Distributed Bandit Online Convex Optimization With Time-Varying Coupled Inequality Constraints

Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of cou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 66; no. 10; pp. 4620 - 4635
Main Authors Yi, Xinlei, Li, Xiuxian, Yang, Tao, Xie, Lihua, Chai, Tianyou, Johansson, Karl Henrik
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\theta })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{7/4-\theta })</tex-math></inline-formula> constraint violation are achieved in the one-point bandit feedback setting, and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\max \lbrace \kappa,1-\kappa \rbrace })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{1-\kappa /2})</tex-math></inline-formula> constraint violation in the two-point bandit feedback setting, where <inline-formula><tex-math notation="LaTeX">\theta \in (3/4,5/6]</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\kappa \in (0,1)</tex-math></inline-formula> are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature.
AbstractList Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\theta })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{7/4-\theta })</tex-math></inline-formula> constraint violation are achieved in the one-point bandit feedback setting, and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\max \lbrace \kappa,1-\kappa \rbrace })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{1-\kappa /2})</tex-math></inline-formula> constraint violation in the two-point bandit feedback setting, where <inline-formula><tex-math notation="LaTeX">\theta \in (3/4,5/6]</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\kappa \in (0,1)</tex-math></inline-formula> are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature.
Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt tominimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that O(T-theta) expected static regret and O(T7/4-theta) constraint violation are achieved in the one-point bandit feedback setting, and O((T max{kappa,1-kappa})) expected static regret and O(T1-kappa/2) constraint violation in the two-point bandit feedback setting, where theta is an element of(3/4, 5/6] and kappa is an element of(0, 1) are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature.
Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that [Formula Omitted] expected static regret and [Formula Omitted] constraint violation are achieved in the one-point bandit feedback setting, and [Formula Omitted] expected static regret and [Formula Omitted] constraint violation in the two-point bandit feedback setting, where [Formula Omitted] and [Formula Omitted] are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature.
Author Johansson, Karl Henrik
Xie, Lihua
Yang, Tao
Chai, Tianyou
Yi, Xinlei
Li, Xiuxian
Author_xml – sequence: 1
  givenname: Xinlei
  orcidid: 0000-0003-4299-0471
  surname: Yi
  fullname: Yi, Xinlei
  email: xinleiy@kth.se
  organization: Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: Xiuxian
  orcidid: 0000-0002-4938-0468
  surname: Li
  fullname: Li, Xiuxian
  email: xxli@ieee.org
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 3
  givenname: Tao
  orcidid: 0000-0003-4090-8497
  surname: Yang
  fullname: Yang, Tao
  email: yangtao@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Lihua
  orcidid: 0000-0002-7137-4136
  surname: Xie
  fullname: Xie, Lihua
  email: elhxie@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 5
  givenname: Tianyou
  orcidid: 0000-0002-4623-1483
  surname: Chai
  fullname: Chai, Tianyou
  email: tychai@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 6
  givenname: Karl Henrik
  orcidid: 0000-0001-9940-5929
  surname: Johansson
  fullname: Johansson, Karl Henrik
  email: kallej@kth.se
  organization: Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303537$$DView record from Swedish Publication Index
BookMark eNp9kDtPwzAURi1UJFpgR2KJxJziR5zYYylPqVKXUjYst3HoLakTYgcovx6HAgMDXq4sne_TvWeAerayBqETgoeEYHk-G42HFFM8ZJhhIdge6hPORUw5ZT3Ux5iIWFKRHqCBc-vwTZOE9NHjJTjfwKL1Jo8utM3BR1NbgjXRuLKv5j2a1h428KE9VDZ6AL-KZrAx8Vw3W7BPgWrrMmTvrHlpdQl-2wVDpwbr3RHaL3TpzPH3PET311ez8W08md7cjUeTeMmo9HGeLRJKZJ6HoXPMl5IXGaaMioIIriXjskgkJ4ZlhcAZp5IueKJTYbJUEyLZIYp3ve7N1O1C1Q1swoKq0qAuYT5SVfOknv1KBTucZYE_2_F1U720xnm1rtrGhhUV5RmXgjDRtaY7atlUzjWmUEvwXyK680pFsOrcq-Bede7Vt_sQxH-CPwv9EzndRcAY84tLGl5APgGi0ZCN
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_ejcon_2024_101042
crossref_primary_10_1016_j_jfranklin_2023_09_058
crossref_primary_10_1049_stg2_12063
crossref_primary_10_1109_TCNS_2022_3219765
crossref_primary_10_1109_TCNS_2024_3395849
crossref_primary_10_1007_s11768_021_00041_3
crossref_primary_10_1016_j_automatica_2024_111828
crossref_primary_10_1016_j_isatra_2024_06_033
crossref_primary_10_1109_TAC_2023_3312033
crossref_primary_10_1007_s40305_023_00496_y
crossref_primary_10_1016_j_automatica_2023_111328
crossref_primary_10_1109_LCSYS_2023_3282021
crossref_primary_10_1109_TCSS_2024_3406528
crossref_primary_10_1016_j_automatica_2023_111407
crossref_primary_10_1049_2024_5553292
crossref_primary_10_1049_cth2_12759
crossref_primary_10_1016_j_arcontrol_2023_100904
crossref_primary_10_3390_math12213439
crossref_primary_10_1016_j_automatica_2024_111681
crossref_primary_10_1016_j_amc_2023_127865
crossref_primary_10_1109_JAS_2024_124869
crossref_primary_10_1109_TAC_2023_3342850
crossref_primary_10_1109_TAC_2022_3230766
crossref_primary_10_1016_j_automatica_2022_110590
crossref_primary_10_1016_j_jfranklin_2023_09_001
crossref_primary_10_1109_TETCI_2024_3393362
crossref_primary_10_1016_j_neucom_2022_05_024
crossref_primary_10_1002_asjc_3148
crossref_primary_10_1109_TCNS_2021_3107480
crossref_primary_10_1016_j_automatica_2023_111455
crossref_primary_10_1016_j_automatica_2023_110969
crossref_primary_10_1109_TCNS_2023_3337671
crossref_primary_10_1109_TNSE_2024_3484149
crossref_primary_10_1049_cth2_12548
crossref_primary_10_1016_j_future_2024_03_022
crossref_primary_10_1002_asjc_2996
crossref_primary_10_1109_TSP_2022_3194369
crossref_primary_10_1016_j_automatica_2024_112068
crossref_primary_10_1109_TICPS_2024_3410846
crossref_primary_10_1109_TNET_2022_3222404
crossref_primary_10_1007_s11431_023_2513_8
crossref_primary_10_1016_j_jfranklin_2024_107132
crossref_primary_10_1080_00207721_2023_2209566
crossref_primary_10_1080_01691864_2023_2285806
crossref_primary_10_1109_JAS_2023_123126
crossref_primary_10_1016_j_neucom_2023_127184
Cites_doi 10.1109/ChiCC.2016.7554642
10.1109/TAC.2019.2914025
10.1145/3219617.3219635
10.1109/TAC.2017.2760284
10.1561/2400000013
10.1109/TIT.2015.2409256
10.1145/307400.307410
10.1109/TAC.2018.2884653
10.1109/TCYB.2017.2755720
10.1007/s10208-015-9296-2
10.1109/CDC40024.2019.9029474
10.1109/TAC.2017.2743462
10.1145/3393691.3394209
10.1109/TSP.2020.2964200
10.1109/JIOT.2018.2839563
10.1109/TNNLS.2014.2336806
10.1109/TIT.2012.2192096
10.1109/LCSYS.2019.2921593
10.1016/j.ijepes.2015.11.093
10.1561/2200000018
10.1109/TAC.2020.3021011
10.1109/TCNS.2020.3024321
10.1007/978-3-319-91578-4
10.1109/72.501719
10.1007/s10994-007-5016-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1109/TAC.2020.3030883
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4635
ExternalDocumentID oai_DiVA_org_kth_303537
10_1109_TAC_2020_3030883
9222230
Genre orig-research
GrantInformation_xml – fundername: Knut and Alice Wallenberg Foundation the Swedish Foundation for Strategic Research
– fundername: 2020 Science and Technology Major Project of Liaoning Province
  grantid: 2020JH1/10100008
– fundername: Vetenskapsrådet; Swedish Research Council
  funderid: 10.13039/501100004359
– fundername: Ministry of Education of Republic of Singapore
  grantid: MoE Tier 1 RG72/19
– fundername: National Natural Science Foundation of China
  grantid: 61991403; 61991404; 61991400
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c329t-d7b4219ddb42ad05c95f702328f185a9359f4951e37f8075292b54a68e76a1193
IEDL.DBID RIE
ISSN 0018-9286
1558-2523
IngestDate Thu Aug 21 07:02:24 EDT 2025
Mon Jun 30 10:10:34 EDT 2025
Tue Jul 01 03:36:36 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Wed Aug 27 02:26:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-d7b4219ddb42ad05c95f702328f185a9359f4951e37f8075292b54a68e76a1193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9940-5929
0000-0002-7137-4136
0000-0002-4938-0468
0000-0003-4299-0471
0000-0002-4623-1483
0000-0003-4090-8497
PQID 2575981389
PQPubID 85475
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TAC_2020_3030883
crossref_primary_10_1109_TAC_2020_3030883
proquest_journals_2575981389
ieee_primary_9222230
swepub_primary_oai_DiVA_org_kth_303537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References hu (ref41) 2016
ref53
ref54
ref10
saha (ref36) 2011
zinkevich (ref8) 2003
ref17
liakopoulos (ref18) 2019
neely (ref13) 0
gentile (ref6) 1999
sadeghi (ref19) 2020
shamir (ref43) 2017; 18
ref50
ref46
ref48
ref42
ref49
sun (ref12) 2017
ref7
yu (ref14) 2017
ref4
hazan (ref40) 2016
ref3
abernethy (ref34) 2008
ref5
yuan (ref52) 2019
ref35
bubeck (ref39) 2016
ref31
ref30
ref2
ref1
flaxman (ref32) 2005
hazan (ref23) 2017
yuan (ref16) 2018
jenatton (ref11) 2016
park (ref25) 2020
ref24
matyas (ref27) 1965; 26
ref26
bubeck (ref38) 2015
ref22
yuan (ref51) 2019
ref21
hazan (ref37) 2014
tatarenko (ref45) 2018
ref28
yu (ref15) 2020; 21
ref29
dani (ref33) 2008
lee (ref20) 2017
mahdavi (ref47) 2012; 13
yang (ref44) 2016
nesterov (ref56) 2018
facchinei (ref55) 2007
agarwal (ref9) 2010
References_xml – ident: ref50
  doi: 10.1109/ChiCC.2016.7554642
– ident: ref30
  doi: 10.1109/TAC.2019.2914025
– ident: ref24
  doi: 10.1145/3219617.3219635
– ident: ref2
  doi: 10.1109/TAC.2017.2760284
– volume: 26
  start-page: 246
  year: 1965
  ident: ref27
  article-title: Random optimization
  publication-title: Autom Remote Control
– ident: ref26
  doi: 10.1561/2400000013
– ident: ref42
  doi: 10.1109/TIT.2015.2409256
– year: 2007
  ident: ref55
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– ident: ref7
  doi: 10.1145/307400.307410
– year: 0
  ident: ref13
  article-title: Online convex optimization with time-varying constraints
  publication-title: arXiv 1702 04783
– start-page: 4410
  year: 2020
  ident: ref19
  article-title: Online continuous DR-submodular maximization with long-term budget constraints
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 583
  year: 2016
  ident: ref39
  article-title: Multi-scale exploration of convex functions and bandit convex optimization
  publication-title: Proc Conf Learn Theory
– year: 2018
  ident: ref45
  article-title: Minimizing regret in bandit online optimization in unconstrained and constrained action spaces
– start-page: 3280
  year: 2017
  ident: ref12
  article-title: Safety-aware algorithms for adversarial contextual bandit
  publication-title: Proc Int Conf Mach Learn
– ident: ref49
  doi: 10.1109/TAC.2018.2884653
– ident: ref4
  doi: 10.1109/TCYB.2017.2755720
– ident: ref28
  doi: 10.1007/s10208-015-9296-2
– ident: ref22
  doi: 10.1109/CDC40024.2019.9029474
– ident: ref3
  doi: 10.1109/TAC.2017.2743462
– start-page: 385
  year: 2005
  ident: ref32
  article-title: Online convex optimization in the bandit setting: Gradient descent without a gradient
  publication-title: Proc 17th Annu ACM-SIAM Symp Discrete Algorithms
– start-page: 263
  year: 2008
  ident: ref34
  article-title: Competing in the dark: An efficient algorithm for bandit linear optimization
  publication-title: Proc Conf Learn Theory
– start-page: 1433
  year: 2017
  ident: ref23
  article-title: Efficient regret minimization in non-convex games
  publication-title: Proc Int Conf Mach Learn
– start-page: 784
  year: 2014
  ident: ref37
  article-title: Bandit convex optimization: Towards tight bounds
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref20
  article-title: On the sublinear regret of distributed primal-dual algorithms for online constrained optimization
– ident: ref17
  doi: 10.1145/3393691.3394209
– ident: ref53
  doi: 10.1109/TSP.2020.2964200
– ident: ref48
  doi: 10.1109/JIOT.2018.2839563
– ident: ref29
  doi: 10.1109/TNNLS.2014.2336806
– start-page: 345
  year: 2008
  ident: ref33
  article-title: The price of bandit information for online optimization
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref40
  article-title: An optimal algorithm for bandit convex optimization
– start-page: 1428
  year: 2017
  ident: ref14
  article-title: Online convex optimization with stochastic constraints
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1109/TIT.2012.2192096
– year: 2019
  ident: ref52
  article-title: Distributed online optimization with long-term constraints
– ident: ref46
  doi: 10.1109/LCSYS.2019.2921593
– start-page: 266
  year: 2015
  ident: ref38
  article-title: Bandit convex optimization: $\sqrt{T}$ regret in one dimension
  publication-title: Proc Conf Learn Theory
– start-page: 819
  year: 2016
  ident: ref41
  article-title: (Bandit) convex optimization with biased noisy gradient oracles
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref54
  doi: 10.1016/j.ijepes.2015.11.093
– volume: 18
  start-page: 1
  year: 2017
  ident: ref43
  article-title: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback
  publication-title: J Mach Learn Res
– start-page: 636
  year: 2011
  ident: ref36
  article-title: Improved regret guarantees for online smooth convex optimization with bandit feedback
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 402
  year: 2016
  ident: ref11
  article-title: Adaptive algorithms for online convex optimization with long-term constraints
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1561/2200000018
– ident: ref21
  doi: 10.1109/TAC.2020.3021011
– start-page: 449
  year: 2016
  ident: ref44
  article-title: Tracking slowly moving clairvoyant: Optimal dynamic regret of online learning with true and noisy gradient
  publication-title: Proc Int Conf Mach Learn
– start-page: 28
  year: 2010
  ident: ref9
  article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback
  publication-title: Proc Conf Learn Theory
– ident: ref31
  doi: 10.1109/TCNS.2020.3024321
– year: 2019
  ident: ref51
  article-title: Distributed online linear regression
– year: 2018
  ident: ref56
  article-title: Lectures on Convex Optimization
  doi: 10.1007/978-3-319-91578-4
– start-page: 3944
  year: 2019
  ident: ref18
  article-title: Cautious regret minimization: Online optimization with long-term budget constraints
  publication-title: Proc Int Conf Mach Learn
– start-page: 6140
  year: 2018
  ident: ref16
  article-title: Online convex optimization for cumulative constraints
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 225
  year: 1999
  ident: ref6
  article-title: Linear hinge loss and average margin
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/72.501719
– ident: ref10
  doi: 10.1007/s10994-007-5016-8
– volume: 13
  start-page: 2503
  year: 2012
  ident: ref47
  article-title: Trading regret for efficiency: Online convex optimization with long term constraints
  publication-title: J Mach Learn Res
– year: 2020
  ident: ref25
  article-title: Diminishing regret for online nonconvex optimization
– volume: 21
  start-page: 1
  year: 2020
  ident: ref15
  article-title: A low complexity algorithm with $ {O}(\sqrt{T})$ regret and finite constraint violations for online convex optimization with long term constraints
  publication-title: J Mach Learn Res
– start-page: 928
  year: 2003
  ident: ref8
  article-title: Online convex programming and generalized infinitesimal gradient ascent
  publication-title: Proc Int Conf Mach Learn
SSID ssj0016441
Score 2.6395812
Snippet Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4620
SubjectTerms Algorithms
Approximation algorithms
Bandit convex optimization
Computational geometry
Convex analysis
Convex functions
Convexity
distributed optimization
Electric power grids
Feedback
Games
gradient approximation
Heuristic algorithms
Numerical simulation
online optimization
Optimization
Optimization methods
Tightness
Time factors
time-varying constraints
Title Distributed Bandit Online Convex Optimization With Time-Varying Coupled Inequality Constraints
URI https://ieeexplore.ieee.org/document/9222230
https://www.proquest.com/docview/2575981389
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303537
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ukx58i_VFDiIIpo9N0mSPtVqqoF609uSy2QcVNZY2AfXXO5OkQUXEU3LYWTaZ3XnszHwDcGh8ZVHToJsacOv6oYrcOLDGlTqOPKmaMrR0D3l13e7f-ZfDYDgHJ1UtjDEmTz4zdXrNY_n6VWV0VdbgjLQZOujz6LgVtVpVxID0eiF18QCzqApJNnnjttNFR5Chf0rgLJH3TQXlPVW-m5dfIUNzNdNbgavZAovskqd6lsZ19fEDu_G_X7AKy6W96XSKDbIGcyZZh6UvKIQb8HBG4LnU98po55TKXFKnQCB1upST_ubcoFx5KQs2nfvHdORQ5Yg7kBMqksJR2fgZaS8SU9RovhPhNO8-kU434a53ftvtu2XbBVd5jKeuDmMf5ZjW-JC6GSge2BBVO4ssKndJpbwW3aqW8UJLUMaMszjwZTsyYVu20CDcgoXkNTHb4ISa2uRZ0_YjCqHyWBmUB4xLrk1L66AGjRknhCoxyWlxzyL3TZpcIO8E8U6UvKvBcUUxLvA4_hi7QRyoxpU_vwZ7M2aL8sBOBaNGpRFFbWtwVGyAio4QuM8eBx2BrBRP6YjmD7xw5_fpd2GRUd5LnvC3BwvpJDP7aLik8UG-Yz8Bi1rpiA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADb8R49oCQkOgeabM2xzFA4zG4jMeJKM1DIGAg1knAr8duuwoQQpzaQxyldeJHbH8G2Lahdqhp0E3lwvlhpGM_4c76yiRxoHRdRY7uIbvnzc5leHLDb8Zgr6yFsdZmyWe2Sq9ZLN886yFdldUEI22GDvoE6n3eyKu1ypgBafZc7uIRZnEZlKyLWq_VRleQoYdK8Cxx8E0JZV1VvhuYX0FDM0VzNAvd0RLz_JKH6jBNqvrjB3rjf79hDmYKi9Nr5VtkHsZsfwGmv-AQLsLtAcHnUucra7x9KnRJvRyD1GtTVvqbd4GS5ako2fSu79M7j2pH_Cv1SmVSOGr48oi0x32bV2m-E-Eg6z-RDpbg8uiw1-74ReMFXwdMpL6JkhAlmTH4UKbOteAuQuXOYofqXVExr0PHqmGDyBGYMRMs4aFqxjZqqgaahMsw3n_u2xXwIkON8pxthjEFUUWiLUoEJpQwtmEMr0BtxAmpC1RyWtyjzLyTupDIO0m8kwXvKrBbUrzkiBx_jF0kDpTjip9fgfURs2VxZAeSUavSmOK2FdjJN0BJRxjcB_dXLYmslA_pHc3Pg2j19-m3YLLT657Js-Pz0zWYYpQFk6X_rcN4-jq0G2jGpMlmtns_AeEw7NE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Bandit+Online+Convex+Optimization+With+Time-Varying+Coupled+Inequality+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Yi%2C+Xinlei&rft.au=Li%2C+Xiuxian&rft.au=Yang%2C+Tao&rft.au=Xie%2C+Lihua&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=66&rft.issue=10&rft.spage=4620&rft.epage=4635&rft_id=info:doi/10.1109%2FTAC.2020.3030883&rft.externalDocID=9222230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon