DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs
This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Exis...
Saved in:
Published in | IEEE transactions on automatic control Vol. 62; no. 10; pp. 4980 - 4993 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 <; τ <; 1, given that the objective functions are restricted strongly convex. The implementation of DEXTRA requires each agent to know its local out-degree. Simulation examples further illustrate our findings. |
---|---|
AbstractList | This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 <; τ <; 1, given that the objective functions are restricted strongly convex. The implementation of DEXTRA requires each agent to know its local out-degree. Simulation examples further illustrate our findings. |
Author | Chenguang Xi Khan, Usman A. |
Author_xml | – sequence: 1 surname: Chenguang Xi fullname: Chenguang Xi email: chenguang.xi@tufts.edu organization: Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA – sequence: 2 givenname: Usman A. surname: Khan fullname: Khan, Usman A. email: khan@ece.tufts.edu organization: Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA |
BookMark | eNp9j0tLAzEUhYNUsK3uBTf5A1Nzk0kmcSEMfSkUClLB3ZDmYSNtpyRB0F_v1IoLF64u58J3Dt8A9fbt3iF0DWQEQNTtqh6PKIFqREVFhZJnqA-cy4JyynqoTwjIQlEpLtAgpbcuirKEPrqfTF9WT_UdrvFMp4zr7WsbQ97ssG8jXh5y2IVPnUO7x8t3F_EkRGeys3ge9WGTLtG519vkrn7uED3PpqvxQ7FYzh_H9aIwjKpcWFsZoYxXpVs7yT2R2jpOqVvL0nChmfcWKHAiORPWM9V9iZYEQCtLlGVDRE69JrYpReebQww7HT8aIM3Rv-n8m6N_8-PfIeIPYkL-NslRh-1_4M0JDM65351KCgolY1-Z9mip |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_TSP_2020_2983167 crossref_primary_10_1109_TAC_2017_2737582 crossref_primary_10_1049_sil2_12199 crossref_primary_10_1109_TAC_2020_2972824 crossref_primary_10_1016_j_jclepro_2020_125440 crossref_primary_10_1016_j_automatica_2018_07_020 crossref_primary_10_1016_j_ifacol_2020_12_383 crossref_primary_10_1016_j_sigpro_2020_107614 crossref_primary_10_1109_TCYB_2019_2963330 crossref_primary_10_1109_JPROC_2020_3024266 crossref_primary_10_1002_oca_2886 crossref_primary_10_1016_j_jfranklin_2023_08_015 crossref_primary_10_1109_TNSE_2021_3122927 crossref_primary_10_1109_TSP_2018_2875883 crossref_primary_10_1109_TNSE_2022_3225229 crossref_primary_10_1109_TCYB_2020_3011819 crossref_primary_10_1109_TNSE_2024_3374765 crossref_primary_10_1109_TETCI_2024_3382232 crossref_primary_10_12677_AAM_2023_123094 crossref_primary_10_1002_rnc_5026 crossref_primary_10_1109_TNNLS_2021_3130173 crossref_primary_10_1007_s10957_024_02552_w crossref_primary_10_1016_j_ces_2022_117449 crossref_primary_10_1109_TAC_2020_2969721 crossref_primary_10_1109_TAC_2020_2996205 crossref_primary_10_1109_TAC_2022_3207866 crossref_primary_10_1109_JPROC_2018_2823638 crossref_primary_10_1016_j_ijepes_2022_108601 crossref_primary_10_1109_TAC_2020_3021011 crossref_primary_10_1016_j_amc_2021_126794 crossref_primary_10_1109_JPROC_2020_3021381 crossref_primary_10_1109_TSP_2022_3160238 crossref_primary_10_1109_LCSYS_2018_2834316 crossref_primary_10_1109_TAC_2019_2901829 crossref_primary_10_1109_TAC_2018_2797164 crossref_primary_10_1007_s12555_018_9543_9 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1016_j_jfranklin_2023_11_017 crossref_primary_10_1109_ACCESS_2020_2978087 crossref_primary_10_1109_TAC_2020_2981035 crossref_primary_10_1587_transfun_2019MAP0008 crossref_primary_10_1109_TSG_2021_3067172 crossref_primary_10_1109_TAC_2022_3230771 crossref_primary_10_1109_TSP_2020_2981762 crossref_primary_10_1016_j_jpdc_2022_03_014 crossref_primary_10_1109_TAC_2020_2989282 crossref_primary_10_1002_rnc_6887 crossref_primary_10_1186_s13634_018_0596_y crossref_primary_10_1109_TSMC_2019_2960770 crossref_primary_10_1109_TSIPN_2020_3037837 crossref_primary_10_1109_TSIPN_2018_2846183 crossref_primary_10_3390_en16237898 crossref_primary_10_1007_s10957_024_02554_8 crossref_primary_10_1109_TII_2023_3321027 crossref_primary_10_1631_FITEE_2000615 crossref_primary_10_1002_rnc_6059 crossref_primary_10_3390_math10030357 crossref_primary_10_1016_j_sysconle_2023_105505 crossref_primary_10_1109_TAC_2024_3352328 crossref_primary_10_1109_TNSE_2023_3300736 crossref_primary_10_1109_TAC_2019_2930234 crossref_primary_10_1109_TSIPN_2024_3407660 crossref_primary_10_1109_TAC_2020_3018743 crossref_primary_10_1109_TSIPN_2022_3190743 crossref_primary_10_1109_TAC_2020_2995814 crossref_primary_10_1109_TCYB_2022_3191938 crossref_primary_10_1049_cth2_12022 crossref_primary_10_1049_iet_cta_2017_1322 crossref_primary_10_1109_TAC_2021_3108501 crossref_primary_10_1109_TSMC_2024_3516936 crossref_primary_10_1109_JPROC_2020_3007395 crossref_primary_10_1109_TAC_2020_3011358 crossref_primary_10_1109_TAC_2018_2816104 crossref_primary_10_1109_TAC_2022_3160684 crossref_primary_10_1109_TSMC_2019_2946287 crossref_primary_10_1016_j_ifacol_2019_12_185 crossref_primary_10_1109_TAC_2023_3275927 crossref_primary_10_1109_LCSYS_2020_3006420 crossref_primary_10_1016_j_sysconle_2023_105679 crossref_primary_10_1049_cth2_12421 crossref_primary_10_1109_TSP_2019_2926022 crossref_primary_10_1587_transfun_E102_A_343 |
Cites_doi | 10.1145/984622.984626 10.1109/TSP.2009.2038423 10.1109/CDC.2012.6426375 10.1109/ACSSC.2014.7094740 10.1109/Allerton.2012.6483403 10.1137/130943170 10.1016/j.jcss.2006.01.003 10.1109/TAC.2014.2364096 10.1109/ISIT.2010.5513273 10.1137/14096668X 10.1109/MSP.2014.2329397 10.1109/CDC.2015.7402401 10.1109/TSP.2009.2038417 10.1109/TCNS.2015.2428411 10.1109/TAC.2003.812781 10.1109/CDC.2012.6425904 10.1109/TAC.2008.2007159 10.1007/s00026-005-0237-z 10.1287/opre.18.1.87 10.1109/GlobalSIP.2013.6736882 10.1109/TAC.2004.834113 10.1109/TAC.2011.2161027 10.1016/j.jpdc.2006.08.010 10.1109/WD.2009.5449659 10.1109/ICASSP.2014.6854644 10.1109/TAC.2008.2009515 10.1109/TSP.2014.2304432 10.1016/j.automatica.2012.08.003 10.1109/TSP.2013.2254478 10.1109/TSP.2010.2055862 10.1109/SFCS.2003.1238221 10.1109/TAC.2014.2298712 10.1561/2200000016 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TAC.2017.2672698 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 4993 |
ExternalDocumentID | 10_1109_TAC_2017_2672698 7862143 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1350264 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c329t-dd7c69cf94ebe85f08ade522eb84c56a3ffd121508536df394c50a8011a9d09d3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Tue Jul 01 03:36:15 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Wed Aug 27 02:52:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-dd7c69cf94ebe85f08ade522eb84c56a3ffd121508536df394c50a8011a9d09d3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TAC_2017_2672698 crossref_citationtrail_10_1109_TAC_2017_2672698 ieee_primary_7862143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct. 2017-10-00 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref12 xiao (ref29) 2007; 67 ref15 ref14 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 xi (ref36) 2015 l (ref8) 2006; 72 xi (ref31) 2016 stewart (ref39) 1990 ref24 ref23 ref26 ref25 ref20 ref41 ref21 zeng (ref37) 2016; 34 ref27 bhatia (ref40) 2013; 169 xi (ref30) 2015 ref7 ref9 ref4 ref3 ref6 olfati-saber (ref28) 2003; 2 ref5 tsianos (ref22) 2013 |
References_xml | – ident: ref6 doi: 10.1145/984622.984626 – ident: ref7 doi: 10.1109/TSP.2009.2038423 – ident: ref21 doi: 10.1109/CDC.2012.6426375 – year: 1990 ident: ref39 publication-title: Matrix Perturbation Theory – ident: ref19 doi: 10.1109/ACSSC.2014.7094740 – ident: ref23 doi: 10.1109/Allerton.2012.6483403 – ident: ref11 doi: 10.1137/130943170 – volume: 34 start-page: 1 year: 2016 ident: ref37 article-title: Extrapush for convex smooth decentralized optimization over directed networks publication-title: J Comput Math – volume: 72 start-page: 706 year: 2006 ident: ref8 article-title: A distributed multiple dimensional QOS constrained resource scheduling optimization policy in computational grid publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2006.01.003 – ident: ref20 doi: 10.1109/TAC.2014.2364096 – year: 2016 ident: ref31 article-title: Distributed subgradient projection algorithm over directed graphs publication-title: IEEE Trans Automatic Control – ident: ref25 doi: 10.1109/ISIT.2010.5513273 – ident: ref18 doi: 10.1137/14096668X – ident: ref1 doi: 10.1109/MSP.2014.2329397 – ident: ref33 doi: 10.1109/CDC.2015.7402401 – ident: ref5 doi: 10.1109/TSP.2009.2038417 – ident: ref38 doi: 10.1109/TCNS.2015.2428411 – ident: ref26 doi: 10.1109/TAC.2003.812781 – ident: ref14 doi: 10.1109/CDC.2012.6425904 – ident: ref3 doi: 10.1109/TAC.2008.2007159 – ident: ref41 doi: 10.1007/s00026-005-0237-z – ident: ref34 doi: 10.1287/opre.18.1.87 – volume: 2 start-page: 951 year: 2003 ident: ref28 article-title: Consensus protocols for networks of dynamic agents publication-title: Proc IEEE Amer Control Conf – ident: ref35 doi: 10.1109/GlobalSIP.2013.6736882 – ident: ref27 doi: 10.1109/TAC.2004.834113 – year: 2013 ident: ref22 article-title: The role of the network in distributed optimization algorithms: convergence rates, scalability, communication/computation tradeoffs and communication delays – ident: ref12 doi: 10.1109/TAC.2011.2161027 – volume: 67 start-page: 33 year: 2007 ident: ref29 article-title: Distributed average consensus with least-mean-square deviation publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2006.08.010 – year: 2015 ident: ref30 article-title: Distributed gradient descent over directed graphs – volume: 169 year: 2013 ident: ref40 publication-title: Matrix Analysis – ident: ref9 doi: 10.1109/WD.2009.5449659 – ident: ref17 doi: 10.1109/ICASSP.2014.6854644 – ident: ref10 doi: 10.1109/TAC.2008.2009515 – ident: ref15 doi: 10.1109/TSP.2014.2304432 – ident: ref32 doi: 10.1016/j.automatica.2012.08.003 – ident: ref13 doi: 10.1109/TSP.2013.2254478 – ident: ref4 doi: 10.1109/TSP.2010.2055862 – ident: ref24 doi: 10.1109/SFCS.2003.1238221 – ident: ref16 doi: 10.1109/TAC.2014.2298712 – ident: ref2 doi: 10.1561/2200000016 – year: 2015 ident: ref36 article-title: On the linear convergence of distributed optimization over directed graphs |
SSID | ssj0016441 |
Score | 2.5946655 |
Snippet | This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4980 |
SubjectTerms | Acceleration Convergence Directed graphs Distributed algorithms distributed optimization Indexes Linear programming multiagent networks Optimization Symmetric matrices |
Title | DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs |
URI | https://ieeexplore.ieee.org/document/7862143 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5se9IHb1OcN_Lgi2C72q5p44NQ5uYQ5kA22FtJc1FxF9m6F3-9J21Xpoj4FkICIef2JTnnC8ClSkLmB05iUa5MSQ5Dm3OFuYCnKP1Ecq7NfUf_ifZGrcexP67AdVkLo5TKks-UbZrZW76ci5W5KmsGCL8xvlehige3vFarfDEwcT33umjAblg-STqsOYzaJocrsF0auJSF30LQxp8qWUjp7kJ_vZg8k-TdXqWJLT5_8DT-d7V7sFNgSxLlyrAPFTU7gO0NxsE63N13xsPn6JZEpMuXKYkmL_PFW_o6JQheyQD9x7QozCQDVHKSe0QlyYMhtl4ewqjbGbZ7VvGFgiU8l6WWlIGgTGjWQmGFvnZCLhVCLhRRS_iUe1pLwy-BwMujUnsMex2OUeuGM-kw6R1BbTafqWMgmqO9UzyemLoFQd0EgRViGU9SgZhIhw1ornc1FgW_uPnmYhJn5wyHxSiH2MghLuTQgKtyxkfOrfHH2LrZ4XJcsbknv3efwpaZnCfdnUEtXazUOYKHNLnItOYLqwS9nQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxnjlwQWJb165pwwGpGhsD9pDQJu1WpUkKiD3Q1l349ThtVw2EELcqSqooduIvsf0Z4FIFLrMdIyhRrnRKDsM9Zwr9AE9R-oHkPNTvHZ0ubQ1qj0N7mIPrLBdGKRUHn6my_ox9-XIqFvqprOIg_Eb7vgbraPftapKtlfkMtGVPzl3cwqabOSUNVul7dR3F5ZRN6piUud-M0EpVldioNHegs5xOEkvyXl5EQVl8_mBq_O98d2E7RZfES9RhD3Jqsg9bK5yDBbi9awz7z94N8UiTzyPijV6ms7fodUwQvpIeniDjNDWT9FDNSXImKknuNbX1_AAGzUa_3iqlRRRKwjJZVJLSEZSJkNVQXK4dGi6XCkEXCqkmbMqtMJSaYQKhl0VlaDFsNTjarSpn0mDSOoT8ZDpRR0BCjjue4gVFZy4IagYIrRDNWJIKREWhW4TKclV9kTKM60IXIz--aRjMRzn4Wg5-KociXGUjPhJ2jT_6FvQKZ_3SxT3-vfkCNlr9TttvP3SfTmBT_ygJwTuFfDRbqDOEElFwHmvQF8IgwOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEXTRA%3A+A+Fast+Algorithm+for+Optimization+Over+Directed+Graphs&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Xi%2C+Chenguang&rft.au=Khan%2C+Usman+A.&rft.date=2017-10-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=62&rft.issue=10&rft.spage=4980&rft.epage=4993&rft_id=info:doi/10.1109%2FTAC.2017.2672698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2017_2672698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |