The measurement of responsivity of infrared photodetectors using a cavity blackbody

For the measurement of responsivity of an infrared photodetector, the most-used radiation source is a blackbody. In such a measurement system, distance between the blackbody, the photodetector and the aperture diameter are two parameters that contribute most measurement errors. In this work, we desc...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 44; no. 10; pp. 102301 - 63
Main Authors Li, Nong, Jiang, Dongwei, Wang, Guowei, Chen, Weiqiang, Zhou, Wenguang, Jiang, Junkai, Chang, Faran, Hao, Hongyue, Wu, Donghai, Xu, Yingqiang, Shen, Guiying, Xie, Hui, Liu, Jingming, Zhao, Youwen, Wang, Fenghua, Niu, Zhichuan
Format Journal Article
LanguageEnglish
Published Chinese Institute of Electronics 01.10.2023
College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China
State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Center of Materials Science and Optoelectronics Engineering,College of Materials Science and Opto-Electronic Technology,University of Chi-nese Academy of Sciences,Beijing 100049,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Insti-tute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the measurement of responsivity of an infrared photodetector, the most-used radiation source is a blackbody. In such a measurement system, distance between the blackbody, the photodetector and the aperture diameter are two parameters that contribute most measurement errors. In this work, we describe the configuration of our responsivity measurement system in great detail and present a method to calibrate the distance and aperture diameter. The core of this calibration method is to transfer direct measurements of these two parameters into an extraction procedure by fitting the experiment data to the calculated results. The calibration method is proved experimentally with a commercially extended InGaAs detector at a wide range of blackbody temperature, aperture diameter and distance. Then proof procedures are further extended into a detector fabricated in our laboratory and consistent results were obtained.
AbstractList For the measurement of responsivity of an infrared photodetector, the most-used radiation source is a blackbody. In such a measurement system, distance between the blackbody, the photodetector and the aperture diameter are two parameters that contribute most measurement errors. In this work, we describe the configuration of our responsivity measurement system in great detail and present a method to calibrate the distance and aperture diameter. The core of this calibration method is to transfer direct measurements of these two parameters into an extraction procedure by fitting the experiment data to the calculated results. The calibration method is proved experimentally with a commercially extended InGaAs detector at a wide range of blackbody temperature, aperture diameter and distance. Then proof procedures are further extended into a detector fabricated in our laboratory and consistent results were obtained.
For the measurement of responsivity of an infrared photodetector,the most-used radiation source is a blackbody.In such a measurement system,distance between the blackbody,the photodetector and the aperture diameter are two parame-ters that contribute most measurement errors.In this work,we describe the configuration of our responsivity measurement sys-tem in great detail and present a method to calibrate the distance and aperture diameter.The core of this calibration method is to transfer direct measurements of these two parameters into an extraction procedure by fitting the experiment data to the calculated results.The calibration method is proved experimentally with a commercially extended InGaAs detector at a wide range of blackbody temperature,aperture diameter and distance.Then proof procedures are further extended into a detector fabricated in our laboratory and consistent results were obtained.
Author Chen, Weiqiang
Chang, Faran
Shen, Guiying
Niu, Zhichuan
Li, Nong
Zhou, Wenguang
Wang, Guowei
Hao, Hongyue
Liu, Jingming
Wu, Donghai
Wang, Fenghua
Jiang, Dongwei
Zhao, Youwen
Jiang, Junkai
Xie, Hui
Xu, Yingqiang
AuthorAffiliation State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China;Center of Materials Science and Optoelectronics Engineering,College of Materials Science and Opto-Electronic Technology,University of Chi-nese Academy of Sciences,Beijing 100049,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Insti-tute of Semiconductors,Chine
AuthorAffiliation_xml – name: State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China;Center of Materials Science and Optoelectronics Engineering,College of Materials Science and Opto-Electronic Technology,University of Chi-nese Academy of Sciences,Beijing 100049,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Insti-tute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Author_xml – sequence: 1
  givenname: Nong
  surname: Li
  fullname: Li, Nong
  organization: College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 101408, China
– sequence: 2
  givenname: Dongwei
  surname: Jiang
  fullname: Jiang, Dongwei
  organization: Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
– sequence: 3
  givenname: Guowei
  surname: Wang
  fullname: Wang, Guowei
  organization: Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
– sequence: 4
  givenname: Weiqiang
  surname: Chen
  fullname: Chen, Weiqiang
  organization: College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 101408, China
– sequence: 5
  givenname: Wenguang
  surname: Zhou
  fullname: Zhou, Wenguang
  organization: College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 101408, China
– sequence: 6
  givenname: Junkai
  surname: Jiang
  fullname: Jiang, Junkai
  organization: College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 101408, China
– sequence: 7
  givenname: Faran
  surname: Chang
  fullname: Chang, Faran
  organization: State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
– sequence: 8
  givenname: Hongyue
  surname: Hao
  fullname: Hao, Hongyue
  organization: Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
– sequence: 9
  givenname: Donghai
  surname: Wu
  fullname: Wu, Donghai
  organization: Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
– sequence: 10
  givenname: Yingqiang
  surname: Xu
  fullname: Xu, Yingqiang
  organization: Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
– sequence: 11
  givenname: Guiying
  surname: Shen
  fullname: Shen, Guiying
  organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
– sequence: 12
  givenname: Hui
  surname: Xie
  fullname: Xie, Hui
  organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
– sequence: 13
  givenname: Jingming
  surname: Liu
  fullname: Liu, Jingming
  organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
– sequence: 14
  givenname: Youwen
  surname: Zhao
  fullname: Zhao, Youwen
  organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
– sequence: 15
  givenname: Fenghua
  surname: Wang
  fullname: Wang, Fenghua
  organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
– sequence: 16
  givenname: Zhichuan
  surname: Niu
  fullname: Niu, Zhichuan
  organization: Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
BookMark eNqFkF1LwzAUhoNMcJv-BemVd3UnWdqm4I0Mv2DghfO6JO3JlrklI8nU_XtbKwreDALhDe-Tc3hGZGCdRUIuKVxTEGJC84KnvGT5hPMJhfawKdATMmSQiTSnHAZk-Fs6I6MQ1gBt5nRIXhYrTLYow97jFm1MnE48hp2zwbybeOiysdpLj02yW7noGoxYR-dDsg_GLhOZ1PK7qTayflOuOZyTUy03AS9-7jF5vb9bzB7T-fPD0-x2ntZTVsYUuURRiLxmstEZapE1BRVNzrMaQKMsGFOZglIoDpqhEiLHUkCpeDnNpabTMbnq__2QVku7rNZu7207sVJN_FSs9UABoGiLeV-svQvBo6523mylP1QUqs5h1empOj0V5_1j57AFb_6BtYkyGmejl2ZzHGc9btzub7kj0Bc0jIjE
CitedBy_id crossref_primary_10_1016_j_cej_2024_158734
crossref_primary_10_1002_advs_202402530
crossref_primary_10_1088_2631_7990_ada857
crossref_primary_10_1039_D4TC00332B
crossref_primary_10_1016_j_infrared_2024_105419
crossref_primary_10_1016_j_sna_2025_116464
crossref_primary_10_1002_adma_202414054
crossref_primary_10_1088_1674_4926_24070007
crossref_primary_10_1116_6_0003139
crossref_primary_10_1021_acsnano_4c08810
crossref_primary_10_1002_ifm2_23
crossref_primary_10_1063_5_0232606
Cites_doi 10.1063/1.2335509
10.1016/j.jcrysgro.2008.12.009
10.1063/1.3177333
10.1063/1.2920764
10.1063/5.0037192
10.1063/1.124676
10.1016/j.infrared.2020.103461
10.1109/JRPROC.1959.287047
10.1063/1.5124093
10.1038/170937b0
10.1063/1.2795086
10.1016/j.infrared.2009.09.005
10.1063/1.5005097
10.1063/1.2746943
10.1063/1.369533
10.1063/1.2932080
ContentType Journal Article
Copyright 2023 Chinese Institute of Electronics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Institute of Electronics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-4926/44/10/102301
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2058-6140
EndPage 63
ExternalDocumentID bdtxb202310007
10_1088_1674_4926_44_10_102301
jos_44_10_102301
GroupedDBID -SI
-S~
4.4
5B3
5VR
5VS
5XA
5XJ
7.M
93N
AAGCD
AAJIO
AATNI
AAXDM
ABHWH
ACAFW
ACGFO
ACGFS
ACHIP
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEI
CCEZO
CEBXE
CHBEP
CJUJL
CRLBU
CUBFJ
CW9
EBS
EDWGO
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGT
U1G
U5S
W28
AAYXX
CITATION
TGMPQ
02O
042
1WK
2B.
4A8
92H
92I
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
JCGBZ
M45
NS0
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c329t-e4ae8786c2adf5ef85d718d645c00fea722b5b098b40f2eb886e9809b4936af13
IEDL.DBID IOP
ISSN 1674-4926
IngestDate Thu May 29 04:06:49 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Tue Jul 01 03:20:35 EDT 2025
Wed Aug 21 03:33:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords infrared photodetectors
cavity blackbody
responsivity calibration
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-e4ae8786c2adf5ef85d718d645c00fea722b5b098b40f2eb886e9809b4936af13
PageCount 7
ParticipantIDs iop_journals_10_1088_1674_4926_44_10_102301
crossref_primary_10_1088_1674_4926_44_10_102301
crossref_citationtrail_10_1088_1674_4926_44_10_102301
wanfang_journals_bdtxb202310007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of semiconductors
PublicationTitleAlternate J. Semicond
PublicationTitle_FL Journal of Semiconductors
PublicationYear 2023
Publisher Chinese Institute of Electronics
College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China
State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Center of Materials Science and Optoelectronics Engineering,College of Materials Science and Opto-Electronic Technology,University of Chi-nese Academy of Sciences,Beijing 100049,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Insti-tute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Publisher_xml – name: Chinese Institute of Electronics
– name: College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China
– name: Center of Materials Science and Optoelectronics Engineering,College of Materials Science and Opto-Electronic Technology,University of Chi-nese Academy of Sciences,Beijing 100049,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Insti-tute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
– name: State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
– name: College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 101408,China%State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
References Li (jos_44_10_102301_bib17) 2019; 9
Rehm (jos_44_10_102301_bib12) 2009; 52
Kim (jos_44_10_102301_bib13) 2008; 92
jos_44_10_102301_bib16
Aifer (jos_44_10_102301_bib3) 2006; 89
Shafir (jos_44_10_102301_bib5) 2021; 118
Nguyen (jos_44_10_102301_bib4) 2007; 90
Clark Jones (jos_44_10_102301_bib1) 1952; 170
Hoffman (jos_44_10_102301_bib10) 2007; 91
Li (jos_44_10_102301_bib6) 2020; 111
Clark Jones (jos_44_10_102301_bib2) 1959; 47
Cohen-Elias (jos_44_10_102301_bib8) 2017; 111
Charache (jos_44_10_102301_bib9) 1999; 85
Prineas (jos_44_10_102301_bib14) 2008; 103
Shao (jos_44_10_102301_bib15) 2009; 311
Wang (jos_44_10_102301_bib7) 1999; 75
Ting (jos_44_10_102301_bib11) 2009; 95
References_xml – volume: 89
  start-page: 053519
  year: 2006
  ident: jos_44_10_102301_bib3
  article-title: W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2335509
– volume: 311
  start-page: 1893
  year: 2009
  ident: jos_44_10_102301_bib15
  publication-title: J Cryst Growth
  doi: 10.1016/j.jcrysgro.2008.12.009
– volume: 95
  start-page: 023508
  year: 2009
  ident: jos_44_10_102301_bib11
  article-title: A high-performance long wavelength superlattice complementary barrier infrared detector
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3177333
– volume: 92
  start-page: 183502
  year: 2008
  ident: jos_44_10_102301_bib13
  article-title: Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2920764
– volume: 118
  start-page: 063503
  year: 2021
  ident: jos_44_10_102301_bib5
  article-title: High responsivity InGaAsSb p–n photodetector for extended SWIR detection
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0037192
– volume: 75
  start-page: 1305
  year: 1999
  ident: jos_44_10_102301_bib7
  article-title: High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices
  publication-title: Appl Phys Lett
  doi: 10.1063/1.124676
– volume: 111
  start-page: 103461
  year: 2020
  ident: jos_44_10_102301_bib6
  article-title: The investigations to eliminate the bias dependency of quantum efficiency of InGaAsSb nBn photodetectors for extended short wavelength infrared detection
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2020.103461
– volume: 47
  start-page: 1495
  year: 1959
  ident: jos_44_10_102301_bib2
  article-title: Phenomenological description of the response and detecting ability of radiation detectors
  publication-title: Proc IRE
  doi: 10.1109/JRPROC.1959.287047
– volume: 9
  start-page: 105106
  year: 2019
  ident: jos_44_10_102301_bib17
  article-title: High performance nBn detectors based on InGaAsSb bulk materials for short wavelength infrared detection
  publication-title: AIP Adv
  doi: 10.1063/1.5124093
– ident: jos_44_10_102301_bib16
– volume: 170
  start-page: 937
  year: 1952
  ident: jos_44_10_102301_bib1
  article-title: ‘Detectivity’: The reciprocal of noise equivalent input of radiation
  publication-title: Nature
  doi: 10.1038/170937b0
– volume: 91
  start-page: 143507
  year: 2007
  ident: jos_44_10_102301_bib10
  article-title: Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2795086
– volume: 52
  start-page: 344
  year: 2009
  ident: jos_44_10_102301_bib12
  article-title: InAs/GaSb superlattices for advanced infrared focal plane arrays
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2009.09.005
– volume: 111
  start-page: 201106
  year: 2017
  ident: jos_44_10_102301_bib8
  article-title: Minority carrier diffusion length for electrons in an extended SWIR InAs/AlSb type-II superlattice photodiode
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5005097
– volume: 90
  start-page: 231108
  year: 2007
  ident: jos_44_10_102301_bib4
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2746943
– volume: 85
  start-page: 2247
  year: 1999
  ident: jos_44_10_102301_bib9
  article-title: InGaAsSb thermophotovoltaic diode: Physics evaluation
  publication-title: J Appl Phys
  doi: 10.1063/1.369533
– volume: 103
  start-page: 104511
  year: 2008
  ident: jos_44_10_102301_bib14
  publication-title: J Appl Phys
  doi: 10.1063/1.2932080
SSID ssj0067441
ssib023363340
Score 2.350966
Snippet For the measurement of responsivity of an infrared photodetector, the most-used radiation source is a blackbody. In such a measurement system, distance between...
For the measurement of responsivity of an infrared photodetector,the most-used radiation source is a blackbody.In such a measurement system,distance between...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102301
SubjectTerms cavity blackbody
infrared photodetectors
responsivity calibration
Title The measurement of responsivity of infrared photodetectors using a cavity blackbody
URI https://iopscience.iop.org/article/10.1088/1674-4926/44/10/102301
https://d.wanfangdata.com.cn/periodical/bdtxb202310007
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-EPTgW3ybgzfpbrZN0uQooqjgA1TwVpImUVDbZbcL6q83k7a-QES8tWkmpJNpMk2--Qah3Vwqa7kgUU8p_4PCpImkchKQAKlLmCNpiJA7O-fHN_T0lrVowhALU_abqb_jL2ui4FqFDSBOdAE3HwHPXZdSX9gF8gGI4JpMBOeQxODk4rKdjH3VkLzyXaYNEv6xnS_r07jvQ4jmKZwq7j4tPEdzSLddrvEmD51RpTv56zc2x3-90zyabdxSvF8LLKAxWyyimU9khYtoKoBF8-ESuvK2hZ8-Nhdx6fCgwdpCKgq494Y7AGw77t-XVWlsFU4Hhhhw9ndY4VyFmhr2D3VpXpbRzdHh9cFx1CRniPIkllVkqbIiFTyPlXHMOsGMX-YMpywnxFmVxrFmmkihKXGx1UJwKwWRmsqEK9dLVtBEURZ2FWHrvNthlGaxf8qIUz1mYm6J93SY4z2-hlg7JFneMJdDAo3HLJygC5GB-jJQX0ZpXQjqW0Pdd7l-zd3xq8SeH6Gs-YyHv9beaSzjQ0Kb6llDSno4N0nX_9TeBpoGyRoquIkmqsHIbnmXp9LbwajfAJTT79Y
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9UwFD7hRzT6IIoYAZE--GZ2121t1z4S5AZQkURJeFvatcVE3W7uHYny19PT7V7QhBDD29b1NNvpWXvafuc7AO9qpZ0TkiaZ1mGBwpVNlPYKkQClL7inZYyQ-3wiDs_Y8Tk_X4KDRSxMOxmG_lG47ImCexUOgDiZIm4-QZ67lLFQmCL5AM3SifXLsMoLUSCF_tGX0_mAHKrHBJYLuXmg8J1t_TVHLYf3iBE9jdfNxa3JZ7zWg0RmkbMQMSc_RpedGdVX_zA6Pvi7nsOzwT0le73QC1hyzTo8vUVauA6PImi0nr2Er8HGyK-bTUbSejIdMLeYkgLvgwFPEeNOJt_brrWui6cEM4J4-wuiSa1jTYP7iKa1fzbgbHzwbf8wGZI0JHWRqy5xTDtZSlHn2nruvOQ2THdWMF5T6p0u89xwQ5U0jPrcGSmFU5Iqw1QhtM-KV7DStI17DcT54H5YbXgennLqdcZtLhwNHg_3IhObwOfdUtUDgzkm0vhZxZN0KStUYYUqrBjrC1GFm5Au5CY9h8e9Eu9DL1XD7zy7t_buYB03EsZ2vw2mpsfzk3Lrv9rbhcenH8bVp6OTj9vwBBvp0YNvYKWbXrqd4AV15m208Wv8evU6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+measurement+of+responsivity+of+infrared+photodetectors+using+a+cavity+blackbody&rft.jtitle=Journal+of+semiconductors&rft.au=Li%2C+Nong&rft.au=Jiang%2C+Dongwei&rft.au=Wang%2C+Guowei&rft.au=Chen%2C+Weiqiang&rft.date=2023-10-01&rft.issn=1674-4926&rft.eissn=2058-6140&rft.volume=44&rft.issue=10&rft.spage=102301&rft_id=info:doi/10.1088%2F1674-4926%2F44%2F10%2F102301&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_4926_44_10_102301
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbdtxb%2Fbdtxb.jpg