Distributed Bandit Online Convex Optimization With Time-Varying Coupled Inequality Constraints
Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of cou...
Saved in:
Published in | IEEE transactions on automatic control Vol. 66; no. 10; pp. 4620 - 4635 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\theta })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{7/4-\theta })</tex-math></inline-formula> constraint violation are achieved in the one-point bandit feedback setting, and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\max \lbrace \kappa,1-\kappa \rbrace })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{1-\kappa /2})</tex-math></inline-formula> constraint violation in the two-point bandit feedback setting, where <inline-formula><tex-math notation="LaTeX">\theta \in (3/4,5/6]</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\kappa \in (0,1)</tex-math></inline-formula> are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature. |
---|---|
AbstractList | Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\theta })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{7/4-\theta })</tex-math></inline-formula> constraint violation are achieved in the one-point bandit feedback setting, and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{\max \lbrace \kappa,1-\kappa \rbrace })</tex-math></inline-formula> expected static regret and <inline-formula><tex-math notation="LaTeX">\mathcal {O}(T^{1-\kappa /2})</tex-math></inline-formula> constraint violation in the two-point bandit feedback setting, where <inline-formula><tex-math notation="LaTeX">\theta \in (3/4,5/6]</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\kappa \in (0,1)</tex-math></inline-formula> are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature. Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt tominimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that O(T-theta) expected static regret and O(T7/4-theta) constraint violation are achieved in the one-point bandit feedback setting, and O((T max{kappa,1-kappa})) expected static regret and O(T1-kappa/2) constraint violation in the two-point bandit feedback setting, where theta is an element of(3/4, 5/6] and kappa is an element of(0, 1) are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature. Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of learners and an adversary. The learners attempt to minimize a sequence of global loss functions and at the same time satisfy a sequence of coupled constraint functions, where the constraints are coupled across the distributed learners at each round. The global loss and the coupled constraint functions are the sum of local convex loss and constraint functions, respectively, which are adaptively generated by the adversary. The local loss and constraint functions are revealed in a bandit manner, i.e., only the values of loss and constraint functions are revealed to the learners at the sampling instance, and the revealed function values are held privately by each learner. Both one- and two-point bandit feedback are studied with the two corresponding distributed bandit online algorithms used by the learners. We show that sublinear expected regret and constraint violation are achieved by these two algorithms, if the accumulated variation of the comparator sequence also grows sublinearly. In particular, we show that [Formula Omitted] expected static regret and [Formula Omitted] constraint violation are achieved in the one-point bandit feedback setting, and [Formula Omitted] expected static regret and [Formula Omitted] constraint violation in the two-point bandit feedback setting, where [Formula Omitted] and [Formula Omitted] are user-defined tradeoff parameters. Finally, the tightness of the theoretical results is illustrated by numerical simulations of a simple power grid example, which also compares the proposed algorithms to algorithms existing in the literature. |
Author | Johansson, Karl Henrik Xie, Lihua Yang, Tao Chai, Tianyou Yi, Xinlei Li, Xiuxian |
Author_xml | – sequence: 1 givenname: Xinlei orcidid: 0000-0003-4299-0471 surname: Yi fullname: Yi, Xinlei email: xinleiy@kth.se organization: Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 2 givenname: Xiuxian orcidid: 0000-0002-4938-0468 surname: Li fullname: Li, Xiuxian email: xxli@ieee.org organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 3 givenname: Tao orcidid: 0000-0003-4090-8497 surname: Yang fullname: Yang, Tao email: yangtao@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 4 givenname: Lihua orcidid: 0000-0002-7137-4136 surname: Xie fullname: Xie, Lihua email: elhxie@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 5 givenname: Tianyou orcidid: 0000-0002-4623-1483 surname: Chai fullname: Chai, Tianyou email: tychai@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 6 givenname: Karl Henrik orcidid: 0000-0001-9940-5929 surname: Johansson fullname: Johansson, Karl Henrik email: kallej@kth.se organization: Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303537$$DView record from Swedish Publication Index |
BookMark | eNp9kDtPwzAURi1UJFpgR2KJxJziR5zYYylPqVKXUjYst3HoLakTYgcovx6HAgMDXq4sne_TvWeAerayBqETgoeEYHk-G42HFFM8ZJhhIdge6hPORUw5ZT3Ux5iIWFKRHqCBc-vwTZOE9NHjJTjfwKL1Jo8utM3BR1NbgjXRuLKv5j2a1h428KE9VDZ6AL-KZrAx8Vw3W7BPgWrrMmTvrHlpdQl-2wVDpwbr3RHaL3TpzPH3PET311ez8W08md7cjUeTeMmo9HGeLRJKZJ6HoXPMl5IXGaaMioIIriXjskgkJ4ZlhcAZp5IueKJTYbJUEyLZIYp3ve7N1O1C1Q1swoKq0qAuYT5SVfOknv1KBTucZYE_2_F1U720xnm1rtrGhhUV5RmXgjDRtaY7atlUzjWmUEvwXyK680pFsOrcq-Bede7Vt_sQxH-CPwv9EzndRcAY84tLGl5APgGi0ZCN |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101042 crossref_primary_10_1016_j_jfranklin_2023_09_058 crossref_primary_10_1049_stg2_12063 crossref_primary_10_1109_TCNS_2022_3219765 crossref_primary_10_1109_TCNS_2024_3395849 crossref_primary_10_1007_s11768_021_00041_3 crossref_primary_10_1016_j_automatica_2024_111828 crossref_primary_10_1016_j_isatra_2024_06_033 crossref_primary_10_1109_TAC_2023_3312033 crossref_primary_10_1007_s40305_023_00496_y crossref_primary_10_1016_j_automatica_2023_111328 crossref_primary_10_1109_LCSYS_2023_3282021 crossref_primary_10_1109_TCSS_2024_3406528 crossref_primary_10_1016_j_automatica_2023_111407 crossref_primary_10_1049_2024_5553292 crossref_primary_10_1049_cth2_12759 crossref_primary_10_1016_j_arcontrol_2023_100904 crossref_primary_10_3390_math12213439 crossref_primary_10_1016_j_automatica_2024_111681 crossref_primary_10_1016_j_amc_2023_127865 crossref_primary_10_1109_JAS_2024_124869 crossref_primary_10_1109_TAC_2023_3342850 crossref_primary_10_1109_TAC_2022_3230766 crossref_primary_10_1016_j_automatica_2022_110590 crossref_primary_10_1016_j_jfranklin_2023_09_001 crossref_primary_10_1109_TETCI_2024_3393362 crossref_primary_10_1016_j_neucom_2022_05_024 crossref_primary_10_1002_asjc_3148 crossref_primary_10_1109_TCNS_2021_3107480 crossref_primary_10_1016_j_automatica_2023_111455 crossref_primary_10_1016_j_automatica_2023_110969 crossref_primary_10_1109_TCNS_2023_3337671 crossref_primary_10_1109_TNSE_2024_3484149 crossref_primary_10_1049_cth2_12548 crossref_primary_10_1016_j_future_2024_03_022 crossref_primary_10_1002_asjc_2996 crossref_primary_10_1109_TSP_2022_3194369 crossref_primary_10_1016_j_automatica_2024_112068 crossref_primary_10_1109_TICPS_2024_3410846 crossref_primary_10_1109_TNET_2022_3222404 crossref_primary_10_1007_s11431_023_2513_8 crossref_primary_10_1016_j_jfranklin_2024_107132 crossref_primary_10_1080_00207721_2023_2209566 crossref_primary_10_1080_01691864_2023_2285806 crossref_primary_10_1109_JAS_2023_123126 crossref_primary_10_1016_j_neucom_2023_127184 |
Cites_doi | 10.1109/ChiCC.2016.7554642 10.1109/TAC.2019.2914025 10.1145/3219617.3219635 10.1109/TAC.2017.2760284 10.1561/2400000013 10.1109/TIT.2015.2409256 10.1145/307400.307410 10.1109/TAC.2018.2884653 10.1109/TCYB.2017.2755720 10.1007/s10208-015-9296-2 10.1109/CDC40024.2019.9029474 10.1109/TAC.2017.2743462 10.1145/3393691.3394209 10.1109/TSP.2020.2964200 10.1109/JIOT.2018.2839563 10.1109/TNNLS.2014.2336806 10.1109/TIT.2012.2192096 10.1109/LCSYS.2019.2921593 10.1016/j.ijepes.2015.11.093 10.1561/2200000018 10.1109/TAC.2020.3021011 10.1109/TCNS.2020.3024321 10.1007/978-3-319-91578-4 10.1109/72.501719 10.1007/s10994-007-5016-8 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTPV AOWAS D8V |
DOI | 10.1109/TAC.2020.3030883 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 4635 |
ExternalDocumentID | oai_DiVA_org_kth_303537 10_1109_TAC_2020_3030883 9222230 |
Genre | orig-research |
GrantInformation_xml | – fundername: Knut and Alice Wallenberg Foundation the Swedish Foundation for Strategic Research – fundername: 2020 Science and Technology Major Project of Liaoning Province grantid: 2020JH1/10100008 – fundername: Vetenskapsrådet; Swedish Research Council funderid: 10.13039/501100004359 – fundername: Ministry of Education of Republic of Singapore grantid: MoE Tier 1 RG72/19 – fundername: National Natural Science Foundation of China grantid: 61991403; 61991404; 61991400 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c329t-d7b4219ddb42ad05c95f702328f185a9359f4951e37f8075292b54a68e76a1193 |
IEDL.DBID | RIE |
ISSN | 0018-9286 1558-2523 |
IngestDate | Thu Aug 21 07:02:24 EDT 2025 Mon Jun 30 10:10:34 EDT 2025 Tue Jul 01 03:36:36 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Wed Aug 27 02:26:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-d7b4219ddb42ad05c95f702328f185a9359f4951e37f8075292b54a68e76a1193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9940-5929 0000-0002-7137-4136 0000-0002-4938-0468 0000-0003-4299-0471 0000-0002-4623-1483 0000-0003-4090-8497 |
PQID | 2575981389 |
PQPubID | 85475 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2020_3030883 crossref_primary_10_1109_TAC_2020_3030883 proquest_journals_2575981389 ieee_primary_9222230 swepub_primary_oai_DiVA_org_kth_303537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | hu (ref41) 2016 ref53 ref54 ref10 saha (ref36) 2011 zinkevich (ref8) 2003 ref17 liakopoulos (ref18) 2019 neely (ref13) 0 gentile (ref6) 1999 sadeghi (ref19) 2020 shamir (ref43) 2017; 18 ref50 ref46 ref48 ref42 ref49 sun (ref12) 2017 ref7 yu (ref14) 2017 ref4 hazan (ref40) 2016 ref3 abernethy (ref34) 2008 ref5 yuan (ref52) 2019 ref35 bubeck (ref39) 2016 ref31 ref30 ref2 ref1 flaxman (ref32) 2005 hazan (ref23) 2017 yuan (ref16) 2018 jenatton (ref11) 2016 park (ref25) 2020 ref24 matyas (ref27) 1965; 26 ref26 bubeck (ref38) 2015 ref22 yuan (ref51) 2019 ref21 hazan (ref37) 2014 tatarenko (ref45) 2018 ref28 yu (ref15) 2020; 21 ref29 dani (ref33) 2008 lee (ref20) 2017 mahdavi (ref47) 2012; 13 yang (ref44) 2016 nesterov (ref56) 2018 facchinei (ref55) 2007 agarwal (ref9) 2010 |
References_xml | – ident: ref50 doi: 10.1109/ChiCC.2016.7554642 – ident: ref30 doi: 10.1109/TAC.2019.2914025 – ident: ref24 doi: 10.1145/3219617.3219635 – ident: ref2 doi: 10.1109/TAC.2017.2760284 – volume: 26 start-page: 246 year: 1965 ident: ref27 article-title: Random optimization publication-title: Autom Remote Control – ident: ref26 doi: 10.1561/2400000013 – ident: ref42 doi: 10.1109/TIT.2015.2409256 – year: 2007 ident: ref55 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems – ident: ref7 doi: 10.1145/307400.307410 – year: 0 ident: ref13 article-title: Online convex optimization with time-varying constraints publication-title: arXiv 1702 04783 – start-page: 4410 year: 2020 ident: ref19 article-title: Online continuous DR-submodular maximization with long-term budget constraints publication-title: Proc Int Conf Artif Intell Statist – start-page: 583 year: 2016 ident: ref39 article-title: Multi-scale exploration of convex functions and bandit convex optimization publication-title: Proc Conf Learn Theory – year: 2018 ident: ref45 article-title: Minimizing regret in bandit online optimization in unconstrained and constrained action spaces – start-page: 3280 year: 2017 ident: ref12 article-title: Safety-aware algorithms for adversarial contextual bandit publication-title: Proc Int Conf Mach Learn – ident: ref49 doi: 10.1109/TAC.2018.2884653 – ident: ref4 doi: 10.1109/TCYB.2017.2755720 – ident: ref28 doi: 10.1007/s10208-015-9296-2 – ident: ref22 doi: 10.1109/CDC40024.2019.9029474 – ident: ref3 doi: 10.1109/TAC.2017.2743462 – start-page: 385 year: 2005 ident: ref32 article-title: Online convex optimization in the bandit setting: Gradient descent without a gradient publication-title: Proc 17th Annu ACM-SIAM Symp Discrete Algorithms – start-page: 263 year: 2008 ident: ref34 article-title: Competing in the dark: An efficient algorithm for bandit linear optimization publication-title: Proc Conf Learn Theory – start-page: 1433 year: 2017 ident: ref23 article-title: Efficient regret minimization in non-convex games publication-title: Proc Int Conf Mach Learn – start-page: 784 year: 2014 ident: ref37 article-title: Bandit convex optimization: Towards tight bounds publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref20 article-title: On the sublinear regret of distributed primal-dual algorithms for online constrained optimization – ident: ref17 doi: 10.1145/3393691.3394209 – ident: ref53 doi: 10.1109/TSP.2020.2964200 – ident: ref48 doi: 10.1109/JIOT.2018.2839563 – ident: ref29 doi: 10.1109/TNNLS.2014.2336806 – start-page: 345 year: 2008 ident: ref33 article-title: The price of bandit information for online optimization publication-title: Proc Adv Neural Inf Process Syst – year: 2016 ident: ref40 article-title: An optimal algorithm for bandit convex optimization – start-page: 1428 year: 2017 ident: ref14 article-title: Online convex optimization with stochastic constraints publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1109/TIT.2012.2192096 – year: 2019 ident: ref52 article-title: Distributed online optimization with long-term constraints – ident: ref46 doi: 10.1109/LCSYS.2019.2921593 – start-page: 266 year: 2015 ident: ref38 article-title: Bandit convex optimization: $\sqrt{T}$ regret in one dimension publication-title: Proc Conf Learn Theory – start-page: 819 year: 2016 ident: ref41 article-title: (Bandit) convex optimization with biased noisy gradient oracles publication-title: Proc Int Conf Artif Intell Statist – ident: ref54 doi: 10.1016/j.ijepes.2015.11.093 – volume: 18 start-page: 1 year: 2017 ident: ref43 article-title: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback publication-title: J Mach Learn Res – start-page: 636 year: 2011 ident: ref36 article-title: Improved regret guarantees for online smooth convex optimization with bandit feedback publication-title: Proc Int Conf Artif Intell Statist – start-page: 402 year: 2016 ident: ref11 article-title: Adaptive algorithms for online convex optimization with long-term constraints publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1561/2200000018 – ident: ref21 doi: 10.1109/TAC.2020.3021011 – start-page: 449 year: 2016 ident: ref44 article-title: Tracking slowly moving clairvoyant: Optimal dynamic regret of online learning with true and noisy gradient publication-title: Proc Int Conf Mach Learn – start-page: 28 year: 2010 ident: ref9 article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback publication-title: Proc Conf Learn Theory – ident: ref31 doi: 10.1109/TCNS.2020.3024321 – year: 2019 ident: ref51 article-title: Distributed online linear regression – year: 2018 ident: ref56 article-title: Lectures on Convex Optimization doi: 10.1007/978-3-319-91578-4 – start-page: 3944 year: 2019 ident: ref18 article-title: Cautious regret minimization: Online optimization with long-term budget constraints publication-title: Proc Int Conf Mach Learn – start-page: 6140 year: 2018 ident: ref16 article-title: Online convex optimization for cumulative constraints publication-title: Proc Adv Neural Inf Process Syst – start-page: 225 year: 1999 ident: ref6 article-title: Linear hinge loss and average margin publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1109/72.501719 – ident: ref10 doi: 10.1007/s10994-007-5016-8 – volume: 13 start-page: 2503 year: 2012 ident: ref47 article-title: Trading regret for efficiency: Online convex optimization with long term constraints publication-title: J Mach Learn Res – year: 2020 ident: ref25 article-title: Diminishing regret for online nonconvex optimization – volume: 21 start-page: 1 year: 2020 ident: ref15 article-title: A low complexity algorithm with $ {O}(\sqrt{T})$ regret and finite constraint violations for online convex optimization with long term constraints publication-title: J Mach Learn Res – start-page: 928 year: 2003 ident: ref8 article-title: Online convex programming and generalized infinitesimal gradient ascent publication-title: Proc Int Conf Mach Learn |
SSID | ssj0016441 |
Score | 2.6395812 |
Snippet | Distributed bandit online convex optimization with time-varying coupled inequality constraints is considered, motivated by a repeated game between a group of... |
SourceID | swepub proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4620 |
SubjectTerms | Algorithms Approximation algorithms Bandit convex optimization Computational geometry Convex analysis Convex functions Convexity distributed optimization Electric power grids Feedback Games gradient approximation Heuristic algorithms Numerical simulation online optimization Optimization Optimization methods Tightness Time factors time-varying constraints |
Title | Distributed Bandit Online Convex Optimization With Time-Varying Coupled Inequality Constraints |
URI | https://ieeexplore.ieee.org/document/9222230 https://www.proquest.com/docview/2575981389 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303537 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ukx58i_VFDiIIpo9N0mSPtVqqoF609uSy2QcVNZY2AfXXO5OkQUXEU3LYWTaZ3XnszHwDcGh8ZVHToJsacOv6oYrcOLDGlTqOPKmaMrR0D3l13e7f-ZfDYDgHJ1UtjDEmTz4zdXrNY_n6VWV0VdbgjLQZOujz6LgVtVpVxID0eiF18QCzqApJNnnjttNFR5Chf0rgLJH3TQXlPVW-m5dfIUNzNdNbgavZAovskqd6lsZ19fEDu_G_X7AKy6W96XSKDbIGcyZZh6UvKIQb8HBG4LnU98po55TKXFKnQCB1upST_ubcoFx5KQs2nfvHdORQ5Yg7kBMqksJR2fgZaS8SU9RovhPhNO8-kU434a53ftvtu2XbBVd5jKeuDmMf5ZjW-JC6GSge2BBVO4ssKndJpbwW3aqW8UJLUMaMszjwZTsyYVu20CDcgoXkNTHb4ISa2uRZ0_YjCqHyWBmUB4xLrk1L66AGjRknhCoxyWlxzyL3TZpcIO8E8U6UvKvBcUUxLvA4_hi7QRyoxpU_vwZ7M2aL8sBOBaNGpRFFbWtwVGyAio4QuM8eBx2BrBRP6YjmD7xw5_fpd2GRUd5LnvC3BwvpJDP7aLik8UG-Yz8Bi1rpiA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADb8R49oCQkOgeabM2xzFA4zG4jMeJKM1DIGAg1knAr8duuwoQQpzaQxyldeJHbH8G2Lahdqhp0E3lwvlhpGM_4c76yiRxoHRdRY7uIbvnzc5leHLDb8Zgr6yFsdZmyWe2Sq9ZLN886yFdldUEI22GDvoE6n3eyKu1ypgBafZc7uIRZnEZlKyLWq_VRleQoYdK8Cxx8E0JZV1VvhuYX0FDM0VzNAvd0RLz_JKH6jBNqvrjB3rjf79hDmYKi9Nr5VtkHsZsfwGmv-AQLsLtAcHnUucra7x9KnRJvRyD1GtTVvqbd4GS5ako2fSu79M7j2pH_Cv1SmVSOGr48oi0x32bV2m-E-Eg6z-RDpbg8uiw1-74ReMFXwdMpL6JkhAlmTH4UKbOteAuQuXOYofqXVExr0PHqmGDyBGYMRMs4aFqxjZqqgaahMsw3n_u2xXwIkON8pxthjEFUUWiLUoEJpQwtmEMr0BtxAmpC1RyWtyjzLyTupDIO0m8kwXvKrBbUrzkiBx_jF0kDpTjip9fgfURs2VxZAeSUavSmOK2FdjJN0BJRxjcB_dXLYmslA_pHc3Pg2j19-m3YLLT657Js-Pz0zWYYpQFk6X_rcN4-jq0G2jGpMlmtns_AeEw7NE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Bandit+Online+Convex+Optimization+With+Time-Varying+Coupled+Inequality+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Yi%2C+Xinlei&rft.au=Li%2C+Xiuxian&rft.au=Yang%2C+Tao&rft.au=Xie%2C+Lihua&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=66&rft.issue=10&rft.spage=4620&rft.epage=4635&rft_id=info:doi/10.1109%2FTAC.2020.3030883&rft.externalDocID=9222230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |