Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry

Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust appro...

Full description

Saved in:
Bibliographic Details
Published inAnimal biotelemetry Vol. 5; no. 1; p. 8
Main Authors Ladds, Monique A., Thompson, Adam P., Kadar, Julianna-Piroska, J Slip, David, P Hocking, David, G Harcourt, Robert
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.03.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. Results The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). Conclusions Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis.
AbstractList BACKGROUND: Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. RESULTS: The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). CONCLUSIONS: Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis.
Abstract Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. Results The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). Conclusions Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis.
ArticleNumber 8
Author Ladds, Monique A.
G Harcourt, Robert
Thompson, Adam P.
P Hocking, David
Kadar, Julianna-Piroska
J Slip, David
Author_xml – sequence: 1
  givenname: Monique A.
  orcidid: 0000-0002-0241-4915
  surname: Ladds
  fullname: Ladds, Monique A.
– sequence: 2
  givenname: Adam P.
  surname: Thompson
  fullname: Thompson, Adam P.
– sequence: 3
  givenname: Julianna-Piroska
  surname: Kadar
  fullname: Kadar, Julianna-Piroska
– sequence: 4
  givenname: David
  surname: J Slip
  fullname: J Slip, David
– sequence: 5
  givenname: David
  surname: P Hocking
  fullname: P Hocking, David
– sequence: 6
  givenname: Robert
  surname: G Harcourt
  fullname: G Harcourt, Robert
BookMark eNp9UU1r3DAQNSWFpml-QG6CXnpxok9b6q2EtgkEemhzFmN5lGixpa1kL-y_j3a3lJJDBYOehvfeaGbeN2cxRWyaK0avGdPdTZFUsL6lx-CiZW-ac04VbYXQ6uwf_K65LGVD6zGMCSPOm_Rz3WImM7jnEJFMCDmG-PSZhHmb065CAs6tGdyeQBxJxnF1h-wOcoDokCRPBnyGXUhrJm6CUoIPDpaQIvE5zQc9TlgRLnn_oXnrYSp4-ee-aB6_ff11e9c-_Ph-f_vloXVCUNaKTjhUTAk1ckMNDp4L5G6UYLDnHehOIZhOjX19SuGNrFWM0n6UCiQO4qK5P_mOCTZ2m8MMeW8TBHtMpPxkIS_BTWg74_iI1Vt3Ve39YITuBvSm9xqoh-r16eRVJ_J7xbLYOZTa0wQR01osl0Zz2etOV-rHV9RNHUusnVqmtZTKSMkqi51YLqdSMvq_H2TUHjZqTxu19Bhc2IOmf6VxYTlOeckQpv8oXwDIyaiU
CitedBy_id crossref_primary_10_1007_s00227_020_03803_w
crossref_primary_10_1007_s40430_022_03390_5
crossref_primary_10_1186_s40317_018_0158_y
crossref_primary_10_3389_fevo_2020_00169
crossref_primary_10_3390_s21196392
crossref_primary_10_1071_WR20073
crossref_primary_10_1007_s00227_018_3318_y
crossref_primary_10_1038_s41598_019_57198_w
crossref_primary_10_1186_s40462_024_00511_8
crossref_primary_10_1016_j_jembe_2022_151782
crossref_primary_10_12720_jait_15_11_1264_1272
crossref_primary_10_1007_s13132_024_01969_y
crossref_primary_10_1038_s41598_021_92896_4
crossref_primary_10_1186_s40317_019_0175_5
crossref_primary_10_1007_s00227_021_03892_1
crossref_primary_10_1038_s41598_021_89365_3
crossref_primary_10_1371_journal_pone_0277491
crossref_primary_10_1186_s40462_021_00248_8
crossref_primary_10_1016_j_anbehav_2023_10_004
crossref_primary_10_1186_s40462_021_00245_x
crossref_primary_10_1016_j_ecolmodel_2021_109818
crossref_primary_10_1016_j_compag_2021_106595
crossref_primary_10_1016_j_ecoinf_2018_12_002
crossref_primary_10_1098_rsos_200139
crossref_primary_10_1186_s40462_021_00265_7
crossref_primary_10_1002_ece3_4740
crossref_primary_10_1007_s10519_023_10169_4
crossref_primary_10_1016_j_ecolmodel_2021_109555
crossref_primary_10_5194_polf_91_45_2023
crossref_primary_10_1016_j_imu_2024_101605
crossref_primary_10_1186_s40317_023_00332_3
crossref_primary_10_1109_JSEN_2021_3112901
crossref_primary_10_1242_jeb_177378
crossref_primary_10_1111_jfb_14589
crossref_primary_10_1186_s40462_022_00324_7
crossref_primary_10_3390_s25051614
crossref_primary_10_1016_j_anbehav_2021_04_018
crossref_primary_10_1016_j_ecolind_2020_106174
crossref_primary_10_1186_s40317_023_00339_w
crossref_primary_10_3390_ani12192516
crossref_primary_10_1016_j_eswa_2022_117925
crossref_primary_10_1111_2041_210X_13069
crossref_primary_10_1186_s40317_021_00269_5
crossref_primary_10_7717_peerj_5814
crossref_primary_10_1080_10106049_2022_2025921
crossref_primary_10_1016_j_jhazmat_2020_123492
crossref_primary_10_1242_jeb_184085
Cites_doi 10.1371/journal.pone.0077814
10.3354/esr00064
10.1242/jeb.136135
10.1371/journal.pone.0166898
10.1111/j.1365-2656.2006.01127.x
10.1145/1107548.1107591
10.1242/jeb.089805
10.1371/journal.pone.0031187
10.18637/jss.v033.i01
10.1186/s40462-014-0027-0
10.1186/s40317-015-0045-8
10.1242/jeb.113076
10.2202/1544-6115.1309
10.1371/journal.pone.0005379
10.1002/zoo.20212
10.3354/meps158267
10.1186/2050-3385-1-20
10.3354/meps244235
10.1016/j.tree.2016.02.015
10.1002/ece3.1914
10.2202/1544-6115.1240
10.1371/annotation/cde9d37a-6b33-40d7-b6d4-83cdf443c942
10.3354/ab00104
10.1126/science.1255642
10.1016/j.applanim.2016.05.026
10.1186/2051-3933-2-6
10.1515/ijb-2014-0060
10.1242/jeb.058602
10.1016/j.compag.2014.12.002
10.1016/S2213-2600(14)70239-5
10.1109/DSAA.2015.7344781
ContentType Journal Article
Copyright Copyright BioMed Central 2017
Copyright_xml – notice: Copyright BioMed Central 2017
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.1186/s40317-017-0123-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2050-3385
EndPage 8
ExternalDocumentID oai_doaj_org_article_69c2decd486d45ffb9386bef97f8a0fa
10_1186_s40317_017_0123_1
GroupedDBID 0R~
4.4
5VS
8FE
8FH
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ACGFS
ACUHS
ADBBV
ADUKV
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C6C
CCPQU
CITATION
EBLON
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IHR
ITC
KQ8
LK8
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
RBZ
ROL
RSV
SOJ
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c3301-363ce51535d2909ebf23e2cd4a9e726a865ea965d7e7243f94acc958fd45a4eb3
IEDL.DBID BENPR
ISSN 2050-3385
IngestDate Wed Aug 27 01:31:20 EDT 2025
Thu Jul 10 18:34:25 EDT 2025
Fri Jul 25 12:05:27 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Tue Jul 01 01:43:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3301-363ce51535d2909ebf23e2cd4a9e726a865ea965d7e7243f94acc958fd45a4eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0241-4915
OpenAccessLink https://www.proquest.com/docview/1884459441?pq-origsite=%requestingapplication%
PQID 1884459441
PQPubID 2040173
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_69c2decd486d45ffb9386bef97f8a0fa
proquest_miscellaneous_2498247868
proquest_journals_1884459441
crossref_primary_10_1186_s40317_017_0123_1
crossref_citationtrail_10_1186_s40317_017_0123_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-29
PublicationDateYYYYMMDD 2017-03-29
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Animal biotelemetry
PublicationYear 2017
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References L Qasem (123_CR28) 2012; 7
123_CR8
W Bowen (123_CR21) 1997; 158
W Bowen (123_CR23) 2002; 244
OR Bidder (123_CR6) 2014; 9
R Dutta (123_CR15) 2015; 111
123_CR31
MM Davies (123_CR19) 2016; 12
123_CR30
123_CR36
L Gerencser (123_CR17) 2013; 8
123_CR33
KQ Sakamoto (123_CR3) 2009; 4
123_CR29
HA Campbell (123_CR16) 2013; 216
YS Resheff (123_CR9) 2014; 2
TT Hammond (123_CR12) 2016; 219
R Nathan (123_CR7) 2012; 215
NE Hussey (123_CR2) 2015; 348
G Carroll (123_CR5) 2014; 217
EL Shepard (123_CR26) 2008; 4
MA Ladds (123_CR14) 2016; 11
M Chimienti (123_CR10) 2016; 6
RA Bom (123_CR11) 2014; 2
123_CR25
RP Wilson (123_CR1) 2008; 4
R Pirracchio (123_CR20) 2015; 3
M Takahashi (123_CR35) 2009; 28
123_CR18
AJ Viera (123_CR32) 2005; 37
RP Wilson (123_CR27) 2006; 75
JH Friedman (123_CR34) 2010; 33
JAV Diosdado (123_CR13) 2015
FAP Alvarenga (123_CR24) 2016; 181
DD Brown (123_CR4) 2013; 1
GC Hays (123_CR22) 2016; 31
References_xml – volume: 8
  start-page: e77814
  year: 2013
  ident: 123_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0077814
– volume: 4
  start-page: 123
  year: 2008
  ident: 123_CR1
  publication-title: Endanger Species Res
  doi: 10.3354/esr00064
– volume: 219
  start-page: 1618
  year: 2016
  ident: 123_CR12
  publication-title: J Exp Biol
  doi: 10.1242/jeb.136135
– volume: 11
  start-page: e0166898
  year: 2016
  ident: 123_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0166898
– volume: 75
  start-page: 1081
  year: 2006
  ident: 123_CR27
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2006.01127.x
– volume: 37
  start-page: 360
  year: 2005
  ident: 123_CR32
  publication-title: Fam Med
– ident: 123_CR36
  doi: 10.1145/1107548.1107591
– volume: 216
  start-page: 4501
  year: 2013
  ident: 123_CR16
  publication-title: J Exp Biol
  doi: 10.1242/jeb.089805
– volume: 7
  start-page: e31187
  year: 2012
  ident: 123_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031187
– volume: 33
  start-page: 1
  year: 2010
  ident: 123_CR34
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 2
  start-page: 27
  year: 2014
  ident: 123_CR9
  publication-title: Mov Ecol
  doi: 10.1186/s40462-014-0027-0
– year: 2015
  ident: 123_CR13
  publication-title: Anim Biotelem
  doi: 10.1186/s40317-015-0045-8
– ident: 123_CR25
– volume: 217
  start-page: 4295
  year: 2014
  ident: 123_CR5
  publication-title: J Exp Biol
  doi: 10.1242/jeb.113076
– ident: 123_CR29
– ident: 123_CR18
  doi: 10.2202/1544-6115.1309
– volume: 4
  start-page: e5379
  year: 2009
  ident: 123_CR3
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005379
– volume: 28
  start-page: 59
  year: 2009
  ident: 123_CR35
  publication-title: Zoo Biol
  doi: 10.1002/zoo.20212
– volume: 158
  start-page: 267
  year: 1997
  ident: 123_CR21
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps158267
– volume: 1
  start-page: 20
  year: 2013
  ident: 123_CR4
  publication-title: Anim Biotelem
  doi: 10.1186/2050-3385-1-20
– volume: 244
  start-page: 235
  year: 2002
  ident: 123_CR23
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps244235
– volume: 31
  start-page: 463
  year: 2016
  ident: 123_CR22
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2016.02.015
– ident: 123_CR33
– volume: 6
  start-page: 727
  year: 2016
  ident: 123_CR10
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1914
– ident: 123_CR31
  doi: 10.2202/1544-6115.1240
– volume: 9
  start-page: 7
  year: 2014
  ident: 123_CR6
  publication-title: PLoS ONE
  doi: 10.1371/annotation/cde9d37a-6b33-40d7-b6d4-83cdf443c942
– volume: 4
  start-page: 235
  year: 2008
  ident: 123_CR26
  publication-title: Aquat Biol
  doi: 10.3354/ab00104
– volume: 348
  start-page: 1255642
  year: 2015
  ident: 123_CR2
  publication-title: Science
  doi: 10.1126/science.1255642
– volume: 181
  start-page: 91
  year: 2016
  ident: 123_CR24
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2016.05.026
– volume: 2
  start-page: 1
  year: 2014
  ident: 123_CR11
  publication-title: Mov Ecol
  doi: 10.1186/2051-3933-2-6
– volume: 12
  start-page: 179
  year: 2016
  ident: 123_CR19
  publication-title: Int J Biostat
  doi: 10.1515/ijb-2014-0060
– volume: 215
  start-page: 986
  year: 2012
  ident: 123_CR7
  publication-title: J Exp Biol
  doi: 10.1242/jeb.058602
– volume: 111
  start-page: 18
  year: 2015
  ident: 123_CR15
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2014.12.002
– ident: 123_CR30
– volume: 3
  start-page: 42
  year: 2015
  ident: 123_CR20
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(14)70239-5
– ident: 123_CR8
  doi: 10.1109/DSAA.2015.7344781
SSID ssj0000911393
Score 2.2465353
Snippet Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from...
BACKGROUND: Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets...
Abstract Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8
SubjectTerms Accelerometer
accelerometers
accelerometry
Accuracy
animal behavior
Animals
Artificial intelligence
Behavior
Behavioural classification
biotelemetry
Classification
Computer applications
data collection
Data processing
Ecosystems
Ethogram
Generalized linear models
humans
learning
Learning algorithms
length
Machine learning
Marine mammal
selection criteria
Statistical analysis
Super learner
testing
variance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NSx0xMIhQ8FJqq_haW1LwJCy-zdcmvbVFkUK9qCBeQj5FaHdl39uC_96Z7L6HUtCLhxw2m2yy85GZSSYzhBzIDEqwr03lmfG4WxUqE7OqGuZyTI5rHdFQ_H2mTi_Fryt59SjVF_qEjeGBR8AdKRNYTCEKraKQOXvDtfIpmyZrN89FNQKZ98iYKmsw8DA3fDrGrLU6WgggX_SyxMJ4VT8RRCVe_3_LcZExJ-_I20k5pN_HSW2TjdS-J2-uu7L1_YF058Nd6unf4v-Y6JTw4eYbvV3tDFAXwtC7cE9dG2mPYVmx9h8YxIhd2mU63csfehpQcUZPoYIcihdNsD_IIQxhsOzvd8jlyfHFz9NqSphQBQ6MWnHFQwIFhcvIzNwknxlPDGDnTGqYclrJ5IySsYFHwbMR8FUjdQbIOgFm9S7ZbLs27REKraQRYKt57kU2yqsks-NO8VRy08_IfAU9G6Zo4pjU4o8tVoVWdgS4nZfCuK1n5HDd5W4MpfFc4x-IknVDjIJdKoA27EQb9iXamJH9FULtxJoLW2stBPybgDG-rl8DU-FJiWtTNyws2KSaiUYr_fE15vGJbLFCeJg2b59sLvshfQZdZum_FLJ9AOeR83A
  priority: 102
  providerName: Directory of Open Access Journals
Title Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry
URI https://www.proquest.com/docview/1884459441
https://www.proquest.com/docview/2498247868
https://doaj.org/article/69c2decd486d45ffb9386bef97f8a0fa
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxMGgPwRfxE0_rEcEnYeltks0mvshVWsqBRayF4kvIZyno7rl3K_TfO5PLnYjQhzxsNgkk8z2ZzBDyrkmgBLtaV45ph94qX-mQZNUym0K0XKmAhuLnc3l2KZZXzVVxuK1LWOWOJ2ZGHXqPPvKjWikhGg3S--PqV4VVo_B2tZTQuE8mwIIVGF-T45PzL1_3XhaQhqDi8HKdWSt5tBaAxhhtiY3xqv5HIOW8_f-x5SxrTh-TR0VJpIstVJ-Qe7F7Sh5877ML_BnpL8ZVHOjPHAcZaSn8cP2B3uw8BNR6Pw7W31LbBTpgelbs_Q2GMUKZ9omW9_njQD0q0BgxlIFE8cEJzgd5hKkMNsPtc3J5evLt01lVCidUngPBVlxyH0FR4U1geq6jS4xH5oOwOrZMWiWbaLVsQgufgictYFXdqBREYwWY1y_IQdd38SWhMAoOHWw2x51IWjoZm2S5lTzmGvVTMt-dnvElqzgWt_hhsnWhpNkeuJnnxripp-T9fspqm1LjrsHHCJL9QMyGnTv64doU4jJSexYi7E9J2EFKTnMlXUy6TcrOk52Swx1ATSHRtfmLUFPydv8biAtvTGwX-3FtwDZVTLRKqld3L_GaPGQZpbAw3iE52AxjfAPaysbNyGSxWF4sZwU1Z9nq_wMj4O0S
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA_1iuiL-ImnVSPoi7D0NslmE0HEasvVtodoC8WXmM8itLfn3q1y_5R_ozN7uyci9K0PedjdJGwmM5n5TZIZQl4UCYxgl-vMMe3QW-UzHZLMSmZTiJYrFRAoHk3k-ER8PC1ON8jv_i4MHqvs18R2oQ6VRx_5dq6UEIUG7f129iPDrFG4u9qn0FixxUFc_gLINn-z_wHm9yVje7vH78dZl1Ug84Dd84xL7iNocV4Epkc6usR4ZD4Iq2PJpFWyiFbLIpTwKHjSwnqvC5WCKKwA7An9XiObggOUGZDNnd3Jp89rrw5oXzCpeLd9miu5PRcgNni6EwvjWf6PAmzzBPynBlrdtneb3OqMUvpuxUV3yEac3iXXv1aty_0eqb40s1jTi_bcZaRdoomz1_R775Gg8PNNbf2S2mmgNYaDxbc_AYgjV9Eq0S4eQFNTjwY7nlBqmYLiBRdsD_oPQycs6uV9cnIlJH1ABtNqGh8SCrVgkgEjOu5E0tLJWCTLreQRKMv0kIx66hnfRTHHZBrnpkUzSpoVwc2oLYybfEherZvMViE8Lqu8g1OyrojRt9sXVX1mOmE2UnsWIoxPSRhBSk5zJV1MukzKjpIdkq1-Qk23JMzNXwYekufrzyDMuENjp7Fq5gawsGKiVFI9uryLZ-TG-Pjo0BzuTw4ek5usZS9MyrdFBou6iU_AUlq4px17UvLtqiXiD_5HJ0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super+machine+learning%3A+improving+accuracy+and+reducing+variance+of+behaviour+classification+from+accelerometry&rft.jtitle=Animal+biotelemetry&rft.au=Ladds%2C+MoniqueA&rft.au=Thompson%2C+AdamP&rft.au=Kadar%2C+Julianna-Piroska&rft.au=J+Slip%2C+David&rft.date=2017-03-29&rft.issn=2050-3385&rft.eissn=2050-3385&rft.volume=5&rft.issue=1+p.8-8&rft.spage=8&rft.epage=8&rft_id=info:doi/10.1186%2Fs40317-017-0123-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3385&client=summon