Efficient and flexible model-based clustering of jumps in diffusion processes
Jump–diffusion processes involving diffusion processes with discontinuous movements, called jumps, are widely used to model time-series data that commonly exhibit discontinuity in their sample paths. The existing jump–diffusion models have been recently extended to multivariate time-series data. The...
Saved in:
Published in | Journal of the Korean Statistical Society Vol. 48; no. 3; pp. 439 - 453 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier B.V
01.09.2019
Springer Singapore 한국통계학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Jump–diffusion processes involving diffusion processes with discontinuous movements, called jumps, are widely used to model time-series data that commonly exhibit discontinuity in their sample paths. The existing jump–diffusion models have been recently extended to multivariate time-series data. The models are, however, still limited by a single parametric jump-size distribution that is common across different subjects. Such strong parametric assumptions for the shape and structure of a jump-size distribution may be too restrictive and unrealistic for multiple subjects with different characteristics. This paper thus proposes an efficient Bayesian nonparametric method to flexibly model a jump-size distribution while borrowing information across subjects in a clustering procedure using a nested Dirichlet process. For efficient posterior computation, a partially collapsed Gibbs sampler is devised to fit the proposed model. The proposed methodology is illustrated through a simulation study and an application to daily stock price data for companies in the S&P 100 index from June 2007 to June 2017. |
---|---|
ISSN: | 1226-3192 2005-2863 |
DOI: | 10.1016/j.jkss.2019.05.002 |