0fc5dde387cd7f383 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:19:52 EDT 2025 Fri Jul 25 21:13:24 EDT 2025 Mon Jul 21 05:28:12 EDT 2025 Tue Jul 01 05:12:39 EDT 2025 Wed Apr 02 09:51:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | surface hydroxyls electrocatalytic hydrogenation hydrogen migration nonreducible oxides single‐atom catalysts |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3301-55c7124b547f1cdc4bdaa1b986d9a8a6de8ec18848bbd61b0fc5dde387cd7f383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9524-2843 |
PMID | 39962838 |
PQID | 3184908606 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3168026328 proquest_journals_3184908606 pubmed_primary_39962838 crossref_primary_10_1002_adma_202500371 wiley_primary_10_1002_adma_202500371_ADMA202500371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2024 2024 2012; 63 36 116 2014 2021 2023; 114 12 1 2023 2023; 6 14 2023; 14 2024 2016; 63 120 2023; 17 2023 2021; 13 298 2023; 18 2023; 6 2021; 125 2023; 381 2015; 72 2023; 322 2023; 145 2019; 58 2016; 50 2014 2020 2024; 5 15 36 2022; 317 2022 2017; 611 29 2024 2021; 15 11 2024; 19 2020; 19 2023; 25 2021; 12 2024 2022; 63 34 2022; 61 2023 2023 2024; 17 19 3 2012 2017; 112 541 2018; 115 2022; 13 2023; 636 2021 2018 2017; 12 9 121 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 25 start-page: 6121 year: 2023 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 1130 year: 2024 publication-title: Nat. Nanotechnol. – volume: 381 start-page: 886 year: 2023 publication-title: Science – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 2890 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 160 year: 2023 publication-title: Nat. Nanotechnol. – volume: 50 start-page: 5857 year: 2016 publication-title: Environ. Sci. Technol. – volume: 112 541 start-page: 2714 68 year: 2012 2017 publication-title: Chem. Rev. Nature – volume: 12 start-page: 3502 year: 2021 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 317 year: 2022 publication-title: Appl. Catal. B: Environ. Energy – volume: 12 9 121 start-page: 3342 3367 year: 2021 2018 2017 publication-title: Nat. Commun. Nat. Commun. J. Phys. Chem. C – volume: 15 11 start-page: 3874 year: 2024 2021 publication-title: Nat. Commun. ACS Catal. – volume: 13 start-page: 5382 year: 2022 publication-title: Nat. Commun. – volume: 322 year: 2023 publication-title: Appl. Catal. B: Environ. Energy – volume: 5 15 36 start-page: 3370 848 year: 2014 2020 2024 publication-title: Nat. Commun. Nat. Nanotechnol. Adv. Mater. – volume: 114 12 1 start-page: 8720 303 95 year: 2014 2021 2023 publication-title: Chem. Rev. Nat. Commun. Nat. Water. – volume: 63 36 116 year: 2024 2024 2012 publication-title: Angew. Chem., Int. Ed. Adv. Mater. J. Phys. Chem. C – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 145 start-page: 8656 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 6 14 start-page: 1062 613 year: 2023 2023 publication-title: Nat. Catal. Nat. Commun. – volume: 63 34 start-page: 7042 year: 2024 2022 publication-title: Angew. Chem., Int. Ed. Chem. Mater. – volume: 13 start-page: 1189 year: 2022 publication-title: Nat. Commun. – volume: 611 29 start-page: 284 year: 2022 2017 publication-title: Nature Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 17 19 3 start-page: 2923 year: 2023 2023 2024 publication-title: ACS Nano Small Next Mater. – volume: 13 start-page: 1457 year: 2022 publication-title: Nat. Commun. – volume: 17 start-page: 5025 year: 2023 publication-title: ACS Nano – volume: 636 year: 2023 publication-title: Appl. Surf. Sci. – volume: 19 start-page: 436 year: 2020 publication-title: Nat. Mater. – volume: 63 120 year: 2024 2016 publication-title: Angew. Chem., Int. Ed. J. Phys. Chem. C – volume: 6 start-page: 710 year: 2023 publication-title: Nat. Catal. – volume: 14 start-page: 4615 year: 2023 publication-title: Nat. Commun. – volume: 13 298 start-page: 4003 year: 2023 2021 publication-title: ACS Catal. Appl. Catal. B: Environ. Energy – volume: 72 start-page: 281 year: 2015 publication-title: Water Res. – volume: 13 start-page: 58 year: 2022 publication-title: Nat. Commun. – ident: e_1_2_7_27_1 doi: 10.1016/j.apsusc.2023.157854 – ident: e_1_2_7_4_3 doi: 10.1021/jp212274y – ident: e_1_2_7_10_1 doi: 10.1073/pnas.1722263115 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.3c01638 – ident: e_1_2_7_12_1 doi: 10.1038/s41467-023-40412-9 – ident: e_1_2_7_4_2 doi: 10.1002/adma.202307799 – ident: e_1_2_7_8_1 doi: 10.1038/s41929-023-00996-3 – ident: e_1_2_7_33_1 doi: 10.1021/jacs.3c02483 – ident: e_1_2_7_2_1 doi: 10.1021/cr200346z – ident: e_1_2_7_13_1 doi: 10.1039/D2CP04722E – ident: e_1_2_7_11_3 doi: 10.1038/s44221-022-00002-3 – ident: e_1_2_7_1_3 doi: 10.1016/j.nxmate.2024.100104 – ident: e_1_2_7_35_1 doi: 10.1038/s41565-022-01277-z – ident: e_1_2_7_15_1 doi: 10.1038/s41929-023-01040-0 – ident: e_1_2_7_3_2 doi: 10.1038/s41565-020-0746-x – ident: e_1_2_7_14_1 doi: 10.1021/acs.jpcc.1c02998 – ident: e_1_2_7_26_2 doi: 10.1016/j.apcatb.2021.120590 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202407810 – ident: e_1_2_7_5_3 doi: 10.1021/acs.jpcc.7b03733 – ident: e_1_2_7_34_1 doi: 10.1016/j.apcatb.2022.121730 – ident: e_1_2_7_26_1 doi: 10.1021/acscatal.2c06074 – ident: e_1_2_7_1_1 doi: 10.1021/acsnano.2c11338 – ident: e_1_2_7_9_1 doi: 10.1038/s41586-022-05251-6 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202200211 – ident: e_1_2_7_11_1 doi: 10.1021/cr500077e – ident: e_1_2_7_30_1 doi: 10.1038/s41467-022-33007-3 – ident: e_1_2_7_25_2 doi: 10.1021/acs.jpcc.6b03065 – ident: e_1_2_7_7_1 doi: 10.1038/s41467-024-47836-x – ident: e_1_2_7_21_2 doi: 10.1021/acs.chemmater.2c01493 – ident: e_1_2_7_15_2 doi: 10.1038/s41467-023-36044-8 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.2c12817 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201908122 – ident: e_1_2_7_11_2 doi: 10.1038/s41467-020-20619-w – ident: e_1_2_7_5_2 doi: 10.1038/s41467-018-05757-6 – ident: e_1_2_7_9_2 doi: 10.1002/adma.201701139 – ident: e_1_2_7_22_1 doi: 10.1038/s41565-024-01669-3 – ident: e_1_2_7_2_2 doi: 10.1038/nature20782 – ident: e_1_2_7_36_1 doi: 10.1016/j.apcatb.2022.122076 – ident: e_1_2_7_17_1 doi: 10.1038/s41563-019-0571-5 – ident: e_1_2_7_4_1 doi: 10.1002/anie.202401386 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202316874 – ident: e_1_2_7_3_1 doi: 10.1038/ncomms4370 – ident: e_1_2_7_29_1 doi: 10.1126/science.adi3416 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-022-29045-6 – ident: e_1_2_7_7_2 doi: 10.1021/acscatal.1c04419 – ident: e_1_2_7_32_1 doi: 10.1016/j.watres.2015.01.025 – ident: e_1_2_7_28_1 doi: 10.1021/acs.est.6b00652 – ident: e_1_2_7_1_2 doi: 10.1002/smll.202302414 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-021-23696-7 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-021-23750-4 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-021-27698-3 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-022-28843-2 – ident: e_1_2_7_3_3 doi: 10.1002/adma.202312616 |
SSID | ssj0009606 |
Score | 2.5378342 |
Snippet | The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2500371 |
SubjectTerms | Catalysis Catalysts Channels Copper Dechlorination Electrocatalysts electrocatalytic hydrogenation Hydrodechlorination Hydrogen hydrogen migration Hydrogenation nonreducible oxides Silicon dioxide single‐atom catalysts surface hydroxyls |
Title | Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls‐Modulated Hydrogen Migration over Nonreducible Oxides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202500371 https://www.ncbi.nlm.nih.gov/pubmed/39962838 https://www.proquest.com/docview/3184908606 https://www.proquest.com/docview/3168026328 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v8wbEQSfOtesbdLHeWMIm6AO9lZyqwxllXUF55M_wd_oL_EkWavTB0HfWnJC05yTky_JOV8QOop8wQgPtWfyIr2AEu7FsIDzooZIUyJUzGy6WKcbtXvBVT_sf8nid_wQ1YabGRnWX5sBzkV-8kkaypXlDYIp3LDOgRM2AVsGFd188kcZeG7J9pqhF0cBK1kbG-RktvrsrPQDas4iVzv1XC4jXjbaRZw81IuxqMuXb3yO__mrFbQ0xaW45QxpFc3p4Rpa_MJWuI7yC3dljt3xmYAcbk_UKAMLtNrFp5lNGMFigm-LUcqldgLPk8f8_fWtkylzVRgIlNVwZ3DvDBCbQFLczcCWVSEH4lHj6-eB0vkG6l1e3J21vemdDZ5sgq_wwlBSgAwiDGjqSyUDoTj3BahcxZzxSGmmpc9YwIRQYCiNVIbgYZuMSkVTWC5vovlhNtTbCBPKKRVNGkguATamTFBBFPeDNIxlFJMaOi51ljw5ao7EkTCTxHRjUnVjDe2VKk2mQzRPwJmZQ0-wkBo6rIphcJkTEz7UWWFkItYwjPashracKVSfAmQXATaDEmIV-ksbktZ5p1W97fyl0i5aMM8ubmgPzY9Hhd4HSDQWB9bsPwAazQWs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvFsWChgJiVPajTeJnePShxZoFglaiVvkV9CKaoN2N1KXEz-hv7G_hBl7k3bhgATHxLbieB7-_JhvAF5nsZZcpS6iuMgoEVxFOS7goqyvq4prm0sfLlaMs9Fp8v5L2t4mpFiYwA_RbbiRZXh_TQZOG9J7V6yhynriIJzDiXbuJtyitN6UxODg0xWDFAF0T7c3SKM8S2TL29jne-vt1-elP8DmOnb1k8_RPdBtt8Odk2-7zULvmh-_MTr-13_dh7sraMqGQZcewA03fQib1wgLH8H8MGTN8Zs-S6zHRks7q1EJvYDZ29rHjDC9ZJ-bWaWMCxXOl2fzy58XRW0pWxhWaJuxYvI16CCju6RsXKM628ZM9JljH88n1s0fw-nR4cn-KFqlbYjMAN1FlKZGIGrQaSKq2FiTaKtUrFHqNldSZdZJZ2IpE6m1RV3pVyZFJzuQwlhR4Yp5Czam9dQ9AcaFEkIPRGKUQeRYSS00typOqjQ3Wc578KYVWvk9sHOUgYeZlzSMZTeMPdhpZVqurHReoj-jc09UkR686orRvujQRE1d3VCdTPaJ1F72YDvoQvcpBHcZwjMs4V6if-lDOTwoht3T039p9BJuj06K4_L43fjDM7hD78M1oh3YWMwa9xwR0kK_8DbwC2cECcY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CISH2wH1QGGAkJJ6yNW5iO4_dpSqXFgRM2lvkK6o2NVPbSCtP_AR-437Jju0mW-EBCR4THyuOz8WfL-czwBuWKkFlbhOfF5lknMqkwAlcwrrKOapMIUK62GjMhkfZ--P8-FoWf-SHaBfcvGeEeO0d_My43SvSUGkCbxAO4Z517ibcyhh6jIdFX64IpDw-D2x7vTwpWCYa2sYu3V2vvz4s_YE116FrGHsG90A2rY5HTk526oXa0T9-I3T8n9-6D3dXwJT0oyU9gBt2-hA2r9EVPoL5YbwzJyz5LFGODJdmVqEJBvWSvSpkjBC1JF_rmZPaRoHz5en84uevUWX8XWEo0FQjo8n3aIHEnyQl4wqN2dR6ok4t-XQ-MXb-GI4Gh9_2h8nq0oZE9zBYJHmuOWIGlWfcpdroTBkpU4U6N4UUkhkrrE6FyIRSBi2l63SOIbYnuDbc4Xx5Czam1dQ-BUK55Fz1eKalRtzohOKKGplmLi80K2gH3jY6K88iN0cZWZhp6buxbLuxA9uNSsuVj85LjGZ-1xMtpAOv22L0Lr9lIqe2qr0ME11PaS868CSaQvsphHYMwRmW0KDQv7Sh7B-M-u3Ts3-p9Apufz4YlB_fjT88hzv-dTxDtA0bi1ltXyA8WqiXwQMuAWDdCH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Hydrogenation+Boosted+by+Surface+Hydroxyls%E2%80%90Modulated+Hydrogen+Migration+over+Nonreducible+Oxides&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Shi%E2%80%90Lin&rft.au=Wang%2C+Wei&rft.au=Li%2C+Hao%E2%80%90Tong&rft.au=Gao%2C+Yu%E2%80%90Xiang&rft.date=2025-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202500371&rft.externalDBID=10.1002%252Fadma.202500371&rft.externalDocID=ADMA202500371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |