Impacts of the introduced European honeybee on Australian bee‐flower network properties in urban bushland remnants and residential gardens

The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist species, the European honeybee has the potential to disrupt pollination networks, especially in Australia, whose flora and fauna have co‐evolved...

Full description

Saved in:
Bibliographic Details
Published inAustral ecology Vol. 47; no. 1; pp. 35 - 53
Main Authors Prendergast, Kit S., Ollerton, Jeff
Format Journal Article
LanguageEnglish
Published Richmond Blackwell Publishing Ltd 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist species, the European honeybee has the potential to disrupt pollination networks, especially in Australia, whose flora and fauna have co‐evolved for millions of years. The role of honeybees in pollination networks in Australia has been little explored and has never been characterised in urban areas, which may favour this exotic species due to the proliferation of similarly exotic plant species which this hyper‐generalist can utilise, unlike many native bee taxa. Here, we use a bipartite network approach to compare the roles, in terms of species‐level properties, of honeybees with native bee taxa in bee‐flower (‘pollination’) networks in an urbanised biodiversity hotspot. We also assessed whether the abundance of honeybees influences overall network structure. Pollination networks were created from surveys across seven residential gardens and seven urban native vegetation remnants conducted monthly during the spring‐summer period over two years. There were consistent differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. Honeybees had significant impacts on network properties, being associated with higher nestedness, extinction slopes of plants, functional complementarity and niche overlap (year two), as well as lower weighted connectance and generalisation. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks. In conclusion, the introduced honeybee occupies a dominant, distinct position in bee‐flower networks in urban habitats in the southwest Western Australian biodiversity hotspot and has a major, potentially disruptive, influence on plant‐pollinator network properties in these areas. The introduced European honeybee Apis mellifera was found to have significant impacts on bee‐flowering plant pollination networks in urban habitats, being associated with higher nestedness, extinction slopes of plants, functional complementarity, and niche overlap (year two), as well as lower weighted connectance and generalisation. There were consistently differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks and indicate this species can have disruptive impacts on pollination networks.
AbstractList The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist species, the European honeybee has the potential to disrupt pollination networks, especially in Australia, whose flora and fauna have co‐evolved for millions of years. The role of honeybees in pollination networks in Australia has been little explored and has never been characterised in urban areas, which may favour this exotic species due to the proliferation of similarly exotic plant species which this hyper‐generalist can utilise, unlike many native bee taxa. Here, we use a bipartite network approach to compare the roles, in terms of species‐level properties, of honeybees with native bee taxa in bee‐flower (‘pollination’) networks in an urbanised biodiversity hotspot. We also assessed whether the abundance of honeybees influences overall network structure. Pollination networks were created from surveys across seven residential gardens and seven urban native vegetation remnants conducted monthly during the spring‐summer period over two years. There were consistent differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. Honeybees had significant impacts on network properties, being associated with higher nestedness, extinction slopes of plants, functional complementarity and niche overlap (year two), as well as lower weighted connectance and generalisation. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks. In conclusion, the introduced honeybee occupies a dominant, distinct position in bee‐flower networks in urban habitats in the southwest Western Australian biodiversity hotspot and has a major, potentially disruptive, influence on plant‐pollinator network properties in these areas.
The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist species, the European honeybee has the potential to disrupt pollination networks, especially in Australia, whose flora and fauna have co‐evolved for millions of years. The role of honeybees in pollination networks in Australia has been little explored and has never been characterised in urban areas, which may favour this exotic species due to the proliferation of similarly exotic plant species which this hyper‐generalist can utilise, unlike many native bee taxa. Here, we use a bipartite network approach to compare the roles, in terms of species‐level properties, of honeybees with native bee taxa in bee‐flower (‘pollination’) networks in an urbanised biodiversity hotspot. We also assessed whether the abundance of honeybees influences overall network structure. Pollination networks were created from surveys across seven residential gardens and seven urban native vegetation remnants conducted monthly during the spring‐summer period over two years. There were consistent differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. Honeybees had significant impacts on network properties, being associated with higher nestedness, extinction slopes of plants, functional complementarity and niche overlap (year two), as well as lower weighted connectance and generalisation. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks. In conclusion, the introduced honeybee occupies a dominant, distinct position in bee‐flower networks in urban habitats in the southwest Western Australian biodiversity hotspot and has a major, potentially disruptive, influence on plant‐pollinator network properties in these areas. The introduced European honeybee Apis mellifera was found to have significant impacts on bee‐flowering plant pollination networks in urban habitats, being associated with higher nestedness, extinction slopes of plants, functional complementarity, and niche overlap (year two), as well as lower weighted connectance and generalisation. There were consistently differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks and indicate this species can have disruptive impacts on pollination networks.
The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist species, the European honeybee has the potential to disrupt pollination networks, especially in Australia, whose flora and fauna have co‐evolved for millions of years. The role of honeybees in pollination networks in Australia has been little explored and has never been characterised in urban areas, which may favour this exotic species due to the proliferation of similarly exotic plant species which this hyper‐generalist can utilise, unlike many native bee taxa. Here, we use a bipartite network approach to compare the roles, in terms of species‐level properties, of honeybees with native bee taxa in bee‐flower (‘pollination’) networks in an urbanised biodiversity hotspot. We also assessed whether the abundance of honeybees influences overall network structure. Pollination networks were created from surveys across seven residential gardens and seven urban native vegetation remnants conducted monthly during the spring‐summer period over two years. There were consistent differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. Honeybees had significant impacts on network properties, being associated with higher nestedness, extinction slopes of plants, functional complementarity and niche overlap (year two), as well as lower weighted connectance and generalisation. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks. In conclusion, the introduced honeybee occupies a dominant, distinct position in bee‐flower networks in urban habitats in the southwest Western Australian biodiversity hotspot and has a major, potentially disruptive, influence on plant‐pollinator network properties in these areas. The introduced European honeybee Apis mellifera was found to have significant impacts on bee‐flowering plant pollination networks in urban habitats, being associated with higher nestedness, extinction slopes of plants, functional complementarity, and niche overlap (year two), as well as lower weighted connectance and generalisation. There were consistently differences in species‐level properties between bee taxa, with honeybees often differing from all other native bees. These associations all are indicative that competition is occurring between the introduced honeybee and the native bee taxa in bee‐flower networks and indicate this species can have disruptive impacts on pollination networks.
Author Prendergast, Kit S.
Ollerton, Jeff
Author_xml – sequence: 1
  givenname: Kit S.
  orcidid: 0000-0002-1164-6099
  surname: Prendergast
  fullname: Prendergast, Kit S.
  email: kit.prendergast@postgrad.curtin.edu.au.com
  organization: Curtin University
– sequence: 2
  givenname: Jeff
  surname: Ollerton
  fullname: Ollerton, Jeff
  organization: University of Northampton
BookMark eNp9kc9qGzEQxkVJIH8PeQNBL-3ByWilqLtHY9wkYMjF90UrzcZK15IraTG-9QFy6DP2STquQw-BRBeNht_3zYfmjB2FGJCxKwHXgs6NQXstJCj4xE6FUtWkaRp59L-ub0_YWc7PAFDrRpyyl4f1xtiSeex5WSH3oaToRouOz8cUN2gCX9GIXYfIY-DTMZdkBk9t6vz59bsf4hYTD1i2Mf3gm70mFY-ZrPiYuj045tVgguMJ18EEGnZ4ZO8wFG8G_mQSlfmCHfdmyHj5ep-z5ff5cnY_WTzePcymi4mVEmCim9oaoRptrZOyUpVrbAcKoZfWNSC-VVp2SjkHfdfb2lV1L7DSYOoOpEZ5zr4cbCnszxFzadc-WxwoI8YxtyTXCtRtDYR-foM-xzEFCkdUJTQIAE3U1wNlU8w5Yd9ukl-btGsFtPu1tLSW9t9aiL15w1pfTPGRPt744SPF1g-4e9-6nc5nB8VfqYCjfg
CitedBy_id crossref_primary_10_1002_ece3_10687
crossref_primary_10_1111_aec_13140
crossref_primary_10_1016_j_cris_2024_100093
crossref_primary_10_1111_geb_13753
crossref_primary_10_1071_BT24020
crossref_primary_10_1016_j_biocon_2025_111097
crossref_primary_10_1111_aje_13271
crossref_primary_10_1007_s11252_024_01589_z
crossref_primary_10_1071_PC21064
crossref_primary_10_1016_j_flora_2024_152461
crossref_primary_10_1111_icad_12569
crossref_primary_10_70880_001c_126008
crossref_primary_10_1111_1365_2435_14503
crossref_primary_10_1007_s10841_024_00547_6
crossref_primary_10_1016_j_ecocom_2024_101105
crossref_primary_10_1080_23818107_2023_2204134
crossref_primary_10_1016_j_compag_2023_107906
crossref_primary_10_1007_s11829_022_09925_w
crossref_primary_10_3954_JAUE22_07
crossref_primary_10_1002_ecs2_4085
crossref_primary_10_1016_j_landurbplan_2025_105305
crossref_primary_10_1656_058_020_0403
crossref_primary_10_3390_d14110917
crossref_primary_10_1016_j_cub_2025_02_048
crossref_primary_10_1002_ece3_10639
crossref_primary_10_1093_ee_nvac046
Cites_doi 10.3733/ca.v063n03p113
10.1002/ece3.2374
10.3732/ajb.1000391
10.1371/journal.pone.0097307
10.1111/j.1365-2656.2008.01501.x
10.1126/science.1188321
10.7312/john12778-008
10.18637/jss.v082.i13
10.1111/j.0030-1299.2008.16987.x
10.1007/s11252-015-0435-y
10.18637/jss.v067.i01
10.1111/icad.12145
10.1073/pnas.0706375104
10.1038/s41598-017-13658-9
10.1007/s11829-017-9528-2
10.1111/ddi.12715
10.1098/rspb.2015.1130
10.1126/science.1127863
10.1016/j.biocon.2005.10.045
10.1371/journal.pbio.0060031
10.1098/rspb.2019.0296
10.1093/aob/mcp057
10.1002/ecs2.3076
10.1002/ece3.6060
10.1046/j.1440-1703.2003.00550.x
10.1146/annurev.ecolsys.29.1.83
10.3390/insects7040069
10.1046/j.1461-0248.2002.00354.x
10.1111/j.1600-0706.2009.17364.x
10.1111/aen.12332
10.1093/acprof:oso/9780195316957.003.0010
10.1371/journal.pone.0224997
10.1016/j.baae.2010.12.003
10.1007/s11252-019-0826-6
10.1139/b11-111
10.1016/bs.aecr.2016.10.007
10.1007/s00442-007-0752-9
10.18637/jss.v069.i01
10.1016/j.biocon.2009.12.003
10.1890/ES14-00323.1
10.1111/1365-2435.12486
10.1038/s41598-018-27591-y
10.1111/j.1600-0706.2009.17694.x
10.1093/aob/mcw114
10.1093/beheco/14.3.438
10.1126/science.1230200
10.1111/geb.12362
10.1371/journal.pone.0137198
10.1007/s00442-015-3389-0
10.1890/06-1383.1
10.1111/oik.05074
10.1086/321316
10.1071/9781486306039
10.1038/s41598-019-41271-5
10.1111/j.1442-9993.2004.01376.x
10.1002/ecs2.2981
10.1371/journal.pone.0217498
10.1016/j.baae.2016.05.001
10.1007/s13592-014-0344-8
10.1073/pnas.71.5.2141
10.1007/s10530-012-0235-8
10.1007/s11252-020-01089-w
10.1890/12-1620.1
10.15517/lank.v7i1-2.19531
10.17660/ActaHortic.1991.288.4
10.1111/geb.12404
ContentType Journal Article
Copyright 2021 Ecological Society of Australia
2022 Ecological Society of Australia
Copyright_xml – notice: 2021 Ecological Society of Australia
– notice: 2022 Ecological Society of Australia
DBID AAYXX
CITATION
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7S9
L.6
DOI 10.1111/aec.13040
DatabaseName CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1442-9993
EndPage 53
ExternalDocumentID 10_1111_aec_13040
AEC13040
Genre article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: Forrest Scholarship 2016
– fundername: Australian Wildlife Preservation Society
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QG
7QR
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c3300-698ca1496ccd33242d9cb04e0f3cd9017263b44dd0fbfc8d28f1e260a8b036e3
IEDL.DBID DR2
ISSN 1442-9985
IngestDate Fri Jul 11 18:39:35 EDT 2025
Wed Aug 13 06:56:55 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Tue Jul 01 03:47:40 EDT 2025
Wed Jan 22 16:27:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3300-698ca1496ccd33242d9cb04e0f3cd9017263b44dd0fbfc8d28f1e260a8b036e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1164-6099
PQID 2621601006
PQPubID 46239
PageCount 19
ParticipantIDs proquest_miscellaneous_2636404580
proquest_journals_2621601006
crossref_primary_10_1111_aec_13040
crossref_citationtrail_10_1111_aec_13040
wiley_primary_10_1111_aec_13040_AEC13040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Richmond
PublicationPlace_xml – name: Richmond
PublicationTitle Austral ecology
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 104
2017; 7
2017; 82
2004; 29
2018; 127
2019; 14
2010; 143
2003; 14
2011; 98
2008; 6
2011; 12
2003; 18
2020; 11
2020; 10
2008; 1
2012; 14
2009; 118
2019; 286
2015; 46
2018; 8
2014; 5
2010; 119
2015; 179
2019; 22
2016; 118
2013; 94
2008; 117
2014; 9
2006; 129
2015; 282
1998; 29
2019; 9
2009; 63
2010; 329
2011; 1
2015; 18
1974; 71
2002; 5
2015; 10
2009
2008
1997
2006
2005
2003
2006; 313
2015; 9
2016; 17
2015; 7
2005; 88
2018; 24
2009; 78
2015; 67
2016; 6
2016; 7
2012; 90
1991; 288
2015; 29
2013; 339
2021
2017; 11
2017; 57
2007; 153
2018
2016
2014
2007; 88
2016; 25
2016; 69
2009; 103
2001; 158
2018; 57
e_1_2_11_70_1
e_1_2_11_72_1
Yates C. (e_1_2_11_76_1) 2005; 88
Dormann C. F. (e_1_2_11_16_1) 2011; 1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
Manning R. (e_1_2_11_44_1) 2006
e_1_2_11_36_1
Krebs C. J. (e_1_2_11_39_1) 2009
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Hussey B. (e_1_2_11_35_1) 1997
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
Burnham K. P. (e_1_2_11_11_1) 2003
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
Prendergast K. (e_1_2_11_54_1) 2018
e_1_2_11_64_1
R Core Team (e_1_2_11_57_1) 2014
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
Dormann C. F. (e_1_2_11_17_1) 2008; 1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_73_1
Cane J. H. (e_1_2_11_12_1) 2005
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
Lambers H. (e_1_2_11_41_1) 2014
e_1_2_11_37_1
References_xml – volume: 14
  start-page: 2369
  year: 2012
  end-page: 78
  article-title: Invasive Africanized honeybees change the structure of native pollination networks in Brazil
  publication-title: Biol. Invasions
– year: 2009
– volume: 7
  start-page: 69
  year: 2016
  article-title: Positive and negative impacts of non‐native bee species around the world
  publication-title: Insects
– start-page: 166
  year: 2008
  end-page: 81
– volume: 5
  start-page: 558
  year: 2002
  end-page: 67
  article-title: Network structure and biodiversity loss in food webs: robustness increases with connectance
  publication-title: Ecol. Lett.
– volume: 14
  start-page: 438
  year: 2003
  end-page: 45
  article-title: A survey of the statistical power of research in behavioral ecology and animal behavior
  publication-title: Behav. Ecol.
– volume: 69
  start-page: 1
  year: 2016
  end-page: 33
  article-title: Least‐squares means: the R Package lsmeans
  publication-title: J. Stat. Softw.
– volume: 46
  start-page: 530
  year: 2015
  end-page: 41
  article-title: Bee‐flower association in the Neotropics: implications to bee conservation and plant pollination
  publication-title: Apidologie
– volume: 282
  start-page: 20151130
  year: 2015
  article-title: Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community
  publication-title: Proc. R. Soc. B Biol. Sci.
– volume: 24
  start-page: 705
  year: 2018
  end-page: 13
  article-title: Alien honeybees increase pollination risks for range‐restricted plants
  publication-title: Divers. Distrib.
– volume: 18
  start-page: 221
  year: 2003
  end-page: 46
  article-title: Variability and specialization of plant–pollinator systems in a northern maritime grassland
  publication-title: Ecol. Res.
– volume: 103
  start-page: 1445
  year: 2009
  end-page: 57
  article-title: Uniting pattern and process in plant–animal mutualistic networks: a review
  publication-title: Ann. Bot.
– volume: 5
  start-page: art149
  year: 2014
  article-title: Partitioning interaction turnover among alpine pollination networks: Spatial, temporal, and environmental patterns
  publication-title: Ecosphere
– volume: 78
  start-page: 346
  year: 2009
  end-page: 53
  article-title: Ecological modules and roles of species in heathland plant–insect flower visitor networks
  publication-title: J. Anim. Ecol.
– volume: 1
  start-page: 1
  year: 2011
  end-page: 20
  article-title: How to be a specialist? Quantifying specialisation in pollination networks
  publication-title: Netw. Biol.
– volume: 179
  start-page: 811
  year: 2015
  end-page: 21
  article-title: Diversity of wild bees supports pollination services in an urbanized landscape
  publication-title: Oecologia
– volume: 329
  start-page: 853
  year: 2010
  end-page: 6
  article-title: Stability of ecological communities and the architecture of mutualistic and trophic networks
  publication-title: Science
– volume: 288
  start-page: 62
  year: 1991
  end-page: 8
  article-title: The value of honeybee pollination to society
  publication-title: Acta Hort.
– year: 2021
  article-title: Plant‐pollinator networks in Australian urban bushland remnants are not structurally equivalent to those in residential gardens
  publication-title: Urban Ecosyst
– year: 2018
– volume: 29
  start-page: 83
  year: 1998
  end-page: 112
  article-title: Endangered mutualisms: the conservation of plant‐pollinator interactions
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 88
  start-page: 147
  year: 2005
  end-page: 53
  article-title: Native insect flower visitor diversity and feral honeybees on jarrah ( ) in Kings Park, an urban bushland remnant
  publication-title: J. R. Soc. West Aust.
– year: 2014
– volume: 119
  start-page: 35
  year: 2010
  end-page: 44
  article-title: Congruence between visitation and pollen‐transport networks in a California plant–pollinator community
  publication-title: Oikos
– volume: 10
  year: 2015
  article-title: Native and non‐native supergeneralist bee species have different effects on plant‐bee networks
  publication-title: PLoS One
– volume: 57
  start-page: 147
  year: 2017
  end-page: 99
  article-title: Massively introduced managed species and their consequences for plant–pollinator interactions
  publication-title: Adv. Ecol. Res.
– volume: 25
  start-page: 117
  year: 2016
  end-page: 26
  article-title: Cities are hotspots for threatened species
  publication-title: Glob. Ecol. Biogeogr.
– volume: 63
  start-page: 113
  year: 2009
  end-page: 20
  article-title: Native bees are a rich natural resource in urban California gardens
  publication-title: Calif. Agric.
– volume: 14
  year: 2019
  article-title: Seasonal variation of a plant‐pollinator network in the Brazilian Cerrado: implications for community structure and robustness
  publication-title: PLoS One
– volume: 18
  start-page: 885
  year: 2015
  end-page: 93
  article-title: Pollination service to urban agriculture in San Francisco, CA
  publication-title: Urban Ecosyst.
– volume: 10
  start-page: 3248
  year: 2020
  end-page: 59
  article-title: Influence of taxonomic resolution on mutualistic network properties
  publication-title: Ecol. Evol.
– year: 1997
– volume: 129
  start-page: 312
  year: 2006
  end-page: 22
  article-title: Urban domestic gardens (IX): composition and richness of the vascular plant flora, and implications for native biodiversity
  publication-title: Biol. Cons.
– volume: 8
  start-page: 9308
  year: 2018
  article-title: Controlling the impact of the managed honeybee on wild bees in protected areas
  publication-title: Sci. Rep.
– volume: 127
  start-page: 1163
  year: 2018
  end-page: 76
  article-title: Between‐year changes in community composition shape species’ roles in an Arctic plant–pollinator network
  publication-title: Oikos
– volume: 71
  start-page: 2141
  year: 1974
  end-page: 5
  article-title: Niche overlap and diffuse competition
  publication-title: Proc. Natl Acad. Sci.
– volume: 9
  year: 2014
  article-title: Bee species diversity enhances productivity and stability in a perennial crop
  publication-title: PLoS One
– volume: 25
  start-page: 880
  year: 2016
  end-page: 90
  article-title: Global patterns of mainland and insular pollination networks
  publication-title: Glob. Ecol. Biogeogr.
– volume: 11
  start-page: 411
  year: 2017
  end-page: 25
  article-title: Insights from measuring pollen deposition: Quantifying the pre‐eminence of bees as flower visitors and effective pollinators
  publication-title: Arthropod‐Plant Interactions
– volume: 1
  start-page: 2413793
  year: 2008
  article-title: Introducing the bipartite package: analysing ecological networks
  publication-title: Interaction
– volume: 286
  start-page: 20190296
  year: 2019
  article-title: Network modularity influences plant reproduction in a mosaic tropical agroecosystem
  publication-title: Proc. R. Soc. B
– volume: 90
  start-page: 525
  year: 2012
  end-page: 34
  article-title: The use of pollination networks in conservation
  publication-title: Botany
– volume: 14
  year: 2019
  article-title: Implications of non‐native species for mutualistic network resistance and resilience
  publication-title: PLoS One
– volume: 12
  start-page: 310
  year: 2011
  end-page: 20
  article-title: Gardening in the desert changes bee communities and pollination network characteristics
  publication-title: Basic Appl. Ecol.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: J. Stat. Softw.
– volume: 94
  start-page: 2042
  year: 2013
  end-page: 54
  article-title: Bee diversity effects on pollination depend on functional complementarity and niche shifts
  publication-title: Ecology
– volume: 11
  year: 2020
  article-title: The relative performance of sampling methods for native bees: an empirical test and review of the literature
  publication-title: Ecosphere
– volume: 11
  year: 2020
  article-title: Temporal variation in the roles of exotic and native plant species in plant–pollinator networks
  publication-title: Ecosphere
– volume: 117
  start-page: 1796
  year: 2008
  end-page: 807
  article-title: Year‐to‐year variation in the topology of a plant–pollinator interaction network
  publication-title: Oikos
– volume: 57
  start-page: 182
  year: 2018
  end-page: 93
  article-title: Promoting and developing insect conservation in Australia's urban environments
  publication-title: Austral Entomol.
– volume: 29
  start-page: 879
  year: 2015
  end-page: 88
  article-title: Urban drivers of plant‐pollinator interactions
  publication-title: Funct. Ecol.
– year: 2003
– volume: 339
  start-page: 1608
  year: 2013
  end-page: 11
  article-title: Wild pollinators enhance fruit set of crops regardless of honey bee abundance
  publication-title: Science
– volume: 313
  start-page: 351
  year: 2006
  end-page: 4
  article-title: Parallel declines in pollinators and insect‐pollinated plants in Britain and the Netherlands
  publication-title: Science
– volume: 158
  start-page: 324
  year: 2001
  end-page: 30
  article-title: Darwin's naturalization hypothesis revisited
  publication-title: Am. Nat.
– year: 2016
– volume: 118
  start-page: 415
  year: 2016
  end-page: 29
  article-title: The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes
  publication-title: Ann. Bot.
– volume: 104
  start-page: 19891
  year: 2007
  end-page: 6
  article-title: The modularity of pollination networks
  publication-title: Proc. Natl Acad. Sci.
– volume: 6
  year: 2008
  article-title: Invasive mutualists erode native pollination webs
  publication-title: PLoS Biol.
– volume: 82
  start-page: 26
  year: 2017
  article-title: lmerTest package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
– volume: 9
  start-page: 4711
  year: 2019
  article-title: Honeybees disrupt the structure and functionality of plant‐pollinator networks
  publication-title: Sci. Rep.
– volume: 98
  start-page: 528
  year: 2011
  end-page: 38
  article-title: The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change
  publication-title: Am. J. Bot.
– volume: 88
  start-page: 1759
  year: 2007
  end-page: 69
  article-title: Collapse of a pollination web in small conservation areas
  publication-title: Ecology
– volume: 153
  start-page: 589
  year: 2007
  end-page: 96
  article-title: Bee foraging ranges and their relationship to body size
  publication-title: Oecologia
– volume: 118
  start-page: 1190
  year: 2009
  end-page: 200
  article-title: Structure and dynamics of pollination networks: the role of alien plants
  publication-title: Oikos
– volume: 7
  start-page: 313
  year: 2015
  end-page: 5
  article-title: Ecology of orchids in urban bushland reserves–can orchids be used as indicators of vegetation condition?
  publication-title: Lankesteriana
– volume: 22
  start-page: 455
  year: 2019
  end-page: 70
  article-title: Wild bees and urban agriculture: assessing pollinator supply and demand across urban landscapes
  publication-title: Urban Ecosyst.
– year: 2006
– volume: 9
  start-page: 97
  year: 2015
  end-page: 107
  article-title: Wild bees as pollinators of city trees
  publication-title: Insect Conserv. Divers.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Absence of deformed wing virus and in Australia provides unique perspectives on honeybee viral landscapes and colony losses
  publication-title: Sci. Rep.
– volume: 143
  start-page: 669
  year: 2010
  end-page: 76
  article-title: Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances
  publication-title: Biol. Cons.
– volume: 17
  start-page: 609
  year: 2016
  end-page: 16
  article-title: Competition between managed honeybees and wild bumblebees depends on landscape context
  publication-title: Basic Appl. Ecol.
– volume: 6
  start-page: 6599
  year: 2016
  end-page: 615
  article-title: The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region
  publication-title: Ecol. Evol.
– start-page: 109
  year: 2005
  end-page: 24
– volume: 29
  start-page: 399
  year: 2004
  end-page: 407
  article-title: Impact of the introduced honey bee ( ) (Hymenoptera: Apidae) on native bees: a review
  publication-title: Austral Ecol.
– ident: e_1_2_11_21_1
  doi: 10.3733/ca.v063n03p113
– ident: e_1_2_11_25_1
  doi: 10.1002/ece3.2374
– ident: e_1_2_11_10_1
  doi: 10.3732/ajb.1000391
– ident: e_1_2_11_61_1
  doi: 10.1371/journal.pone.0097307
– ident: e_1_2_11_19_1
  doi: 10.1111/j.1365-2656.2008.01501.x
– ident: e_1_2_11_68_1
  doi: 10.1126/science.1188321
– start-page: 109
  volume-title: Bees, Pollination, and the Challenges of Sprawl. Nature in Fragments: the Legacy of Sprawl
  year: 2005
  ident: e_1_2_11_12_1
  doi: 10.7312/john12778-008
– ident: e_1_2_11_40_1
  doi: 10.18637/jss.v082.i13
– ident: e_1_2_11_4_1
  doi: 10.1111/j.0030-1299.2008.16987.x
– ident: e_1_2_11_53_1
  doi: 10.1007/s11252-015-0435-y
– ident: e_1_2_11_8_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_11_32_1
  doi: 10.1111/icad.12145
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: e_1_2_11_57_1
– ident: e_1_2_11_49_1
  doi: 10.1073/pnas.0706375104
– ident: e_1_2_11_60_1
  doi: 10.1038/s41598-017-13658-9
– ident: e_1_2_11_75_1
  doi: 10.1007/s11829-017-9528-2
– volume-title: Model selection and multimodel inference: a practical information‐theoretic approach
  year: 2003
  ident: e_1_2_11_11_1
– ident: e_1_2_11_48_1
  doi: 10.1111/ddi.12715
– ident: e_1_2_11_6_1
  doi: 10.1098/rspb.2015.1130
– ident: e_1_2_11_9_1
  doi: 10.1126/science.1127863
– ident: e_1_2_11_66_1
  doi: 10.1016/j.biocon.2005.10.045
– ident: e_1_2_11_2_1
  doi: 10.1371/journal.pbio.0060031
– volume-title: Australian Entomological Society 49th AGM and Scientific Conference: Insects as the Centre of Our World
  year: 2018
  ident: e_1_2_11_54_1
– ident: e_1_2_11_64_1
  doi: 10.1098/rspb.2019.0296
– ident: e_1_2_11_72_1
  doi: 10.1093/aob/mcp057
– ident: e_1_2_11_55_1
  doi: 10.1002/ecs2.3076
– ident: e_1_2_11_59_1
  doi: 10.1002/ece3.6060
– ident: e_1_2_11_45_1
  doi: 10.1046/j.1440-1703.2003.00550.x
– ident: e_1_2_11_38_1
  doi: 10.1146/annurev.ecolsys.29.1.83
– ident: e_1_2_11_62_1
  doi: 10.3390/insects7040069
– ident: e_1_2_11_18_1
  doi: 10.1046/j.1461-0248.2002.00354.x
– ident: e_1_2_11_70_1
  doi: 10.1111/j.1600-0706.2009.17364.x
– volume-title: Ecology: The Experimental Analysis of Distribution and Abundance
  year: 2009
  ident: e_1_2_11_39_1
– ident: e_1_2_11_46_1
  doi: 10.1111/aen.12332
– ident: e_1_2_11_28_1
  doi: 10.1093/acprof:oso/9780195316957.003.0010
– ident: e_1_2_11_58_1
  doi: 10.1371/journal.pone.0224997
– ident: e_1_2_11_29_1
  doi: 10.1016/j.baae.2010.12.003
– ident: e_1_2_11_77_1
  doi: 10.1007/s11252-019-0826-6
– ident: e_1_2_11_20_1
  doi: 10.1139/b11-111
– ident: e_1_2_11_24_1
  doi: 10.1016/bs.aecr.2016.10.007
– ident: e_1_2_11_30_1
  doi: 10.1007/s00442-007-0752-9
– ident: e_1_2_11_42_1
  doi: 10.18637/jss.v069.i01
– ident: e_1_2_11_78_1
  doi: 10.1016/j.biocon.2009.12.003
– ident: e_1_2_11_65_1
  doi: 10.1890/ES14-00323.1
– ident: e_1_2_11_31_1
  doi: 10.1111/1365-2435.12486
– ident: e_1_2_11_33_1
  doi: 10.1038/s41598-018-27591-y
– volume-title: Western Weeds: a Guide to the Weeds of Western Australia
  year: 1997
  ident: e_1_2_11_35_1
– ident: e_1_2_11_3_1
  doi: 10.1111/j.1600-0706.2009.17694.x
– ident: e_1_2_11_74_1
  doi: 10.1093/aob/mcw114
– ident: e_1_2_11_37_1
  doi: 10.1093/beheco/14.3.438
– volume-title: Plant Life on the Sandplains in Southwest Australia
  year: 2014
  ident: e_1_2_11_41_1
– ident: e_1_2_11_23_1
  doi: 10.1126/science.1230200
– ident: e_1_2_11_69_1
  doi: 10.1111/geb.12362
– volume: 88
  start-page: 147
  year: 2005
  ident: e_1_2_11_76_1
  article-title: Native insect flower visitor diversity and feral honeybees on jarrah (Eucalyptus marginata) in Kings Park, an urban bushland remnant
  publication-title: J. R. Soc. West Aust.
– ident: e_1_2_11_26_1
  doi: 10.1371/journal.pone.0137198
– ident: e_1_2_11_43_1
  doi: 10.1007/s00442-015-3389-0
– volume-title: Surveillance of swarms and feral honey bees (Apis melliera) for the presence of American foulbrood (Paenibacillus larvae sub. sp. larvae) spores and their habitat preferences in Western Australia
  year: 2006
  ident: e_1_2_11_44_1
– ident: e_1_2_11_51_1
  doi: 10.1890/06-1383.1
– ident: e_1_2_11_13_1
  doi: 10.1111/oik.05074
– ident: e_1_2_11_14_1
  doi: 10.1086/321316
– ident: e_1_2_11_7_1
  doi: 10.1071/9781486306039
– ident: e_1_2_11_71_1
  doi: 10.1038/s41598-019-41271-5
– ident: e_1_2_11_50_1
  doi: 10.1111/j.1442-9993.2004.01376.x
– volume: 1
  start-page: 1
  year: 2011
  ident: e_1_2_11_16_1
  article-title: How to be a specialist? Quantifying specialisation in pollination networks
  publication-title: Netw. Biol.
– ident: e_1_2_11_73_1
  doi: 10.1002/ecs2.2981
– ident: e_1_2_11_5_1
  doi: 10.1371/journal.pone.0217498
– ident: e_1_2_11_34_1
  doi: 10.1016/j.baae.2016.05.001
– ident: e_1_2_11_15_1
– ident: e_1_2_11_67_1
  doi: 10.1007/s13592-014-0344-8
– ident: e_1_2_11_52_1
  doi: 10.1073/pnas.71.5.2141
– ident: e_1_2_11_63_1
  doi: 10.1007/s10530-012-0235-8
– ident: e_1_2_11_56_1
  doi: 10.1007/s11252-020-01089-w
– ident: e_1_2_11_22_1
  doi: 10.1890/12-1620.1
– ident: e_1_2_11_47_1
  doi: 10.15517/lank.v7i1-2.19531
– ident: e_1_2_11_27_1
  doi: 10.17660/ActaHortic.1991.288.4
– volume: 1
  start-page: 2413793
  year: 2008
  ident: e_1_2_11_17_1
  article-title: Introducing the bipartite package: analysing ecological networks
  publication-title: Interaction
– ident: e_1_2_11_36_1
  doi: 10.1111/geb.12404
SSID ssj0008691
Score 2.4573119
Snippet The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist...
The European honeybee Apis mellifera is a highly successful, abundant species and has been introduced into habitats across the globe. As a supergeneralist...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Apis mellifera
Australia
Bees
Biodiversity
Biodiversity hot spots
bipartite
coevolution
competition
Complementarity
extinction
fauna
Flora
Flowers
Gardens
Gardens & gardening
honey bees
honeybees
indigenous species
Introduced plants
Introduced species
nestedness
Networks
Niche overlap
Plant reproduction
Plant species
Pollination
Pollinators
shrublands
Species extinction
Taxa
Urban areas
urbanisation
urbanization
Title Impacts of the introduced European honeybee on Australian bee‐flower network properties in urban bushland remnants and residential gardens
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.13040
https://www.proquest.com/docview/2621601006
https://www.proquest.com/docview/2636404580
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQElIvUCgVSwG5FQcuWWXjrEnUE1rtilZqDxVIe0CK_DNmEUsWbTaH5cQDcOAZ-yTMOMkuRSCh3pxkbMc_45nPHs8wdii7x8dWpJ0AUBcNUN6qIIHIBFFqQMY2dQIIKP76LU_P45_D7nCFfW_uwlT-IRYbbsQZfr0mBle6eMbkCgyFMo4Jr5OtFilEf5auoxLpo-UhXogChBTd2qsQWfEscv4ri5YK5nM11cuZwQa7aP6wMi-5bpcz3TZ3L5w3_mcTPrL1Wv_kJ9WE2WQrkG-xtSoi5RxTfe_Fev6JPfzw9ycLPnEclUR-RSbtFieC5c0OPh9NcphrAD7J-XLThOObv_ePbkwB2Hhe2ZnzW8ozJfetWBQvp5oIy2JElpV8CjfeIIdXDxRCNMelZ8wvFd2yKLbZ2aB_1jsN6tANgREiRECaJkYh-JLGWEE6m02NDmMInTA2JdwphY5ja0OnnUlslLgOILRSiUaRCuIzW82xCTuMhy7phMJJbaXD_EpFQnTByNhIB4jVWuyoGcPM1G7NKbrGOGvgDfZy5nu5xb4tSG8rXx6vEe01EyGr2bnIIhl1CLmGWN3XxWdkRDpdUTlMSqIRMqZjZyziyI_625VkJ_2eT-y-n_QL-xDR1QtvMb7HVmfTEvZRIZrpAz_znwCPTwjr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT9swFLcq0LRdBvsnGGXz0A69pErj1E0kLlVVVBj0MBWJyxTF9jMgSora5lBOfAAOfEY-Ce85ScumTZq4OcmzHf95fu9nP7_H2HfZ7nSMiFseoC7qobxNvQgC7QWxBhma2AogoHgylIPT8OisfVZj-9VdmMI_xHLDjTjDrdfE4LQh_YzLU9AUyzhEwL5OEb0doPq5ch4VSRcvDxFD4CGoaJd-hciOZ5n1d2m0UjGfK6pO0hxssF_VPxYGJlfNfK6a-vYP940vbcQme1uqoLxbzJl3rAbZe_aqCEq5wFTfObJefGD3h-4K5YxPLEc9kV-SVbvBuWB4tYnPLyYZLBQAn2R8tW_C8c3j3YMdUww2nhWm5vyG8kzJgysWxfOpIsJ8dkHGlXwK184mhxcPFEU0w9VnzM9Tumgx-8hGB_1Rb-CV0Rs8LYSPmDSOdIr4S2ptBKltJtbKD8G3QpuYoKcUKgyN8a2yOjJBZFuA6CqNFEpVEJ_YWoZN2GLct1HLF1YqIy3mT9NAiDZoGWppAeHaNmtUg5jo0rM5BdgYJxXCwV5OXC9vs70l6U3hzuNvRPVqJiQlR8-SQAYtAq8-Vvdt-Rl5kQ5Y0gwmOdEIGdLJMxbRcMP-70qSbr_nEp__n_Qrez0YnRwnx4fDHzvsTUA3MZwBeZ2tzac57KJ-NFdfHBs8AQc1DQY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swELcQaGgvsMGmAWUz0x54CUpj1yTiqYJW_BuaJibxMCmK7fOKKGnVNg_liQ_Awz7jPgl3TtKyaUjT3pzkbMd_znc_-3zH2CfV2t-3ImkGgLpogPI2C2KITBAlBpS0iRNAQPHzhTr-Jk-vWlcL7KC-C1P6h5htuBFn-PWaGHxo3RMmz8BQKGOJeH1JqjCmKX30de47KlY-XB4ChihATNGq3AqRGc8s6-_CaK5hPtVTvaDprrLv9S-W9iU3e8VE75m7P7w3_mcbXrGVSgHl7XLGvGYLkK-xF2VIyimmOt6N9XSdPZz4C5RjPnActUR-TTbtFmeC5fUWPu8NcphqAD7I-XzXhOObX_c_XZ8isPG8NDTnQ8ozIv-tWBQvRpoIi3GPTCv5CG69RQ4vHyiGaI5rT5__yOiaxfgNu-x2Lg-Pgyp2Q2CECBGRJrHJEH0pY6wgpc0mRocSQieMTQh4KqGltDZ02pnYRrFrAmKrLNYoU0G8ZYs5NuEd46GLm6FwSlvlMH-WRUK0wChplAMEaxtstx7D1FR-zSm8Rj-t8Q32cup7eYN9nJEOS2cefyNq1BMhrfh5nEYqahJ0DbG6ndln5EQ6XslyGBREI5Skc2csYteP-vOVpO3OoU9s_jvpB7b85aibnp9cnG2xlxFdw_DW4w22OBkVsI3K0US_90zwCPvwC74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+the+introduced+European+honeybee+on+Australian+bee%E2%80%90flower+network+properties+in+urban+bushland+remnants+and+residential+gardens&rft.jtitle=Austral+ecology&rft.au=Prendergast%2C+Kit+S&rft.au=Ollerton%2C+Jeff&rft.date=2022-02-01&rft.issn=1442-9985&rft.volume=47&rft.issue=1+p.35-53&rft.spage=35&rft.epage=53&rft_id=info:doi/10.1111%2Faec.13040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon