Post-synthetic modification of metal–organic frameworks for chiral gas chromatography
Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 37; pp. 17861 - 17866 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C8TA06804F |
Cover
Loading…
Abstract | Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized
via
grafting various chiral recognition sites of ligands onto MIL-101–NH
2
. The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs
via
direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography. |
---|---|
AbstractList | Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH2. The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography. Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH₂. The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography. Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH 2 . The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography. |
Author | Yang, Cheng-Xiong Yan, Xiu-Ping Kou, Wen-Ting |
Author_xml | – sequence: 1 givenname: Wen-Ting orcidid: 0000-0003-2269-0121 surname: Kou fullname: Kou, Wen-Ting organization: College of Chemistry, Research Center for Analytical Science, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071 – sequence: 2 givenname: Cheng-Xiong orcidid: 0000-0002-0817-2232 surname: Yang fullname: Yang, Cheng-Xiong organization: College of Chemistry, Research Center for Analytical Science, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071 – sequence: 3 givenname: Xiu-Ping orcidid: 0000-0001-9953-7681 surname: Yan fullname: Yan, Xiu-Ping organization: State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University |
BookMark | eNptkMFKAzEURYNUsNZu_IIBNyKMJplMmixLsSoUdFFxObzJJG3qzKQmKdKd_-Af-iVOrSiIb_MuvHMvj3uMeq1rNUKnBF8SnMmriZiPMReYTQ9Qn-IcpyMmee9HC3GEhiGscDcCYy5lHz09uBDTsG3jUkerksZV1lgF0bo2cSZpdIT64-3d-QW03d14aPSr888hMc4namk91MkCQie9ayC6hYf1cnuCDg3UQQ-_9wA9Tq_nk9t0dn9zNxnPUpVRGdNKATelNqZkhGmNpTSsKg2MpM5kVekK5xwoL4VUnCjCgTGqNNGSZQKPTJYN0Pk-d-3dy0aHWDQ2KF3X0Gq3CQWl2SinuWSsQ8_-oCu38W33XUEJISLDjO4C8Z5S3oXgtSmUjV91RA-2LggudmUXv2V3los_lrW3Dfjtf_An08KDPg |
CitedBy_id | crossref_primary_10_1021_jacs_3c05973 crossref_primary_10_1016_j_ccr_2020_213763 crossref_primary_10_1016_j_jssc_2020_121871 crossref_primary_10_1016_j_ccr_2022_214852 crossref_primary_10_1016_j_chroma_2023_463819 crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1002_asia_201900738 crossref_primary_10_1016_j_aca_2022_340208 crossref_primary_10_1016_j_jcis_2024_03_150 crossref_primary_10_1039_D2NR01772E crossref_primary_10_1016_j_ccr_2022_214561 crossref_primary_10_1021_acs_cgd_0c00265 crossref_primary_10_1002_smll_202404554 crossref_primary_10_1039_D1NJ00571E crossref_primary_10_1016_j_jcat_2019_08_015 crossref_primary_10_1016_j_poly_2019_02_008 crossref_primary_10_3724_SP_J_1123_2020_06028 crossref_primary_10_1039_D2CS00129B crossref_primary_10_3390_chemosensors11010029 crossref_primary_10_1016_j_snb_2021_131253 crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1016_j_cclet_2024_110720 crossref_primary_10_3390_ma15238456 crossref_primary_10_1039_D0CC03349A crossref_primary_10_1002_ejic_202100090 crossref_primary_10_1039_D1TA04621G crossref_primary_10_1021_acs_inorgchem_2c02745 crossref_primary_10_1016_j_ccr_2023_215120 crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1016_j_microc_2021_106650 crossref_primary_10_1039_D0AY02310H crossref_primary_10_1002_gch2_202300244 crossref_primary_10_1021_acs_inorgchem_9b02341 crossref_primary_10_1039_D0AY01831G crossref_primary_10_1021_acs_analchem_2c03185 crossref_primary_10_1016_j_aca_2020_05_064 crossref_primary_10_3390_molecules26020491 crossref_primary_10_1107_S2053229621011347 crossref_primary_10_1016_j_inoche_2022_109577 crossref_primary_10_1021_acs_inorgchem_0c00065 crossref_primary_10_1002_jssc_202400073 crossref_primary_10_1016_j_trac_2023_117471 crossref_primary_10_1039_C9CC05307G crossref_primary_10_1016_j_chroma_2023_464032 crossref_primary_10_3724_SP_J_1123_2023_05002 crossref_primary_10_3724_SP_J_1123_2023_07029 crossref_primary_10_1016_j_electacta_2019_07_040 crossref_primary_10_1002_INMD_20230010 crossref_primary_10_1016_j_ccr_2023_215259 crossref_primary_10_1016_j_ccr_2021_214083 crossref_primary_10_1093_bulcsj_uoae016 crossref_primary_10_3724_SP_J_1123_2023_07021 crossref_primary_10_1134_S0020168521040154 crossref_primary_10_1016_j_ccr_2021_214364 crossref_primary_10_1016_j_cej_2024_155562 crossref_primary_10_1007_s11426_023_1829_8 crossref_primary_10_1016_j_microc_2024_110331 crossref_primary_10_1039_D1CE00659B crossref_primary_10_1002_chir_23408 crossref_primary_10_1007_s00604_022_05338_x crossref_primary_10_1016_j_chroma_2020_461341 crossref_primary_10_1002_slct_202101471 crossref_primary_10_1021_acsami_3c02025 crossref_primary_10_1016_j_checat_2024_100929 crossref_primary_10_1016_j_chroma_2021_462082 crossref_primary_10_1016_j_jhazmat_2021_125467 crossref_primary_10_1039_D1CE00067E crossref_primary_10_1063_5_0035739 crossref_primary_10_1021_acs_iecr_2c00303 crossref_primary_10_1002_elps_202100116 crossref_primary_10_1016_j_jcoa_2021_100002 crossref_primary_10_1002_chem_201905091 crossref_primary_10_1039_D4SC04990J crossref_primary_10_1016_j_bioelechem_2019_107396 crossref_primary_10_1021_acsaem_4c01926 crossref_primary_10_1039_D0CS01236J crossref_primary_10_1039_D2NJ01748B crossref_primary_10_1021_acsami_9b22023 crossref_primary_10_1039_D3RA02489J crossref_primary_10_1016_j_molstruc_2022_133314 crossref_primary_10_1007_s00604_022_05282_w crossref_primary_10_1016_j_cclet_2024_109787 crossref_primary_10_1016_j_ccr_2024_215697 crossref_primary_10_1007_s00604_022_05448_6 crossref_primary_10_1016_j_chroma_2021_462239 crossref_primary_10_1016_j_apmt_2020_100796 crossref_primary_10_1021_acsami_4c14239 crossref_primary_10_1016_j_trac_2024_117864 crossref_primary_10_3390_ma13184084 crossref_primary_10_1016_j_chroma_2022_463341 crossref_primary_10_1021_jacs_0c11276 crossref_primary_10_1002_chir_70011 crossref_primary_10_1016_j_aca_2025_343933 crossref_primary_10_1016_j_chroma_2019_460420 crossref_primary_10_1002_asia_202100039 crossref_primary_10_1002_elps_202100299 crossref_primary_10_1016_j_aca_2024_343377 crossref_primary_10_1016_j_jssc_2023_124289 crossref_primary_10_1016_j_sampre_2023_100075 crossref_primary_10_1016_j_trac_2020_115808 crossref_primary_10_1002_adfm_202101335 crossref_primary_10_1021_acs_analchem_3c01178 crossref_primary_10_1016_j_jssc_2024_125090 crossref_primary_10_1021_acs_analchem_4c00526 crossref_primary_10_1021_jacs_1c11051 crossref_primary_10_1016_j_est_2023_109518 crossref_primary_10_1016_j_talanta_2021_123143 crossref_primary_10_1021_acs_analchem_1c02326 crossref_primary_10_1039_D1CC04465F crossref_primary_10_1039_D0CY00823K crossref_primary_10_1021_acs_analchem_3c03089 crossref_primary_10_1016_j_jpha_2024_101176 crossref_primary_10_1016_j_seppur_2024_129804 crossref_primary_10_1016_j_talanta_2023_125255 crossref_primary_10_1039_D0RA02647F crossref_primary_10_1039_C9CC05912A crossref_primary_10_1039_D3TA05158G |
Cites_doi | 10.1021/ic900796n 10.1021/ja801848j 10.1021/jacs.7b01686 10.1039/C5CC00366K 10.1039/C7DT00808B 10.1021/ja302340b 10.1021/jacs.7b12110 10.1002/adma.201000197 10.1021/cm103644b 10.1021/ja302110d 10.1021/ja901440g 10.1016/j.chroma.2015.11.038 10.1038/ncomms12104 10.1021/ac403674p 10.1021/ja1058229 10.1021/jacs.7b00280 10.1002/chem.201403382 10.1021/ja2044453 10.1021/acsami.7b09091 10.1039/b806150e 10.1021/jacs.5b05327 10.1021/ic1011549 10.1021/acsami.6b07686 10.1039/c0cc04526h 10.1039/C4CC07648F 10.1021/ja302380x 10.1021/ja4129795 10.1002/chir.22588 10.1039/c3cc41966e 10.1002/anie.200906560 10.1002/anie.200903433 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/C8TA06804F |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 17866 |
ExternalDocumentID | 10_1039_C8TA06804F |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c329t-dca6fbeffb414ee099f4dbfa79e39dded056a26b89c61c16a442ce1e943807f33 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 08:43:55 EDT 2025 Mon Jun 30 12:05:27 EDT 2025 Tue Jul 01 03:13:54 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-dca6fbeffb414ee099f4dbfa79e39dded056a26b89c61c16a442ce1e943807f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9953-7681 0000-0002-0817-2232 0000-0003-2269-0121 |
PQID | 2111830423 |
PQPubID | 2047523 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2237525944 proquest_journals_2111830423 crossref_citationtrail_10_1039_C8TA06804F crossref_primary_10_1039_C8TA06804F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (C8TA06804F-(cit19)/*[position()=1]) 2017; 139 Garibay (C8TA06804F-(cit22)/*[position()=1]) 2009; 48 Garibay (C8TA06804F-(cit29)/*[position()=1]) 2010; 49 Tanabe (C8TA06804F-(cit30)/*[position()=1]) 2008; 130 Liu (C8TA06804F-(cit31)/*[position()=1]) 2014; 20 Han (C8TA06804F-(cit6)/*[position()=1]) 2018; 140 Bernt (C8TA06804F-(cit20)/*[position()=1]) 2011; 47 Zhu (C8TA06804F-(cit25)/*[position()=1]) 2016; 8 Tanabe (C8TA06804F-(cit23)/*[position()=1]) 2009; 48 Du (C8TA06804F-(cit24)/*[position()=1]) 2017; 9 Gu (C8TA06804F-(cit8)/*[position()=1]) 2010; 49 Dong (C8TA06804F-(cit7)/*[position()=1]) 2014; 50 Kuang (C8TA06804F-(cit15)/*[position()=1]) 2014; 86 Dugan (C8TA06804F-(cit28)/*[position()=1]) 2008; 29 Serra-Crespo (C8TA06804F-(cit26)/*[position()=1]) 2011; 23 Chang (C8TA06804F-(cit9)/*[position()=1]) 2010; 132 Zhu (C8TA06804F-(cit11)/*[position()=1]) 2012; 134 Banerjee (C8TA06804F-(cit18)/*[position()=1]) 2009; 131 Jiang (C8TA06804F-(cit21)/*[position()=1]) 2015; 51 Navarro-Sanchez (C8TA06804F-(cit32)/*[position()=1]) 2017; 139 Deng (C8TA06804F-(cit4)/*[position()=1]) 2017; 46 Li (C8TA06804F-(cit13)/*[position()=1]) 2014; 136 Liu (C8TA06804F-(cit1)/*[position()=1]) 2010; 22 Wanderley (C8TA06804F-(cit10)/*[position()=1]) 2012; 134 Das (C8TA06804F-(cit12)/*[position()=1]) 2012; 134 Xie (C8TA06804F-(cit14)/*[position()=1]) 2011; 133 Bonnefoy (C8TA06804F-(cit27)/*[position()=1]) 2015; 137 Qian (C8TA06804F-(cit3)/*[position()=1]) 2016; 7 Zhang (C8TA06804F-(cit2)/*[position()=1]) 2016; 28 Zhang (C8TA06804F-(cit16)/*[position()=1]) 2013; 49 Peng (C8TA06804F-(cit17)/*[position()=1]) 2014; 2 Zhang (C8TA06804F-(cit5)/*[position()=1]) 2015; 1426 |
References_xml | – volume: 48 start-page: 7341 year: 2009 ident: C8TA06804F-(cit22)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic900796n – volume: 130 start-page: 8508 year: 2008 ident: C8TA06804F-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801848j – volume: 139 start-page: 9419 year: 2017 ident: C8TA06804F-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 51 start-page: 6540 year: 2015 ident: C8TA06804F-(cit21)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00366K – volume: 46 start-page: 6830 year: 2017 ident: C8TA06804F-(cit4)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00808B – volume: 134 start-page: 8058 year: 2012 ident: C8TA06804F-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302340b – volume: 140 start-page: 892 year: 2018 ident: C8TA06804F-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12110 – volume: 22 start-page: 4112 year: 2010 ident: C8TA06804F-(cit1)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201000197 – volume: 23 start-page: 2565 year: 2011 ident: C8TA06804F-(cit26)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm103644b – volume: 134 start-page: 9050 year: 2012 ident: C8TA06804F-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302110d – volume: 131 start-page: 7524 year: 2009 ident: C8TA06804F-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901440g – volume: 1426 start-page: 174 year: 2015 ident: C8TA06804F-(cit5)/*[position()=1] publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2015.11.038 – volume: 7 start-page: 12104 year: 2016 ident: C8TA06804F-(cit3)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms12104 – volume: 86 start-page: 1277 year: 2014 ident: C8TA06804F-(cit15)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac403674p – volume: 132 start-page: 13645 year: 2010 ident: C8TA06804F-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1058229 – volume: 2 start-page: 5406 year: 2014 ident: C8TA06804F-(cit17)/*[position()=1] publication-title: Nat. Commun. – volume: 139 start-page: 4294 year: 2017 ident: C8TA06804F-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00280 – volume: 20 start-page: 14090 year: 2014 ident: C8TA06804F-(cit31)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201403382 – volume: 133 start-page: 11892 year: 2011 ident: C8TA06804F-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2044453 – volume: 9 start-page: 30925 year: 2017 ident: C8TA06804F-(cit24)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09091 – volume: 29 start-page: 3366 year: 2008 ident: C8TA06804F-(cit28)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b806150e – volume: 137 start-page: 9409 year: 2015 ident: C8TA06804F-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05327 – volume: 49 start-page: 8086 year: 2010 ident: C8TA06804F-(cit29)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic1011549 – volume: 8 start-page: 22696 year: 2016 ident: C8TA06804F-(cit25)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07686 – volume: 47 start-page: 2838 year: 2011 ident: C8TA06804F-(cit20)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc04526h – volume: 50 start-page: 14949 year: 2014 ident: C8TA06804F-(cit7)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC07648F – volume: 134 start-page: 8703 year: 2012 ident: C8TA06804F-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302380x – volume: 136 start-page: 547 year: 2014 ident: C8TA06804F-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4129795 – volume: 28 start-page: 340 year: 2016 ident: C8TA06804F-(cit2)/*[position()=1] publication-title: Chirality doi: 10.1002/chir.22588 – volume: 49 start-page: 5201 year: 2013 ident: C8TA06804F-(cit16)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc41966e – volume: 49 start-page: 1477 year: 2010 ident: C8TA06804F-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906560 – volume: 48 start-page: 7424 year: 2009 ident: C8TA06804F-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903433 |
SSID | ssj0000800699 |
Score | 2.5502717 |
Snippet | Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 17861 |
SubjectTerms | Catalysis catalytic activity Chromatography coordination polymers Gas chromatography ligands Metal-organic frameworks Recognition Separation Synthesis |
Title | Post-synthetic modification of metal–organic frameworks for chiral gas chromatography |
URI | https://www.proquest.com/docview/2111830423 https://www.proquest.com/docview/2237525944 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLCgILqhyaWLn4WNVtVqgLBxSkVtkO_YuEpustslhOfEf-If8EsZOnKbaPSxcrMieRInns2c8mQdCb0MeK0USAStNx5gWhcSccTilzBTVPI5UYMPFPp9Exxv6MQuz0ehq4LXU1GIqf94YV_I_XIU-4KuJkv0HzvYPhQ64Bv5CCxyG9lY8NpV28faqBCXO5F09rwrj-NMrgecKNGvnzUDa-k1yop07ls3EYKK5TYz-Kd_C5WUFCuwwifV1tRUI2k8D8q5W3HQyb8N-3IhNI94GFVq7vAvSMn64vQn_U9VYBz9V4tTJT7P9dAbsxZkqT3EGnzIcMiPZ9wZ_dXd0Bovh7hrMwhmOaVvC1m2_0QBlJJ5cTP04iXxs2uHOansHYrofvyYDZsSkUJVJzU1dEap3ks793T_5kq8263WeLrP0DjoM4IQBe_rhfJl-WPcGOqNKR7b-aP_aLr0tYe93j99XaPbluVVS0gfofscmb95C5SEaqfIRujfIOfkYfdsHjTcEjVdpz4Lmz6_fHVy8HVw8YKvXwsUDuHj7cHmCNqtlujjGXXUNLEnAalxIHmmhtBbUp0rBSUHTQsD6ZIowEHoFqMY8iETCZORLP-KUBlL5itkaBZqQp-igrEr1DHmCCxUUoRYzATLB50yzMIHbQxnFVGs1Ru_cFOWySz1vKqD8yK0LBGH5IknndjpXY_Smp71oE67cSHXkZjrvFuQ2D0BuJ8Y8R8bodT8MK8H8A-OlqhqgCUgcwpGf0ue3oHmB7hoEtya3I3RQXzbqJSihtXjVweUv0n6PPA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-synthetic+modification+of+metal%E2%80%93organic+frameworks+for+chiral+gas+chromatography&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Kou%2C+Wen-Ting&rft.au=Yang%2C+Cheng-Xiong&rft.au=Yan%2C+Xiu-Ping&rft.date=2018&rft.issn=2050-7496&rft.volume=6&rft.issue=37+p.17861-17866&rft.spage=17861&rft.epage=17866&rft_id=info:doi/10.1039%2Fc8ta06804f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |