Enhancement of the anisotropic thermoelectric power factor of topological crystalline insulator SnTe and related alloys via external perturbations

Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric app...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 44; pp. 25573 - 25585
Main Authors Yarmohammadi, Mohsen, Mirabbaszadeh, Kavoos
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/C9TA08100C

Cover

Loading…
Abstract Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric applications. Given that the signatures of SnTe and its family originate from the (001) surface states, a natural question is: how does the thermoelectric performance of these states change due to the emergence of massive Dirac fermions? Herein, various physical perturbations, subjects of lively discussions, have been uncovered to improve the thermoelectric power factor (PF) of SnTe (001) and related alloys. Furthermore, orientation-dependent charge and heat currents are explored in detail. The surface-state Onsager transport calculations are performed using the Kubo–Greenwood approach. Highly dispersive and degenerate energy bands originating from the band gap opening are responsible for the enhancement of PF. While the x -direction has contributed mostly to the PF of the system, we report exceptional 74.65%, 121.67% and 110% enhancement of the PF compared with the pristine case at a temperature of 540 K when we perturb the crystalline mirror symmetry by strain, exchange field (stemming from proximity coupling to a ferromagnet, or the electric field, or Zeeman magnetic field) and Rashba spin–orbit coupling, respectively. The predicted PFs propose a new research direction to experimentalists to save time and to focus only on the thermal conductivity of SnTe (001) to achieve the highest thermoelectric efficiency.
AbstractList Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric applications. Given that the signatures of SnTe and its family originate from the (001) surface states, a natural question is: how does the thermoelectric performance of these states change due to the emergence of massive Dirac fermions? Herein, various physical perturbations, subjects of lively discussions, have been uncovered to improve the thermoelectric power factor (PF) of SnTe (001) and related alloys. Furthermore, orientation-dependent charge and heat currents are explored in detail. The surface-state Onsager transport calculations are performed using the Kubo–Greenwood approach. Highly dispersive and degenerate energy bands originating from the band gap opening are responsible for the enhancement of PF. While the x-direction has contributed mostly to the PF of the system, we report exceptional 74.65%, 121.67% and 110% enhancement of the PF compared with the pristine case at a temperature of 540 K when we perturb the crystalline mirror symmetry by strain, exchange field (stemming from proximity coupling to a ferromagnet, or the electric field, or Zeeman magnetic field) and Rashba spin–orbit coupling, respectively. The predicted PFs propose a new research direction to experimentalists to save time and to focus only on the thermal conductivity of SnTe (001) to achieve the highest thermoelectric efficiency.
Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric applications. Given that the signatures of SnTe and its family originate from the (001) surface states, a natural question is: how does the thermoelectric performance of these states change due to the emergence of massive Dirac fermions? Herein, various physical perturbations, subjects of lively discussions, have been uncovered to improve the thermoelectric power factor (PF) of SnTe (001) and related alloys. Furthermore, orientation-dependent charge and heat currents are explored in detail. The surface-state Onsager transport calculations are performed using the Kubo–Greenwood approach. Highly dispersive and degenerate energy bands originating from the band gap opening are responsible for the enhancement of PF. While the x -direction has contributed mostly to the PF of the system, we report exceptional 74.65%, 121.67% and 110% enhancement of the PF compared with the pristine case at a temperature of 540 K when we perturb the crystalline mirror symmetry by strain, exchange field (stemming from proximity coupling to a ferromagnet, or the electric field, or Zeeman magnetic field) and Rashba spin–orbit coupling, respectively. The predicted PFs propose a new research direction to experimentalists to save time and to focus only on the thermal conductivity of SnTe (001) to achieve the highest thermoelectric efficiency.
Author Yarmohammadi, Mohsen
Mirabbaszadeh, Kavoos
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0002-5480-7569
  surname: Yarmohammadi
  fullname: Yarmohammadi, Mohsen
  organization: Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
– sequence: 2
  givenname: Kavoos
  orcidid: 0000-0002-5671-1085
  surname: Mirabbaszadeh
  fullname: Mirabbaszadeh, Kavoos
  organization: Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
BookMark eNptkctKxDAUhoMoqKMbnyDgRoTRpGmbZCmDNxBcOK5Lmjl1IpmkJqk6r-ETmzqiIJ7NufD958LZR9vOO0DoiJIzSpg8n8n5BRGUkNkW2itIRaa8lPX2TyzELjqM8ZlkE4TUUu6hj0u3VE7DClzCvsNpCVg5E30Kvjd6zMPKgwWdQk57_wYBd0onH75w33vrn4xWFuuwjklZaxxg4-Jg1Qg9uPnYcYED5AIscCb8OuJXozC8JwguS3sIaQitSsa7eIB2OmUjHH77CXq8upzPbqZ399e3s4u7qWaFTFNgQlYLLSRlVSWKstY1l91CtG3NOeGcV7Ijimslqo7ykjNairJQbcFpB7ps2QSdbPr2wb8MEFOzMlGDtcqBH2JTMFZRVlacZvT4D_rsh3HzkcrzaSF5kSmyoXTwMQboGm3S100pKGMbSprxT83vn7Lk9I-kD2alwvo_-BM2N5cC
CitedBy_id crossref_primary_10_1016_j_physe_2021_114809
crossref_primary_10_1038_s41467_025_57194_x
crossref_primary_10_1038_s41598_020_80616_3
crossref_primary_10_1016_j_physleta_2022_128238
crossref_primary_10_1088_1361_6463_ab9d9c
crossref_primary_10_1016_j_chemphys_2020_110779
crossref_primary_10_1016_j_chemphys_2020_110845
crossref_primary_10_1016_j_physe_2020_114118
crossref_primary_10_1039_D0CP02333G
crossref_primary_10_1039_D0CP00914H
crossref_primary_10_1039_D0TA05458E
crossref_primary_10_1016_j_physe_2020_114441
crossref_primary_10_1016_j_physe_2020_114142
crossref_primary_10_1016_j_physe_2020_114200
crossref_primary_10_1016_j_physe_2020_114157
crossref_primary_10_3390_ma14081920
crossref_primary_10_1016_j_cplett_2020_137512
crossref_primary_10_1016_j_mtchem_2023_101488
crossref_primary_10_1088_2053_1591_ac5f8b
Cites_doi 10.1016/j.susc.2013.11.004
10.1088/0034-4885/75/9/096501
10.1557/mrs.2014.195
10.1103/PhysRevLett.57.2967
10.1007/s12274-014-0578-9
10.1103/PhysRevLett.109.246605
10.1002/ange.201500281
10.1126/science.1158899
10.1103/PhysRevB.93.205104
10.1002/anie.201202480
10.1103/PhysRevB.79.024520
10.1038/nchem.1171
10.1103/PhysRevB.87.235317
10.1103/PhysRevB.88.125414
10.1038/s41586-019-0937-5
10.1038/ncomms3696
10.1039/C1EE02497C
10.1103/PhysRevB.89.195413
10.1103/PhysRevLett.105.166603
10.1103/PhysRevB.78.045426
10.1038/nmat2361
10.1103/PhysRevB.94.205401
10.1002/ange.201202480
10.1103/PhysRevB.35.6446
10.1126/science.1156446
10.1038/nmat3828
10.1088/1367-2630/17/8/083036
10.1103/PhysRevLett.108.266806
10.1073/pnas.1900527116
10.1103/PhysRevB.95.195425
10.1146/annurev-conmatphys-031214-014501
10.1103/PhysRev.37.405
10.1103/PhysRevB.89.121302
10.1103/PhysRevB.88.241303
10.1103/PhysRevLett.113.116403
10.1007/978-1-4613-1469-1
10.1007/s13391-019-00130-1
10.1038/ncomms1969
10.1038/nmat3449
10.1103/PhysRevB.90.035402
10.1002/pssb.2221310102
10.12693/APhysPolA.108.609
10.1038/nature08916
10.1103/PhysRevB.81.245209
10.1103/PhysRevB.91.161105
10.1103/RevModPhys.82.3045
10.1103/PhysRevLett.110.206804
10.1103/PhysRevB.67.115131
10.1088/0370-1328/71/4/306
10.1038/nature06843
10.1038/s41467-018-03887-5
10.1002/anie.200900598
10.1103/PhysRevB.89.075317
10.1038/nphys3012
10.1103/PhysRevB.47.12727
10.1103/PhysRevB.83.235120
10.1007/s12274-015-0961-1
10.1103/PhysRevB.88.125141
10.1103/PhysRevLett.121.116801
10.1088/2053-1583/ab1607
10.1016/S1359-4311(03)00012-7
10.1016/j.actamat.2014.12.042
10.1103/PhysRevB.88.235122
10.1002/anie.201309416
10.1038/nmat4215
10.1039/C8TA00381E
10.1063/1.3293411
10.1103/PhysRevE.83.012103
10.1143/JPSJ.12.570
10.1038/s41567-019-0418-7
10.1038/ncomms2191
10.1021/ja910762q
10.1088/1367-2630/16/6/065015
10.1103/PhysRevB.81.085210
10.1126/science.1092963
10.1002/anie.201508492
10.1557/mrs2006.44
10.1103/PhysRevApplied.7.064001
10.1126/science.285.5428.703
10.1038/nchem.955
10.1038/nphys3109
10.1103/PhysRevLett.106.106802
10.1038/nmat2090
10.1126/science.1239451
10.1103/PhysRevB.87.155105
10.1063/1.4948969
10.1021/nl503083q
10.1038/nature08088
10.1103/PhysRevLett.107.166805
10.1103/PhysRevLett.112.226801
10.1103/PhysRevB.88.235126
10.1038/nature09996
10.1088/0034-4885/78/10/106001
10.1103/RevModPhys.83.1057
10.1103/PhysRevB.98.241104
10.1038/nphys2442
10.1039/C8CP02649A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/C9TA08100C
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 25585
ExternalDocumentID 10_1039_C9TA08100C
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c329t-e3895dc8913558246c679fd8bb677077759f0a7ca85f1747314842ab271fec4b3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 01:00:26 EDT 2025
Mon Jun 30 11:59:15 EDT 2025
Tue Jul 01 03:14:08 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-e3895dc8913558246c679fd8bb677077759f0a7ca85f1747314842ab271fec4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5671-1085
0000-0002-5480-7569
PQID 2313512972
PQPubID 2047523
PageCount 13
ParticipantIDs proquest_miscellaneous_2335134571
proquest_journals_2313512972
crossref_citationtrail_10_1039_C9TA08100C
crossref_primary_10_1039_C9TA08100C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Tang (C9TA08100C-(cit19)/*[position()=1]) 2019; 566
Alexandradinata (C9TA08100C-(cit16)/*[position()=1]) 2014; 113
Fang (C9TA08100C-(cit77)/*[position()=1]) 2013; 88
Korenman (C9TA08100C-(cit44)/*[position()=1]) 1987; 35
Callen (C9TA08100C-(cit84)/*[position()=1]) 1985
Greenwood (C9TA08100C-(cit87)/*[position()=1]) 1958; 71
Tang (C9TA08100C-(cit48)/*[position()=1]) 2014; 10
Takahashi (C9TA08100C-(cit78)/*[position()=1]) 2011; 107
Shapiro (C9TA08100C-(cit59)/*[position()=1]) 2017; 95
Zeljkovic (C9TA08100C-(cit32)/*[position()=1]) 2014; 10
Wang (C9TA08100C-(cit11)/*[position()=1]) 2012; 108
Qi (C9TA08100C-(cit3)/*[position()=1]) 2010; 63
Bell (C9TA08100C-(cit54)/*[position()=1]) 2008; 321
Roychowdhury (C9TA08100C-(cit66)/*[position()=1]) 2015; 54
Holst (C9TA08100C-(cit82)/*[position()=1]) 2011; 83
Tritt (C9TA08100C-(cit69)/*[position()=1]) 2006; 31
Zhang (C9TA08100C-(cit41)/*[position()=1]) 2018; 20
Qi (C9TA08100C-(cit2)/*[position()=1]) 2011; 83
Rhyee (C9TA08100C-(cit71)/*[position()=1]) 2009; 459
Zeljkovic (C9TA08100C-(cit29)/*[position()=1]) 2015; 14
Roychowdhury (C9TA08100C-(cit63)/*[position()=1]) 2016; 108
Kong (C9TA08100C-(cit10)/*[position()=1]) 2011; 3
Liu (C9TA08100C-(cit53)/*[position()=1]) 2015; 87
Paul (C9TA08100C-(cit79)/*[position()=1]) 2003; 67
Tanaka (C9TA08100C-(cit46)/*[position()=1]) 2013; 87
DiSalvo (C9TA08100C-(cit51)/*[position()=1]) 1999; 285
Christoph (C9TA08100C-(cit88)/*[position()=1]) 1985; 131
Dziawa (C9TA08100C-(cit35)/*[position()=1]) 2012; 11
Chang (C9TA08100C-(cit7)/*[position()=1]) 2014; 39
Hsu (C9TA08100C-(cit21)/*[position()=1]) 2019; 6
Chatterjee (C9TA08100C-(cit14)/*[position()=1]) 2015; 127
Snyder (C9TA08100C-(cit52)/*[position()=1]) 2008; 7
Yan (C9TA08100C-(cit37)/*[position()=1]) 2014; 621
Fradkin (C9TA08100C-(cit45)/*[position()=1]) 1986; 57
Liang (C9TA08100C-(cit30)/*[position()=1]) 2013; 4
Heremans Font (C9TA08100C-(cit57)/*[position()=1]) 2005; 108
Zhang (C9TA08100C-(cit42)/*[position()=1]) 2015; 17
Hicks (C9TA08100C-(cit70)/*[position()=1]) 1993; 47
Bercioux (C9TA08100C-(cit98)/*[position()=1]) 2015; 78
Xiao (C9TA08100C-(cit13)/*[position()=1]) 2014; 53
Onsager (C9TA08100C-(cit83)/*[position()=1]) 1931; 37
Taskin (C9TA08100C-(cit39)/*[position()=1]) 2014; 89
Sootsman (C9TA08100C-(cit60)/*[position()=1]) 2009; 48
Polley (C9TA08100C-(cit73)/*[position()=1]) 2014; 89
Tanaka (C9TA08100C-(cit72)/*[position()=1]) 2013; 88
Ezawa (C9TA08100C-(cit76)/*[position()=1]) 2014; 89
Wang (C9TA08100C-(cit12)/*[position()=1]) 2014; 14
Yan (C9TA08100C-(cit6)/*[position()=1]) 2012; 75
Pei (C9TA08100C-(cit96)/*[position()=1]) 2011; 473
Müchler (C9TA08100C-(cit9)/*[position()=1]) 2012; 124
Ezawa (C9TA08100C-(cit99)/*[position()=1]) 2014; 16
Fu (C9TA08100C-(cit15)/*[position()=1]) 2011; 106
Zhang (C9TA08100C-(cit81)/*[position()=1]) 2011; 83
Zhang (C9TA08100C-(cit80)/*[position()=1]) 2010; 81
Sato (C9TA08100C-(cit26)/*[position()=1]) 2013; 110
Müchler (C9TA08100C-(cit1)/*[position()=1]) 2012; 51
Ezawa (C9TA08100C-(cit100)/*[position()=1]) 2018; 121
Zubarev (C9TA08100C-(cit89)/*[position()=1]) 1996; vol. 1
Zebarjadi (C9TA08100C-(cit55)/*[position()=1]) 2012; 5
Walkup (C9TA08100C-(cit97)/*[position()=1]) 2018; 9
Tang (C9TA08100C-(cit20)/*[position()=1]) 2019; 15
Xu (C9TA08100C-(cit64)/*[position()=1]) 2016; 9
Sun (C9TA08100C-(cit62)/*[position()=1]) 2013; 88
Hsu (C9TA08100C-(cit92)/*[position()=1]) 2004; 303
Riffat (C9TA08100C-(cit56)/*[position()=1]) 2003; 23
Xu (C9TA08100C-(cit90)/*[position()=1]) 2014; 112
Wang (C9TA08100C-(cit75)/*[position()=1]) 2013; 87
Mong (C9TA08100C-(cit25)/*[position()=1]) 2010; 81
Okada (C9TA08100C-(cit33)/*[position()=1]) 2013; 341
Hasan (C9TA08100C-(cit4)/*[position()=1]) 2010; 82
Ghaemi (C9TA08100C-(cit91)/*[position()=1]) 2010; 105
Ando (C9TA08100C-(cit27)/*[position()=1]) 2015; 6
Jiang (C9TA08100C-(cit58)/*[position()=1]) 2017; 7
Gyenis (C9TA08100C-(cit40)/*[position()=1]) 2013; 88
Serbyn (C9TA08100C-(cit47)/*[position()=1]) 2014; 90
Fu (C9TA08100C-(cit50)/*[position()=1]) 2012; 109
Mitrofanov (C9TA08100C-(cit31)/*[position()=1]) 2014; 26
Liu (C9TA08100C-(cit28)/*[position()=1]) 2014; 13
Liu (C9TA08100C-(cit43)/*[position()=1]) 2013; 88
Qian (C9TA08100C-(cit49)/*[position()=1]) 2015; 8
Ginting (C9TA08100C-(cit68)/*[position()=1]) 2019; 15
Hsu (C9TA08100C-(cit22)/*[position()=1]) 2019; 116
Kubo (C9TA08100C-(cit86)/*[position()=1]) 1957; 12
Hsieh (C9TA08100C-(cit8)/*[position()=1]) 2008; 452
Ginting (C9TA08100C-(cit67)/*[position()=1]) 2018; 6
Zhou (C9TA08100C-(cit18)/*[position()=1]) 2018; 98
Hsieh (C9TA08100C-(cit23)/*[position()=1]) 2012; 3
Tanaka (C9TA08100C-(cit38)/*[position()=1]) 2012; 8
Moore (C9TA08100C-(cit5)/*[position()=1]) 2010; 464
Xu (C9TA08100C-(cit36)/*[position()=1]) 2012; 3
Poudel (C9TA08100C-(cit93)/*[position()=1]) 2008; 320
Alexandradinata (C9TA08100C-(cit17)/*[position()=1]) 2016; 93
Mahan (C9TA08100C-(cit85)/*[position()=1]) 1990
Teo (C9TA08100C-(cit24)/*[position()=1]) 2008; 78
Rameshti (C9TA08100C-(cit65)/*[position()=1]) 2016; 94
Erickson (C9TA08100C-(cit34)/*[position()=1]) 2009; 79
Fang (C9TA08100C-(cit74)/*[position()=1]) 2015; 91
Vining (C9TA08100C-(cit61)/*[position()=1]) 2009; 8
Biswas (C9TA08100C-(cit95)/*[position()=1]) 2011; 3
Ahn (C9TA08100C-(cit94)/*[position()=1]) 2010; 132
References_xml – volume: 621
  start-page: 104
  year: 2014
  ident: C9TA08100C-(cit37)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.11.004
– volume: 75
  start-page: 96501
  issue: 9
  year: 2012
  ident: C9TA08100C-(cit6)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/9/096501
– volume: 39
  start-page: 867
  year: 2014
  ident: C9TA08100C-(cit7)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2014.195
– volume: 57
  start-page: 2967
  year: 1986
  ident: C9TA08100C-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2967
– volume: 8
  start-page: 967
  year: 2015
  ident: C9TA08100C-(cit49)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0578-9
– volume: 109
  start-page: 246605
  year: 2012
  ident: C9TA08100C-(cit50)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.246605
– volume: 127
  start-page: 5715
  year: 2015
  ident: C9TA08100C-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201500281
– volume: 321
  start-page: 1457
  year: 2008
  ident: C9TA08100C-(cit54)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158899
– volume: 93
  start-page: 205104
  year: 2016
  ident: C9TA08100C-(cit17)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.205104
– volume-title: Thermodynamics and an Introduction to Thermostatistics
  year: 1985
  ident: C9TA08100C-(cit84)/*[position()=1]
– volume: 51
  start-page: 7221
  year: 2012
  ident: C9TA08100C-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202480
– volume: 79
  start-page: 024520
  year: 2009
  ident: C9TA08100C-(cit34)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.024520
– volume: 3
  start-page: 845
  year: 2011
  ident: C9TA08100C-(cit10)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1171
– volume: 87
  start-page: 235317
  year: 2013
  ident: C9TA08100C-(cit75)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.235317
– volume: 88
  start-page: 125414
  year: 2013
  ident: C9TA08100C-(cit40)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.125414
– volume: 566
  start-page: 486
  year: 2019
  ident: C9TA08100C-(cit19)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-0937-5
– volume: 4
  start-page: 2696
  year: 2013
  ident: C9TA08100C-(cit30)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3696
– volume: 5
  start-page: 5147
  year: 2012
  ident: C9TA08100C-(cit55)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02497C
– volume: 89
  start-page: 195413
  year: 2014
  ident: C9TA08100C-(cit76)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.195413
– volume: 105
  start-page: 166603
  year: 2010
  ident: C9TA08100C-(cit91)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.166603
– volume: 78
  start-page: 045426
  year: 2008
  ident: C9TA08100C-(cit24)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045426
– volume: 8
  start-page: 83
  year: 2009
  ident: C9TA08100C-(cit61)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2361
– volume: 94
  start-page: 205401
  year: 2016
  ident: C9TA08100C-(cit65)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.205401
– volume: 124
  start-page: 7333
  year: 2012
  ident: C9TA08100C-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201202480
– volume: 35
  start-page: 6446
  year: 1987
  ident: C9TA08100C-(cit44)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.35.6446
– volume: 320
  start-page: 634
  year: 2008
  ident: C9TA08100C-(cit93)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1156446
– volume: 13
  start-page: 178
  year: 2014
  ident: C9TA08100C-(cit28)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3828
– volume: 17
  start-page: 083036
  year: 2015
  ident: C9TA08100C-(cit42)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083036
– volume: 108
  start-page: 266806
  year: 2012
  ident: C9TA08100C-(cit11)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.266806
– volume: 116
  start-page: 13255
  year: 2019
  ident: C9TA08100C-(cit22)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1900527116
– volume: 95
  start-page: 195425
  year: 2017
  ident: C9TA08100C-(cit59)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.195425
– volume: 6
  start-page: 361
  year: 2015
  ident: C9TA08100C-(cit27)/*[position()=1]
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031214-014501
– volume: 37
  start-page: 405
  year: 1931
  ident: C9TA08100C-(cit83)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.37.405
– volume: 89
  start-page: 121302
  year: 2014
  ident: C9TA08100C-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.121302
– volume: 88
  start-page: 241303(R)
  year: 2013
  ident: C9TA08100C-(cit43)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.241303
– volume: 113
  start-page: 116403
  year: 2014
  ident: C9TA08100C-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.116403
– volume-title: Many-Particle Physics
  year: 1990
  ident: C9TA08100C-(cit85)/*[position()=1]
  doi: 10.1007/978-1-4613-1469-1
– volume: 15
  start-page: 342
  year: 2019
  ident: C9TA08100C-(cit68)/*[position()=1]
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-019-00130-1
– volume: 3
  start-page: 982
  year: 2012
  ident: C9TA08100C-(cit23)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1969
– volume: 11
  start-page: 1023
  year: 2012
  ident: C9TA08100C-(cit35)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3449
– volume: 90
  start-page: 035402
  year: 2014
  ident: C9TA08100C-(cit47)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.035402
– volume: 131
  start-page: 11
  year: 1985
  ident: C9TA08100C-(cit88)/*[position()=1]
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.2221310102
– volume: 108
  start-page: 609
  year: 2005
  ident: C9TA08100C-(cit57)/*[position()=1]
  publication-title: Acta Phys. Pol., A
  doi: 10.12693/APhysPolA.108.609
– volume: 464
  start-page: 194
  year: 2010
  ident: C9TA08100C-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08916
– volume: 81
  start-page: 245209
  year: 2010
  ident: C9TA08100C-(cit25)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.245209
– volume: 91
  start-page: 161105(R)
  year: 2015
  ident: C9TA08100C-(cit74)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.91.161105
– volume: 82
  start-page: 3045
  year: 2010
  ident: C9TA08100C-(cit4)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 110
  start-page: 206804
  year: 2013
  ident: C9TA08100C-(cit26)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.206804
– volume: 67
  start-page: 115131
  year: 2003
  ident: C9TA08100C-(cit79)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.67.115131
– volume: 71
  start-page: 585
  year: 1958
  ident: C9TA08100C-(cit87)/*[position()=1]
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/71/4/306
– volume: 452
  start-page: 970
  year: 2008
  ident: C9TA08100C-(cit8)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06843
– volume: 9
  start-page: 1550
  year: 2018
  ident: C9TA08100C-(cit97)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03887-5
– volume: 48
  start-page: 8616
  year: 2009
  ident: C9TA08100C-(cit60)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900598
– volume: 89
  start-page: 075317
  year: 2014
  ident: C9TA08100C-(cit73)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.075317
– volume: 10
  start-page: 572
  year: 2014
  ident: C9TA08100C-(cit32)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3012
– volume: 47
  start-page: 12727
  year: 1993
  ident: C9TA08100C-(cit70)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.12727
– volume: 83
  start-page: 235120
  year: 2011
  ident: C9TA08100C-(cit82)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.235120
– volume: 9
  start-page: 820
  year: 2016
  ident: C9TA08100C-(cit64)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0961-1
– volume: 88
  start-page: 125141
  year: 2013
  ident: C9TA08100C-(cit77)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.125141
– volume: 121
  start-page: 116801
  year: 2018
  ident: C9TA08100C-(cit100)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.116801
– volume: 6
  start-page: 031004
  year: 2019
  ident: C9TA08100C-(cit21)/*[position()=1]
  publication-title: 2D Materials
  doi: 10.1088/2053-1583/ab1607
– volume: 23
  start-page: 913
  year: 2003
  ident: C9TA08100C-(cit56)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00012-7
– volume: 87
  start-page: 357
  year: 2015
  ident: C9TA08100C-(cit53)/*[position()=1]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.042
– volume: 88
  start-page: 235122
  year: 2013
  ident: C9TA08100C-(cit62)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.235122
– volume: 53
  start-page: 729
  year: 2014
  ident: C9TA08100C-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309416
– volume: 14
  start-page: 318
  year: 2015
  ident: C9TA08100C-(cit29)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4215
– volume: 6
  start-page: 5870
  year: 2018
  ident: C9TA08100C-(cit67)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00381E
– volume: 63
  start-page: 33
  issue: 1
  year: 2010
  ident: C9TA08100C-(cit3)/*[position()=1]
  publication-title: Phys. Today
  doi: 10.1063/1.3293411
– volume: 83
  start-page: 012103
  year: 2011
  ident: C9TA08100C-(cit81)/*[position()=1]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.012103
– volume: 12
  start-page: 570
  year: 1957
  ident: C9TA08100C-(cit86)/*[position()=1]
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.12.570
– volume: 15
  start-page: 470
  year: 2019
  ident: C9TA08100C-(cit20)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0418-7
– volume: 26
  start-page: 475502
  year: 2014
  ident: C9TA08100C-(cit31)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 3
  start-page: 1192
  year: 2012
  ident: C9TA08100C-(cit36)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2191
– volume: 132
  start-page: 5227
  year: 2010
  ident: C9TA08100C-(cit94)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910762q
– volume: 16
  start-page: 065015
  year: 2014
  ident: C9TA08100C-(cit99)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/6/065015
– volume: 81
  start-page: 085210
  year: 2010
  ident: C9TA08100C-(cit80)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.085210
– volume: 303
  start-page: 818
  year: 2004
  ident: C9TA08100C-(cit92)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1092963
– volume: 54
  start-page: 15241
  year: 2015
  ident: C9TA08100C-(cit66)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201508492
– volume: vol. 1
  volume-title: Statistical Mechanics of Nonequilibrium Processes, See 3527400834: Basic Concepts, Kinetic Theory, Statistical Mechanics of Nonequilibrium Processes
  year: 1996
  ident: C9TA08100C-(cit89)/*[position()=1]
– volume: 31
  start-page: 188
  year: 2006
  ident: C9TA08100C-(cit69)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs2006.44
– volume: 7
  start-page: 064001
  year: 2017
  ident: C9TA08100C-(cit58)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.064001
– volume: 285
  start-page: 703
  year: 1999
  ident: C9TA08100C-(cit51)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.285.5428.703
– volume: 3
  start-page: 160
  year: 2011
  ident: C9TA08100C-(cit95)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.955
– volume: 10
  start-page: 964
  year: 2014
  ident: C9TA08100C-(cit48)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3109
– volume: 106
  start-page: 106802
  year: 2011
  ident: C9TA08100C-(cit15)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– volume: 7
  start-page: 105
  year: 2008
  ident: C9TA08100C-(cit52)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 341
  start-page: 1496
  year: 2013
  ident: C9TA08100C-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1239451
– volume: 87
  start-page: 155105
  year: 2013
  ident: C9TA08100C-(cit46)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.155105
– volume: 108
  start-page: 193901
  year: 2016
  ident: C9TA08100C-(cit63)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948969
– volume: 14
  start-page: 6510
  year: 2014
  ident: C9TA08100C-(cit12)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl503083q
– volume: 459
  start-page: 965
  year: 2009
  ident: C9TA08100C-(cit71)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08088
– volume: 107
  start-page: 166805
  year: 2011
  ident: C9TA08100C-(cit78)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.166805
– volume: 112
  start-page: 226801
  year: 2014
  ident: C9TA08100C-(cit90)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.226801
– volume: 88
  start-page: 235126
  year: 2013
  ident: C9TA08100C-(cit72)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.235126
– volume: 473
  start-page: 66
  year: 2011
  ident: C9TA08100C-(cit96)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 78
  start-page: 106001
  year: 2015
  ident: C9TA08100C-(cit98)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/10/106001
– volume: 83
  start-page: 1057
  year: 2011
  ident: C9TA08100C-(cit2)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1057
– volume: 98
  start-page: 241104(R)
  year: 2018
  ident: C9TA08100C-(cit18)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241104
– volume: 8
  start-page: 800
  year: 2012
  ident: C9TA08100C-(cit38)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2442
– volume: 20
  start-page: 24790
  year: 2018
  ident: C9TA08100C-(cit41)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP02649A
SSID ssj0000800699
Score 2.3553753
Snippet Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 25573
SubjectTerms Alloys
anisotropy
Crystal structure
Crystallinity
Dispersion
electric field
Electric fields
energy
Energy bands
Fermions
Ferromagnetism
heat
Heat exchange
Insulators
Magnetic fields
Power factor
Spin-orbit interactions
Symmetry
temperature
Thermal conductivity
Thermoelectricity
Tin tellurides
Topology
Title Enhancement of the anisotropic thermoelectric power factor of topological crystalline insulator SnTe and related alloys via external perturbations
URI https://www.proquest.com/docview/2313512972
https://www.proquest.com/docview/2335134571
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKvoGMgIXlCVkbvrx6oqGojyQiaNp8p2HLXSmlRpO2n7Gfwofhfn2HGa0j0MXqLacR3F58vxZ_tcCPnAeKhTHYeeMVeLmSw8yaX2uFC5yAseFDH6O0-_p-cX8dfL5LLX-92xWtpu5Jm6vdOv5H-kCnUgV_SS_QfJtp1CBfwG-cIVJAzXe8l4Us5RaO48HzmkKBfralNXq4XCcr2sbKIbKK4wIVqTYMc0t_kRbIiQ-gZo4pXhnMY8Hdfigx9lZk8XjMcLUFM8pb9ZD64XYuDCR2PgY5i2ZGfn75DrAi224zFQLsHc2WBkfYXcHRN73Hoims1859mFxrvtvv9PAW80F8ulyI0ZwrSar3fObNNFLSTMy7ci13NrK3JdVXs7G43mNKov9BMfo5xazay7dTb_rdPdrAPROO4q4iSxKVKaWR3KNjXQwZThRxhxdcyzEbAj3x_vJkZnDPDXfNlaMZrz-4jPdv99QI5DxgLQrsejSfblW7vbh7w8NclM21dzsXIj_mnXwT472icHhvFkT8jjRnx0ZHH3lPR0-Yw86gSwfE5-dRBIq4IC4mgHgXQfgdQgkFoEmuY7BNIOAmmLQIoIhB5z2iCQWgRSQCB1w0T3EPiCXHyeZONzr8ny4ako5BtPA2VOcoXH5SCjME5VyniRD6VMGfMZYwkvfMGUGCYFLJ9ZBAv4OBQyZEGhVSyjl-SorEr9itCUKy4LNkxwYaAlH6ooCEQieCiLHBYSffLRje5MNSHwMRPL1exQlH3yvm27soFf7mx16oQ0axTDegZLpgh5NAv75F17Gz4uPIsTpa622AaaRHHCgpN7Peg1eYifiN38OyVHm3qr3wAd3si3Ddb-AFNXwNY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+anisotropic+thermoelectric+power+factor+of+topological+crystalline+insulator+SnTe+and+related+alloys+via+external+perturbations&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yarmohammadi%2C+Mohsen&rft.au=Mirabbaszadeh%2C+Kavoos&rft.date=2019&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=44&rft.spage=25573&rft.epage=25585&rft_id=info:doi/10.1039%2FC9TA08100C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TA08100C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon