DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs

This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Exis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 62; no. 10; pp. 4980 - 4993
Main Authors Chenguang Xi, Khan, Usman A.
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 <; τ <; 1, given that the objective functions are restricted strongly convex. The implementation of DEXTRA requires each agent to know its local out-degree. Simulation examples further illustrate our findings.
AbstractList This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 <; τ <; 1, given that the objective functions are restricted strongly convex. The implementation of DEXTRA requires each agent to know its local out-degree. Simulation examples further illustrate our findings.
Author Chenguang Xi
Khan, Usman A.
Author_xml – sequence: 1
  surname: Chenguang Xi
  fullname: Chenguang Xi
  email: chenguang.xi@tufts.edu
  organization: Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA
– sequence: 2
  givenname: Usman A.
  surname: Khan
  fullname: Khan, Usman A.
  email: khan@ece.tufts.edu
  organization: Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA
BookMark eNp9j0tLAzEUhYNUsK3uBTf5A1Nzk0kmcSEMfSkUClLB3ZDmYSNtpyRB0F_v1IoLF64u58J3Dt8A9fbt3iF0DWQEQNTtqh6PKIFqREVFhZJnqA-cy4JyynqoTwjIQlEpLtAgpbcuirKEPrqfTF9WT_UdrvFMp4zr7WsbQ97ssG8jXh5y2IVPnUO7x8t3F_EkRGeys3ge9WGTLtG519vkrn7uED3PpqvxQ7FYzh_H9aIwjKpcWFsZoYxXpVs7yT2R2jpOqVvL0nChmfcWKHAiORPWM9V9iZYEQCtLlGVDRE69JrYpReebQww7HT8aIM3Rv-n8m6N_8-PfIeIPYkL-NslRh-1_4M0JDM65351KCgolY1-Z9mip
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TSP_2020_2983167
crossref_primary_10_1109_TAC_2017_2737582
crossref_primary_10_1049_sil2_12199
crossref_primary_10_1109_TAC_2020_2972824
crossref_primary_10_1016_j_jclepro_2020_125440
crossref_primary_10_1016_j_automatica_2018_07_020
crossref_primary_10_1016_j_ifacol_2020_12_383
crossref_primary_10_1016_j_sigpro_2020_107614
crossref_primary_10_1109_TCYB_2019_2963330
crossref_primary_10_1109_JPROC_2020_3024266
crossref_primary_10_1002_oca_2886
crossref_primary_10_1016_j_jfranklin_2023_08_015
crossref_primary_10_1109_TNSE_2021_3122927
crossref_primary_10_1109_TSP_2018_2875883
crossref_primary_10_1109_TNSE_2022_3225229
crossref_primary_10_1109_TCYB_2020_3011819
crossref_primary_10_1109_TNSE_2024_3374765
crossref_primary_10_1109_TETCI_2024_3382232
crossref_primary_10_12677_AAM_2023_123094
crossref_primary_10_1002_rnc_5026
crossref_primary_10_1109_TNNLS_2021_3130173
crossref_primary_10_1007_s10957_024_02552_w
crossref_primary_10_1016_j_ces_2022_117449
crossref_primary_10_1109_TAC_2020_2969721
crossref_primary_10_1109_TAC_2020_2996205
crossref_primary_10_1109_TAC_2022_3207866
crossref_primary_10_1109_JPROC_2018_2823638
crossref_primary_10_1016_j_ijepes_2022_108601
crossref_primary_10_1109_TAC_2020_3021011
crossref_primary_10_1016_j_amc_2021_126794
crossref_primary_10_1109_JPROC_2020_3021381
crossref_primary_10_1109_TSP_2022_3160238
crossref_primary_10_1109_LCSYS_2018_2834316
crossref_primary_10_1109_TAC_2019_2901829
crossref_primary_10_1109_TAC_2018_2797164
crossref_primary_10_1007_s12555_018_9543_9
crossref_primary_10_1016_j_arcontrol_2019_05_006
crossref_primary_10_1016_j_jfranklin_2023_11_017
crossref_primary_10_1109_ACCESS_2020_2978087
crossref_primary_10_1109_TAC_2020_2981035
crossref_primary_10_1587_transfun_2019MAP0008
crossref_primary_10_1109_TSG_2021_3067172
crossref_primary_10_1109_TAC_2022_3230771
crossref_primary_10_1109_TSP_2020_2981762
crossref_primary_10_1016_j_jpdc_2022_03_014
crossref_primary_10_1109_TAC_2020_2989282
crossref_primary_10_1002_rnc_6887
crossref_primary_10_1186_s13634_018_0596_y
crossref_primary_10_1109_TSMC_2019_2960770
crossref_primary_10_1109_TSIPN_2020_3037837
crossref_primary_10_1109_TSIPN_2018_2846183
crossref_primary_10_3390_en16237898
crossref_primary_10_1007_s10957_024_02554_8
crossref_primary_10_1109_TII_2023_3321027
crossref_primary_10_1631_FITEE_2000615
crossref_primary_10_1002_rnc_6059
crossref_primary_10_3390_math10030357
crossref_primary_10_1016_j_sysconle_2023_105505
crossref_primary_10_1109_TAC_2024_3352328
crossref_primary_10_1109_TNSE_2023_3300736
crossref_primary_10_1109_TAC_2019_2930234
crossref_primary_10_1109_TSIPN_2024_3407660
crossref_primary_10_1109_TAC_2020_3018743
crossref_primary_10_1109_TSIPN_2022_3190743
crossref_primary_10_1109_TAC_2020_2995814
crossref_primary_10_1109_TCYB_2022_3191938
crossref_primary_10_1049_cth2_12022
crossref_primary_10_1049_iet_cta_2017_1322
crossref_primary_10_1109_TAC_2021_3108501
crossref_primary_10_1109_TSMC_2024_3516936
crossref_primary_10_1109_JPROC_2020_3007395
crossref_primary_10_1109_TAC_2020_3011358
crossref_primary_10_1109_TAC_2018_2816104
crossref_primary_10_1109_TAC_2022_3160684
crossref_primary_10_1109_TSMC_2019_2946287
crossref_primary_10_1016_j_ifacol_2019_12_185
crossref_primary_10_1109_TAC_2023_3275927
crossref_primary_10_1109_LCSYS_2020_3006420
crossref_primary_10_1016_j_sysconle_2023_105679
crossref_primary_10_1049_cth2_12421
crossref_primary_10_1109_TSP_2019_2926022
crossref_primary_10_1587_transfun_E102_A_343
Cites_doi 10.1145/984622.984626
10.1109/TSP.2009.2038423
10.1109/CDC.2012.6426375
10.1109/ACSSC.2014.7094740
10.1109/Allerton.2012.6483403
10.1137/130943170
10.1016/j.jcss.2006.01.003
10.1109/TAC.2014.2364096
10.1109/ISIT.2010.5513273
10.1137/14096668X
10.1109/MSP.2014.2329397
10.1109/CDC.2015.7402401
10.1109/TSP.2009.2038417
10.1109/TCNS.2015.2428411
10.1109/TAC.2003.812781
10.1109/CDC.2012.6425904
10.1109/TAC.2008.2007159
10.1007/s00026-005-0237-z
10.1287/opre.18.1.87
10.1109/GlobalSIP.2013.6736882
10.1109/TAC.2004.834113
10.1109/TAC.2011.2161027
10.1016/j.jpdc.2006.08.010
10.1109/WD.2009.5449659
10.1109/ICASSP.2014.6854644
10.1109/TAC.2008.2009515
10.1109/TSP.2014.2304432
10.1016/j.automatica.2012.08.003
10.1109/TSP.2013.2254478
10.1109/TSP.2010.2055862
10.1109/SFCS.2003.1238221
10.1109/TAC.2014.2298712
10.1561/2200000016
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAC.2017.2672698
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4993
ExternalDocumentID 10_1109_TAC_2017_2672698
7862143
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1350264
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c329t-dd7c69cf94ebe85f08ade522eb84c56a3ffd121508536df394c50a8011a9d09d3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Tue Jul 01 03:36:15 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Wed Aug 27 02:52:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-dd7c69cf94ebe85f08ade522eb84c56a3ffd121508536df394c50a8011a9d09d3
PageCount 14
ParticipantIDs crossref_primary_10_1109_TAC_2017_2672698
crossref_citationtrail_10_1109_TAC_2017_2672698
ieee_primary_7862143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Oct.
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
xiao (ref29) 2007; 67
ref15
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
xi (ref36) 2015
l (ref8) 2006; 72
xi (ref31) 2016
stewart (ref39) 1990
ref24
ref23
ref26
ref25
ref20
ref41
ref21
zeng (ref37) 2016; 34
ref27
bhatia (ref40) 2013; 169
xi (ref30) 2015
ref7
ref9
ref4
ref3
ref6
olfati-saber (ref28) 2003; 2
ref5
tsianos (ref22) 2013
References_xml – ident: ref6
  doi: 10.1145/984622.984626
– ident: ref7
  doi: 10.1109/TSP.2009.2038423
– ident: ref21
  doi: 10.1109/CDC.2012.6426375
– year: 1990
  ident: ref39
  publication-title: Matrix Perturbation Theory
– ident: ref19
  doi: 10.1109/ACSSC.2014.7094740
– ident: ref23
  doi: 10.1109/Allerton.2012.6483403
– ident: ref11
  doi: 10.1137/130943170
– volume: 34
  start-page: 1
  year: 2016
  ident: ref37
  article-title: Extrapush for convex smooth decentralized optimization over directed networks
  publication-title: J Comput Math
– volume: 72
  start-page: 706
  year: 2006
  ident: ref8
  article-title: A distributed multiple dimensional QOS constrained resource scheduling optimization policy in computational grid
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2006.01.003
– ident: ref20
  doi: 10.1109/TAC.2014.2364096
– year: 2016
  ident: ref31
  article-title: Distributed subgradient projection algorithm over directed graphs
  publication-title: IEEE Trans Automatic Control
– ident: ref25
  doi: 10.1109/ISIT.2010.5513273
– ident: ref18
  doi: 10.1137/14096668X
– ident: ref1
  doi: 10.1109/MSP.2014.2329397
– ident: ref33
  doi: 10.1109/CDC.2015.7402401
– ident: ref5
  doi: 10.1109/TSP.2009.2038417
– ident: ref38
  doi: 10.1109/TCNS.2015.2428411
– ident: ref26
  doi: 10.1109/TAC.2003.812781
– ident: ref14
  doi: 10.1109/CDC.2012.6425904
– ident: ref3
  doi: 10.1109/TAC.2008.2007159
– ident: ref41
  doi: 10.1007/s00026-005-0237-z
– ident: ref34
  doi: 10.1287/opre.18.1.87
– volume: 2
  start-page: 951
  year: 2003
  ident: ref28
  article-title: Consensus protocols for networks of dynamic agents
  publication-title: Proc IEEE Amer Control Conf
– ident: ref35
  doi: 10.1109/GlobalSIP.2013.6736882
– ident: ref27
  doi: 10.1109/TAC.2004.834113
– year: 2013
  ident: ref22
  article-title: The role of the network in distributed optimization algorithms: convergence rates, scalability, communication/computation tradeoffs and communication delays
– ident: ref12
  doi: 10.1109/TAC.2011.2161027
– volume: 67
  start-page: 33
  year: 2007
  ident: ref29
  article-title: Distributed average consensus with least-mean-square deviation
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2006.08.010
– year: 2015
  ident: ref30
  article-title: Distributed gradient descent over directed graphs
– volume: 169
  year: 2013
  ident: ref40
  publication-title: Matrix Analysis
– ident: ref9
  doi: 10.1109/WD.2009.5449659
– ident: ref17
  doi: 10.1109/ICASSP.2014.6854644
– ident: ref10
  doi: 10.1109/TAC.2008.2009515
– ident: ref15
  doi: 10.1109/TSP.2014.2304432
– ident: ref32
  doi: 10.1016/j.automatica.2012.08.003
– ident: ref13
  doi: 10.1109/TSP.2013.2254478
– ident: ref4
  doi: 10.1109/TSP.2010.2055862
– ident: ref24
  doi: 10.1109/SFCS.2003.1238221
– ident: ref16
  doi: 10.1109/TAC.2014.2298712
– ident: ref2
  doi: 10.1561/2200000016
– year: 2015
  ident: ref36
  article-title: On the linear convergence of distributed optimization over directed graphs
SSID ssj0016441
Score 2.5946655
Snippet This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4980
SubjectTerms Acceleration
Convergence
Directed graphs
Distributed algorithms
distributed optimization
Indexes
Linear programming
multiagent networks
Optimization
Symmetric matrices
Title DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs
URI https://ieeexplore.ieee.org/document/7862143
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5se9IHb1OcN_Lgi2C72q5p44NQ5uYQ5kA22FtJc1FxF9m6F3-9J21Xpoj4FkICIef2JTnnC8ClSkLmB05iUa5MSQ5Dm3OFuYCnKP1Ecq7NfUf_ifZGrcexP67AdVkLo5TKks-UbZrZW76ci5W5KmsGCL8xvlehige3vFarfDEwcT33umjAblg-STqsOYzaJocrsF0auJSF30LQxp8qWUjp7kJ_vZg8k-TdXqWJLT5_8DT-d7V7sFNgSxLlyrAPFTU7gO0NxsE63N13xsPn6JZEpMuXKYkmL_PFW_o6JQheyQD9x7QozCQDVHKSe0QlyYMhtl4ewqjbGbZ7VvGFgiU8l6WWlIGgTGjWQmGFvnZCLhVCLhRRS_iUe1pLwy-BwMujUnsMex2OUeuGM-kw6R1BbTafqWMgmqO9UzyemLoFQd0EgRViGU9SgZhIhw1ornc1FgW_uPnmYhJn5wyHxSiH2MghLuTQgKtyxkfOrfHH2LrZ4XJcsbknv3efwpaZnCfdnUEtXazUOYKHNLnItOYLqwS9nQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxnjlwQWJb165pwwGpGhsD9pDQJu1WpUkKiD3Q1l349ThtVw2EELcqSqooduIvsf0Z4FIFLrMdIyhRrnRKDsM9Zwr9AE9R-oHkPNTvHZ0ubQ1qj0N7mIPrLBdGKRUHn6my_ox9-XIqFvqprOIg_Eb7vgbraPftapKtlfkMtGVPzl3cwqabOSUNVul7dR3F5ZRN6piUud-M0EpVldioNHegs5xOEkvyXl5EQVl8_mBq_O98d2E7RZfES9RhD3Jqsg9bK5yDBbi9awz7z94N8UiTzyPijV6ms7fodUwQvpIeniDjNDWT9FDNSXImKknuNbX1_AAGzUa_3iqlRRRKwjJZVJLSEZSJkNVQXK4dGi6XCkEXCqkmbMqtMJSaYQKhl0VlaDFsNTjarSpn0mDSOoT8ZDpRR0BCjjue4gVFZy4IagYIrRDNWJIKREWhW4TKclV9kTKM60IXIz--aRjMRzn4Wg5-KociXGUjPhJ2jT_6FvQKZ_3SxT3-vfkCNlr9TttvP3SfTmBT_ygJwTuFfDRbqDOEElFwHmvQF8IgwOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEXTRA%3A+A+Fast+Algorithm+for+Optimization+Over+Directed+Graphs&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Xi%2C+Chenguang&rft.au=Khan%2C+Usman+A.&rft.date=2017-10-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=62&rft.issue=10&rft.spage=4980&rft.epage=4993&rft_id=info:doi/10.1109%2FTAC.2017.2672698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2017_2672698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon