Renewal theorems for processes with dependent interarrival times
In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for...
Saved in:
Published in | Advances in applied probability Vol. 50; no. 4; pp. 1193 - 1216 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.12.2018
Applied Probability Trust |
Subjects | |
Online Access | Get full text |
ISSN | 0001-8678 1475-6064 |
DOI | 10.1017/apr.2018.56 |
Cover
Loading…
Abstract | In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets. |
---|---|
AbstractList | In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets. In this paper we develop renewal theorems for point processes with interarrival times ξ( X n +1 X n …), where ( X n ) n ∈ℤ is a stochastic process with finite state space Σ and ξ:Σ A →ℝ is a Hölder continuous function on a subset Σ A ⊂Σ ℕ . The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets. In this paper we develop renewal theorems for point processes with interarrivai times ξ(Xn+1Xn· · ·), where (Xn)nϵℤ is a stochastic process with finite state space Σ and ξ: ΣA → ℝ is a Holder continuous function on a subset ΣA ⊂ Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets. |
Author | Kombrink, Sabrina |
Author_xml | – sequence: 1 givenname: Sabrina surname: Kombrink fullname: Kombrink, Sabrina email: sabrina.kombrink@mathematik.uni-goettingen.de organization: 1Universität zu Lübeck and Georg-August-Universität Göttingen |
BookMark | eNp1kE9LAzEUxINUsFZPfoEF8SRb87LZZPemFP9BQRA9h2zyYlPa3ZqkFr-9W1pQRE-Pgd_MG-aYDNquRULOgI6BgrzSqzBmFKpxKQ7IELgsc0EFH5AhpRTySsjqiBzHOO9lISs6JNfP2OJGL7I0wy7gMmauC9kqdAZjxJhtfJplFlfYWmxT5tuEQYfgP7YWv8R4Qg6dXkQ83d8Reb27fZk85NOn-8fJzTQ3BatT7krtuMCGy7oRVQXWmFo0Alxfz0ljnLOmpA00rJRgOWrLpLW21NhADbwqRuR8l9t3e19jTGrerUPbv1QMihqqmjHeU7CjTOhiDOiU8Ukn37UpaL9QQNV2KNUPpbZDqVL0nstfnlXwSx0-_6EvdvQ8pi78RFlBpeIlk7Lm0HP5PlUvm-DtG34X_iv3C0G4h8Q |
CitedBy_id | crossref_primary_10_1016_j_aim_2022_108384 crossref_primary_10_3390_fractalfract8080440 |
Cites_doi | 10.1090/S0002-9947-99-02539-8 10.3934/dcdss.2017016 10.1090/S0002-9939-1995-1224615-4 10.1002/0470013850 10.4171/JFG/19 10.1017/S0143385700002327 10.1090/pspum/036/573427 10.1007/978-1-4612-5775-2 10.1016/j.aim.2015.01.005 10.1007/978-0-387-35208-4 10.1007/978-3-540-77695-6 10.1090/conm/600/11931 10.1112/plms/s3-73.1.105 10.1007/978-3-642-67363-4_7 10.1017/CBO9780511617546 10.1007/BF02392732 10.1090/S0002-9947-00-02656-8 10.1007/s00222-011-0361-4 10.1512/iumj.1981.30.30055 10.1007/978-3-663-09977-2 10.1007/s00222-002-0248-5 10.1112/plms/s3-66.1.41 10.1016/j.aim.2012.04.023 10.1007/978-3-642-66282-9 |
ContentType | Journal Article |
Copyright | Copyright © Applied Probability Trust 2018 |
Copyright_xml | – notice: Copyright © Applied Probability Trust 2018 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V L7M L~C L~D M0C M0N M2O M7S MBDVC P5Z P62 PADUT PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
DOI | 10.1017/apr.2018.56 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Engineering Database (subscription) Research Library (Corporate) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Research Library China Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Renewal theorems for dependent interarrival times S. Kombrink |
EISSN | 1475-6064 |
EndPage | 1216 |
ExternalDocumentID | 10_1017_apr_2018_56 45277941 |
GroupedDBID | -~X 09C 09E 0R~ 23M 2AX 3V. 5GY 6J9 7WY 8FE 8FG 8FL 8G5 8VB AAAVZ AAAZR AABES AABWE AACJH AAGFV AAKTX AAKYL AANRG AARAB AASVR AAUKB ABBHK ABEFU ABFAN ABGDZ ABJCF ABJNI ABMWE ABQDR ABQTM ABROB ABTAH ABUWG ABVKB ABVZP ABXAU ABXSQ ABYWD ABZCX ACBMC ACDIW ACDLN ACGFO ACGFS ACIWK ACMTB ACNCT ACTCJ ACTMH ACUIJ ACYZP ACZBM ACZWT ADCGK ADDNB ADFEC ADKIL ADNIK ADODI ADOVH ADOVT ADULT ADVJH AEBAK AECCQ AEGXH AEHGV AELKX AELLO AELPN AENCP AENEX AENGE AEUPB AEYYC AFFUJ AFKQG AFKRA AFLVW AFVYC AFZFC AGBYD AGJUD AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKBRZ AKZCZ ALMA_UNASSIGNED_HOLDINGS ALRMG ALWZO AQJOH ARAPS ARZZG AS~ ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BEZIV BGLVJ BHOJU BJBOZ BKOMP BLZWO BMAJL BPHCQ CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC CS3 D1I DOHLZ DQDLB DSRWC DWQXO EBS EBU ECEWR EGQIC EJD F5P FEDTE FRNLG GIFXF GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF H~9 IH6 IOEEP IOO IPSME JAA JAAYA JBMMH JBZCM JENOY JHFFW JHPGK JKQEH JLEZI JLXEF JMS JPL JQKCU JSODD JST K1G K60 K6V K6~ K7- KAFGG KB. KCGVB KFECR L6V LHUNA LW7 M0C M0N M2O M7S NIKVX NZEOI O9- P0- P2P P62 PADUT PDBOC PQBIZ PQBZA PQQKQ PROAC PTHSS PUASD PYCCK QWB RAMDC RBU RCA RNS ROL RPE S6U SA0 SAAAG T9M TN5 U5U UT1 WFFJZ YYP ZDLDU ZGI ZJOSE ZL0 ZMEZD ZY4 ZYDXJ ~02 AAWIL ABAWQ ABXHF ACHJO AGLNM AIHAF AKMAY AMVHM PHGZM PHGZT AAYXX CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c329t-f5af46eb479b6881dcc96b61f064f7ccffdc50b1b2571d4ead27ddd5aeb191483 |
IEDL.DBID | BENPR |
ISSN | 0001-8678 |
IngestDate | Sat Aug 23 14:07:11 EDT 2025 Tue Jul 01 02:36:06 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Thu Jul 03 22:17:03 EDT 2025 Tue Jan 21 06:19:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | dependent interarrival time Secondary 28A80 28A75 Renewal theorem Primary 60K05 key renewal theorem 60K15 symbolic dynamics Ruelle‒Perron‒Frobenius theory |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-f5af46eb479b6881dcc96b61f064f7ccffdc50b1b2571d4ead27ddd5aeb191483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2139189224 |
PQPubID | 31672 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2139189224 crossref_citationtrail_10_1017_apr_2018_56 crossref_primary_10_1017_apr_2018_56 jstor_primary_10_2307_45277941 cambridge_journals_10_1017_apr_2018_56 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Sheffield |
PublicationTitle | Advances in applied probability |
PublicationTitleAlternate | Adv. Appl. Probab |
PublicationYear | 2018 |
Publisher | Cambridge University Press Applied Probability Trust |
Publisher_xml | – name: Cambridge University Press – name: Applied Probability Trust |
References | S0001867818000563_ref30 S0001867818000563_ref31 S0001867818000563_ref10 S0001867818000563_ref19 S0001867818000563_ref15 S0001867818000563_ref16 Bedford (S0001867818000563_ref3) 1988 S0001867818000563_ref18 S0001867818000563_ref11 S0001867818000563_ref12 S0001867818000563_ref13 S0001867818000563_ref14 S0001867818000563_ref7 S0001867818000563_ref6 S0001867818000563_ref5 S0001867818000563_ref20 S0001867818000563_ref21 S0001867818000563_ref4 S0001867818000563_ref1 Parry (S0001867818000563_ref24) 1990; 187‒188 S0001867818000563_ref8 Klenke (S0001867818000563_ref17) 2008 S0001867818000563_ref26 S0001867818000563_ref27 S0001867818000563_ref28 S0001867818000563_ref29 Feller (S0001867818000563_ref9) 1971 S0001867818000563_ref22 S0001867818000563_ref23 Asmussen (S0001867818000563_ref2) 2003; 51 S0001867818000563_ref25 |
References_xml | – ident: S0001867818000563_ref10 doi: 10.1090/S0002-9947-99-02539-8 – ident: S0001867818000563_ref15 doi: 10.3934/dcdss.2017016 – volume-title: Wahrscheinlichkeitstheorie year: 2008 ident: S0001867818000563_ref17 – ident: S0001867818000563_ref25 – ident: S0001867818000563_ref7 doi: 10.1090/S0002-9939-1995-1224615-4 – volume: 187‒188 year: 1990 ident: S0001867818000563_ref24 article-title: Zeta functions and the periodic orbit structure of hyperbolic dynamics publication-title: Astérisque – ident: S0001867818000563_ref8 doi: 10.1002/0470013850 – start-page: 17 volume-title: Proceedings of the Conference on Topology and Measure V, Ernst-Moritz-Arndt Universitat, Greifswald year: 1988 ident: S0001867818000563_ref3 – ident: S0001867818000563_ref16 – ident: S0001867818000563_ref14 doi: 10.4171/JFG/19 – ident: S0001867818000563_ref26 doi: 10.1017/S0143385700002327 – ident: S0001867818000563_ref5 doi: 10.1090/pspum/036/573427 – volume-title: An Introduction to Probability Theory and Its Applications year: 1971 ident: S0001867818000563_ref9 – ident: S0001867818000563_ref29 doi: 10.1007/978-1-4612-5775-2 – ident: S0001867818000563_ref31 doi: 10.1016/j.aim.2015.01.005 – ident: S0001867818000563_ref21 doi: 10.1007/978-0-387-35208-4 – ident: S0001867818000563_ref6 doi: 10.1007/978-3-540-77695-6 – ident: S0001867818000563_ref18 doi: 10.1090/conm/600/11931 – ident: S0001867818000563_ref22 doi: 10.1112/plms/s3-73.1.105 – ident: S0001867818000563_ref4 doi: 10.1007/978-3-642-67363-4_7 – ident: S0001867818000563_ref27 doi: 10.1017/CBO9780511617546 – ident: S0001867818000563_ref19 doi: 10.1007/BF02392732 – ident: S0001867818000563_ref30 doi: 10.1090/S0002-9947-00-02656-8 – ident: S0001867818000563_ref23 doi: 10.1007/s00222-011-0361-4 – ident: S0001867818000563_ref11 doi: 10.1512/iumj.1981.30.30055 – volume: 51 volume-title: Applied Probability and Queues year: 2003 ident: S0001867818000563_ref2 – ident: S0001867818000563_ref1 doi: 10.1007/978-3-663-09977-2 – ident: S0001867818000563_ref28 doi: 10.1007/s00222-002-0248-5 – ident: S0001867818000563_ref20 doi: 10.1112/plms/s3-66.1.41 – ident: S0001867818000563_ref13 doi: 10.1016/j.aim.2012.04.023 – ident: S0001867818000563_ref12 doi: 10.1007/978-3-642-66282-9 |
SSID | ssj0003780 |
Score | 2.1913805 |
Snippet | In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space... In this paper we develop renewal theorems for point processes with interarrivai times ξ(Xn+1Xn· · ·), where (Xn)nϵℤ is a stochastic process with finite state... In this paper we develop renewal theorems for point processes with interarrival times ξ( X n +1 X n …), where ( X n ) n ∈ℤ is a stochastic process with finite... |
SourceID | proquest crossref jstor cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1193 |
SubjectTerms | Continuity (mathematics) Fractal geometry Markov analysis Markov processes Original Article Probability Set theory Stochastic processes Theorems |
Title | Renewal theorems for processes with dependent interarrival times |
URI | https://www.cambridge.org/core/product/identifier/S0001867818000563/type/journal_article https://www.jstor.org/stable/45277941 https://www.proquest.com/docview/2139189224 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5ue9EH8YrTOfowfBCqa9o0yZM3NoewIcPB3kqTNCDoVteqf9-TNt0cDp97euHk5MuX9JzvINTBWGKe4MDlUvhuoDVMqVhLlwmqVKy1oEXV-3AUDibB05RM7YFbZtMqK0wsgFrNpTkjv8ZAVTzGYcW5ST9c0zXK_F21LTRqqAEQzCDCG_e90fN4icU-ZWURCmyaGeCyrdAzotFxauRAPXZF1nQV1tanMkXxD0wXa09_D-1a0ujclaO8j7aS2QHaGS4VV7NDdDsG0PoGo7Iy8T1zgI06aVkGkGSOOW91qo63uWNUImCbvHj9MreYMpAjNOn3Xh4Gru2O4Eof89zVJNZBmIiAchEyoJ1S8lCEngaSoamUWitJusITMCk9FUDEYHC_IjGgM4dNkH-M6rP5LDlBjmZCap_6IQUyyGNsnqN0N2YE2KOnWBNdLP0T2RjPojI_jEbgyMg4MiJhE11Wzouk1Rg3rS7eNht3lsZpKa2x2axdjMJvG5O9HgUEU0ATr4la1fCsPm4VLqf_Xz5D2-ZFZYZKC9XzxWdyDjwjF21UY_3Htg2pHy360v0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4inGswfggFRY00eSAwIEjA22HdAmcStN2khIMAYdTPwpfiNO025MTNw4100j2_EjtT8D7BEiCU-IZ3MpXNtTCo9UpKTNBI3jSClBs673Ziuodbybe_9-Cr6KXhhdVlnYxMxQxy9S35EfEwxVHMbR45z2Xm09NUr_XS1GaBi1uE0-B5iypSf1S5TvPiHVq_ZFzc6nCtjSJbxvKz9SXpAIj3IRMAzXpOSBCByFzllRKZWKpV8RjkBldmIPOU1w27EfoVXjmDy4uO40zHiuy3UJIateDy2_S5lpecEUnaEXyPsBNUR11NPgow478sdQHMa8oSmI_OUUMk9XXYSFPES1zo1OLcFU0l2G-eYQ3zVdgbM7NJEDJDJ9kM-phbGv1TNNB0lq6dtdq5iv27c0JgUm5W-PH_oV3XSyCp1_4doalLov3WQdLMWEVC51A4qhJ4-IXidWlYj5GKs6MSvDwZA_YX6i0tBUo9EQGRlqRoZ-UIbDgnmhzBHN9WCNp8nEe0PingHymEy2k0nhJ42ulQ89n1C0XU4ZtgrxjDY3Us6Nvx_vwmyt3WyEjXrrdhPm9EdNbcwWlPpv78k2Rjh9sZOplQUP_63H3yC5D74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewal+theorems+for+processes+with+dependent+interarrival+times&rft.jtitle=Advances+in+applied+probability&rft.au=Kombrink%2C+Sabrina&rft.date=2018-12-01&rft.pub=Cambridge+University+Press&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=50&rft.issue=4&rft.spage=1193&rft.epage=1216&rft_id=info:doi/10.1017%2Fapr.2018.56&rft.externalDocID=10_1017_apr_2018_56 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon |