Enhancement of the anisotropic thermoelectric power factor of topological crystalline insulator SnTe and related alloys via external perturbations
Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric app...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 44; pp. 25573 - 25585 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C9TA08100C |
Cover
Loading…
Abstract | Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric applications. Given that the signatures of SnTe and its family originate from the (001) surface states, a natural question is: how does the thermoelectric performance of these states change due to the emergence of massive Dirac fermions? Herein, various physical perturbations, subjects of lively discussions, have been uncovered to improve the thermoelectric power factor (PF) of SnTe (001) and related alloys. Furthermore, orientation-dependent charge and heat currents are explored in detail. The surface-state Onsager transport calculations are performed using the Kubo–Greenwood approach. Highly dispersive and degenerate energy bands originating from the band gap opening are responsible for the enhancement of PF. While the
x
-direction has contributed mostly to the PF of the system, we report exceptional 74.65%, 121.67% and 110% enhancement of the PF compared with the pristine case at a temperature of 540 K when we perturb the crystalline mirror symmetry by strain, exchange field (stemming from proximity coupling to a ferromagnet, or the electric field, or Zeeman magnetic field) and Rashba spin–orbit coupling, respectively. The predicted PFs propose a new research direction to experimentalists to save time and to focus only on the thermal conductivity of SnTe (001) to achieve the highest thermoelectric efficiency. |
---|---|
AbstractList | Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric applications. Given that the signatures of SnTe and its family originate from the (001) surface states, a natural question is: how does the thermoelectric performance of these states change due to the emergence of massive Dirac fermions? Herein, various physical perturbations, subjects of lively discussions, have been uncovered to improve the thermoelectric power factor (PF) of SnTe (001) and related alloys. Furthermore, orientation-dependent charge and heat currents are explored in detail. The surface-state Onsager transport calculations are performed using the Kubo–Greenwood approach. Highly dispersive and degenerate energy bands originating from the band gap opening are responsible for the enhancement of PF. While the x-direction has contributed mostly to the PF of the system, we report exceptional 74.65%, 121.67% and 110% enhancement of the PF compared with the pristine case at a temperature of 540 K when we perturb the crystalline mirror symmetry by strain, exchange field (stemming from proximity coupling to a ferromagnet, or the electric field, or Zeeman magnetic field) and Rashba spin–orbit coupling, respectively. The predicted PFs propose a new research direction to experimentalists to save time and to focus only on the thermal conductivity of SnTe (001) to achieve the highest thermoelectric efficiency. Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The ability to fine-tune the effective mass of surface Dirac fermions by breaking their crystalline symmetry is highly desirable for thermoelectric applications. Given that the signatures of SnTe and its family originate from the (001) surface states, a natural question is: how does the thermoelectric performance of these states change due to the emergence of massive Dirac fermions? Herein, various physical perturbations, subjects of lively discussions, have been uncovered to improve the thermoelectric power factor (PF) of SnTe (001) and related alloys. Furthermore, orientation-dependent charge and heat currents are explored in detail. The surface-state Onsager transport calculations are performed using the Kubo–Greenwood approach. Highly dispersive and degenerate energy bands originating from the band gap opening are responsible for the enhancement of PF. While the x -direction has contributed mostly to the PF of the system, we report exceptional 74.65%, 121.67% and 110% enhancement of the PF compared with the pristine case at a temperature of 540 K when we perturb the crystalline mirror symmetry by strain, exchange field (stemming from proximity coupling to a ferromagnet, or the electric field, or Zeeman magnetic field) and Rashba spin–orbit coupling, respectively. The predicted PFs propose a new research direction to experimentalists to save time and to focus only on the thermal conductivity of SnTe (001) to achieve the highest thermoelectric efficiency. |
Author | Yarmohammadi, Mohsen Mirabbaszadeh, Kavoos |
Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0002-5480-7569 surname: Yarmohammadi fullname: Yarmohammadi, Mohsen organization: Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran – sequence: 2 givenname: Kavoos orcidid: 0000-0002-5671-1085 surname: Mirabbaszadeh fullname: Mirabbaszadeh, Kavoos organization: Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran |
BookMark | eNptkctKxDAUhoMoqKMbnyDgRoTRpGmbZCmDNxBcOK5Lmjl1IpmkJqk6r-ETmzqiIJ7NufD958LZR9vOO0DoiJIzSpg8n8n5BRGUkNkW2itIRaa8lPX2TyzELjqM8ZlkE4TUUu6hj0u3VE7DClzCvsNpCVg5E30Kvjd6zMPKgwWdQk57_wYBd0onH75w33vrn4xWFuuwjklZaxxg4-Jg1Qg9uPnYcYED5AIscCb8OuJXozC8JwguS3sIaQitSsa7eIB2OmUjHH77CXq8upzPbqZ399e3s4u7qWaFTFNgQlYLLSRlVSWKstY1l91CtG3NOeGcV7Ijimslqo7ykjNairJQbcFpB7ps2QSdbPr2wb8MEFOzMlGDtcqBH2JTMFZRVlacZvT4D_rsh3HzkcrzaSF5kSmyoXTwMQboGm3S100pKGMbSprxT83vn7Lk9I-kD2alwvo_-BM2N5cC |
CitedBy_id | crossref_primary_10_1016_j_physe_2021_114809 crossref_primary_10_1038_s41467_025_57194_x crossref_primary_10_1038_s41598_020_80616_3 crossref_primary_10_1016_j_physleta_2022_128238 crossref_primary_10_1088_1361_6463_ab9d9c crossref_primary_10_1016_j_chemphys_2020_110779 crossref_primary_10_1016_j_chemphys_2020_110845 crossref_primary_10_1016_j_physe_2020_114118 crossref_primary_10_1039_D0CP02333G crossref_primary_10_1039_D0CP00914H crossref_primary_10_1039_D0TA05458E crossref_primary_10_1016_j_physe_2020_114441 crossref_primary_10_1016_j_physe_2020_114142 crossref_primary_10_1016_j_physe_2020_114200 crossref_primary_10_1016_j_physe_2020_114157 crossref_primary_10_3390_ma14081920 crossref_primary_10_1016_j_cplett_2020_137512 crossref_primary_10_1016_j_mtchem_2023_101488 crossref_primary_10_1088_2053_1591_ac5f8b |
Cites_doi | 10.1016/j.susc.2013.11.004 10.1088/0034-4885/75/9/096501 10.1557/mrs.2014.195 10.1103/PhysRevLett.57.2967 10.1007/s12274-014-0578-9 10.1103/PhysRevLett.109.246605 10.1002/ange.201500281 10.1126/science.1158899 10.1103/PhysRevB.93.205104 10.1002/anie.201202480 10.1103/PhysRevB.79.024520 10.1038/nchem.1171 10.1103/PhysRevB.87.235317 10.1103/PhysRevB.88.125414 10.1038/s41586-019-0937-5 10.1038/ncomms3696 10.1039/C1EE02497C 10.1103/PhysRevB.89.195413 10.1103/PhysRevLett.105.166603 10.1103/PhysRevB.78.045426 10.1038/nmat2361 10.1103/PhysRevB.94.205401 10.1002/ange.201202480 10.1103/PhysRevB.35.6446 10.1126/science.1156446 10.1038/nmat3828 10.1088/1367-2630/17/8/083036 10.1103/PhysRevLett.108.266806 10.1073/pnas.1900527116 10.1103/PhysRevB.95.195425 10.1146/annurev-conmatphys-031214-014501 10.1103/PhysRev.37.405 10.1103/PhysRevB.89.121302 10.1103/PhysRevB.88.241303 10.1103/PhysRevLett.113.116403 10.1007/978-1-4613-1469-1 10.1007/s13391-019-00130-1 10.1038/ncomms1969 10.1038/nmat3449 10.1103/PhysRevB.90.035402 10.1002/pssb.2221310102 10.12693/APhysPolA.108.609 10.1038/nature08916 10.1103/PhysRevB.81.245209 10.1103/PhysRevB.91.161105 10.1103/RevModPhys.82.3045 10.1103/PhysRevLett.110.206804 10.1103/PhysRevB.67.115131 10.1088/0370-1328/71/4/306 10.1038/nature06843 10.1038/s41467-018-03887-5 10.1002/anie.200900598 10.1103/PhysRevB.89.075317 10.1038/nphys3012 10.1103/PhysRevB.47.12727 10.1103/PhysRevB.83.235120 10.1007/s12274-015-0961-1 10.1103/PhysRevB.88.125141 10.1103/PhysRevLett.121.116801 10.1088/2053-1583/ab1607 10.1016/S1359-4311(03)00012-7 10.1016/j.actamat.2014.12.042 10.1103/PhysRevB.88.235122 10.1002/anie.201309416 10.1038/nmat4215 10.1039/C8TA00381E 10.1063/1.3293411 10.1103/PhysRevE.83.012103 10.1143/JPSJ.12.570 10.1038/s41567-019-0418-7 10.1038/ncomms2191 10.1021/ja910762q 10.1088/1367-2630/16/6/065015 10.1103/PhysRevB.81.085210 10.1126/science.1092963 10.1002/anie.201508492 10.1557/mrs2006.44 10.1103/PhysRevApplied.7.064001 10.1126/science.285.5428.703 10.1038/nchem.955 10.1038/nphys3109 10.1103/PhysRevLett.106.106802 10.1038/nmat2090 10.1126/science.1239451 10.1103/PhysRevB.87.155105 10.1063/1.4948969 10.1021/nl503083q 10.1038/nature08088 10.1103/PhysRevLett.107.166805 10.1103/PhysRevLett.112.226801 10.1103/PhysRevB.88.235126 10.1038/nature09996 10.1088/0034-4885/78/10/106001 10.1103/RevModPhys.83.1057 10.1103/PhysRevB.98.241104 10.1038/nphys2442 10.1039/C8CP02649A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/C9TA08100C |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 25585 |
ExternalDocumentID | 10_1039_C9TA08100C |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c329t-e3895dc8913558246c679fd8bb677077759f0a7ca85f1747314842ab271fec4b3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 01:00:26 EDT 2025 Mon Jun 30 11:59:15 EDT 2025 Tue Jul 01 03:14:08 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-e3895dc8913558246c679fd8bb677077759f0a7ca85f1747314842ab271fec4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5671-1085 0000-0002-5480-7569 |
PQID | 2313512972 |
PQPubID | 2047523 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2335134571 proquest_journals_2313512972 crossref_citationtrail_10_1039_C9TA08100C crossref_primary_10_1039_C9TA08100C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Tang (C9TA08100C-(cit19)/*[position()=1]) 2019; 566 Alexandradinata (C9TA08100C-(cit16)/*[position()=1]) 2014; 113 Fang (C9TA08100C-(cit77)/*[position()=1]) 2013; 88 Korenman (C9TA08100C-(cit44)/*[position()=1]) 1987; 35 Callen (C9TA08100C-(cit84)/*[position()=1]) 1985 Greenwood (C9TA08100C-(cit87)/*[position()=1]) 1958; 71 Tang (C9TA08100C-(cit48)/*[position()=1]) 2014; 10 Takahashi (C9TA08100C-(cit78)/*[position()=1]) 2011; 107 Shapiro (C9TA08100C-(cit59)/*[position()=1]) 2017; 95 Zeljkovic (C9TA08100C-(cit32)/*[position()=1]) 2014; 10 Wang (C9TA08100C-(cit11)/*[position()=1]) 2012; 108 Qi (C9TA08100C-(cit3)/*[position()=1]) 2010; 63 Bell (C9TA08100C-(cit54)/*[position()=1]) 2008; 321 Roychowdhury (C9TA08100C-(cit66)/*[position()=1]) 2015; 54 Holst (C9TA08100C-(cit82)/*[position()=1]) 2011; 83 Tritt (C9TA08100C-(cit69)/*[position()=1]) 2006; 31 Zhang (C9TA08100C-(cit41)/*[position()=1]) 2018; 20 Qi (C9TA08100C-(cit2)/*[position()=1]) 2011; 83 Rhyee (C9TA08100C-(cit71)/*[position()=1]) 2009; 459 Zeljkovic (C9TA08100C-(cit29)/*[position()=1]) 2015; 14 Roychowdhury (C9TA08100C-(cit63)/*[position()=1]) 2016; 108 Kong (C9TA08100C-(cit10)/*[position()=1]) 2011; 3 Liu (C9TA08100C-(cit53)/*[position()=1]) 2015; 87 Paul (C9TA08100C-(cit79)/*[position()=1]) 2003; 67 Tanaka (C9TA08100C-(cit46)/*[position()=1]) 2013; 87 DiSalvo (C9TA08100C-(cit51)/*[position()=1]) 1999; 285 Christoph (C9TA08100C-(cit88)/*[position()=1]) 1985; 131 Dziawa (C9TA08100C-(cit35)/*[position()=1]) 2012; 11 Chang (C9TA08100C-(cit7)/*[position()=1]) 2014; 39 Hsu (C9TA08100C-(cit21)/*[position()=1]) 2019; 6 Chatterjee (C9TA08100C-(cit14)/*[position()=1]) 2015; 127 Snyder (C9TA08100C-(cit52)/*[position()=1]) 2008; 7 Yan (C9TA08100C-(cit37)/*[position()=1]) 2014; 621 Fradkin (C9TA08100C-(cit45)/*[position()=1]) 1986; 57 Liang (C9TA08100C-(cit30)/*[position()=1]) 2013; 4 Heremans Font (C9TA08100C-(cit57)/*[position()=1]) 2005; 108 Zhang (C9TA08100C-(cit42)/*[position()=1]) 2015; 17 Hicks (C9TA08100C-(cit70)/*[position()=1]) 1993; 47 Bercioux (C9TA08100C-(cit98)/*[position()=1]) 2015; 78 Xiao (C9TA08100C-(cit13)/*[position()=1]) 2014; 53 Onsager (C9TA08100C-(cit83)/*[position()=1]) 1931; 37 Taskin (C9TA08100C-(cit39)/*[position()=1]) 2014; 89 Sootsman (C9TA08100C-(cit60)/*[position()=1]) 2009; 48 Polley (C9TA08100C-(cit73)/*[position()=1]) 2014; 89 Tanaka (C9TA08100C-(cit72)/*[position()=1]) 2013; 88 Ezawa (C9TA08100C-(cit76)/*[position()=1]) 2014; 89 Wang (C9TA08100C-(cit12)/*[position()=1]) 2014; 14 Yan (C9TA08100C-(cit6)/*[position()=1]) 2012; 75 Pei (C9TA08100C-(cit96)/*[position()=1]) 2011; 473 Müchler (C9TA08100C-(cit9)/*[position()=1]) 2012; 124 Ezawa (C9TA08100C-(cit99)/*[position()=1]) 2014; 16 Fu (C9TA08100C-(cit15)/*[position()=1]) 2011; 106 Zhang (C9TA08100C-(cit81)/*[position()=1]) 2011; 83 Zhang (C9TA08100C-(cit80)/*[position()=1]) 2010; 81 Sato (C9TA08100C-(cit26)/*[position()=1]) 2013; 110 Müchler (C9TA08100C-(cit1)/*[position()=1]) 2012; 51 Ezawa (C9TA08100C-(cit100)/*[position()=1]) 2018; 121 Zubarev (C9TA08100C-(cit89)/*[position()=1]) 1996; vol. 1 Zebarjadi (C9TA08100C-(cit55)/*[position()=1]) 2012; 5 Walkup (C9TA08100C-(cit97)/*[position()=1]) 2018; 9 Tang (C9TA08100C-(cit20)/*[position()=1]) 2019; 15 Xu (C9TA08100C-(cit64)/*[position()=1]) 2016; 9 Sun (C9TA08100C-(cit62)/*[position()=1]) 2013; 88 Hsu (C9TA08100C-(cit92)/*[position()=1]) 2004; 303 Riffat (C9TA08100C-(cit56)/*[position()=1]) 2003; 23 Xu (C9TA08100C-(cit90)/*[position()=1]) 2014; 112 Wang (C9TA08100C-(cit75)/*[position()=1]) 2013; 87 Mong (C9TA08100C-(cit25)/*[position()=1]) 2010; 81 Okada (C9TA08100C-(cit33)/*[position()=1]) 2013; 341 Hasan (C9TA08100C-(cit4)/*[position()=1]) 2010; 82 Ghaemi (C9TA08100C-(cit91)/*[position()=1]) 2010; 105 Ando (C9TA08100C-(cit27)/*[position()=1]) 2015; 6 Jiang (C9TA08100C-(cit58)/*[position()=1]) 2017; 7 Gyenis (C9TA08100C-(cit40)/*[position()=1]) 2013; 88 Serbyn (C9TA08100C-(cit47)/*[position()=1]) 2014; 90 Fu (C9TA08100C-(cit50)/*[position()=1]) 2012; 109 Mitrofanov (C9TA08100C-(cit31)/*[position()=1]) 2014; 26 Liu (C9TA08100C-(cit28)/*[position()=1]) 2014; 13 Liu (C9TA08100C-(cit43)/*[position()=1]) 2013; 88 Qian (C9TA08100C-(cit49)/*[position()=1]) 2015; 8 Ginting (C9TA08100C-(cit68)/*[position()=1]) 2019; 15 Hsu (C9TA08100C-(cit22)/*[position()=1]) 2019; 116 Kubo (C9TA08100C-(cit86)/*[position()=1]) 1957; 12 Hsieh (C9TA08100C-(cit8)/*[position()=1]) 2008; 452 Ginting (C9TA08100C-(cit67)/*[position()=1]) 2018; 6 Zhou (C9TA08100C-(cit18)/*[position()=1]) 2018; 98 Hsieh (C9TA08100C-(cit23)/*[position()=1]) 2012; 3 Tanaka (C9TA08100C-(cit38)/*[position()=1]) 2012; 8 Moore (C9TA08100C-(cit5)/*[position()=1]) 2010; 464 Xu (C9TA08100C-(cit36)/*[position()=1]) 2012; 3 Poudel (C9TA08100C-(cit93)/*[position()=1]) 2008; 320 Alexandradinata (C9TA08100C-(cit17)/*[position()=1]) 2016; 93 Mahan (C9TA08100C-(cit85)/*[position()=1]) 1990 Teo (C9TA08100C-(cit24)/*[position()=1]) 2008; 78 Rameshti (C9TA08100C-(cit65)/*[position()=1]) 2016; 94 Erickson (C9TA08100C-(cit34)/*[position()=1]) 2009; 79 Fang (C9TA08100C-(cit74)/*[position()=1]) 2015; 91 Vining (C9TA08100C-(cit61)/*[position()=1]) 2009; 8 Biswas (C9TA08100C-(cit95)/*[position()=1]) 2011; 3 Ahn (C9TA08100C-(cit94)/*[position()=1]) 2010; 132 |
References_xml | – volume: 621 start-page: 104 year: 2014 ident: C9TA08100C-(cit37)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2013.11.004 – volume: 75 start-page: 96501 issue: 9 year: 2012 ident: C9TA08100C-(cit6)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/9/096501 – volume: 39 start-page: 867 year: 2014 ident: C9TA08100C-(cit7)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2014.195 – volume: 57 start-page: 2967 year: 1986 ident: C9TA08100C-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2967 – volume: 8 start-page: 967 year: 2015 ident: C9TA08100C-(cit49)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0578-9 – volume: 109 start-page: 246605 year: 2012 ident: C9TA08100C-(cit50)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.246605 – volume: 127 start-page: 5715 year: 2015 ident: C9TA08100C-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201500281 – volume: 321 start-page: 1457 year: 2008 ident: C9TA08100C-(cit54)/*[position()=1] publication-title: Science doi: 10.1126/science.1158899 – volume: 93 start-page: 205104 year: 2016 ident: C9TA08100C-(cit17)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.205104 – volume-title: Thermodynamics and an Introduction to Thermostatistics year: 1985 ident: C9TA08100C-(cit84)/*[position()=1] – volume: 51 start-page: 7221 year: 2012 ident: C9TA08100C-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202480 – volume: 79 start-page: 024520 year: 2009 ident: C9TA08100C-(cit34)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.024520 – volume: 3 start-page: 845 year: 2011 ident: C9TA08100C-(cit10)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1171 – volume: 87 start-page: 235317 year: 2013 ident: C9TA08100C-(cit75)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.235317 – volume: 88 start-page: 125414 year: 2013 ident: C9TA08100C-(cit40)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.125414 – volume: 566 start-page: 486 year: 2019 ident: C9TA08100C-(cit19)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-0937-5 – volume: 4 start-page: 2696 year: 2013 ident: C9TA08100C-(cit30)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3696 – volume: 5 start-page: 5147 year: 2012 ident: C9TA08100C-(cit55)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02497C – volume: 89 start-page: 195413 year: 2014 ident: C9TA08100C-(cit76)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.195413 – volume: 105 start-page: 166603 year: 2010 ident: C9TA08100C-(cit91)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.166603 – volume: 78 start-page: 045426 year: 2008 ident: C9TA08100C-(cit24)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045426 – volume: 8 start-page: 83 year: 2009 ident: C9TA08100C-(cit61)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2361 – volume: 94 start-page: 205401 year: 2016 ident: C9TA08100C-(cit65)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.205401 – volume: 124 start-page: 7333 year: 2012 ident: C9TA08100C-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201202480 – volume: 35 start-page: 6446 year: 1987 ident: C9TA08100C-(cit44)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.35.6446 – volume: 320 start-page: 634 year: 2008 ident: C9TA08100C-(cit93)/*[position()=1] publication-title: Science doi: 10.1126/science.1156446 – volume: 13 start-page: 178 year: 2014 ident: C9TA08100C-(cit28)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3828 – volume: 17 start-page: 083036 year: 2015 ident: C9TA08100C-(cit42)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083036 – volume: 108 start-page: 266806 year: 2012 ident: C9TA08100C-(cit11)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.266806 – volume: 116 start-page: 13255 year: 2019 ident: C9TA08100C-(cit22)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1900527116 – volume: 95 start-page: 195425 year: 2017 ident: C9TA08100C-(cit59)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.195425 – volume: 6 start-page: 361 year: 2015 ident: C9TA08100C-(cit27)/*[position()=1] publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031214-014501 – volume: 37 start-page: 405 year: 1931 ident: C9TA08100C-(cit83)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.37.405 – volume: 89 start-page: 121302 year: 2014 ident: C9TA08100C-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.121302 – volume: 88 start-page: 241303(R) year: 2013 ident: C9TA08100C-(cit43)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.241303 – volume: 113 start-page: 116403 year: 2014 ident: C9TA08100C-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.116403 – volume-title: Many-Particle Physics year: 1990 ident: C9TA08100C-(cit85)/*[position()=1] doi: 10.1007/978-1-4613-1469-1 – volume: 15 start-page: 342 year: 2019 ident: C9TA08100C-(cit68)/*[position()=1] publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-019-00130-1 – volume: 3 start-page: 982 year: 2012 ident: C9TA08100C-(cit23)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1969 – volume: 11 start-page: 1023 year: 2012 ident: C9TA08100C-(cit35)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3449 – volume: 90 start-page: 035402 year: 2014 ident: C9TA08100C-(cit47)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.035402 – volume: 131 start-page: 11 year: 1985 ident: C9TA08100C-(cit88)/*[position()=1] publication-title: Phys. Status Solidi B doi: 10.1002/pssb.2221310102 – volume: 108 start-page: 609 year: 2005 ident: C9TA08100C-(cit57)/*[position()=1] publication-title: Acta Phys. Pol., A doi: 10.12693/APhysPolA.108.609 – volume: 464 start-page: 194 year: 2010 ident: C9TA08100C-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature08916 – volume: 81 start-page: 245209 year: 2010 ident: C9TA08100C-(cit25)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.245209 – volume: 91 start-page: 161105(R) year: 2015 ident: C9TA08100C-(cit74)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.91.161105 – volume: 82 start-page: 3045 year: 2010 ident: C9TA08100C-(cit4)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 110 start-page: 206804 year: 2013 ident: C9TA08100C-(cit26)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.206804 – volume: 67 start-page: 115131 year: 2003 ident: C9TA08100C-(cit79)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.67.115131 – volume: 71 start-page: 585 year: 1958 ident: C9TA08100C-(cit87)/*[position()=1] publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/71/4/306 – volume: 452 start-page: 970 year: 2008 ident: C9TA08100C-(cit8)/*[position()=1] publication-title: Nature doi: 10.1038/nature06843 – volume: 9 start-page: 1550 year: 2018 ident: C9TA08100C-(cit97)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03887-5 – volume: 48 start-page: 8616 year: 2009 ident: C9TA08100C-(cit60)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900598 – volume: 89 start-page: 075317 year: 2014 ident: C9TA08100C-(cit73)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.075317 – volume: 10 start-page: 572 year: 2014 ident: C9TA08100C-(cit32)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys3012 – volume: 47 start-page: 12727 year: 1993 ident: C9TA08100C-(cit70)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.47.12727 – volume: 83 start-page: 235120 year: 2011 ident: C9TA08100C-(cit82)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.235120 – volume: 9 start-page: 820 year: 2016 ident: C9TA08100C-(cit64)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-015-0961-1 – volume: 88 start-page: 125141 year: 2013 ident: C9TA08100C-(cit77)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.125141 – volume: 121 start-page: 116801 year: 2018 ident: C9TA08100C-(cit100)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.116801 – volume: 6 start-page: 031004 year: 2019 ident: C9TA08100C-(cit21)/*[position()=1] publication-title: 2D Materials doi: 10.1088/2053-1583/ab1607 – volume: 23 start-page: 913 year: 2003 ident: C9TA08100C-(cit56)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00012-7 – volume: 87 start-page: 357 year: 2015 ident: C9TA08100C-(cit53)/*[position()=1] publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.042 – volume: 88 start-page: 235122 year: 2013 ident: C9TA08100C-(cit62)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.235122 – volume: 53 start-page: 729 year: 2014 ident: C9TA08100C-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309416 – volume: 14 start-page: 318 year: 2015 ident: C9TA08100C-(cit29)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4215 – volume: 6 start-page: 5870 year: 2018 ident: C9TA08100C-(cit67)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00381E – volume: 63 start-page: 33 issue: 1 year: 2010 ident: C9TA08100C-(cit3)/*[position()=1] publication-title: Phys. Today doi: 10.1063/1.3293411 – volume: 83 start-page: 012103 year: 2011 ident: C9TA08100C-(cit81)/*[position()=1] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.012103 – volume: 12 start-page: 570 year: 1957 ident: C9TA08100C-(cit86)/*[position()=1] publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.12.570 – volume: 15 start-page: 470 year: 2019 ident: C9TA08100C-(cit20)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/s41567-019-0418-7 – volume: 26 start-page: 475502 year: 2014 ident: C9TA08100C-(cit31)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 3 start-page: 1192 year: 2012 ident: C9TA08100C-(cit36)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2191 – volume: 132 start-page: 5227 year: 2010 ident: C9TA08100C-(cit94)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910762q – volume: 16 start-page: 065015 year: 2014 ident: C9TA08100C-(cit99)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/16/6/065015 – volume: 81 start-page: 085210 year: 2010 ident: C9TA08100C-(cit80)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.085210 – volume: 303 start-page: 818 year: 2004 ident: C9TA08100C-(cit92)/*[position()=1] publication-title: Science doi: 10.1126/science.1092963 – volume: 54 start-page: 15241 year: 2015 ident: C9TA08100C-(cit66)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.201508492 – volume: vol. 1 volume-title: Statistical Mechanics of Nonequilibrium Processes, See 3527400834: Basic Concepts, Kinetic Theory, Statistical Mechanics of Nonequilibrium Processes year: 1996 ident: C9TA08100C-(cit89)/*[position()=1] – volume: 31 start-page: 188 year: 2006 ident: C9TA08100C-(cit69)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs2006.44 – volume: 7 start-page: 064001 year: 2017 ident: C9TA08100C-(cit58)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.064001 – volume: 285 start-page: 703 year: 1999 ident: C9TA08100C-(cit51)/*[position()=1] publication-title: Science doi: 10.1126/science.285.5428.703 – volume: 3 start-page: 160 year: 2011 ident: C9TA08100C-(cit95)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.955 – volume: 10 start-page: 964 year: 2014 ident: C9TA08100C-(cit48)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys3109 – volume: 106 start-page: 106802 year: 2011 ident: C9TA08100C-(cit15)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – volume: 7 start-page: 105 year: 2008 ident: C9TA08100C-(cit52)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 341 start-page: 1496 year: 2013 ident: C9TA08100C-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1239451 – volume: 87 start-page: 155105 year: 2013 ident: C9TA08100C-(cit46)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.155105 – volume: 108 start-page: 193901 year: 2016 ident: C9TA08100C-(cit63)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4948969 – volume: 14 start-page: 6510 year: 2014 ident: C9TA08100C-(cit12)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl503083q – volume: 459 start-page: 965 year: 2009 ident: C9TA08100C-(cit71)/*[position()=1] publication-title: Nature doi: 10.1038/nature08088 – volume: 107 start-page: 166805 year: 2011 ident: C9TA08100C-(cit78)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.166805 – volume: 112 start-page: 226801 year: 2014 ident: C9TA08100C-(cit90)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.226801 – volume: 88 start-page: 235126 year: 2013 ident: C9TA08100C-(cit72)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.235126 – volume: 473 start-page: 66 year: 2011 ident: C9TA08100C-(cit96)/*[position()=1] publication-title: Nature doi: 10.1038/nature09996 – volume: 78 start-page: 106001 year: 2015 ident: C9TA08100C-(cit98)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/10/106001 – volume: 83 start-page: 1057 year: 2011 ident: C9TA08100C-(cit2)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.1057 – volume: 98 start-page: 241104(R) year: 2018 ident: C9TA08100C-(cit18)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241104 – volume: 8 start-page: 800 year: 2012 ident: C9TA08100C-(cit38)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2442 – volume: 20 start-page: 24790 year: 2018 ident: C9TA08100C-(cit41)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP02649A |
SSID | ssj0000800699 |
Score | 2.3553753 |
Snippet | Topological crystalline insulators (TCIs) possess linearly dispersed metallic surface states, which are protected by crystal point group symmetries. The... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 25573 |
SubjectTerms | Alloys anisotropy Crystal structure Crystallinity Dispersion electric field Electric fields energy Energy bands Fermions Ferromagnetism heat Heat exchange Insulators Magnetic fields Power factor Spin-orbit interactions Symmetry temperature Thermal conductivity Thermoelectricity Tin tellurides Topology |
Title | Enhancement of the anisotropic thermoelectric power factor of topological crystalline insulator SnTe and related alloys via external perturbations |
URI | https://www.proquest.com/docview/2313512972 https://www.proquest.com/docview/2335134571 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKvoGMgIXlCVkbvrx6oqGojyQiaNp8p2HLXSmlRpO2n7Gfwofhfn2HGa0j0MXqLacR3F58vxZ_tcCPnAeKhTHYeeMVeLmSw8yaX2uFC5yAseFDH6O0-_p-cX8dfL5LLX-92xWtpu5Jm6vdOv5H-kCnUgV_SS_QfJtp1CBfwG-cIVJAzXe8l4Us5RaO48HzmkKBfralNXq4XCcr2sbKIbKK4wIVqTYMc0t_kRbIiQ-gZo4pXhnMY8Hdfigx9lZk8XjMcLUFM8pb9ZD64XYuDCR2PgY5i2ZGfn75DrAi224zFQLsHc2WBkfYXcHRN73Hoims1859mFxrvtvv9PAW80F8ulyI0ZwrSar3fObNNFLSTMy7ci13NrK3JdVXs7G43mNKov9BMfo5xazay7dTb_rdPdrAPROO4q4iSxKVKaWR3KNjXQwZThRxhxdcyzEbAj3x_vJkZnDPDXfNlaMZrz-4jPdv99QI5DxgLQrsejSfblW7vbh7w8NclM21dzsXIj_mnXwT472icHhvFkT8jjRnx0ZHH3lPR0-Yw86gSwfE5-dRBIq4IC4mgHgXQfgdQgkFoEmuY7BNIOAmmLQIoIhB5z2iCQWgRSQCB1w0T3EPiCXHyeZONzr8ny4ako5BtPA2VOcoXH5SCjME5VyniRD6VMGfMZYwkvfMGUGCYFLJ9ZBAv4OBQyZEGhVSyjl-SorEr9itCUKy4LNkxwYaAlH6ooCEQieCiLHBYSffLRje5MNSHwMRPL1exQlH3yvm27soFf7mx16oQ0axTDegZLpgh5NAv75F17Gz4uPIsTpa622AaaRHHCgpN7Peg1eYifiN38OyVHm3qr3wAd3si3Ddb-AFNXwNY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+anisotropic+thermoelectric+power+factor+of+topological+crystalline+insulator+SnTe+and+related+alloys+via+external+perturbations&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yarmohammadi%2C+Mohsen&rft.au=Mirabbaszadeh%2C+Kavoos&rft.date=2019&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=44&rft.spage=25573&rft.epage=25585&rft_id=info:doi/10.1039%2FC9TA08100C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TA08100C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |