Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry
Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust appro...
Saved in:
Published in | Animal biotelemetry Vol. 5; no. 1; p. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
29.03.2017
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. Results The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). Conclusions Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis. |
---|---|
AbstractList | BACKGROUND: Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. RESULTS: The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). CONCLUSIONS: Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis. Abstract Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. Results The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). Conclusions Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis. |
ArticleNumber | 8 |
Author | Ladds, Monique A. G Harcourt, Robert Thompson, Adam P. P Hocking, David Kadar, Julianna-Piroska J Slip, David |
Author_xml | – sequence: 1 givenname: Monique A. orcidid: 0000-0002-0241-4915 surname: Ladds fullname: Ladds, Monique A. – sequence: 2 givenname: Adam P. surname: Thompson fullname: Thompson, Adam P. – sequence: 3 givenname: Julianna-Piroska surname: Kadar fullname: Kadar, Julianna-Piroska – sequence: 4 givenname: David surname: J Slip fullname: J Slip, David – sequence: 5 givenname: David surname: P Hocking fullname: P Hocking, David – sequence: 6 givenname: Robert surname: G Harcourt fullname: G Harcourt, Robert |
BookMark | eNp9UU1r3DAQNSWFpml-QG6CXnpxok9b6q2EtgkEemhzFmN5lGixpa1kL-y_j3a3lJJDBYOehvfeaGbeN2cxRWyaK0avGdPdTZFUsL6lx-CiZW-ac04VbYXQ6uwf_K65LGVD6zGMCSPOm_Rz3WImM7jnEJFMCDmG-PSZhHmb065CAs6tGdyeQBxJxnF1h-wOcoDokCRPBnyGXUhrJm6CUoIPDpaQIvE5zQc9TlgRLnn_oXnrYSp4-ee-aB6_ff11e9c-_Ph-f_vloXVCUNaKTjhUTAk1ckMNDp4L5G6UYLDnHehOIZhOjX19SuGNrFWM0n6UCiQO4qK5P_mOCTZ2m8MMeW8TBHtMpPxkIS_BTWg74_iI1Vt3Ve39YITuBvSm9xqoh-r16eRVJ_J7xbLYOZTa0wQR01osl0Zz2etOV-rHV9RNHUusnVqmtZTKSMkqi51YLqdSMvq_H2TUHjZqTxu19Bhc2IOmf6VxYTlOeckQpv8oXwDIyaiU |
CitedBy_id | crossref_primary_10_1007_s00227_020_03803_w crossref_primary_10_1007_s40430_022_03390_5 crossref_primary_10_1186_s40317_018_0158_y crossref_primary_10_3389_fevo_2020_00169 crossref_primary_10_3390_s21196392 crossref_primary_10_1071_WR20073 crossref_primary_10_1007_s00227_018_3318_y crossref_primary_10_1038_s41598_019_57198_w crossref_primary_10_1186_s40462_024_00511_8 crossref_primary_10_1016_j_jembe_2022_151782 crossref_primary_10_12720_jait_15_11_1264_1272 crossref_primary_10_1007_s13132_024_01969_y crossref_primary_10_1038_s41598_021_92896_4 crossref_primary_10_1186_s40317_019_0175_5 crossref_primary_10_1007_s00227_021_03892_1 crossref_primary_10_1038_s41598_021_89365_3 crossref_primary_10_1371_journal_pone_0277491 crossref_primary_10_1186_s40462_021_00248_8 crossref_primary_10_1016_j_anbehav_2023_10_004 crossref_primary_10_1186_s40462_021_00245_x crossref_primary_10_1016_j_ecolmodel_2021_109818 crossref_primary_10_1016_j_compag_2021_106595 crossref_primary_10_1016_j_ecoinf_2018_12_002 crossref_primary_10_1098_rsos_200139 crossref_primary_10_1186_s40462_021_00265_7 crossref_primary_10_1002_ece3_4740 crossref_primary_10_1007_s10519_023_10169_4 crossref_primary_10_1016_j_ecolmodel_2021_109555 crossref_primary_10_5194_polf_91_45_2023 crossref_primary_10_1016_j_imu_2024_101605 crossref_primary_10_1186_s40317_023_00332_3 crossref_primary_10_1109_JSEN_2021_3112901 crossref_primary_10_1242_jeb_177378 crossref_primary_10_1111_jfb_14589 crossref_primary_10_1186_s40462_022_00324_7 crossref_primary_10_3390_s25051614 crossref_primary_10_1016_j_anbehav_2021_04_018 crossref_primary_10_1016_j_ecolind_2020_106174 crossref_primary_10_1186_s40317_023_00339_w crossref_primary_10_3390_ani12192516 crossref_primary_10_1016_j_eswa_2022_117925 crossref_primary_10_1111_2041_210X_13069 crossref_primary_10_1186_s40317_021_00269_5 crossref_primary_10_7717_peerj_5814 crossref_primary_10_1080_10106049_2022_2025921 crossref_primary_10_1016_j_jhazmat_2020_123492 crossref_primary_10_1242_jeb_184085 |
Cites_doi | 10.1371/journal.pone.0077814 10.3354/esr00064 10.1242/jeb.136135 10.1371/journal.pone.0166898 10.1111/j.1365-2656.2006.01127.x 10.1145/1107548.1107591 10.1242/jeb.089805 10.1371/journal.pone.0031187 10.18637/jss.v033.i01 10.1186/s40462-014-0027-0 10.1186/s40317-015-0045-8 10.1242/jeb.113076 10.2202/1544-6115.1309 10.1371/journal.pone.0005379 10.1002/zoo.20212 10.3354/meps158267 10.1186/2050-3385-1-20 10.3354/meps244235 10.1016/j.tree.2016.02.015 10.1002/ece3.1914 10.2202/1544-6115.1240 10.1371/annotation/cde9d37a-6b33-40d7-b6d4-83cdf443c942 10.3354/ab00104 10.1126/science.1255642 10.1016/j.applanim.2016.05.026 10.1186/2051-3933-2-6 10.1515/ijb-2014-0060 10.1242/jeb.058602 10.1016/j.compag.2014.12.002 10.1016/S2213-2600(14)70239-5 10.1109/DSAA.2015.7344781 |
ContentType | Journal Article |
Copyright | Copyright BioMed Central 2017 |
Copyright_xml | – notice: Copyright BioMed Central 2017 |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.1186/s40317-017-0123-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2050-3385 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_69c2decd486d45ffb9386bef97f8a0fa 10_1186_s40317_017_0123_1 |
GroupedDBID | 0R~ 4.4 5VS 8FE 8FH AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ACGFS ACUHS ADBBV ADUKV AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BBNVY BCNDV BENPR BFQNJ BHPHI BMC C6C CCPQU CITATION EBLON EBS EJD ESX GROUPED_DOAJ H13 HCIFZ IAO IHR ITC KQ8 LK8 M7P M~E OK1 PHGZM PHGZT PIMPY PROAC RBZ ROL RSV SOJ ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c3301-363ce51535d2909ebf23e2cd4a9e726a865ea965d7e7243f94acc958fd45a4eb3 |
IEDL.DBID | BENPR |
ISSN | 2050-3385 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Thu Jul 10 18:34:25 EDT 2025 Fri Jul 25 12:05:27 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Tue Jul 01 01:43:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3301-363ce51535d2909ebf23e2cd4a9e726a865ea965d7e7243f94acc958fd45a4eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0241-4915 |
OpenAccessLink | https://www.proquest.com/docview/1884459441?pq-origsite=%requestingapplication% |
PQID | 1884459441 |
PQPubID | 2040173 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69c2decd486d45ffb9386bef97f8a0fa proquest_miscellaneous_2498247868 proquest_journals_1884459441 crossref_primary_10_1186_s40317_017_0123_1 crossref_citationtrail_10_1186_s40317_017_0123_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-29 |
PublicationDateYYYYMMDD | 2017-03-29 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Animal biotelemetry |
PublicationYear | 2017 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | L Qasem (123_CR28) 2012; 7 123_CR8 W Bowen (123_CR21) 1997; 158 W Bowen (123_CR23) 2002; 244 OR Bidder (123_CR6) 2014; 9 R Dutta (123_CR15) 2015; 111 123_CR31 MM Davies (123_CR19) 2016; 12 123_CR30 123_CR36 L Gerencser (123_CR17) 2013; 8 123_CR33 KQ Sakamoto (123_CR3) 2009; 4 123_CR29 HA Campbell (123_CR16) 2013; 216 YS Resheff (123_CR9) 2014; 2 TT Hammond (123_CR12) 2016; 219 R Nathan (123_CR7) 2012; 215 NE Hussey (123_CR2) 2015; 348 G Carroll (123_CR5) 2014; 217 EL Shepard (123_CR26) 2008; 4 MA Ladds (123_CR14) 2016; 11 M Chimienti (123_CR10) 2016; 6 RA Bom (123_CR11) 2014; 2 123_CR25 RP Wilson (123_CR1) 2008; 4 R Pirracchio (123_CR20) 2015; 3 M Takahashi (123_CR35) 2009; 28 123_CR18 AJ Viera (123_CR32) 2005; 37 RP Wilson (123_CR27) 2006; 75 JH Friedman (123_CR34) 2010; 33 JAV Diosdado (123_CR13) 2015 FAP Alvarenga (123_CR24) 2016; 181 DD Brown (123_CR4) 2013; 1 GC Hays (123_CR22) 2016; 31 |
References_xml | – volume: 8 start-page: e77814 year: 2013 ident: 123_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0077814 – volume: 4 start-page: 123 year: 2008 ident: 123_CR1 publication-title: Endanger Species Res doi: 10.3354/esr00064 – volume: 219 start-page: 1618 year: 2016 ident: 123_CR12 publication-title: J Exp Biol doi: 10.1242/jeb.136135 – volume: 11 start-page: e0166898 year: 2016 ident: 123_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0166898 – volume: 75 start-page: 1081 year: 2006 ident: 123_CR27 publication-title: J Anim Ecol doi: 10.1111/j.1365-2656.2006.01127.x – volume: 37 start-page: 360 year: 2005 ident: 123_CR32 publication-title: Fam Med – ident: 123_CR36 doi: 10.1145/1107548.1107591 – volume: 216 start-page: 4501 year: 2013 ident: 123_CR16 publication-title: J Exp Biol doi: 10.1242/jeb.089805 – volume: 7 start-page: e31187 year: 2012 ident: 123_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0031187 – volume: 33 start-page: 1 year: 2010 ident: 123_CR34 publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 2 start-page: 27 year: 2014 ident: 123_CR9 publication-title: Mov Ecol doi: 10.1186/s40462-014-0027-0 – year: 2015 ident: 123_CR13 publication-title: Anim Biotelem doi: 10.1186/s40317-015-0045-8 – ident: 123_CR25 – volume: 217 start-page: 4295 year: 2014 ident: 123_CR5 publication-title: J Exp Biol doi: 10.1242/jeb.113076 – ident: 123_CR29 – ident: 123_CR18 doi: 10.2202/1544-6115.1309 – volume: 4 start-page: e5379 year: 2009 ident: 123_CR3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0005379 – volume: 28 start-page: 59 year: 2009 ident: 123_CR35 publication-title: Zoo Biol doi: 10.1002/zoo.20212 – volume: 158 start-page: 267 year: 1997 ident: 123_CR21 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps158267 – volume: 1 start-page: 20 year: 2013 ident: 123_CR4 publication-title: Anim Biotelem doi: 10.1186/2050-3385-1-20 – volume: 244 start-page: 235 year: 2002 ident: 123_CR23 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps244235 – volume: 31 start-page: 463 year: 2016 ident: 123_CR22 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2016.02.015 – ident: 123_CR33 – volume: 6 start-page: 727 year: 2016 ident: 123_CR10 publication-title: Ecol Evol doi: 10.1002/ece3.1914 – ident: 123_CR31 doi: 10.2202/1544-6115.1240 – volume: 9 start-page: 7 year: 2014 ident: 123_CR6 publication-title: PLoS ONE doi: 10.1371/annotation/cde9d37a-6b33-40d7-b6d4-83cdf443c942 – volume: 4 start-page: 235 year: 2008 ident: 123_CR26 publication-title: Aquat Biol doi: 10.3354/ab00104 – volume: 348 start-page: 1255642 year: 2015 ident: 123_CR2 publication-title: Science doi: 10.1126/science.1255642 – volume: 181 start-page: 91 year: 2016 ident: 123_CR24 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2016.05.026 – volume: 2 start-page: 1 year: 2014 ident: 123_CR11 publication-title: Mov Ecol doi: 10.1186/2051-3933-2-6 – volume: 12 start-page: 179 year: 2016 ident: 123_CR19 publication-title: Int J Biostat doi: 10.1515/ijb-2014-0060 – volume: 215 start-page: 986 year: 2012 ident: 123_CR7 publication-title: J Exp Biol doi: 10.1242/jeb.058602 – volume: 111 start-page: 18 year: 2015 ident: 123_CR15 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2014.12.002 – ident: 123_CR30 – volume: 3 start-page: 42 year: 2015 ident: 123_CR20 publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(14)70239-5 – ident: 123_CR8 doi: 10.1109/DSAA.2015.7344781 |
SSID | ssj0000911393 |
Score | 2.2465353 |
Snippet | Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from... BACKGROUND: Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets... Abstract Background Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 8 |
SubjectTerms | Accelerometer accelerometers accelerometry Accuracy animal behavior Animals Artificial intelligence Behavior Behavioural classification biotelemetry Classification Computer applications data collection Data processing Ecosystems Ethogram Generalized linear models humans learning Learning algorithms length Machine learning Marine mammal selection criteria Statistical analysis Super learner testing variance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NSx0xMIhQ8FJqq_haW1LwJCy-zdcmvbVFkUK9qCBeQj5FaHdl39uC_96Z7L6HUtCLhxw2m2yy85GZSSYzhBzIDEqwr03lmfG4WxUqE7OqGuZyTI5rHdFQ_H2mTi_Fryt59SjVF_qEjeGBR8AdKRNYTCEKraKQOXvDtfIpmyZrN89FNQKZ98iYKmsw8DA3fDrGrLU6WgggX_SyxMJ4VT8RRCVe_3_LcZExJ-_I20k5pN_HSW2TjdS-J2-uu7L1_YF058Nd6unf4v-Y6JTw4eYbvV3tDFAXwtC7cE9dG2mPYVmx9h8YxIhd2mU63csfehpQcUZPoYIcihdNsD_IIQxhsOzvd8jlyfHFz9NqSphQBQ6MWnHFQwIFhcvIzNwknxlPDGDnTGqYclrJ5IySsYFHwbMR8FUjdQbIOgFm9S7ZbLs27REKraQRYKt57kU2yqsks-NO8VRy08_IfAU9G6Zo4pjU4o8tVoVWdgS4nZfCuK1n5HDd5W4MpfFc4x-IknVDjIJdKoA27EQb9iXamJH9FULtxJoLW2stBPybgDG-rl8DU-FJiWtTNyws2KSaiUYr_fE15vGJbLFCeJg2b59sLvshfQZdZum_FLJ9AOeR83A priority: 102 providerName: Directory of Open Access Journals |
Title | Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry |
URI | https://www.proquest.com/docview/1884459441 https://www.proquest.com/docview/2498247868 https://doaj.org/article/69c2decd486d45ffb9386bef97f8a0fa |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxMGgPwRfxE0_rEcEnYeltks0mvshVWsqBRayF4kvIZyno7rl3K_TfO5PLnYjQhzxsNgkk8z2ZzBDyrkmgBLtaV45ph94qX-mQZNUym0K0XKmAhuLnc3l2KZZXzVVxuK1LWOWOJ2ZGHXqPPvKjWikhGg3S--PqV4VVo_B2tZTQuE8mwIIVGF-T45PzL1_3XhaQhqDi8HKdWSt5tBaAxhhtiY3xqv5HIOW8_f-x5SxrTh-TR0VJpIstVJ-Qe7F7Sh5877ML_BnpL8ZVHOjPHAcZaSn8cP2B3uw8BNR6Pw7W31LbBTpgelbs_Q2GMUKZ9omW9_njQD0q0BgxlIFE8cEJzgd5hKkMNsPtc3J5evLt01lVCidUngPBVlxyH0FR4U1geq6jS4xH5oOwOrZMWiWbaLVsQgufgictYFXdqBREYwWY1y_IQdd38SWhMAoOHWw2x51IWjoZm2S5lTzmGvVTMt-dnvElqzgWt_hhsnWhpNkeuJnnxripp-T9fspqm1LjrsHHCJL9QMyGnTv64doU4jJSexYi7E9J2EFKTnMlXUy6TcrOk52Swx1ATSHRtfmLUFPydv8biAtvTGwX-3FtwDZVTLRKqld3L_GaPGQZpbAw3iE52AxjfAPaysbNyGSxWF4sZwU1Z9nq_wMj4O0S |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA_1iuiL-ImnVSPoi7D0NslmE0HEasvVtodoC8WXmM8itLfn3q1y_5R_ozN7uyci9K0PedjdJGwmM5n5TZIZQl4UCYxgl-vMMe3QW-UzHZLMSmZTiJYrFRAoHk3k-ER8PC1ON8jv_i4MHqvs18R2oQ6VRx_5dq6UEIUG7f129iPDrFG4u9qn0FixxUFc_gLINn-z_wHm9yVje7vH78dZl1Ug84Dd84xL7iNocV4Epkc6usR4ZD4Iq2PJpFWyiFbLIpTwKHjSwnqvC5WCKKwA7An9XiObggOUGZDNnd3Jp89rrw5oXzCpeLd9miu5PRcgNni6EwvjWf6PAmzzBPynBlrdtneb3OqMUvpuxUV3yEac3iXXv1aty_0eqb40s1jTi_bcZaRdoomz1_R775Gg8PNNbf2S2mmgNYaDxbc_AYgjV9Eq0S4eQFNTjwY7nlBqmYLiBRdsD_oPQycs6uV9cnIlJH1ABtNqGh8SCrVgkgEjOu5E0tLJWCTLreQRKMv0kIx66hnfRTHHZBrnpkUzSpoVwc2oLYybfEherZvMViE8Lqu8g1OyrojRt9sXVX1mOmE2UnsWIoxPSRhBSk5zJV1MukzKjpIdkq1-Qk23JMzNXwYekufrzyDMuENjp7Fq5gawsGKiVFI9uryLZ-TG-Pjo0BzuTw4ek5usZS9MyrdFBou6iU_AUlq4px17UvLtqiXiD_5HJ0M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super+machine+learning%3A+improving+accuracy+and+reducing+variance+of+behaviour+classification+from+accelerometry&rft.jtitle=Animal+biotelemetry&rft.au=Ladds%2C+MoniqueA&rft.au=Thompson%2C+AdamP&rft.au=Kadar%2C+Julianna-Piroska&rft.au=J+Slip%2C+David&rft.date=2017-03-29&rft.issn=2050-3385&rft.eissn=2050-3385&rft.volume=5&rft.issue=1+p.8-8&rft.spage=8&rft.epage=8&rft_id=info:doi/10.1186%2Fs40317-017-0123-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3385&client=summon |