Machine learning algorithms based on proteomic data mining accurately predicting the recurrence of hepatitis B‐related hepatocellular carcinoma

Background and Aim Over 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of recurrence and the effective prevention. Prediction of HCC recurrence requires diagnostic markers endowed with high sensitiv...

Full description

Saved in:
Bibliographic Details
Published inJournal of gastroenterology and hepatology Vol. 37; no. 11; pp. 2145 - 2153
Main Authors Feng, Gong, He, Na, Xia, Harry Hua‐Xiang, Mi, Man, Wang, Ke, Byrne, Christopher D, Targher, Giovanni, Yuan, Hai‐Yang, Zhang, Xin‐Lei, Zheng, Ming‐Hua, Ye, Feng
Format Journal Article
LanguageEnglish
Published Richmond Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Aim Over 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of recurrence and the effective prevention. Prediction of HCC recurrence requires diagnostic markers endowed with high sensitivity and specificity. This study aims to identify new key proteins for HCC recurrence and to build machine learning algorithms for predicting HCC recurrence. Methods The proteomics data for analysis in this study were obtained from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) database. We analyzed different proteins based on cases with or without recurrence of HCC. Survival analysis, Cox regression analysis, and area under the ROC curves (AUROC > 0.7) were used to screen for more significant differential proteins. Predictive models for HCC recurrence were developed using four machine learning algorithms. Results A total of 690 differentially expressed proteins between 50 relapsed and 77 non‐relapsed hepatitis B‐related HCC patients were identified. Seven of these proteins had an AUROC > 0.7 for 5‐year survival in HCC, including BAHCC1, ESF1, RAP1GAP, RUFY1, SCAMP3, STK3, and TMEM230. Among the machine learning algorithms, the random forest algorithm showed the highest AUROC values (AUROC: 0.991, 95% CI 0.962–0.999) for identifying HCC recurrence, followed by the support vector machine (AUROC: 0.893, 95% Cl 0.824–0.956), the logistic regression (AUROC: 0.774, 95% Cl 0.672–0.868), and the multi‐layer perceptron algorithm (AUROC: 0.571, 95% Cl 0.459–0.682). Conclusions Our study identifies seven novel proteins for predicting HCC recurrence and the random forest algorithm as the most suitable predictive model for HCC recurrence.
AbstractList Over 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of recurrence and the effective prevention. Prediction of HCC recurrence requires diagnostic markers endowed with high sensitivity and specificity. This study aims to identify new key proteins for HCC recurrence and to build machine learning algorithms for predicting HCC recurrence.BACKGROUND AND AIMOver 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of recurrence and the effective prevention. Prediction of HCC recurrence requires diagnostic markers endowed with high sensitivity and specificity. This study aims to identify new key proteins for HCC recurrence and to build machine learning algorithms for predicting HCC recurrence.The proteomics data for analysis in this study were obtained from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) database. We analyzed different proteins based on cases with or without recurrence of HCC. Survival analysis, Cox regression analysis, and area under the ROC curves (AUROC > 0.7) were used to screen for more significant differential proteins. Predictive models for HCC recurrence were developed using four machine learning algorithms.METHODSThe proteomics data for analysis in this study were obtained from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) database. We analyzed different proteins based on cases with or without recurrence of HCC. Survival analysis, Cox regression analysis, and area under the ROC curves (AUROC > 0.7) were used to screen for more significant differential proteins. Predictive models for HCC recurrence were developed using four machine learning algorithms.A total of 690 differentially expressed proteins between 50 relapsed and 77 non-relapsed hepatitis B-related HCC patients were identified. Seven of these proteins had an AUROC > 0.7 for 5-year survival in HCC, including BAHCC1, ESF1, RAP1GAP, RUFY1, SCAMP3, STK3, and TMEM230. Among the machine learning algorithms, the random forest algorithm showed the highest AUROC values (AUROC: 0.991, 95% CI 0.962-0.999) for identifying HCC recurrence, followed by the support vector machine (AUROC: 0.893, 95% Cl 0.824-0.956), the logistic regression (AUROC: 0.774, 95% Cl 0.672-0.868), and the multi-layer perceptron algorithm (AUROC: 0.571, 95% Cl 0.459-0.682).RESULTSA total of 690 differentially expressed proteins between 50 relapsed and 77 non-relapsed hepatitis B-related HCC patients were identified. Seven of these proteins had an AUROC > 0.7 for 5-year survival in HCC, including BAHCC1, ESF1, RAP1GAP, RUFY1, SCAMP3, STK3, and TMEM230. Among the machine learning algorithms, the random forest algorithm showed the highest AUROC values (AUROC: 0.991, 95% CI 0.962-0.999) for identifying HCC recurrence, followed by the support vector machine (AUROC: 0.893, 95% Cl 0.824-0.956), the logistic regression (AUROC: 0.774, 95% Cl 0.672-0.868), and the multi-layer perceptron algorithm (AUROC: 0.571, 95% Cl 0.459-0.682).Our study identifies seven novel proteins for predicting HCC recurrence and the random forest algorithm as the most suitable predictive model for HCC recurrence.CONCLUSIONSOur study identifies seven novel proteins for predicting HCC recurrence and the random forest algorithm as the most suitable predictive model for HCC recurrence.
Background and Aim Over 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of recurrence and the effective prevention. Prediction of HCC recurrence requires diagnostic markers endowed with high sensitivity and specificity. This study aims to identify new key proteins for HCC recurrence and to build machine learning algorithms for predicting HCC recurrence. Methods The proteomics data for analysis in this study were obtained from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) database. We analyzed different proteins based on cases with or without recurrence of HCC. Survival analysis, Cox regression analysis, and area under the ROC curves (AUROC > 0.7) were used to screen for more significant differential proteins. Predictive models for HCC recurrence were developed using four machine learning algorithms. Results A total of 690 differentially expressed proteins between 50 relapsed and 77 non‐relapsed hepatitis B‐related HCC patients were identified. Seven of these proteins had an AUROC > 0.7 for 5‐year survival in HCC, including BAHCC1, ESF1, RAP1GAP, RUFY1, SCAMP3, STK3, and TMEM230. Among the machine learning algorithms, the random forest algorithm showed the highest AUROC values (AUROC: 0.991, 95% CI 0.962–0.999) for identifying HCC recurrence, followed by the support vector machine (AUROC: 0.893, 95% Cl 0.824–0.956), the logistic regression (AUROC: 0.774, 95% Cl 0.672–0.868), and the multi‐layer perceptron algorithm (AUROC: 0.571, 95% Cl 0.459–0.682). Conclusions Our study identifies seven novel proteins for predicting HCC recurrence and the random forest algorithm as the most suitable predictive model for HCC recurrence.
Background and AimOver 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of recurrence and the effective prevention. Prediction of HCC recurrence requires diagnostic markers endowed with high sensitivity and specificity. This study aims to identify new key proteins for HCC recurrence and to build machine learning algorithms for predicting HCC recurrence.MethodsThe proteomics data for analysis in this study were obtained from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) database. We analyzed different proteins based on cases with or without recurrence of HCC. Survival analysis, Cox regression analysis, and area under the ROC curves (AUROC > 0.7) were used to screen for more significant differential proteins. Predictive models for HCC recurrence were developed using four machine learning algorithms.ResultsA total of 690 differentially expressed proteins between 50 relapsed and 77 non‐relapsed hepatitis B‐related HCC patients were identified. Seven of these proteins had an AUROC > 0.7 for 5‐year survival in HCC, including BAHCC1, ESF1, RAP1GAP, RUFY1, SCAMP3, STK3, and TMEM230. Among the machine learning algorithms, the random forest algorithm showed the highest AUROC values (AUROC: 0.991, 95% CI 0.962–0.999) for identifying HCC recurrence, followed by the support vector machine (AUROC: 0.893, 95% Cl 0.824–0.956), the logistic regression (AUROC: 0.774, 95% Cl 0.672–0.868), and the multi‐layer perceptron algorithm (AUROC: 0.571, 95% Cl 0.459–0.682).ConclusionsOur study identifies seven novel proteins for predicting HCC recurrence and the random forest algorithm as the most suitable predictive model for HCC recurrence.
Author Mi, Man
He, Na
Byrne, Christopher D
Wang, Ke
Yuan, Hai‐Yang
Targher, Giovanni
Xia, Harry Hua‐Xiang
Feng, Gong
Zhang, Xin‐Lei
Zheng, Ming‐Hua
Ye, Feng
Author_xml – sequence: 1
  givenname: Gong
  surname: Feng
  fullname: Feng, Gong
  organization: The First Affiliated Hospital of Xi'an Jiaotong University
– sequence: 2
  givenname: Na
  surname: He
  fullname: He, Na
  organization: The First Affiliated Hospital of Xi'an Medical University
– sequence: 3
  givenname: Harry Hua‐Xiang
  surname: Xia
  fullname: Xia, Harry Hua‐Xiang
  organization: The First Affiliated Hospital of Guangdong Pharmaceutical University
– sequence: 4
  givenname: Man
  surname: Mi
  fullname: Mi, Man
  organization: Xi'an Medical University
– sequence: 5
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Xi'an Medical University
– sequence: 6
  givenname: Christopher D
  surname: Byrne
  fullname: Byrne, Christopher D
  organization: University Hospital Southampton, Southampton General Hospital
– sequence: 7
  givenname: Giovanni
  surname: Targher
  fullname: Targher, Giovanni
  organization: University and Azienda Ospedaliera Universitaria Integrata of Verona
– sequence: 8
  givenname: Hai‐Yang
  surname: Yuan
  fullname: Yuan, Hai‐Yang
  organization: The First Affiliated Hospital of Wenzhou Medical University
– sequence: 9
  givenname: Xin‐Lei
  surname: Zhang
  fullname: Zhang, Xin‐Lei
  organization: The First Affiliated Hospital of Wenzhou Medical University
– sequence: 10
  givenname: Ming‐Hua
  orcidid: 0000-0003-4984-2631
  surname: Zheng
  fullname: Zheng, Ming‐Hua
  email: zhengmh@wmu.edu.cn
  organization: Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province
– sequence: 11
  givenname: Feng
  surname: Ye
  fullname: Ye, Feng
  email: yefeng.jiaotong@xjtu.edu.cn
  organization: The First Affiliated Hospital of Xi'an Jiaotong University
BookMark eNp9kc9uFDEMxiNUJLaFA28QiQscpk3mXyZHqKAFFfVSzpGbeHayyiRLkhHaWx-hvCJPQpbhVAl8sWT_Psv2d0pOfPBIyGvOznmJi912OuedbNkzsuFtyyou2v6EbNjAu0o2XL4gpyntGGMtE92G_PwKerIeqUOI3votBbcN0eZpTvQeEhoaPN3HkDHMVlMDGehsV1LrJUJGdygAGqvzsZonpBFLJ6LXSMNIJ9xDttkm-uHXw2NEVzRmrQaNzi0OItUQtfVhhpfk-Qgu4au_-Yx8-_Tx7vK6urm9-nz5_qbSTcNY1YFhsh16wQahhexH5GN7bzqhBymQcd0biZKbXnMGgndNPfLBtGwcm67pBDRn5O06txz3fcGU1WzTcR3wGJak6n4Y2NBxLgr65gm6C0v0ZTtVi0bUNaulLNS7ldIxpBRxVPtoZ4gHxZk6mqOKOeqPOYW9eMJqm8uTgs8RrPuf4od1ePj3aPXl6npV_AaFKqWb
CitedBy_id crossref_primary_10_3389_fimmu_2024_1368749
crossref_primary_10_1186_s12014_024_09502_8
crossref_primary_10_3389_fmed_2022_1025887
crossref_primary_10_3389_fgene_2023_1004481
crossref_primary_10_1007_s11255_024_04351_8
crossref_primary_10_1038_s41746_023_00976_8
crossref_primary_10_3389_fonc_2023_1277772
Cites_doi 10.1016/j.ccr.2006.06.016
10.1002/jhbp.972
10.1007/s00595-012-0167-z
10.1172/JCI88486
10.1016/j.gene.2020.144549
10.1186/s12938-020-00812-0
10.1016/j.jclepro.2018.08.207
10.32614/RJ-2015-018
10.1002/hep.31103
10.1016/j.canlet.2014.09.026
10.1097/MD.0000000000013923
10.4049/jimmunol.1800627
10.1016/j.jss.2012.01.025
10.3322/caac.21660
10.1016/j.tplants.2021.12.013
10.3390/metabo12010041
10.1016/j.neucom.2019.10.118
10.1111/jvh.13452
10.1159/000520961
10.1021/pr501254j
10.1016/j.ijbiomac.2022.01.011
10.1038/s41467-019-10364-0
10.3389/fimmu.2021.655697
10.1093/bioinformatics/btx812
10.1016/j.compbiolchem.2022.107625
10.1007/s12029-021-00730-x
10.18632/oncotarget.21208
10.1097/ALN.0000000000002960
10.1002/hep.31288
10.2217/fon-2021-0759
10.1016/S0140-6736(17)33326-3
10.1074/mcp.TIR119.001673
10.1016/j.csbj.2021.09.001
10.1016/j.yexcr.2019.03.005
10.1016/j.cell.2019.08.052
10.4103/2277-9175.180636
10.1016/j.hlc.2013.06.006
10.1021/acs.jcim.8b00338
10.1016/j.ebiom.2018.12.039
10.1002/hep.29904
ContentType Journal Article
Copyright 2022 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
2022 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2022 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
– notice: 2022 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
DBID AAYXX
CITATION
7T5
7U9
H94
K9.
7X8
DOI 10.1111/jgh.15940
DatabaseName CrossRef
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AIDS and Cancer Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1440-1746
EndPage 2153
ExternalDocumentID 10_1111_jgh_15940
JGH15940
Genre article
GrantInformation_xml – fundername: Shaanxi Provincial Department of Education 2020 Special Scientific Research Plan for Emergency Public Health Safety
  funderid: 20JG028
– fundername: School of Medicine, University of Verona, Verona, Italy
– fundername: Youth Project of Science and Technology Department of Shaanxi Province
  funderid: 2022JQ‐986
– fundername: 2021 school level scientific research project of Xi'an Medical University
  funderid: 2021QN20
– fundername: Southampton NIHR Biomedical Research Centre
  funderid: IS‐BRC‐20004
– fundername: Science and Technology Project of Shaanxi Province
  funderid: 2021ZDLSF02‐09
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KMS
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7T5
7U9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
ID FETCH-LOGICAL-c3300-5ad094867087c796fe1f4bd57c897e01c6d9e91d6c10a71532f18d40ff35357a3
IEDL.DBID DR2
ISSN 0815-9319
1440-1746
IngestDate Fri Jul 11 04:29:22 EDT 2025
Wed Aug 13 07:45:05 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Tue Jul 01 01:45:27 EDT 2025
Wed Jan 22 16:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3300-5ad094867087c796fe1f4bd57c897e01c6d9e91d6c10a71532f18d40ff35357a3
Notes All authors have nothing to declare.
Declaration of conflict of interest
Financial support
Science and Technology Project of Shaanxi Province (2021ZDLSF02‐09), Youth Project of Science and Technology Department of Shaanxi Province (2022JQ‐986), and Shaanxi Provincial Department of Education 2020 Special Scientific Research Plan for Emergency Public Health Safety (20JG028). GT is supported in part by grants from the School of Medicine, University of Verona, Verona, Italy. CDB is supported in part by the Southampton NIHR Biomedical Research Centre (IS‐BRC‐20004), UK.
Gong Feng and Na He are co‐first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4984-2631
PQID 2737220299
PQPubID 2045136
PageCount 9
ParticipantIDs proquest_miscellaneous_2688085117
proquest_journals_2737220299
crossref_primary_10_1111_jgh_15940
crossref_citationtrail_10_1111_jgh_15940
wiley_primary_10_1111_jgh_15940_JGH15940
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Richmond
PublicationPlace_xml – name: Richmond
PublicationTitle Journal of gastroenterology and hepatology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 199
2017; 8
2015; 14
2013; 22
2017; 47
2006; 10
2019; 10
2019; 98
2018; 201
2021; 28
2018; 203
2022; 68
2020; 742
2019; 18
2020; 13
2020; 12
2021; 71
2021; 52
2021; 73
2015; 7
2020; 408
2020; 19
2018; 68
2014; 355
2016; 5
2018; 391
2019; 40
2021; 12
2022
2020; 132
2020; 71
2021; 19
2022; 12
2019; 179
2019; 378
2022; 97
2015
2018; 34
2012; 42
2017; 127
2022; 18
2018; 58
2012; 85
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Zhou A (e_1_2_6_36_1) 2020; 13
Kang L (e_1_2_6_35_1) 2020; 12
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
Chan EE (e_1_2_6_17_1) 2017; 47
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 40
  start-page: 305
  year: 2019
  end-page: 317
  article-title: Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: Reanalysis of CPTAC ovarian cancer
  publication-title: EBioMedicine
– volume: 355
  start-page: 264
  year: 2014
  end-page: 272
  article-title: Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway
  publication-title: Cancer Lett.
– volume: 18
  start-page: 579
  year: 2022
  end-page: 596
  article-title: Identification of PYGL as a key prognostic gene of glioma by integrated bioinformatics analysis
  publication-title: Future Oncol.
– volume: 13
  start-page: 415
  year: 2020
  end-page: 426
  article-title: Comprehensive Evaluation of Endocytosis‐Associated Protein SCAMP3 in Hepatocellular Carcinoma
  publication-title: Pharmgenomics Pers Med.
– volume: 19
  start-page: 68
  year: 2020
  article-title: Development and validation of a RNA binding protein gene pair‐associated prognostic signature for prediction of overall survival in hepatocellular carcinoma
  publication-title: Biomed. Eng. Online
– volume: 5
  year: 2016
  article-title: Proteomics: A new perspective for cancer
  publication-title: Adv. Biomed. Res.
– volume: 97
  year: 2022
  article-title: Predicting the evolution of number of native contacts of a small protein by using deep learning approach
  publication-title: Comput. Biol. Chem.
– volume: 73
  start-page: 4
  year: 2021
  end-page: 13
  article-title: Epidemiology of Hepatocellular Carcinoma
  publication-title: Hepatology
– volume: 19
  start-page: 5008
  year: 2021
  end-page: 5018
  article-title: Machine learning and deep learning methods that use omics data for metastasis prediction
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 127
  start-page: 137
  year: 2017
  end-page: 152
  article-title: Hippo signaling interactions with Wnt/β‐catenin and Notch signaling repress liver tumorigenesis
  publication-title: J. Clin. Invest.
– volume: 8
  start-page: 89978
  year: 2017
  end-page: 89987
  article-title: Circulating tumor cells as liquid biomarker for high HCC recurrence risk after curative liver resection
  publication-title: Oncotarget
– volume: 18
  start-page: 1893
  year: 2019
  end-page: 1898
  article-title: Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal
  publication-title: Mol. Cell. Proteomics
– volume: 12
  start-page: 7870
  year: 2020
  end-page: 7884
  article-title: SCAMP3 is regulated by miR‐128‐3p and promotes the metastasis of hepatocellular carcinoma cells through EGFR‐MAPK p38 signaling pathway
  publication-title: Am J Transl Res.
– volume: 201
  start-page: 3770
  year: 2018
  end-page: 3779
  article-title: IL‐33 Released in the Liver Inhibits Tumor Growth via Promotion of CD4(+) and CD8(+) T Cell Responses in Hepatocellular Carcinoma
  publication-title: J. Immunol.
– volume: 68
  start-page: 686
  year: 2022
  end-page: 698
  article-title: Identification of Serum Biomarkers in Patients with Alzheimer's Disease by 2D‐DIGE Proteomics
  publication-title: Gerontology
– volume: 28
  start-page: 493
  year: 2021
  end-page: 507
  article-title: Risk factors for the development of hepatocellular carcinoma (HCC) in chronic hepatitis B virus (HBV) infection: a systematic review and meta‐analysis
  publication-title: J. Viral Hepat.
– volume: 391
  start-page: 1023
  year: 2018
  end-page: 1075
  article-title: Global surveillance of trends in cancer survival 2000‐14 (CONCORD‐3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population‐based registries in 71 countries
  publication-title: Lancet
– volume: 47
  start-page: 287
  year: 2017
  end-page: 293
  article-title: A review of prognostic scores after liver resection in hepatocellular carcinoma: the MSKCC, SLICER and SSCLIP scores
  publication-title: Jpn. J. Clin. Oncol.
– volume: 58
  start-page: 1533
  year: 2018
  end-page: 1543
  article-title: Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images
  publication-title: J. Chem. Inf. Model.
– volume: 12
  year: 2021
  article-title: Hepatocellular Carcinoma Immune Landscape and the Potential of Immunotherapies
  publication-title: Front. Immunol.
– volume: 22
  start-page: 819
  year: 2013
  end-page: 826
  article-title: Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank
  publication-title: Heart Lung Circ.
– volume: 10
  start-page: 2510
  year: 2019
  article-title: CHML promotes liver cancer metastasis by facilitating Rab14 recycle
  publication-title: Nat. Commun.
– volume: 68
  start-page: 1025
  year: 2018
  end-page: 1041
  article-title: Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification
  publication-title: Hepatology
– volume: 14
  start-page: 2707
  year: 2015
  end-page: 2713
  article-title: The CPTAC Data Portal: A Resource for Cancer Proteomics Research
  publication-title: J. Proteome Res.
– volume: 85
  start-page: 1333
  year: 2012
  end-page: 1345
  article-title: An improved swarm optimized functional link artificial neural network (ISO‐FLANN) for classification
  publication-title: Journal of Systems and Software.
– volume: 71
  start-page: 1093
  year: 2020
  end-page: 1105
  article-title: Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review
  publication-title: Hepatology
– volume: 10
  start-page: 99
  year: 2006
  end-page: 111
  article-title: Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment
  publication-title: Cancer Cell
– volume: 742
  year: 2020
  article-title: Bioinformatics analysis reveals novel core genes associated with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Gene
– year: 2022
  article-title: Mass spectrometry‐based proteomics for abiotic stress studies
  publication-title: Trends Plant Sci.
– volume: 203
  start-page: 810
  year: 2018
  end-page: 821
  article-title: Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
– volume: 199
  start-page: 243
  year: 2022
  end-page: 251
  article-title: Potential protein markers in children with Autistic Spectrum Disorder (ASD) revealed by salivary proteomics
  publication-title: Int. J. Biol. Macromol.
– volume: 28
  start-page: 593
  year: 2021
  end-page: 603
  article-title: Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy‐confirmed NAFLD
  publication-title: J. Hepatobiliary Pancreat. Sci.
– volume: 7
  start-page: 19
  year: 2015
  end-page: 33
  article-title: VSURF: An R Package for Variable Selection Using Random Forests
  publication-title: R. J.
– volume: 98
  year: 2019
  article-title: Clinicopathologic and prognostic significance of tumor‐infiltrating CD8+ T cells in patients with hepatocellular carcinoma: A meta‐analysis
  publication-title: Medicine (Baltimore).
– volume: 179
  start-page: 561
  year: 2019
  end-page: 77 e22
  article-title: Integrated Proteogenomic Characterization of HBV‐Related Hepatocellular Carcinoma
  publication-title: Cell
– volume: 52
  start-page: 1223
  year: 2021
  end-page: 1231
  article-title: Prognostic Factors of Liver Transplantation for HCC: Comparative Literature Review
  publication-title: J. Gastrointest. Cancer
– volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends
  publication-title: Neurocomputing.
– volume: 378
  start-page: 41
  year: 2019
  end-page: 50
  article-title: TNF‐α derived from M2 tumor‐associated macrophages promotes epithelial‐mesenchymal transition and cancer stemness through the Wnt/β‐catenin pathway in SMMC‐7721 hepatocellular carcinoma cells
  publication-title: Exp. Cell Res.
– volume: 12
  year: 2022
  article-title: Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
  publication-title: Metabolites.
– volume: 42
  start-page: 515
  year: 2012
  end-page: 525
  article-title: Differentiating rectal carcinoma by an immunohistological analysis of carcinomas of pelvic organs based on the NCBI Literature Survey and the Human Protein Atlas database
  publication-title: Surg. Today
– volume: 34
  start-page: 1615
  year: 2018
  end-page: 1617
  article-title: TCGA‐assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data
  publication-title: Bioinformatics (Oxford, England).
– volume: 132
  start-page: 379
  year: 2020
  end-page: 394
  article-title: Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations
  publication-title: Anesthesiology
– year: 2015
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
– ident: e_1_2_6_45_1
  doi: 10.1016/j.ccr.2006.06.016
– ident: e_1_2_6_15_1
  doi: 10.1002/jhbp.972
– ident: e_1_2_6_21_1
  doi: 10.1007/s00595-012-0167-z
– ident: e_1_2_6_37_1
  doi: 10.1172/JCI88486
– ident: e_1_2_6_31_1
  doi: 10.1016/j.gene.2020.144549
– ident: e_1_2_6_34_1
  doi: 10.1186/s12938-020-00812-0
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jclepro.2018.08.207
– ident: e_1_2_6_32_1
  doi: 10.32614/RJ-2015-018
– ident: e_1_2_6_16_1
  doi: 10.1002/hep.31103
– ident: e_1_2_6_43_1
  doi: 10.1016/j.canlet.2014.09.026
– ident: e_1_2_6_41_1
  doi: 10.1097/MD.0000000000013923
– ident: e_1_2_6_40_1
  doi: 10.4049/jimmunol.1800627
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jss.2012.01.025
– volume: 47
  start-page: 287
  year: 2017
  ident: e_1_2_6_17_1
  article-title: A review of prognostic scores after liver resection in hepatocellular carcinoma: the MSKCC, SLICER and SSCLIP scores
  publication-title: Jpn. J. Clin. Oncol.
– ident: e_1_2_6_4_1
  doi: 10.3322/caac.21660
– ident: e_1_2_6_11_1
  doi: 10.1016/j.tplants.2021.12.013
– ident: e_1_2_6_25_1
  doi: 10.3390/metabo12010041
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neucom.2019.10.118
– ident: e_1_2_6_33_1
– volume: 13
  start-page: 415
  year: 2020
  ident: e_1_2_6_36_1
  article-title: Comprehensive Evaluation of Endocytosis‐Associated Protein SCAMP3 in Hepatocellular Carcinoma
  publication-title: Pharmgenomics Pers Med.
– ident: e_1_2_6_2_1
  doi: 10.1111/jvh.13452
– ident: e_1_2_6_9_1
  doi: 10.1159/000520961
– ident: e_1_2_6_18_1
  doi: 10.1021/pr501254j
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ijbiomac.2022.01.011
– ident: e_1_2_6_38_1
  doi: 10.1038/s41467-019-10364-0
– ident: e_1_2_6_44_1
  doi: 10.3389/fimmu.2021.655697
– ident: e_1_2_6_14_1
  doi: 10.1093/bioinformatics/btx812
– ident: e_1_2_6_30_1
  doi: 10.1016/j.compbiolchem.2022.107625
– ident: e_1_2_6_3_1
  doi: 10.1007/s12029-021-00730-x
– ident: e_1_2_6_7_1
  doi: 10.18632/oncotarget.21208
– ident: e_1_2_6_23_1
  doi: 10.1097/ALN.0000000000002960
– ident: e_1_2_6_6_1
  doi: 10.1002/hep.31288
– ident: e_1_2_6_22_1
  doi: 10.2217/fon-2021-0759
– ident: e_1_2_6_5_1
  doi: 10.1016/S0140-6736(17)33326-3
– ident: e_1_2_6_12_1
  doi: 10.1074/mcp.TIR119.001673
– ident: e_1_2_6_28_1
  doi: 10.1016/j.csbj.2021.09.001
– ident: e_1_2_6_42_1
  doi: 10.1016/j.yexcr.2019.03.005
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cell.2019.08.052
– ident: e_1_2_6_8_1
  doi: 10.4103/2277-9175.180636
– ident: e_1_2_6_20_1
  doi: 10.1016/j.hlc.2013.06.006
– volume: 12
  start-page: 7870
  year: 2020
  ident: e_1_2_6_35_1
  article-title: SCAMP3 is regulated by miR‐128‐3p and promotes the metastasis of hepatocellular carcinoma cells through EGFR‐MAPK p38 signaling pathway
  publication-title: Am J Transl Res.
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.jcim.8b00338
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ebiom.2018.12.039
– ident: e_1_2_6_39_1
  doi: 10.1002/hep.29904
SSID ssj0004075
Score 2.4194279
Snippet Background and Aim Over 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge...
Background and AimOver 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge...
Over 10% of hepatocellular carcinoma (HCC) cases recur each year, even after surgical resection. Currently, there is a lack of knowledge about the causes of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2145
SubjectTerms Algorithms
CPTAC database
Hepatitis
Hepatitis B
Hepatocellular carcinoma
Learning algorithms
Liver cancer
Machine learning
machine learning models
Prediction models
Proteins
Proteomics
recurrence of hepatocellular carcinoma
Survival
Survival analysis
Tumors
Title Machine learning algorithms based on proteomic data mining accurately predicting the recurrence of hepatitis B‐related hepatocellular carcinoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.15940
https://www.proquest.com/docview/2737220299
https://www.proquest.com/docview/2688085117
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLeqHiYuYwMmOgoyiAOXVHbixIk4AWJUk8pholIPSJH_pa3WJqhND9tpHwG-Ip-E95yk2xBIiFuUvDiO_f7Zfu_3CHnNuRI6ZFlgUqsxJUcHisUmsFql0sZCFL5qyeRzMp6K81k865G3XS5Mgw-x33BDyfD6GgVc6e1dIZ8vRmCLBa7XMVYLHaKLW-go0YDsgsWLgwz4rEUV8lE83Zv3bdGtg3nXTfV25uwh-dr1sAkvuRztaj0y17-BN_7nLxyRw9b_pO8ahjkmPVc-IgeT9oT9Mfkx8dGVjrblJOZUrebVZlkv1luKJs_SqqQe3QHzmSlGmNL1sqE0ZofIE6srIMAWMaSagodJN7ir7_MKaVXQhcMw7nq5pe9_3nz32TTQrL9b4UECRsZSg0WOymqtnpDp2ccvH8ZBW7YhMFHEWBArC2vGNJEslUZmSeF4IbSNpUkz6Rg3ic1cxm1iOFMSNG5Y8NQKVgBbRLFU0Qnpl1XpnhIK06idioxIVCgiG2fGgAqyBY8KrkGPD8ibbgJz02KaY2mNVb5f28wXuR_iAXm1J_3WAHn8iWjYcUHeyvI2D7GST8jAbg_Iy_1jkEIcEVW6agc0CehBdF4ldMlP-d8_kp9_GvuL038nfUYehJh34ZMgh6Rfb3buOXhDtX7h2f4X45YJDA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRQI2vCsCBQYEEhtHfow99oIFUEr6SBeolboz83ISkdgocYTKik-A_-BX-Am-hHvHdloQSGy6YGfZV-PR-L5mfO65AE-CQHIV-pmnU6OoJEd50o-1Z5RMhYk5L1zXkuFBMjjiu8fx8Rp862phGn6I1YEbWYbz12TgdCB91spH4z4GY-63kMo9e_IRN2yL5ztb-HWfhuH268NXA6_tKeBp3Ln7XiwNbmjSRPip0CJLChsUXJlY6DQT1g90YjKbBSbRgS8FuoOwCFLD_QLnHMVCRjjuBbhIHcSJqX_r7SlZFW9ofTHGxl6Gmt3yGDncUDfVX6PfaUp7NjF2kW37Gnzv1qQBtLzvL2vV159-o4v8XxbtOlxtU2z2orGJG7Bmy5twadiCCG7B16EDkFrWdswYMTkdVfNJPZ4tGEV1w6qSOQILKtlmBKJls0kjqfWSyDWmJyhAIxJqnGESzeb048KVTrKqYGNLSPV6smAvf3z-4gqGcFh3t6J_JQT-ZZr6OJXVTN6Go3NZkA1YL6vS3gGGeqOsjDRPZMgjE2dao5c1RRAVgcJQ1YNnncbkuqVtp-4h03y1fRuNc_dJe_B4Jfqh4Sr5k9Bmp3Z5664WeUjNikIfU5MePFo9RkdDKyJLWy1RJkFXT_m5wCk5Hfv7S_LdNwN3cfffRR_C5cHhcD_f3znYuwdXQiozcTWfm7Bez5f2PiZ_tXrgbI7Bu_PW158dnWTG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIlVcyr8aKLAgkLg4WtvrvwMHIA1pSyqEqNSbWe-uk6iJXSWOUDnxCPAcvApPwZN0Zm2nBYHEpQdulj1ar9bzt95vvgF46rpSZB5PHBXrjEpyMkfyQDk6k3GkAyFy27VkeBAODsXeUXC0Bt_bWpiaH2L1w40sw_prMvATnV808tG4i7FY8AZRuW9OP-F-bfFit4cf95nn9Xc-vB44TUsBR-HGnTuB1LificOIx5GKkjA3bi4yHUQqTiLDXRXqxCSuDpXLZYTewMvdWAue45T9IJI-jnsFroqQJ9Qnovf-nKtK1Ky-GGIDJ0HFbmiMLGyoneqvwe88o72YF9vA1r8OP9olqfEsx91llXXV59_YIv-TNbsBm02CzV7WFnET1kxxCzaGDYTgNnwbWvioYU2_jBGT01E5n1Tj2YJRTNesLJilr6CCbUYQWjab1JJKLYlaY3qKAjQiYcYZptBsTscWtnCSlTkbG8KpV5MFe_Xzy1dbLoTD2rslnZQQ9Jcp6uJUlDN5Bw4vZUHuwnpRFmYLGKpNZqSvRCg94esgUQp9rM5dP3czDFQdeN4qTKoa0nbqHTJNV5u30Ti1n7QDT1aiJzVTyZ-EtlutSxtntUg9alXkcUxMOvB49RjdDK2ILEy5RJkQHT1l5xFOyarY31-S7r0Z2It7_y76CDbe9frp292D_ftwzaMaE1vwuQ3r1XxpHmDmV2UPrcUx-HjZ6noGdwVjdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+based+on+proteomic+data+mining+accurately+predicting+the+recurrence+of+hepatitis+B-related+hepatocellular+carcinoma&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Feng%2C+Gong&rft.au=He%2C+Na&rft.au=Xia%2C+Harry+Hua-Xiang&rft.au=Mi%2C+Man&rft.date=2022-11-01&rft.issn=1440-1746&rft.eissn=1440-1746&rft.volume=37&rft.issue=11&rft.spage=2145&rft_id=info:doi/10.1111%2Fjgh.15940&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon