Post-synthetic modification of metal–organic frameworks for chiral gas chromatography

Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 37; pp. 17861 - 17866
Main Authors Kou, Wen-Ting, Yang, Cheng-Xiong, Yan, Xiu-Ping
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/C8TA06804F

Cover

Loading…
Abstract Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH 2 . The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography.
AbstractList Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH2. The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography.
Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH₂. The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography.
Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited availability of chiral MOFs and chiral recognition centers due to the great challenges for direct synthesis of chiral MOFs with designed chiral recognition sites. Here we report a post-synthesis approach for the facile preparation of chiral MOFs for chiral gas chromatography. Five chiral MOFs with an identical parent framework but different chiral recognition sites were synthesized via grafting various chiral recognition sites of ligands onto MIL-101–NH 2 . The chiral MOF-coated capillary columns gave good resolution for the separation of diverse racemates with superior separation to the commercial chiral capillary columns. The results reveal that the post-synthesis approach is convenient to fabricate target chiral MOFs with pre-designed functions with the ability to avoid blind synthesis of chiral MOFs via direct synthesis and to facilitate the evolution of chiral stationary phases in chiral chromatography.
Author Yang, Cheng-Xiong
Yan, Xiu-Ping
Kou, Wen-Ting
Author_xml – sequence: 1
  givenname: Wen-Ting
  orcidid: 0000-0003-2269-0121
  surname: Kou
  fullname: Kou, Wen-Ting
  organization: College of Chemistry, Research Center for Analytical Science, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071
– sequence: 2
  givenname: Cheng-Xiong
  orcidid: 0000-0002-0817-2232
  surname: Yang
  fullname: Yang, Cheng-Xiong
  organization: College of Chemistry, Research Center for Analytical Science, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071
– sequence: 3
  givenname: Xiu-Ping
  orcidid: 0000-0001-9953-7681
  surname: Yan
  fullname: Yan, Xiu-Ping
  organization: State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University
BookMark eNptkMFKAzEURYNUsNZu_IIBNyKMJplMmixLsSoUdFFxObzJJG3qzKQmKdKd_-Af-iVOrSiIb_MuvHMvj3uMeq1rNUKnBF8SnMmriZiPMReYTQ9Qn-IcpyMmee9HC3GEhiGscDcCYy5lHz09uBDTsG3jUkerksZV1lgF0bo2cSZpdIT64-3d-QW03d14aPSr888hMc4namk91MkCQie9ayC6hYf1cnuCDg3UQQ-_9wA9Tq_nk9t0dn9zNxnPUpVRGdNKATelNqZkhGmNpTSsKg2MpM5kVekK5xwoL4VUnCjCgTGqNNGSZQKPTJYN0Pk-d-3dy0aHWDQ2KF3X0Gq3CQWl2SinuWSsQ8_-oCu38W33XUEJISLDjO4C8Z5S3oXgtSmUjV91RA-2LggudmUXv2V3los_lrW3Dfjtf_An08KDPg
CitedBy_id crossref_primary_10_1021_jacs_3c05973
crossref_primary_10_1016_j_ccr_2020_213763
crossref_primary_10_1016_j_jssc_2020_121871
crossref_primary_10_1016_j_ccr_2022_214852
crossref_primary_10_1016_j_chroma_2023_463819
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1002_asia_201900738
crossref_primary_10_1016_j_aca_2022_340208
crossref_primary_10_1016_j_jcis_2024_03_150
crossref_primary_10_1039_D2NR01772E
crossref_primary_10_1016_j_ccr_2022_214561
crossref_primary_10_1021_acs_cgd_0c00265
crossref_primary_10_1002_smll_202404554
crossref_primary_10_1039_D1NJ00571E
crossref_primary_10_1016_j_jcat_2019_08_015
crossref_primary_10_1016_j_poly_2019_02_008
crossref_primary_10_3724_SP_J_1123_2020_06028
crossref_primary_10_1039_D2CS00129B
crossref_primary_10_3390_chemosensors11010029
crossref_primary_10_1016_j_snb_2021_131253
crossref_primary_10_1021_acs_chemrev_1c00740
crossref_primary_10_1016_j_cclet_2024_110720
crossref_primary_10_3390_ma15238456
crossref_primary_10_1039_D0CC03349A
crossref_primary_10_1002_ejic_202100090
crossref_primary_10_1039_D1TA04621G
crossref_primary_10_1021_acs_inorgchem_2c02745
crossref_primary_10_1016_j_ccr_2023_215120
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1016_j_microc_2021_106650
crossref_primary_10_1039_D0AY02310H
crossref_primary_10_1002_gch2_202300244
crossref_primary_10_1021_acs_inorgchem_9b02341
crossref_primary_10_1039_D0AY01831G
crossref_primary_10_1021_acs_analchem_2c03185
crossref_primary_10_1016_j_aca_2020_05_064
crossref_primary_10_3390_molecules26020491
crossref_primary_10_1107_S2053229621011347
crossref_primary_10_1016_j_inoche_2022_109577
crossref_primary_10_1021_acs_inorgchem_0c00065
crossref_primary_10_1002_jssc_202400073
crossref_primary_10_1016_j_trac_2023_117471
crossref_primary_10_1039_C9CC05307G
crossref_primary_10_1016_j_chroma_2023_464032
crossref_primary_10_3724_SP_J_1123_2023_05002
crossref_primary_10_3724_SP_J_1123_2023_07029
crossref_primary_10_1016_j_electacta_2019_07_040
crossref_primary_10_1002_INMD_20230010
crossref_primary_10_1016_j_ccr_2023_215259
crossref_primary_10_1016_j_ccr_2021_214083
crossref_primary_10_1093_bulcsj_uoae016
crossref_primary_10_3724_SP_J_1123_2023_07021
crossref_primary_10_1134_S0020168521040154
crossref_primary_10_1016_j_ccr_2021_214364
crossref_primary_10_1016_j_cej_2024_155562
crossref_primary_10_1007_s11426_023_1829_8
crossref_primary_10_1016_j_microc_2024_110331
crossref_primary_10_1039_D1CE00659B
crossref_primary_10_1002_chir_23408
crossref_primary_10_1007_s00604_022_05338_x
crossref_primary_10_1016_j_chroma_2020_461341
crossref_primary_10_1002_slct_202101471
crossref_primary_10_1021_acsami_3c02025
crossref_primary_10_1016_j_checat_2024_100929
crossref_primary_10_1016_j_chroma_2021_462082
crossref_primary_10_1016_j_jhazmat_2021_125467
crossref_primary_10_1039_D1CE00067E
crossref_primary_10_1063_5_0035739
crossref_primary_10_1021_acs_iecr_2c00303
crossref_primary_10_1002_elps_202100116
crossref_primary_10_1016_j_jcoa_2021_100002
crossref_primary_10_1002_chem_201905091
crossref_primary_10_1039_D4SC04990J
crossref_primary_10_1016_j_bioelechem_2019_107396
crossref_primary_10_1021_acsaem_4c01926
crossref_primary_10_1039_D0CS01236J
crossref_primary_10_1039_D2NJ01748B
crossref_primary_10_1021_acsami_9b22023
crossref_primary_10_1039_D3RA02489J
crossref_primary_10_1016_j_molstruc_2022_133314
crossref_primary_10_1007_s00604_022_05282_w
crossref_primary_10_1016_j_cclet_2024_109787
crossref_primary_10_1016_j_ccr_2024_215697
crossref_primary_10_1007_s00604_022_05448_6
crossref_primary_10_1016_j_chroma_2021_462239
crossref_primary_10_1016_j_apmt_2020_100796
crossref_primary_10_1021_acsami_4c14239
crossref_primary_10_1016_j_trac_2024_117864
crossref_primary_10_3390_ma13184084
crossref_primary_10_1016_j_chroma_2022_463341
crossref_primary_10_1021_jacs_0c11276
crossref_primary_10_1002_chir_70011
crossref_primary_10_1016_j_aca_2025_343933
crossref_primary_10_1016_j_chroma_2019_460420
crossref_primary_10_1002_asia_202100039
crossref_primary_10_1002_elps_202100299
crossref_primary_10_1016_j_aca_2024_343377
crossref_primary_10_1016_j_jssc_2023_124289
crossref_primary_10_1016_j_sampre_2023_100075
crossref_primary_10_1016_j_trac_2020_115808
crossref_primary_10_1002_adfm_202101335
crossref_primary_10_1021_acs_analchem_3c01178
crossref_primary_10_1016_j_jssc_2024_125090
crossref_primary_10_1021_acs_analchem_4c00526
crossref_primary_10_1021_jacs_1c11051
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1016_j_talanta_2021_123143
crossref_primary_10_1021_acs_analchem_1c02326
crossref_primary_10_1039_D1CC04465F
crossref_primary_10_1039_D0CY00823K
crossref_primary_10_1021_acs_analchem_3c03089
crossref_primary_10_1016_j_jpha_2024_101176
crossref_primary_10_1016_j_seppur_2024_129804
crossref_primary_10_1016_j_talanta_2023_125255
crossref_primary_10_1039_D0RA02647F
crossref_primary_10_1039_C9CC05912A
crossref_primary_10_1039_D3TA05158G
Cites_doi 10.1021/ic900796n
10.1021/ja801848j
10.1021/jacs.7b01686
10.1039/C5CC00366K
10.1039/C7DT00808B
10.1021/ja302340b
10.1021/jacs.7b12110
10.1002/adma.201000197
10.1021/cm103644b
10.1021/ja302110d
10.1021/ja901440g
10.1016/j.chroma.2015.11.038
10.1038/ncomms12104
10.1021/ac403674p
10.1021/ja1058229
10.1021/jacs.7b00280
10.1002/chem.201403382
10.1021/ja2044453
10.1021/acsami.7b09091
10.1039/b806150e
10.1021/jacs.5b05327
10.1021/ic1011549
10.1021/acsami.6b07686
10.1039/c0cc04526h
10.1039/C4CC07648F
10.1021/ja302380x
10.1021/ja4129795
10.1002/chir.22588
10.1039/c3cc41966e
10.1002/anie.200906560
10.1002/anie.200903433
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/C8TA06804F
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 17866
ExternalDocumentID 10_1039_C8TA06804F
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c329t-dca6fbeffb414ee099f4dbfa79e39dded056a26b89c61c16a442ce1e943807f33
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 08:43:55 EDT 2025
Mon Jun 30 12:05:27 EDT 2025
Tue Jul 01 03:13:54 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-dca6fbeffb414ee099f4dbfa79e39dded056a26b89c61c16a442ce1e943807f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9953-7681
0000-0002-0817-2232
0000-0003-2269-0121
PQID 2111830423
PQPubID 2047523
PageCount 6
ParticipantIDs proquest_miscellaneous_2237525944
proquest_journals_2111830423
crossref_citationtrail_10_1039_C8TA06804F
crossref_primary_10_1039_C8TA06804F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (C8TA06804F-(cit19)/*[position()=1]) 2017; 139
Garibay (C8TA06804F-(cit22)/*[position()=1]) 2009; 48
Garibay (C8TA06804F-(cit29)/*[position()=1]) 2010; 49
Tanabe (C8TA06804F-(cit30)/*[position()=1]) 2008; 130
Liu (C8TA06804F-(cit31)/*[position()=1]) 2014; 20
Han (C8TA06804F-(cit6)/*[position()=1]) 2018; 140
Bernt (C8TA06804F-(cit20)/*[position()=1]) 2011; 47
Zhu (C8TA06804F-(cit25)/*[position()=1]) 2016; 8
Tanabe (C8TA06804F-(cit23)/*[position()=1]) 2009; 48
Du (C8TA06804F-(cit24)/*[position()=1]) 2017; 9
Gu (C8TA06804F-(cit8)/*[position()=1]) 2010; 49
Dong (C8TA06804F-(cit7)/*[position()=1]) 2014; 50
Kuang (C8TA06804F-(cit15)/*[position()=1]) 2014; 86
Dugan (C8TA06804F-(cit28)/*[position()=1]) 2008; 29
Serra-Crespo (C8TA06804F-(cit26)/*[position()=1]) 2011; 23
Chang (C8TA06804F-(cit9)/*[position()=1]) 2010; 132
Zhu (C8TA06804F-(cit11)/*[position()=1]) 2012; 134
Banerjee (C8TA06804F-(cit18)/*[position()=1]) 2009; 131
Jiang (C8TA06804F-(cit21)/*[position()=1]) 2015; 51
Navarro-Sanchez (C8TA06804F-(cit32)/*[position()=1]) 2017; 139
Deng (C8TA06804F-(cit4)/*[position()=1]) 2017; 46
Li (C8TA06804F-(cit13)/*[position()=1]) 2014; 136
Liu (C8TA06804F-(cit1)/*[position()=1]) 2010; 22
Wanderley (C8TA06804F-(cit10)/*[position()=1]) 2012; 134
Das (C8TA06804F-(cit12)/*[position()=1]) 2012; 134
Xie (C8TA06804F-(cit14)/*[position()=1]) 2011; 133
Bonnefoy (C8TA06804F-(cit27)/*[position()=1]) 2015; 137
Qian (C8TA06804F-(cit3)/*[position()=1]) 2016; 7
Zhang (C8TA06804F-(cit2)/*[position()=1]) 2016; 28
Zhang (C8TA06804F-(cit16)/*[position()=1]) 2013; 49
Peng (C8TA06804F-(cit17)/*[position()=1]) 2014; 2
Zhang (C8TA06804F-(cit5)/*[position()=1]) 2015; 1426
References_xml – volume: 48
  start-page: 7341
  year: 2009
  ident: C8TA06804F-(cit22)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900796n
– volume: 130
  start-page: 8508
  year: 2008
  ident: C8TA06804F-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801848j
– volume: 139
  start-page: 9419
  year: 2017
  ident: C8TA06804F-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 51
  start-page: 6540
  year: 2015
  ident: C8TA06804F-(cit21)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00366K
– volume: 46
  start-page: 6830
  year: 2017
  ident: C8TA06804F-(cit4)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00808B
– volume: 134
  start-page: 8058
  year: 2012
  ident: C8TA06804F-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302340b
– volume: 140
  start-page: 892
  year: 2018
  ident: C8TA06804F-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12110
– volume: 22
  start-page: 4112
  year: 2010
  ident: C8TA06804F-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000197
– volume: 23
  start-page: 2565
  year: 2011
  ident: C8TA06804F-(cit26)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm103644b
– volume: 134
  start-page: 9050
  year: 2012
  ident: C8TA06804F-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302110d
– volume: 131
  start-page: 7524
  year: 2009
  ident: C8TA06804F-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901440g
– volume: 1426
  start-page: 174
  year: 2015
  ident: C8TA06804F-(cit5)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2015.11.038
– volume: 7
  start-page: 12104
  year: 2016
  ident: C8TA06804F-(cit3)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12104
– volume: 86
  start-page: 1277
  year: 2014
  ident: C8TA06804F-(cit15)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac403674p
– volume: 132
  start-page: 13645
  year: 2010
  ident: C8TA06804F-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1058229
– volume: 2
  start-page: 5406
  year: 2014
  ident: C8TA06804F-(cit17)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 139
  start-page: 4294
  year: 2017
  ident: C8TA06804F-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00280
– volume: 20
  start-page: 14090
  year: 2014
  ident: C8TA06804F-(cit31)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201403382
– volume: 133
  start-page: 11892
  year: 2011
  ident: C8TA06804F-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2044453
– volume: 9
  start-page: 30925
  year: 2017
  ident: C8TA06804F-(cit24)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09091
– volume: 29
  start-page: 3366
  year: 2008
  ident: C8TA06804F-(cit28)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b806150e
– volume: 137
  start-page: 9409
  year: 2015
  ident: C8TA06804F-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05327
– volume: 49
  start-page: 8086
  year: 2010
  ident: C8TA06804F-(cit29)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1011549
– volume: 8
  start-page: 22696
  year: 2016
  ident: C8TA06804F-(cit25)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07686
– volume: 47
  start-page: 2838
  year: 2011
  ident: C8TA06804F-(cit20)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04526h
– volume: 50
  start-page: 14949
  year: 2014
  ident: C8TA06804F-(cit7)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07648F
– volume: 134
  start-page: 8703
  year: 2012
  ident: C8TA06804F-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302380x
– volume: 136
  start-page: 547
  year: 2014
  ident: C8TA06804F-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4129795
– volume: 28
  start-page: 340
  year: 2016
  ident: C8TA06804F-(cit2)/*[position()=1]
  publication-title: Chirality
  doi: 10.1002/chir.22588
– volume: 49
  start-page: 5201
  year: 2013
  ident: C8TA06804F-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41966e
– volume: 49
  start-page: 1477
  year: 2010
  ident: C8TA06804F-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906560
– volume: 48
  start-page: 7424
  year: 2009
  ident: C8TA06804F-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200903433
SSID ssj0000800699
Score 2.5502717
Snippet Chiral metal–organic frameworks (MOFs) show great potential in chiral catalysis and separation. However, their application is still hindered by the limited...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 17861
SubjectTerms Catalysis
catalytic activity
Chromatography
coordination polymers
Gas chromatography
ligands
Metal-organic frameworks
Recognition
Separation
Synthesis
Title Post-synthetic modification of metal–organic frameworks for chiral gas chromatography
URI https://www.proquest.com/docview/2111830423
https://www.proquest.com/docview/2237525944
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLCgILqhyaWLn4WNVtVqgLBxSkVtkO_YuEpustslhOfEf-If8EsZOnKbaPSxcrMieRInns2c8mQdCb0MeK0USAStNx5gWhcSccTilzBTVPI5UYMPFPp9Exxv6MQuz0ehq4LXU1GIqf94YV_I_XIU-4KuJkv0HzvYPhQ64Bv5CCxyG9lY8NpV28faqBCXO5F09rwrj-NMrgecKNGvnzUDa-k1yop07ls3EYKK5TYz-Kd_C5WUFCuwwifV1tRUI2k8D8q5W3HQyb8N-3IhNI94GFVq7vAvSMn64vQn_U9VYBz9V4tTJT7P9dAbsxZkqT3EGnzIcMiPZ9wZ_dXd0Bovh7hrMwhmOaVvC1m2_0QBlJJ5cTP04iXxs2uHOansHYrofvyYDZsSkUJVJzU1dEap3ks793T_5kq8263WeLrP0DjoM4IQBe_rhfJl-WPcGOqNKR7b-aP_aLr0tYe93j99XaPbluVVS0gfofscmb95C5SEaqfIRujfIOfkYfdsHjTcEjVdpz4Lmz6_fHVy8HVw8YKvXwsUDuHj7cHmCNqtlujjGXXUNLEnAalxIHmmhtBbUp0rBSUHTQsD6ZIowEHoFqMY8iETCZORLP-KUBlL5itkaBZqQp-igrEr1DHmCCxUUoRYzATLB50yzMIHbQxnFVGs1Ru_cFOWySz1vKqD8yK0LBGH5IknndjpXY_Smp71oE67cSHXkZjrvFuQ2D0BuJ8Y8R8bodT8MK8H8A-OlqhqgCUgcwpGf0ue3oHmB7hoEtya3I3RQXzbqJSihtXjVweUv0n6PPA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-synthetic+modification+of+metal%E2%80%93organic+frameworks+for+chiral+gas+chromatography&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Kou%2C+Wen-Ting&rft.au=Yang%2C+Cheng-Xiong&rft.au=Yan%2C+Xiu-Ping&rft.date=2018&rft.issn=2050-7496&rft.volume=6&rft.issue=37+p.17861-17866&rft.spage=17861&rft.epage=17866&rft_id=info:doi/10.1039%2Fc8ta06804f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon