Phylogenomic analysis of the hemp family (Cannabaceae) reveals deep cyto‐nuclear discordance and provides new insights into generic relationships

Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp (Cannabis sativa) and hops (Humulus lupulus). Previous phylogenetic studies have clarified the most deep relationships in Cannabaceae, but relation...

Full description

Saved in:
Bibliographic Details
Published inJournal of systematics and evolution : JSE Vol. 61; no. 5; pp. 806 - 826
Main Authors Fu, Xiao‐Gang, Liu, Shui‐Yin, Velzen, Robin, Stull, Gregory W., Tian, Qin, Li, Yun‐Xia, Folk, Ryan A., Guralnick, Robert P., Kates, Heather R., Jin, Jian‐Jun, Li, Zhong‐Hu, Soltis, Douglas E., Soltis, Pamela S., Yi, Ting‐Shuang
Format Journal Article
LanguageEnglish
Published Beijing Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp (Cannabis sativa) and hops (Humulus lupulus). Previous phylogenetic studies have clarified the most deep relationships in Cannabaceae, but relationships remain ambiguous among several major lineages. Here, we sampled 82 species representing all genera of Cannabaceae and utilized a new dataset of 90 nuclear genes and 82 chloroplast loci from Hyb‐Seq to investigate the phylogenomics of Cannabaceae. Nuclear phylogenetic analyses revealed a robust and consistent backbone for Cannabaceae. We observed nuclear gene‐tree conflict at several deep nodes in inferred species trees, also cyto‐nuclear discordance concerning the relationship between Gironniera and Lozanella and the relationships among Trema s.l. (including Parasponia), Cannabis + Humulus, and Chaetachme + Pteroceltis. Coalescent simulations and network analyses suggest that observed deep cyto‐nuclear discordances were most likely to stem from incomplete lineage sorting (ILS); nuclear gene‐tree conflict might be caused by both ILS and gene flow between species. All genera of Cannabaceae were recovered as monophyletic, except for Celtis, which consisted of two distinct clades: Celtis I (including most Celtis species) and Celtis II (including Celtis gomphophylla and Celtis schippii). We suggest that Celtis II should be recognized as the independent genus Sparrea based on both molecular and morphological evidence. Our work provides the most comprehensive and reliable phylogeny to date for Cannabaceae, enabling further exploration of evolutionary patterns across this family and highlighting the necessity of comparing nuclear with chloroplast data to examine the evolutionary history of plant groups. Tanglegram showing the incongruence between the nuclear (left) and chloroplast (right) trees of Cannabaceae both inferred by partitioned RAxML analyses. Black lines connect the same taxa between the two trees. The colored branches indicate the major clades of Cannabaceae: black, outgroups; brown, Aphananthe; medium aquamarine, Gironniera; purple, Lozanella; red, Celtis II; light green, Chaetachme + Pteroceltis; green, Cannabis + Humulus; orange, Trema s.l.; and blue, Celtis I.
AbstractList Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp (Cannabis sativa) and hops (Humulus lupulus). Previous phylogenetic studies have clarified the most deep relationships in Cannabaceae, but relationships remain ambiguous among several major lineages. Here, we sampled 82 species representing all genera of Cannabaceae and utilized a new dataset of 90 nuclear genes and 82 chloroplast loci from Hyb‐Seq to investigate the phylogenomics of Cannabaceae. Nuclear phylogenetic analyses revealed a robust and consistent backbone for Cannabaceae. We observed nuclear gene‐tree conflict at several deep nodes in inferred species trees, also cyto‐nuclear discordance concerning the relationship between Gironniera and Lozanella and the relationships among Trema s.l. (including Parasponia), Cannabis + Humulus, and Chaetachme + Pteroceltis. Coalescent simulations and network analyses suggest that observed deep cyto‐nuclear discordances were most likely to stem from incomplete lineage sorting (ILS); nuclear gene‐tree conflict might be caused by both ILS and gene flow between species. All genera of Cannabaceae were recovered as monophyletic, except for Celtis, which consisted of two distinct clades: Celtis I (including most Celtis species) and Celtis II (including Celtis gomphophylla and Celtis schippii). We suggest that Celtis II should be recognized as the independent genus Sparrea based on both molecular and morphological evidence. Our work provides the most comprehensive and reliable phylogeny to date for Cannabaceae, enabling further exploration of evolutionary patterns across this family and highlighting the necessity of comparing nuclear with chloroplast data to examine the evolutionary history of plant groups.
Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp ( Cannabis sativa ) and hops ( Humulus lupulus ). Previous phylogenetic studies have clarified the most deep relationships in Cannabaceae, but relationships remain ambiguous among several major lineages. Here, we sampled 82 species representing all genera of Cannabaceae and utilized a new dataset of 90 nuclear genes and 82 chloroplast loci from Hyb‐Seq to investigate the phylogenomics of Cannabaceae. Nuclear phylogenetic analyses revealed a robust and consistent backbone for Cannabaceae. We observed nuclear gene‐tree conflict at several deep nodes in inferred species trees, also cyto‐nuclear discordance concerning the relationship between Gironniera and Lozanella and the relationships among Trema s.l. (including Parasponia ), Cannabis  +  Humulus , and Chaetachme  +  Pteroceltis . Coalescent simulations and network analyses suggest that observed deep cyto‐nuclear discordances were most likely to stem from incomplete lineage sorting (ILS); nuclear gene‐tree conflict might be caused by both ILS and gene flow between species. All genera of Cannabaceae were recovered as monophyletic, except for Celtis , which consisted of two distinct clades: Celtis I (including most Celtis species) and Celtis II (including Celtis gomphophylla and Celtis schippii ). We suggest that Celtis II should be recognized as the independent genus Sparrea based on both molecular and morphological evidence. Our work provides the most comprehensive and reliable phylogeny to date for Cannabaceae, enabling further exploration of evolutionary patterns across this family and highlighting the necessity of comparing nuclear with chloroplast data to examine the evolutionary history of plant groups.
Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp (Cannabis sativa) and hops (Humulus lupulus). Previous phylogenetic studies have clarified the most deep relationships in Cannabaceae, but relationships remain ambiguous among several major lineages. Here, we sampled 82 species representing all genera of Cannabaceae and utilized a new dataset of 90 nuclear genes and 82 chloroplast loci from Hyb‐Seq to investigate the phylogenomics of Cannabaceae. Nuclear phylogenetic analyses revealed a robust and consistent backbone for Cannabaceae. We observed nuclear gene‐tree conflict at several deep nodes in inferred species trees, also cyto‐nuclear discordance concerning the relationship between Gironniera and Lozanella and the relationships among Trema s.l. (including Parasponia), Cannabis + Humulus, and Chaetachme + Pteroceltis. Coalescent simulations and network analyses suggest that observed deep cyto‐nuclear discordances were most likely to stem from incomplete lineage sorting (ILS); nuclear gene‐tree conflict might be caused by both ILS and gene flow between species. All genera of Cannabaceae were recovered as monophyletic, except for Celtis, which consisted of two distinct clades: Celtis I (including most Celtis species) and Celtis II (including Celtis gomphophylla and Celtis schippii). We suggest that Celtis II should be recognized as the independent genus Sparrea based on both molecular and morphological evidence. Our work provides the most comprehensive and reliable phylogeny to date for Cannabaceae, enabling further exploration of evolutionary patterns across this family and highlighting the necessity of comparing nuclear with chloroplast data to examine the evolutionary history of plant groups. Tanglegram showing the incongruence between the nuclear (left) and chloroplast (right) trees of Cannabaceae both inferred by partitioned RAxML analyses. Black lines connect the same taxa between the two trees. The colored branches indicate the major clades of Cannabaceae: black, outgroups; brown, Aphananthe; medium aquamarine, Gironniera; purple, Lozanella; red, Celtis II; light green, Chaetachme + Pteroceltis; green, Cannabis + Humulus; orange, Trema s.l.; and blue, Celtis I.
Author Li, Yun‐Xia
Liu, Shui‐Yin
Soltis, Pamela S.
Soltis, Douglas E.
Velzen, Robin
Folk, Ryan A.
Kates, Heather R.
Stull, Gregory W.
Guralnick, Robert P.
Yi, Ting‐Shuang
Li, Zhong‐Hu
Fu, Xiao‐Gang
Tian, Qin
Jin, Jian‐Jun
Author_xml – sequence: 1
  givenname: Xiao‐Gang
  orcidid: 0000-0002-7289-3894
  surname: Fu
  fullname: Fu, Xiao‐Gang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Shui‐Yin
  surname: Liu
  fullname: Liu, Shui‐Yin
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Robin
  orcidid: 0000-0002-6444-7608
  surname: Velzen
  fullname: Velzen, Robin
  organization: Wageningen University and Research Center
– sequence: 4
  givenname: Gregory W.
  surname: Stull
  fullname: Stull, Gregory W.
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Qin
  surname: Tian
  fullname: Tian, Qin
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Yun‐Xia
  surname: Li
  fullname: Li, Yun‐Xia
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Ryan A.
  surname: Folk
  fullname: Folk, Ryan A.
  organization: Mississippi State University
– sequence: 8
  givenname: Robert P.
  surname: Guralnick
  fullname: Guralnick, Robert P.
  organization: University of Florida
– sequence: 9
  givenname: Heather R.
  surname: Kates
  fullname: Kates, Heather R.
  organization: University of Florida
– sequence: 10
  givenname: Jian‐Jun
  orcidid: 0000-0002-7557-9198
  surname: Jin
  fullname: Jin, Jian‐Jun
  organization: Columbia University
– sequence: 11
  givenname: Zhong‐Hu
  orcidid: 0000-0001-6763-5586
  surname: Li
  fullname: Li, Zhong‐Hu
  organization: Northwest University
– sequence: 12
  givenname: Douglas E.
  surname: Soltis
  fullname: Soltis, Douglas E.
  organization: University of Florida
– sequence: 13
  givenname: Pamela S.
  surname: Soltis
  fullname: Soltis, Pamela S.
  organization: University of Florida
– sequence: 14
  givenname: Ting‐Shuang
  orcidid: 0000-0001-7093-9564
  surname: Yi
  fullname: Yi, Ting‐Shuang
  email: tingshuangyi@mail.kib.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNp9kc1q3TAQhUVIIT_tom8g6CZZOJGsa0lelkvSHwItJF2bufIo1kWWXMk3wbs-QqFv2CepkttVoJ3NnMU3Z4Y5J-QwxICEvOXsgpe63Ga84HVbswNyzFXTVlILfli0VKtq1XJ9RE5y3jImlVbymPz6Oiw-3mOIozMUAvglu0yjpfOAdMBxohZG5xd6toYQYAMGAc9pwgcEn2mPOFGzzPH3j59hZzxCor3LJqYegsHi2NMpxQfXY6YBH6kL2d0Pcy5ijrQsxlQWJ_Qwuxjy4Kb8mryyxRvf_O2n5Nv11d36Y3Xz5cOn9fubygjBWNWIpmZGKkRtuNAWe8lR12gls1LyvuhGGGhaYBtrFOCGiVUrtBFWGotWnJKzvW858PsO89yN5XL0HgLGXe5qrVXbKqbagr57gW7jLpVvPVGy5vVKc1Go8z1lUsw5oe2m5EZIS8dZ9xRPV-LpnuMp7OUL1rj5-QdzAuf_N_HoPC7_tu4-317tJ_4A5xyncA
CitedBy_id crossref_primary_10_1002_ece3_70542
crossref_primary_10_1038_s41598_024_83292_9
crossref_primary_10_3389_fpls_2024_1518418
crossref_primary_10_1016_j_ympev_2025_108293
crossref_primary_10_3390_agronomy13082021
crossref_primary_10_1016_j_pld_2024_07_001
crossref_primary_10_1038_s41597_024_04288_8
crossref_primary_10_3390_molecules29102394
crossref_primary_10_1111_nph_19504
crossref_primary_10_1111_jipb_13773
crossref_primary_10_3389_fpls_2024_1351023
Cites_doi 10.1093/sysbio/syy032
10.1016/j.pld.2020.09.005
10.1104/pp.19.01420
10.3732/ajb.89.9.1531
10.1038/274190c0
10.1093/sysbio/syy015
10.1101/746362
10.1146/annurev-arplant-081519-040203
10.1073/pnas.1721395115
10.1093/molbev/msx281
10.1186/1471-2105-10-421
10.1007/s40415-020-00656-x
10.1007/BF00985671
10.1038/363215a0
10.1186/s12862-015-0423-0
10.1093/bioinformatics/bts492
10.3389/fpls.2019.01773
10.1093/sysbio/syaa066
10.1002/aps3.11410
10.1111/jse.12745
10.1093/sysbio/syaa013
10.1007/BF02042841
10.1186/1471-2105-6-31
10.1089/cmb.2012.0021
10.1007/s10592-005-9073-x
10.1093/bioinformatics/btp348
10.1111/jse.12552
10.1093/sysbio/syw018
10.1007/s00606-004-0186-3
10.1093/bioinformatics/btq243
10.1093/bioinformatics/btp324
10.1002/ajb2.1468
10.1371/journal.pcbi.1003537
10.1007/s006060170041
10.1371/journal.pgen.1002660
10.1007/BF02805398
10.1093/bioinformatics/btu033
10.1093/bioinformatics/btx063
10.1093/bioinformatics/bts199
10.1016/j.tplants.2014.08.007
10.1016/j.pld.2018.04.003
10.1016/j.ympev.2011.04.008
10.2307/2419070
10.1073/pnas.91.17.8127
10.1093/bioinformatics/btq228
10.1093/aob/mcab139
10.1126/science.277.5330.1203
10.3732/ajb.1000404
10.1007/978-3-319-67979-2_4
10.7717/peerj.7747
10.1111/j.1759-6831.2012.00203.x
10.1016/j.pbi.2020.102000
10.1093/sysbio/syq010
10.1111/tpj.15242
10.1016/j.tplants.2018.10.005
10.1002/ajb2.1048
10.1186/s12859-018-2129-y
10.1093/molbev/mst010
10.1016/j.jep.2008.01.011
10.1016/j.ympev.2017.04.003
10.1371/journal.pone.0197433
10.1134/S1234567813040034
10.1111/jse.12211
10.12705/623.9
10.1101/2022.01.31.478436
10.1093/bioinformatics/btu170
10.3732/apps.1600016
10.1111/nph.16386
10.1186/1471-2105-9-322
10.1126/sciadv.abg2286
10.1007/BF00984745
10.1093/molbev/msu300
10.1093/molbev/msw079
10.1093/sysbio/syab053
ContentType Journal Article
Copyright 2022 Institute of Botany, Chinese Academy of Sciences.
2023 Institute of Botany, Chinese Academy of Sciences.
Copyright_xml – notice: 2022 Institute of Botany, Chinese Academy of Sciences.
– notice: 2023 Institute of Botany, Chinese Academy of Sciences.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
P64
RC3
SOI
7S9
L.6
DOI 10.1111/jse.12920
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1759-6831
EndPage 826
ExternalDocumentID 10_1111_jse_12920
JSE12920
Genre researchArticle
GrantInformation_xml – fundername: the China Postdoctoral Science Foundation (CPSF) International Postdoctoral Exchange Program
– fundername: the Yunling International High‐end Experts Program of Yunnan Province, China
  funderid: YNQR‐GDWG‐2017‐002; YNQR‐GDWG‐2018‐012
– fundername: the Large‐scale Scientific Facilities of the Chinese Academy of Sciences
  funderid: 2017‐LSF‐GBOWS‐02
– fundername: the Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB31000000
– fundername: the National Natural Science Foundation of China
  funderid: 31270274
– fundername: USA Department of Energy grant
  funderid: DE‐SC0018247
– fundername: the National Natural Science Foundation of China, key international (regional) cooperative research project
  funderid: 31720103903
– fundername: the Science and Technology Basic Resources Investigation Program of China
  funderid: 2019FY100900
– fundername: the CAS President's International Fellowship Initiative
  funderid: 2020PB0009
– fundername: the CAS Special Research Assistant Project
GroupedDBID -01
-0A
-SA
-S~
05W
0R~
1OC
29L
31~
33P
3SF
4.4
52U
5DZ
5VR
8-1
92E
92I
92M
9D9
9DA
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFUIB
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C45
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CW9
DCZOG
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F5P
FEDTE
G-S
GODZA
GX1
HGLYW
HVGLF
HZ~
JUIAU
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
OK1
OVD
P2P
P2W
Q--
Q-0
ROL
RT1
S..
SUPJJ
T8Q
TCJ
TEORI
TGP
TUS
U1F
U1G
U5A
U5K
WBKPD
WIH
WIK
WNSPC
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
FA0
R-A
7ST
8FD
C1K
FR3
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3300-53520c67ee8c138fed61e82ef60f661de8253ca59a0bfc7aeb034938c3f6cfef3
ISSN 1674-4918
IngestDate Fri Jul 11 18:29:57 EDT 2025
Fri Jul 25 10:51:15 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Tue Jul 01 01:56:51 EDT 2025
Wed Aug 20 07:26:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3300-53520c67ee8c138fed61e82ef60f661de8253ca59a0bfc7aeb034938c3f6cfef3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7289-3894
0000-0001-6763-5586
0000-0002-6444-7608
0000-0001-7093-9564
0000-0002-7557-9198
PQID 2862124813
PQPubID 1016363
PageCount 21
ParticipantIDs proquest_miscellaneous_2887997079
proquest_journals_2862124813
crossref_primary_10_1111_jse_12920
crossref_citationtrail_10_1111_jse_12920
wiley_primary_10_1111_jse_12920_JSE12920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Journal of systematics and evolution : JSE
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 248
2010; 59
2022; 71
2013; 62
2011; 60
2015; 32
1997; 277
2008; 9
1992; 19
2012; 19
2020; 58
2011; 98
2020; 10
2017; 111
2001; 228
1993; 363
2021; 70
2016; 33
1977
2010; 26
2009; 10
2013; 98
2018b; 40
2002; 40
2017; 33
2002; 89
2019; 24
2017; 34
1893; 3
2008; 116
2014; 19
2012; 28
2020; 43
2022; 129
1989
2001; 53
2014; 10
2018; 35
2021; 9
2019; 7
2009; 25
2021; 7
2015; 15
2021; 43
2020; 184
2018; 105
1978; 11
2017; 66
2021; 106
1978; 274
2020; 226
2016; 54
2007
1952
1831
2006
2020; 107
1999; 8
2018; 67
1998; 210
1987; 19
1916
1996; 200
2016; 4
2012; 50
2018a; 19
2021; 59
2020
2020; 71
2018; 115
2013; 30
2016; 65
2019
2018
2005; 6
2017
2020; 69
2014; 30
1994; 91
1925
2012; 8
1966
2018; 13
e_1_2_7_3_1
Hunziker AT (e_1_2_7_27_1) 1978; 11
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
Christenhusz MJM (e_1_2_7_16_1) 2018
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
Zamengo HB (e_1_2_7_84_1) 2019
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
Soepadmo E (e_1_2_7_62_1) 1977
e_1_2_7_37_1
Rendle AB (e_1_2_7_52_1) 1916
e_1_2_7_58_1
e_1_2_7_79_1
Manchester SR. (e_1_2_7_41_1) 1989
Lanfear R (e_1_2_7_35_1) 2017; 34
e_1_2_7_6_1
Polhill RM (e_1_2_7_48_1) 1966
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
Engler A (e_1_2_7_20_1) 1893
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
Kravtsova TI (e_1_2_7_34_1) 2013; 98
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
Link DHF (e_1_2_7_39_1) 1831
e_1_2_7_29_1
Folk RA (e_1_2_7_22_1) 2017; 66
Leroy JF (e_1_2_7_36_1) 1952
Rendle AB (e_1_2_7_53_1) 1925
Sattarian A (e_1_2_7_55_1) 2006
Behnke HD (e_1_2_7_5_1) 1989
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_57_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Song B‐H (e_1_2_7_64_1) 2002; 40
References_xml – volume: 9
  start-page: 322
  year: 2008
  article-title: PhyloNet: A software package for analyzing and reconstructing reticulate evolutionary relationships
  publication-title: BMC Bioinformatics
– volume: 62
  start-page: 473
  year: 2013
  end-page: 485
  article-title: Molecular phylogenetics and character evolution of Cannabaceae
  publication-title: Taxon
– volume: 116
  start-page: 383
  year: 2008
  end-page: 396
  article-title: Pharmacognostic and pharmacological profile of L
  publication-title: Journal of Ethnopharmacology
– year: 2020
  article-title: An empirical guide for producing a dated phylogeny with treePL in a maximum likelihood framework
– volume: 106
  start-page: 1366
  year: 2021
  end-page: 1386
  article-title: The BOP‐type co‐transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree
  publication-title: The Plant Journal
– volume: 107
  start-page: 790
  year: 2020
  end-page: 805
  article-title: Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages
  publication-title: American Journal of Botany
– volume: 98
  start-page: 468
  year: 2013
  end-page: 480
  article-title: Fruit structure in and . (Celtidaceae)
  publication-title: Botanicheskiĭ Zhurnal
– volume: 67
  start-page: 901
  year: 2018
  end-page: 904
  article-title: Posterior summarization in Bayesian phylogenetics using Tracer 1.7
  publication-title: Systematic Biology
– volume: 24
  start-page: 49
  year: 2019
  end-page: 57
  article-title: A resurrected scenario: Single gain and massive loss of nitrogen‐fixing nodulation
  publication-title: Trends in Plant Science
– volume: 65
  start-page: 711
  year: 2016
  end-page: 721
  article-title: Gene tree discordance causes apparent substitution rate variation
  publication-title: Systematic Biology
– volume: 115
  start-page: E4700
  year: 2018
  end-page: E4709
  article-title: Comparative genomics of the nonlegume reveals insights into evolution of nitrogen‐fixing rhizobium symbioses
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: A flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 111
  start-page: 231
  year: 2017
  end-page: 247
  article-title: Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain‐lilies and allies (Amaryllidaceae tribe Hippeastreae)
  publication-title: Molecular Phylogenetics and Evolution
– start-page: 221
  year: 1989
  end-page: 251
– volume: 66
  start-page: 320
  year: 2017
  end-page: 337
  article-title: Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms
  publication-title: Systematic Biology
– volume: 274
  start-page: 190
  year: 1978
  article-title: Nitrogen‐fixing root nodules in Ulmaceae
  publication-title: Nature
– volume: 98
  start-page: 704
  year: 2011
  end-page: 730
– volume: 9
  year: 2021
  article-title: High‐throughput methods for efficiently building massive phylogenies from natural history collections
  publication-title: Applications in Plant Sciences
– volume: 35
  start-page: 518
  year: 2018
  end-page: 522
  article-title: UFBoot2: Improving the ultrafast bootstrap approximation
  publication-title: Molecular Biology and Evolution
– volume: 40
  start-page: 125
  year: 2002
  end-page: 132
  article-title: The utility of intron 5 region in phylogenetic analysis of Ulmaceae s. l
  publication-title: Journal of Systematics and Evolution
– volume: 19
  start-page: 455
  year: 2012
  end-page: 477
  article-title: SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing
  publication-title: Journal of Computational Biology
– volume: 11
  start-page: 25
  year: 1978
  end-page: 40
  article-title: , nuevo genero de Ulmaceae
  publication-title: Kurtziana
– volume: 4
  year: 2016
  article-title: HybPiper: Extracting coding sequence and introns for phylogenetics from high‐throughput sequencing reads using target enrichment
  publication-title: Applications in Plant Sciences
– volume: 6
  start-page: 31
  year: 2005
  article-title: Automated generation of heuristics for biological sequence comparison
  publication-title: BMC Bioinformatics
– volume: 34
  start-page: 772
  year: 2017
  end-page: 773
  article-title: PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses
  publication-title: Molecular Biology and Evolution
– volume: 59
  start-page: 307
  year: 2010
  end-page: 321
  article-title: New algorithms and methods to estimate maximum‐likelihood phylogenies: Assessing the performance of phyml 3.0
  publication-title: Systematic Biology
– start-page: 1
  year: 2018
  end-page: 155
– volume: 10
  start-page: 421
  year: 2009
  article-title: BLAST+: Architecture and applications
  publication-title: BMC Bioinformatics
– volume: 70
  start-page: 219
  year: 2021
  end-page: 235
  article-title: Disentangling sources of gene tree discordance in phylogenomic data sets: Testing ancient hybridizations in Amaranthaceae s.l
  publication-title: Systematic Biology
– volume: 7
  year: 2021
  article-title: Large‐scale whole‐genome resequencing unravels the domestication history of
  publication-title: Science Advances
– volume: 60
  start-page: 21
  year: 2011
  end-page: 28
  article-title: Multi‐gene analysis provides a well‐supported phylogeny of Rosales
  publication-title: Molecular Phylogenetics and Evolution
– start-page: 105
  year: 1989
  end-page: 128
– volume: 25
  start-page: 1972
  year: 2009
  end-page: 1973
  article-title: trimAl: A tool for automated alignment trimming in large‐scale phylogenetic analyses
  publication-title: Bioinformatics
– volume: 19
  start-page: 144
  year: 1992
  end-page: 163
  article-title: Gene trees and species trees: Molecular systematics as one‐character taxonomy
  publication-title: Systematic Botany
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  article-title: Mafft multiple sequence alignment software version 7: Improvements in performance and usability
  publication-title: Molecular Biology and Evolution
– volume: 8
  year: 2012
  article-title: The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection
  publication-title: PLoS Genetics
– volume: 363
  start-page: 215
  year: 1993
  article-title: Early medical use of
  publication-title: Nature
– volume: 129
  start-page: 201
  year: 2022
  end-page: 216
  article-title: Phylogenomic analyses of the East Asian endemic (Caprifoliaceae) shed insights into the temporal and spatial diversification history with widespread hybridization
  publication-title: Annals of Botany
– start-page: 1
  year: 1952
  end-page: 15
– volume: 33
  start-page: 1654
  year: 2016
  end-page: 1668
  article-title: Fast coalescent‐based computation of local branch support from quartet frequencies
  publication-title: Molecular Biology and Evolution
– volume: 10
  year: 2014
  article-title: BEAST 2: A software platform for Bayesian evolutionary analysis
  publication-title: PloS Computational Biology
– volume: 184
  start-page: 1004
  year: 2020
  end-page: 1023
  article-title: Duplication of symbiotic lysin motif receptors predates the evolution of nitrogen‐fixing nodule symbiosis
  publication-title: Plant Physiology
– volume: 105
  start-page: 291
  year: 2018
  end-page: 301
  article-title: Plastid phylogenomic analysis of green plants: A billion years of evolutionary history
  publication-title: American Journal of Botany
– start-page: 1
  year: 1916
  end-page: 14
– volume: 7
  year: 2019
  article-title: Characterizing gene tree conflict in plastome‐inferred phylogenies
  publication-title: PeerJ
– start-page: 53
  year: 2017
  end-page: 75
– volume: 69
  start-page: 613
  year: 2020
  end-page: 622
  article-title: Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae
  publication-title: Systematic Biology
– volume: 32
  start-page: 268
  year: 2015
  end-page: 274
  article-title: IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies
  publication-title: Molecular Biology and Evolution
– volume: 54
  start-page: 363
  year: 2016
  end-page: 391
  article-title: Phylogeny of the : A dense taxon sampling analysis
  publication-title: Journal of Systematics and Evolution
– year: 2019
– volume: 200
  start-page: 13
  year: 1996
  end-page: 20
  article-title: Phylogenetic analysis of Ulmaceae
  publication-title: Plant Systematics and Evolution
– volume: 19
  start-page: 11
  year: 1987
  end-page: 15
  article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissue
  publication-title: Phytochemical Bulletin
– volume: 71
  start-page: 713
  year: 2020
  end-page: 739
  article-title: The genomics of and its close relatives
  publication-title: Annual Review of Plant Biology
– volume: 248
  start-page: 85
  year: 2004
  end-page: 109
  article-title: Phylogenetic framework for (Celtidaceae)
  publication-title: Plant Systematics and Evolution
– volume: 26
  start-page: 1669
  year: 2010
  end-page: 1670
  article-title: The Newick utilities: High‐throughput phylogenetic tree processing in the UNIX shell
  publication-title: Bioinformatics
– volume: 19
  start-page: 153
  year: 2018a
  article-title: ASTRAL‐III: Polynomial time species tree reconstruction from partially resolved gene trees
  publication-title: BMC Bioinformatics
– volume: 277
  start-page: 1203
  year: 1997
  end-page: 1204
  article-title: Ice age communities may be earliest known net hunters
  publication-title: Science
– volume: 58
  start-page: 461
  year: 2020
  end-page: 473
  article-title: Born migrators: Historical biogeography of the cosmopolitan family Cannabaceae
  publication-title: Journal of Systematics and Evolution
– volume: 228
  start-page: 107
  year: 2001
  end-page: 115
  article-title: Further evidence for paraphyly of the Celtidaceae from the chloroplast gene
  publication-title: Plant Systematics and Evolution
– volume: 19
  start-page: 757
  year: 2014
  end-page: 763
  article-title: : A novel system for studying mutualism stability
  publication-title: Trends in Plant Science
– volume: 15
  start-page: 150
  year: 2015
  article-title: Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants
  publication-title: BMC Evolutionary Biology
– volume: 59
  start-page: 897
  year: 2021
  end-page: 914
  article-title: A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily
  publication-title: Journal of Systematics and Evolution
– year: 2007
– start-page: 43
  year: 1925
  end-page: 48
– start-page: 31
  year: 1977
  end-page: 76
– volume: 30
  start-page: 1312
  year: 2014
  end-page: 1313
  article-title: RAxML version 8: A tool for phylogenetic analysis and post‐analysis of large phylogenies
  publication-title: Bioinformatics
– volume: 33
  start-page: 1886
  year: 2017
  end-page: 1888
  article-title: Phyx: Phylogenetic tools for unix
  publication-title: Bioinformatics
– volume: 40
  start-page: 127
  year: 2018b
  end-page: 137
  article-title: Plastome characteristics of Cannabaceae
  publication-title: Plant Diversity
– volume: 3
  start-page: 202
  year: 1893
  end-page: 230
– volume: 53
  start-page: 66
  year: 2001
  end-page: 81
  article-title: A revision of subg. (Ulmaceae)
  publication-title: Brittonia
– volume: 13
  year: 2018
  article-title: So many genes, so little time: A practical approach to divergence‐time estimation in the genomic era
  publication-title: PLoS One
– volume: 71
  start-page: 476
  year: 2022
  end-page: 489
  article-title: Defining coalescent genes: Theory meets practice in organelle phylogenomics
  publication-title: Systematic Biology
– start-page: 1
  year: 1966
  end-page: 15
– volume: 43
  start-page: 43
  year: 2021
  end-page: 53
  article-title: Development of genomic resources for the genus (Cannabaceae) based on genome skimming data
  publication-title: Plant Diversity
– volume: 26
  start-page: 1569
  year: 2010
  end-page: 1571
  article-title: DendroPy: A Python library for phylogenetic computing
  publication-title: Bioinformatics
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  article-title: Fast and accurate short read alignment with Burrows‐Wheeler transform
  publication-title: Bioinformatics
– volume: 28
  start-page: 2689
  year: 2012
  end-page: 2690
  article-title: treePL: Divergence time estimation using penalized likelihood for large phylogenies
  publication-title: Bioinformatics
– volume: 210
  start-page: 249
  year: 1998
  end-page: 270
  article-title: The Ulmaceae, one family or two? Evidence from chloroplast DNA restriction site mapping
  publication-title: Plant Systematics and Evolution
– volume: 50
  start-page: 325
  year: 2012
  end-page: 333
  article-title: Chloroplast phylogeography of a temperate tree (Ulmaceae) in China
  publication-title: Journal of Systematics and Evolution
– volume: 43
  start-page: 947
  year: 2020
  end-page: 960
  article-title: Nomenclatural novelties in (Cannabaceae) and a preliminary phylogeny of the genus with emphasis on the South American species
  publication-title: Brazilian Journal of Botany
– volume: 226
  start-page: 541
  year: 2020
  end-page: 554
  article-title: Mutant analysis in the nonlegume identifies nin and nf‐ya1 transcription factors as a core genetic network in nitrogen‐fixing nodule symbioses
  publication-title: New Phytologist
– year: 2006
– volume: 89
  start-page: 1531
  year: 2002
  end-page: 1546
  article-title: Urticalean rosids: Circumscription, rosid ancestry, and phylogenetics based on , ‐ , and sequences
  publication-title: American Journal of Botany
– volume: 67
  start-page: 735
  year: 2018
  end-page: 740
  article-title: Inferring phylogenetic networks using PhyloNet
  publication-title: Systematic Biology
– start-page: 1
  year: 1831
  end-page: 546
– volume: 8
  start-page: 35
  year: 1999
  end-page: 48
  article-title: The history of beer additives in Europe—A review
  publication-title: Vegetation History and Archaeobotany
– volume: 10
  start-page: 1773
  year: 2020
  article-title: A phylogenomic perspective on evolution and discordance in the alpine‐arctic plant clade (Saxifragaceae)
  publication-title: Frontiers in Plant Science
– volume: 91
  start-page: 8127
  year: 1994
  end-page: 8131
  article-title: Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: Implications for studies of gene flow in plants
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 59
  year: 2021
  article-title: Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development
  publication-title: Current Opinion in Plant Biology
– volume: 28
  start-page: 1647
  year: 2012
  end-page: 1649
  article-title: Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics
– ident: e_1_2_7_50_1
  doi: 10.1093/sysbio/syy032
– ident: e_1_2_7_40_1
  doi: 10.1016/j.pld.2020.09.005
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.19.01420
– ident: e_1_2_7_73_1
  doi: 10.3732/ajb.89.9.1531
– ident: e_1_2_7_2_1
  doi: 10.1038/274190c0
– ident: e_1_2_7_79_1
  doi: 10.1093/sysbio/syy015
– volume-title: Celtis L. (Cannabaceae) do Brasil
  year: 2019
  ident: e_1_2_7_84_1
– ident: e_1_2_7_14_1
  doi: 10.1101/746362
– ident: e_1_2_7_33_1
  doi: 10.1146/annurev-arplant-081519-040203
– ident: e_1_2_7_76_1
  doi: 10.1073/pnas.1721395115
– ident: e_1_2_7_26_1
  doi: 10.1093/molbev/msx281
– ident: e_1_2_7_13_1
  doi: 10.1186/1471-2105-10-421
– ident: e_1_2_7_85_1
  doi: 10.1007/s40415-020-00656-x
– ident: e_1_2_7_80_1
  doi: 10.1007/BF00985671
– ident: e_1_2_7_93_1
  doi: 10.1038/363215a0
– ident: e_1_2_7_60_1
  doi: 10.1186/s12862-015-0423-0
– ident: e_1_2_7_61_1
  doi: 10.1093/bioinformatics/bts492
– ident: e_1_2_7_68_1
  doi: 10.3389/fpls.2019.01773
– ident: e_1_2_7_8_1
– ident: e_1_2_7_46_1
  doi: 10.1093/sysbio/syaa066
– ident: e_1_2_7_21_1
  doi: 10.1002/aps3.11410
– ident: e_1_2_7_78_1
  doi: 10.1111/jse.12745
– ident: e_1_2_7_91_1
  doi: 10.1093/sysbio/syaa013
– ident: e_1_2_7_6_1
  doi: 10.1007/BF02042841
– ident: e_1_2_7_58_1
  doi: 10.1186/1471-2105-6-31
– ident: e_1_2_7_3_1
  doi: 10.1089/cmb.2012.0021
– ident: e_1_2_7_19_1
  doi: 10.1007/s10592-005-9073-x
– ident: e_1_2_7_15_1
  doi: 10.1093/bioinformatics/btp348
– start-page: 43
  volume-title: The classification of flowering plants: Dicotyledons
  year: 1925
  ident: e_1_2_7_53_1
– ident: e_1_2_7_28_1
  doi: 10.1111/jse.12552
– start-page: 1
  volume-title: Handbuch zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse
  year: 1831
  ident: e_1_2_7_39_1
– start-page: 221
  volume-title: Evolution, systematics and fossil history of the Hamamelidae, Vol. 2: “Higher” Hamamelidae
  year: 1989
  ident: e_1_2_7_41_1
– ident: e_1_2_7_44_1
  doi: 10.1093/sysbio/syw018
– ident: e_1_2_7_82_1
  doi: 10.1007/s00606-004-0186-3
– ident: e_1_2_7_30_1
  doi: 10.1093/bioinformatics/btq243
– volume: 34
  start-page: 772
  year: 2017
  ident: e_1_2_7_35_1
  article-title: PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses
  publication-title: Molecular Biology and Evolution
– ident: e_1_2_7_37_1
  doi: 10.1093/bioinformatics/btp324
– start-page: 1
  volume-title: Flora of tropical Africa
  year: 1916
  ident: e_1_2_7_52_1
– start-page: 202
  volume-title: Die natürlichen Pflanzenfamilien
  year: 1893
  ident: e_1_2_7_20_1
– ident: e_1_2_7_69_1
  doi: 10.1002/ajb2.1468
– ident: e_1_2_7_10_1
  doi: 10.1371/journal.pcbi.1003537
– ident: e_1_2_7_65_1
  doi: 10.1007/s006060170041
– ident: e_1_2_7_83_1
  doi: 10.1371/journal.pgen.1002660
– ident: e_1_2_7_7_1
  doi: 10.1007/BF02805398
– ident: e_1_2_7_67_1
  doi: 10.1093/bioinformatics/btu033
– ident: e_1_2_7_11_1
  doi: 10.1093/bioinformatics/btx063
– ident: e_1_2_7_32_1
  doi: 10.1093/bioinformatics/bts199
– start-page: 1
  volume-title: Flore de Madagascar et des Comores: plantes vasculaires
  year: 1952
  ident: e_1_2_7_36_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.tplants.2014.08.007
– ident: e_1_2_7_90_1
  doi: 10.1016/j.pld.2018.04.003
– ident: e_1_2_7_92_1
  doi: 10.1016/j.ympev.2011.04.008
– ident: e_1_2_7_17_1
  doi: 10.2307/2419070
– volume: 66
  start-page: 320
  year: 2017
  ident: e_1_2_7_22_1
  article-title: Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms
  publication-title: Systematic Biology
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.91.17.8127
– ident: e_1_2_7_70_1
  doi: 10.1093/bioinformatics/btq228
– ident: e_1_2_7_72_1
  doi: 10.1093/aob/mcab139
– start-page: 105
  volume-title: Evolution, systematics, and fossil history of the hamamelidae
  year: 1989
  ident: e_1_2_7_5_1
– ident: e_1_2_7_49_1
  doi: 10.1126/science.277.5330.1203
– ident: e_1_2_7_63_1
  doi: 10.3732/ajb.1000404
– ident: e_1_2_7_88_1
  doi: 10.1007/978-3-319-67979-2_4
– ident: e_1_2_7_77_1
  doi: 10.7717/peerj.7747
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1759-6831.2012.00203.x
– ident: e_1_2_7_66_1
  doi: 10.1016/j.pbi.2020.102000
– ident: e_1_2_7_25_1
  doi: 10.1093/sysbio/syq010
– ident: e_1_2_7_57_1
  doi: 10.1111/tpj.15242
– ident: e_1_2_7_75_1
  doi: 10.1016/j.tplants.2018.10.005
– start-page: 1
  volume-title: The global flora: A practical flora to vascular plant species of the world
  year: 2018
  ident: e_1_2_7_16_1
– start-page: 1
  volume-title: Flora of tropical East Africa
  year: 1966
  ident: e_1_2_7_48_1
– ident: e_1_2_7_24_1
  doi: 10.1002/ajb2.1048
– volume: 40
  start-page: 125
  year: 2002
  ident: e_1_2_7_64_1
  article-title: The utility of trnK intron 5 region in phylogenetic analysis of Ulmaceae s. l
  publication-title: Journal of Systematics and Evolution
– ident: e_1_2_7_89_1
  doi: 10.1186/s12859-018-2129-y
– ident: e_1_2_7_31_1
  doi: 10.1093/molbev/mst010
– start-page: 31
  volume-title: Flora Malesiana
  year: 1977
  ident: e_1_2_7_62_1
– ident: e_1_2_7_86_1
  doi: 10.1016/j.jep.2008.01.011
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ympev.2017.04.003
– ident: e_1_2_7_59_1
  doi: 10.1371/journal.pone.0197433
– volume: 98
  start-page: 468
  year: 2013
  ident: e_1_2_7_34_1
  article-title: Fruit structure in Lozanella enantiophylla and L. permollis (Celtidaceae)
  publication-title: Botanicheskiĭ Zhurnal
  doi: 10.1134/S1234567813040034
– ident: e_1_2_7_71_1
  doi: 10.1111/jse.12211
– ident: e_1_2_7_81_1
  doi: 10.12705/623.9
– ident: e_1_2_7_45_1
  doi: 10.1101/2022.01.31.478436
– volume-title: Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species
  year: 2006
  ident: e_1_2_7_55_1
– volume: 11
  start-page: 25
  year: 1978
  ident: e_1_2_7_27_1
  article-title: Sparrea, nuevo genero de Ulmaceae
  publication-title: Kurtziana
– ident: e_1_2_7_9_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_7_29_1
  doi: 10.3732/apps.1600016
– ident: e_1_2_7_12_1
  doi: 10.1111/nph.16386
– ident: e_1_2_7_74_1
  doi: 10.1186/1471-2105-9-322
– ident: e_1_2_7_51_1
  doi: 10.1126/sciadv.abg2286
– ident: e_1_2_7_87_1
  doi: 10.1007/BF00984745
– ident: e_1_2_7_47_1
  doi: 10.1093/molbev/msu300
– ident: e_1_2_7_42_1
– ident: e_1_2_7_56_1
  doi: 10.1093/molbev/msw079
– ident: e_1_2_7_18_1
  doi: 10.1093/sysbio/syab053
SSID ssj0067876
Score 2.4102983
Snippet Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp...
Cannabaceae are a relatively small family of angiosperms, but they include several species of huge economic and cultural significance: marijuana or hemp (...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 806
SubjectTerms ancient hybridization
Angiosperms
Cannabaceae
Cannabis
Cannabis sativa
Celtis
Chloroplasts
classification
cyto‐nuclear discordance
data collection
Discordance
Gene flow
Hemp
Hops
Humulus lupulus
incomplete lineage sorting
Marijuana
monophyly
Network analysis
Parasponia
Phylogenetics
phylogenomics
Phylogeny
Sparrea
Species
Trema
Title Phylogenomic analysis of the hemp family (Cannabaceae) reveals deep cyto‐nuclear discordance and provides new insights into generic relationships
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjse.12920
https://www.proquest.com/docview/2862124813
https://www.proquest.com/docview/2887997079
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKxgMviL-iMJBBPAxNmZKmcZ3HFSjTJBDSNihPkeOc10pbWq0N0vbER0DiG_LKl-DOcdxMWqXBSxTFJyf1_Xq-s-9-Zux1niBwChkHsZQYoKh-EaRKFwFGF4nK0QWJbS3Mx09i_7h_ME7Gnc6fVtZStcx39eW1dSX_o1V8hnqlKtl_0KzvFB_gPeoXr6hhvN5Ix58nGG4Ty-qZZV1d0YuQNzmBs3mzfkFbtaosVa40KOJhopIVIObkAmC-oy-WM5_1UBLDsTqnrRuKTH1JgavZW9Ah5JTCTlE9JXOh83pC3NWWC9pl1k2m88Uat3dFHV2zQ8N3N0R2ceLg0FdGjCpS_3iqVp_2Qbl5ljKIprb9cFJNffu3qYf6Fzi9rC2qrXDzC0nLqt5ncbU5O1932-sevdgndjWmWgz6QT911hvqZ4MkDYR084qz7yJq4ThpGWsZiva8X1fur5tSFrAb0cleq3mzyRXwQslaMesv4Ajapltss4cxDRrlzb3hu-GocRzQbbBnIfof5oiwbOJZ0-9V92kVE7UjK-saHd1jd51y-V4N0PusA-UDdns4w7jj4iH71UYpb1DKZ4YjSjmhlNco5dstjL7hDqGcEMoJob9__HTY5C1sYo8Fb7DJEZu8wSYnbHKHTX4Fm4_Y8ej90dv9wB0FEug4DsOASIhCLQYAUkexNFCICGQPjAgNepgF3iexVkmqwtzogYKceJdiqWMjtAETP2Yb5ayEJ4xHIEykjejlqekPIJEiKdBY9SQYwHeoLttuRjjTjiefjms5zXy8vIDMKqPLXnnReU0Oc53QVqOmzNmORdaTAn3GvoziLnvpm9Gy03adKmFWkYwcpCkxWOInWfWuf0nWgOvpzUWfsTur_9UW21ieV_AcPexl_sIh8y-7i9NR
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenomic+analysis+of+the+hemp+family+%28Cannabaceae%29+reveals+deep+cyto%E2%80%90nuclear+discordance+and+provides+new+insights+into+generic+relationships&rft.jtitle=Journal+of+systematics+and+evolution+%3A+JSE&rft.au=Fu%2C+Xiao%E2%80%90Gang&rft.au=Liu%2C+Shui%E2%80%90Yin&rft.au=Velzen%2C+Robin&rft.au=Stull%2C+Gregory+W.&rft.date=2023-09-01&rft.issn=1674-4918&rft.eissn=1759-6831&rft.volume=61&rft.issue=5&rft.spage=806&rft.epage=826&rft_id=info:doi/10.1111%2Fjse.12920&rft.externalDBID=10.1111%252Fjse.12920&rft.externalDocID=JSE12920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4918&client=summon