Renewal theorems for processes with dependent interarrival times

In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for...

Full description

Saved in:
Bibliographic Details
Published inAdvances in applied probability Vol. 50; no. 4; pp. 1193 - 1216
Main Author Kombrink, Sabrina
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.12.2018
Applied Probability Trust
Subjects
Online AccessGet full text
ISSN0001-8678
1475-6064
DOI10.1017/apr.2018.56

Cover

Loading…
Abstract In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets.
AbstractList In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets.
In this paper we develop renewal theorems for point processes with interarrival times ξ( X n +1 X n …), where ( X n ) n ∈ℤ is a stochastic process with finite state space Σ and ξ:Σ A →ℝ is a Hölder continuous function on a subset Σ A ⊂Σ ℕ . The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets.
In this paper we develop renewal theorems for point processes with interarrivai times ξ(Xn+1Xn· · ·), where (Xn)nϵℤ is a stochastic process with finite state space Σ and ξ: ΣA → ℝ is a Holder continuous function on a subset ΣA ⊂ Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets.
Author Kombrink, Sabrina
Author_xml – sequence: 1
  givenname: Sabrina
  surname: Kombrink
  fullname: Kombrink, Sabrina
  email: sabrina.kombrink@mathematik.uni-goettingen.de
  organization: 1Universität zu Lübeck and Georg-August-Universität Göttingen
BookMark eNp1kE9LAzEUxINUsFZPfoEF8SRb87LZZPemFP9BQRA9h2zyYlPa3ZqkFr-9W1pQRE-Pgd_MG-aYDNquRULOgI6BgrzSqzBmFKpxKQ7IELgsc0EFH5AhpRTySsjqiBzHOO9lISs6JNfP2OJGL7I0wy7gMmauC9kqdAZjxJhtfJplFlfYWmxT5tuEQYfgP7YWv8R4Qg6dXkQ83d8Reb27fZk85NOn-8fJzTQ3BatT7krtuMCGy7oRVQXWmFo0Alxfz0ljnLOmpA00rJRgOWrLpLW21NhADbwqRuR8l9t3e19jTGrerUPbv1QMihqqmjHeU7CjTOhiDOiU8Ukn37UpaL9QQNV2KNUPpbZDqVL0nstfnlXwSx0-_6EvdvQ8pi78RFlBpeIlk7Lm0HP5PlUvm-DtG34X_iv3C0G4h8Q
CitedBy_id crossref_primary_10_1016_j_aim_2022_108384
crossref_primary_10_3390_fractalfract8080440
Cites_doi 10.1090/S0002-9947-99-02539-8
10.3934/dcdss.2017016
10.1090/S0002-9939-1995-1224615-4
10.1002/0470013850
10.4171/JFG/19
10.1017/S0143385700002327
10.1090/pspum/036/573427
10.1007/978-1-4612-5775-2
10.1016/j.aim.2015.01.005
10.1007/978-0-387-35208-4
10.1007/978-3-540-77695-6
10.1090/conm/600/11931
10.1112/plms/s3-73.1.105
10.1007/978-3-642-67363-4_7
10.1017/CBO9780511617546
10.1007/BF02392732
10.1090/S0002-9947-00-02656-8
10.1007/s00222-011-0361-4
10.1512/iumj.1981.30.30055
10.1007/978-3-663-09977-2
10.1007/s00222-002-0248-5
10.1112/plms/s3-66.1.41
10.1016/j.aim.2012.04.023
10.1007/978-3-642-66282-9
ContentType Journal Article
Copyright Copyright © Applied Probability Trust 2018
Copyright_xml – notice: Copyright © Applied Probability Trust 2018
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1017/apr.2018.56
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Engineering Database (subscription)
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
CrossRef


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Renewal theorems for dependent interarrival times
S. Kombrink
EISSN 1475-6064
EndPage 1216
ExternalDocumentID 10_1017_apr_2018_56
45277941
GroupedDBID -~X
09C
09E
0R~
23M
2AX
3V.
5GY
6J9
7WY
8FE
8FG
8FL
8G5
8VB
AAAVZ
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAKYL
AANRG
AARAB
AASVR
AAUKB
ABBHK
ABEFU
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABQDR
ABQTM
ABROB
ABTAH
ABUWG
ABVKB
ABVZP
ABXAU
ABXSQ
ABYWD
ABZCX
ACBMC
ACDIW
ACDLN
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACTCJ
ACTMH
ACUIJ
ACYZP
ACZBM
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADNIK
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AECCQ
AEGXH
AEHGV
AELKX
AELLO
AELPN
AENCP
AENEX
AENGE
AEUPB
AEYYC
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFZFC
AGBYD
AGJUD
AHQXX
AHRGI
AIAGR
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKBRZ
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALWZO
AQJOH
ARAPS
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BEZIV
BGLVJ
BHOJU
BJBOZ
BKOMP
BLZWO
BMAJL
BPHCQ
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
D1I
DOHLZ
DQDLB
DSRWC
DWQXO
EBS
EBU
ECEWR
EGQIC
EJD
F5P
FEDTE
FRNLG
GIFXF
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
H~9
IH6
IOEEP
IOO
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JSODD
JST
K1G
K60
K6V
K6~
K7-
KAFGG
KB.
KCGVB
KFECR
L6V
LHUNA
LW7
M0C
M0N
M2O
M7S
NIKVX
NZEOI
O9-
P0-
P2P
P62
PADUT
PDBOC
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
RNS
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UT1
WFFJZ
YYP
ZDLDU
ZGI
ZJOSE
ZL0
ZMEZD
ZY4
ZYDXJ
~02
AAWIL
ABAWQ
ABXHF
ACHJO
AGLNM
AIHAF
AKMAY
AMVHM
PHGZM
PHGZT
AAYXX
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c329t-f5af46eb479b6881dcc96b61f064f7ccffdc50b1b2571d4ead27ddd5aeb191483
IEDL.DBID BENPR
ISSN 0001-8678
IngestDate Sat Aug 23 14:07:11 EDT 2025
Tue Jul 01 02:36:06 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Thu Jul 03 22:17:03 EDT 2025
Tue Jan 21 06:19:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords dependent interarrival time
Secondary 28A80
28A75
Renewal theorem
Primary 60K05
key renewal theorem
60K15
symbolic dynamics
Ruelle‒Perron‒Frobenius theory
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-f5af46eb479b6881dcc96b61f064f7ccffdc50b1b2571d4ead27ddd5aeb191483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2139189224
PQPubID 31672
PageCount 24
ParticipantIDs proquest_journals_2139189224
crossref_citationtrail_10_1017_apr_2018_56
crossref_primary_10_1017_apr_2018_56
jstor_primary_10_2307_45277941
cambridge_journals_10_1017_apr_2018_56
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Sheffield
PublicationTitle Advances in applied probability
PublicationTitleAlternate Adv. Appl. Probab
PublicationYear 2018
Publisher Cambridge University Press
Applied Probability Trust
Publisher_xml – name: Cambridge University Press
– name: Applied Probability Trust
References S0001867818000563_ref30
S0001867818000563_ref31
S0001867818000563_ref10
S0001867818000563_ref19
S0001867818000563_ref15
S0001867818000563_ref16
Bedford (S0001867818000563_ref3) 1988
S0001867818000563_ref18
S0001867818000563_ref11
S0001867818000563_ref12
S0001867818000563_ref13
S0001867818000563_ref14
S0001867818000563_ref7
S0001867818000563_ref6
S0001867818000563_ref5
S0001867818000563_ref20
S0001867818000563_ref21
S0001867818000563_ref4
S0001867818000563_ref1
Parry (S0001867818000563_ref24) 1990; 187‒188
S0001867818000563_ref8
Klenke (S0001867818000563_ref17) 2008
S0001867818000563_ref26
S0001867818000563_ref27
S0001867818000563_ref28
S0001867818000563_ref29
Feller (S0001867818000563_ref9) 1971
S0001867818000563_ref22
S0001867818000563_ref23
Asmussen (S0001867818000563_ref2) 2003; 51
S0001867818000563_ref25
References_xml – ident: S0001867818000563_ref10
  doi: 10.1090/S0002-9947-99-02539-8
– ident: S0001867818000563_ref15
  doi: 10.3934/dcdss.2017016
– volume-title: Wahrscheinlichkeitstheorie
  year: 2008
  ident: S0001867818000563_ref17
– ident: S0001867818000563_ref25
– ident: S0001867818000563_ref7
  doi: 10.1090/S0002-9939-1995-1224615-4
– volume: 187‒188
  year: 1990
  ident: S0001867818000563_ref24
  article-title: Zeta functions and the periodic orbit structure of hyperbolic dynamics
  publication-title: Astérisque
– ident: S0001867818000563_ref8
  doi: 10.1002/0470013850
– start-page: 17
  volume-title: Proceedings of the Conference on Topology and Measure V, Ernst-Moritz-Arndt Universitat, Greifswald
  year: 1988
  ident: S0001867818000563_ref3
– ident: S0001867818000563_ref16
– ident: S0001867818000563_ref14
  doi: 10.4171/JFG/19
– ident: S0001867818000563_ref26
  doi: 10.1017/S0143385700002327
– ident: S0001867818000563_ref5
  doi: 10.1090/pspum/036/573427
– volume-title: An Introduction to Probability Theory and Its Applications
  year: 1971
  ident: S0001867818000563_ref9
– ident: S0001867818000563_ref29
  doi: 10.1007/978-1-4612-5775-2
– ident: S0001867818000563_ref31
  doi: 10.1016/j.aim.2015.01.005
– ident: S0001867818000563_ref21
  doi: 10.1007/978-0-387-35208-4
– ident: S0001867818000563_ref6
  doi: 10.1007/978-3-540-77695-6
– ident: S0001867818000563_ref18
  doi: 10.1090/conm/600/11931
– ident: S0001867818000563_ref22
  doi: 10.1112/plms/s3-73.1.105
– ident: S0001867818000563_ref4
  doi: 10.1007/978-3-642-67363-4_7
– ident: S0001867818000563_ref27
  doi: 10.1017/CBO9780511617546
– ident: S0001867818000563_ref19
  doi: 10.1007/BF02392732
– ident: S0001867818000563_ref30
  doi: 10.1090/S0002-9947-00-02656-8
– ident: S0001867818000563_ref23
  doi: 10.1007/s00222-011-0361-4
– ident: S0001867818000563_ref11
  doi: 10.1512/iumj.1981.30.30055
– volume: 51
  volume-title: Applied Probability and Queues
  year: 2003
  ident: S0001867818000563_ref2
– ident: S0001867818000563_ref1
  doi: 10.1007/978-3-663-09977-2
– ident: S0001867818000563_ref28
  doi: 10.1007/s00222-002-0248-5
– ident: S0001867818000563_ref20
  doi: 10.1112/plms/s3-66.1.41
– ident: S0001867818000563_ref13
  doi: 10.1016/j.aim.2012.04.023
– ident: S0001867818000563_ref12
  doi: 10.1007/978-3-642-66282-9
SSID ssj0003780
Score 2.1913805
Snippet In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space...
In this paper we develop renewal theorems for point processes with interarrivai times ξ(Xn+1Xn· · ·), where (Xn)nϵℤ is a stochastic process with finite state...
In this paper we develop renewal theorems for point processes with interarrival times ξ( X n +1 X n …), where ( X n ) n ∈ℤ is a stochastic process with finite...
SourceID proquest
crossref
jstor
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1193
SubjectTerms Continuity (mathematics)
Fractal geometry
Markov analysis
Markov processes
Original Article
Probability
Set theory
Stochastic processes
Theorems
Title Renewal theorems for processes with dependent interarrival times
URI https://www.cambridge.org/core/product/identifier/S0001867818000563/type/journal_article
https://www.jstor.org/stable/45277941
https://www.proquest.com/docview/2139189224
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5ue9EH8YrTOfowfBCqa9o0yZM3NoewIcPB3kqTNCDoVteqf9-TNt0cDp97euHk5MuX9JzvINTBWGKe4MDlUvhuoDVMqVhLlwmqVKy1oEXV-3AUDibB05RM7YFbZtMqK0wsgFrNpTkjv8ZAVTzGYcW5ST9c0zXK_F21LTRqqAEQzCDCG_e90fN4icU-ZWURCmyaGeCyrdAzotFxauRAPXZF1nQV1tanMkXxD0wXa09_D-1a0ujclaO8j7aS2QHaGS4VV7NDdDsG0PoGo7Iy8T1zgI06aVkGkGSOOW91qo63uWNUImCbvHj9MreYMpAjNOn3Xh4Gru2O4Eof89zVJNZBmIiAchEyoJ1S8lCEngaSoamUWitJusITMCk9FUDEYHC_IjGgM4dNkH-M6rP5LDlBjmZCap_6IQUyyGNsnqN0N2YE2KOnWBNdLP0T2RjPojI_jEbgyMg4MiJhE11Wzouk1Rg3rS7eNht3lsZpKa2x2axdjMJvG5O9HgUEU0ATr4la1fCsPm4VLqf_Xz5D2-ZFZYZKC9XzxWdyDjwjF21UY_3Htg2pHy360v0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4inGswfggFRY00eSAwIEjA22HdAmcStN2khIMAYdTPwpfiNO025MTNw4100j2_EjtT8D7BEiCU-IZ3MpXNtTCo9UpKTNBI3jSClBs673Ziuodbybe_9-Cr6KXhhdVlnYxMxQxy9S35EfEwxVHMbR45z2Xm09NUr_XS1GaBi1uE0-B5iypSf1S5TvPiHVq_ZFzc6nCtjSJbxvKz9SXpAIj3IRMAzXpOSBCByFzllRKZWKpV8RjkBldmIPOU1w27EfoVXjmDy4uO40zHiuy3UJIateDy2_S5lpecEUnaEXyPsBNUR11NPgow478sdQHMa8oSmI_OUUMk9XXYSFPES1zo1OLcFU0l2G-eYQ3zVdgbM7NJEDJDJ9kM-phbGv1TNNB0lq6dtdq5iv27c0JgUm5W-PH_oV3XSyCp1_4doalLov3WQdLMWEVC51A4qhJ4-IXidWlYj5GKs6MSvDwZA_YX6i0tBUo9EQGRlqRoZ-UIbDgnmhzBHN9WCNp8nEe0PingHymEy2k0nhJ42ulQ89n1C0XU4ZtgrxjDY3Us6Nvx_vwmyt3WyEjXrrdhPm9EdNbcwWlPpv78k2Rjh9sZOplQUP_63H3yC5D74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewal+theorems+for+processes+with+dependent+interarrival+times&rft.jtitle=Advances+in+applied+probability&rft.au=Kombrink%2C+Sabrina&rft.date=2018-12-01&rft.pub=Cambridge+University+Press&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=50&rft.issue=4&rft.spage=1193&rft.epage=1216&rft_id=info:doi/10.1017%2Fapr.2018.56&rft.externalDocID=10_1017_apr_2018_56
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon